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Abstract

Entanglement properties of driven quantum systems can potentially differ from
the equilibrium situation due to long range coherences. We confirm this ob-
servation by studying a suitable toy model for mesoscopic transport : the open
quantum symmetric simple exclusion process (QSSEP). We derive exact for-
mulae for its mutual information between different subsystems and show that
it satisfies a volume law. Surprisingly, the QSSEP entanglement properties
only depend on data related to its transport properties and we suspect that
such a relation might hold for more general mesoscopic systems. Exploiting
the free probability structure of QSSEP, we obtain these results by developing
a new method to determine the eigenvalue spectrum of sub-blocks of random
matrices from their so-called local free cumulants – a mathematical result on
its own with potential applications in the theory of random matrices. As an
illustration of this method, we show how to compute expectation values of
observables in systems satisfying the Eigenstate Thermalization Hypothesis
(ETH) from the local free cumulants.
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1 Introduction

In classical information theory, the mutual information between two correlated random
variables X and Y with joint distribution pXY quantifies the information we gain about
X when learning Y ,

I(X : Y ) = H(pX) +H(pY )−H(pXY ).

with H(p) = −
∫
p(x) log p(x) dx the Shannon entropy of the distribution p. A useful com-

munication channel is therefore one in which the mutual information between input and
output is high. In this sense the mutual information characterizes the physical properties
of the channel itself.

From a condensed matter perspective, mutual information and entropy are useful tools
to characterize the physical properties of many-body quantum systems, where the role of
classical correlations is played by entanglement: For example, in systems with local in-
teractions the entanglement entropy S(ρI) = Tr(ρI log ρI) of a subregion I in the ground
state usually scales with the area of the subregion [1] – and not with its volume, as one
would expect for typical energy eigenstates whose entanglement entropy is proportional to
their thermodynamic entropy [2] if the system satisfies the Eigenstate Thermalization Hy-
pothesis [3–5]. Furthermore, the entanglement entropy can detect when a system becomes
many-body-localized, since in that case it scales again with the area of the subregion [6].

If one is interested in distinguishing equilibrium from non-equilibrium situations, then
in particular the mutual information can be useful. In equilibrium, the mutual information
between two subregions of a thermal state with local interactions scales like the area
between the subregions [7]; essentially because the two point correlations or coherences
Gij between two lattice points i and j decay fast enough.

Out-of-equilibrium, this picture potentially differs. First studies of mutual information
in non-equilibrium steady states (NESS) show a logarithm violation of the area law in
free fermionic chains without noise [8], but an unmodified area law for the logarithmic
negativity (an entanglement measure similar to the mutual information [9]) is found in a
chain of quantum harmonic oscillators [10]. This behaviour can differ in the presence of a
scattering region [11] (see comment 1). The mutual information is also expected to follow
an area law in driven integrable interacting systems in which transport is mainly ballistic
(see [12] for a review). In contrast to this, a more recent study [13] finds (via numerical or
approximate analysis) a volume law for the mutual information in two case studies : the
non-interacting limit of a random unitary circuit and an Anderson tight-binding model.
In both of these cases the system is diffusive, with a coherence length (the distance over
which coherences are non-zero2) greater than the system size. In other words, the system
is in the mesoscopic regime3.

We confirm the volume law for mutual information of entanglement in mesoscopic
current driven systems through exact results for a model of noisy free fermions : the
quantum symmetric simple exclusion process (QSSEP) [14]. This model can be seen as a

1The emerging volume law for the mutual information between symmetric regions in this case has its
origin in the entanglement between particles reflected and transmitted by the scattering region

2Strong interactions in the presence of noise tend to decrease the coherence length.
3Mesoscopic systems are defined by the fact that the coherence length is greater than both the obser-

vation scale (to be able to observe quantum coherent effects) and the mean free path (in order to have
diffusive transport)
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minimal description of coherent and diffusive transport in noisy mesoscopic systems [15]
and has the advantage that it allows for analytical results without resorting to numerics.
While the coherences Gij in QSSEP vanish under the noise average, the fluctuations of
coherences survive in the steady state. We show that it is these non-vanishing fluctuations
which are responsible for the volume law of the mutual information between two adjacent
intervals of the system4. In doing so, we develop a mathematical method that allows to
calculate the spectrum of a large class of random matrices from the information about
its ”local free cumulants” (see below for a definition). For QSSEP this is precisely the
information about the fluctuations of coherences.

Interestingly, the mutual information of the classical simple symmetric exclusion pro-
cess (SSEP) only satisfies an area law for the mutual information [16,17]. Keeping in mind
the generic long range correlations in classical non-equilibrium systems [18], this shows
that the coherences in QSSEP represent a stronger form of correlations not present in the
classical description.

2 Results on entanglement in QSSEP

The open quantum symmetric simple exclusion process (QSSEP) is a one-dimensional

chain with N sites occupied by spinless free fermions c†j with noisy hopping rates. The sys-
tem is driven out-of-equilibrium by two boundary reservoirs at different particle densities,
respectively na and nb. While the bulk of the system evolves unitarily but stochastically,
the boundary sites are driven via a dissipative but deterministic Lindbladian,

ρt → ρt+dt = e−idHtρte
idHt + Lbdry(ρt)dt. (1)

The stochastic Hamiltonian increment is

dHt :=

N−1∑
j=1

c†j+1cjdW
j
t + c†jcj+1dW

j
t , (2)

where dW j
t are increments of complex Brownian motions (whose time derivative is a white

noise) with variance E[dW j
t dW

k
t ] = δj,kdt and E the noise average. On the boundary sites,

particles are injected with rate α and extracted with rate β by L+(•) = c† • c− 1
2{cc

†, •}
and L−(•) = c • c† − 1

2{c
†c, •}.The complete driving becomes,

Lbdry = α1L+
1 + β1L−

1 + αNL+
N + βNL−

N ,

and rates relate to the left and right reservoir densities by na = α1
α1+β1

and nb =
αN

αN+βN
.

The key quantity of interest is the matrix of coherences (two-point-function or Green’s

function) Gij(t) := Tr(ρtc
†
icj) which contains all information about the system since the

evolution of QSSEP preserves Gaussian fermionic states [14]. The Renyi entropy of a
subset I ⊂ [0, 1] of length ℓI is

S
(q)
I := (1− q)−1 log Tr(ρqI), (3)

where ρI is the system’s density matrix reduced to the subset I. It can be expressed in
terms of the density of eigenvalues λ ∈ [0, 1] of the matrix of coherences reduced to this
subset GI := (Gij)ij∈I . Its intensive part is

s
(q)
I :=

S
(q)
I

N
=

ℓI
1− q

∫
dσI(λ) log[λ

q + (1− λ)q], (4)

4One has to pay attention to the fact that the noise averaged entropy differs form the entropy of the
noise averaged state, E[S(ρ)] ̸= S(E[ρ]).
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Figure 1: The intensive part i(c) := i([0, c] : [c, 1]) of the 2nd Renyi mutual
information as a function of the cut at c. The ”analytical” data points are
obtained from Eq. (7) via a numerical solution of Eq. (8). They differ quite
substantially from the second order contribution based solely on g2(x, y), which
shows that the higher order local free cumulants gn≥3 are important. This is
compared to ”numerical” data points from a numerical simulation of the QSSEP
dynamics on L = 100 sites with discretization time step dt = 0.1. Instead of
averaging over many noisy realizations, we exploit the ergodicity of QSSEP and
perform a time average of a single realization between t = 0.15 and t = 0.4. The
QSSEP dynamics reaches its steady state at approximately t = 0.1.

with dσI(λ) the spectral density. Since the system is in a mixed state, the entanglement
entropy of a subsystem is not a meaningful quantity. Instead, we consider the (intensive
part) of the mutual information

i(q)(I1; I2) := s
(q)
I1

+ s
(q)
I2

− s
(q)
I1∪I2 . (5)

Our analytical results (derived below) for the 2nd mutual information between two
adjacent intervals I1 = [0, c] and I2 = [c, 1] of the system as a function of the cut at
c ∈ [0, 1] is shown in Fig. 1. It perfectly agrees with the numerical simulation. Since
the figure shows the intensive part of the mutual information one immediately recognizes
that mutual information in QSSEP follows a volume law. We included the result for the
non-interacting random unitary circuit from Ref. [13] that takes into account only the
second order fluctuations of coherences, but not their higher moments.

We make a few remarks before describing the exact formula for the spectral densities :
Firstly, the spectrum for a reflected interval is related by symmetry,

dσ[0,c](λ) = dσ[1−c,1](1− λ). (6)

That is, the interval [0, c] is equivalent to the interval [1 − c, 1] if we interchange the
reservoir densities na ↔ nb and thus reverse the mean current, which is equivalent to the
replacement λ → 1−λ. Secondly, the spectral density for generic reservoir densities na, nb

can be obtained from the special case na = 0, nb = 1, since, in law, the eigenvalues for
the generic case are na + (nb − na)λ, where λ is distributed according to the special case.
Therefore we take na = 0 and nb = 1 if not stated otherwise.

We find that the exact solution for the spectrum of GI reduced to the interval I = [c, 1]
is (see appendix C)

dσ[c,1](λ) =
dλ

πλ(1− λ)

θ

θ2 + log2(re1/c)
Iλ∈[zl(c),1]. (7)
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Figure 2: (Left) The spectral density σI(λ) on the complete interval I = [0, 1].
A comparison between the analytical prediction in Eq. (10) and a numerical
simulation of G. The histogram of eigenvalues of G corresponds to a single
realization of the stochastic evolution of G. (Right) Spectral density σI(λ) for
the intervals I = [0, 0.4] and I = [0.4, 1]. The support of the spectra is larger
than the intervals I and therefore σ[0,c](λ) + σ[c,1](λ) − σ[0,1](λ) stays finite and
the mutual information scales as the volume.

Here, θ and r are functions of λ implicitly defined through the (transcendental) equations

1 + log r = rξ cos θ, θ = rξ sin θ, (8)

with ξ = e1/c(1−c
c )( λ

1−λ). The left boundary of the spectrum (the other being λ = 1) is

zl(c) =
c

c+ (1− c)e1/c
. (9)

In particular, the support of dσ[c,1] is larger than the interval [c, 1]. Therefore the terms
in Eq. (5) cannot compensate each other, such that the mutual information obeys the
volume law.

Close to the right boundary, the spectral density dσ[c,1] approaches that of the complete
interval, i.e. dσ[c,1](λ) ≃λ→1 dσ[0,1](λ) (see below), while close to the left boundary, it

vanishes as a square root, i.e. dσ[c,1](λ) ≃λ→zl(c)
c2dλ

π[zl(c)(1−zl(c))]3/2

√
2(λ− zl(c)). This is

similar to the Wigner semi-circle distribution for Gaussian random matrices.
The formula for dσ[c,1] simplifies considerably if we want to know the spectrum of the

whole matrix G. In the limit c → 0, we have ξ ≃ e1/c

c ( λ
1−λ) → ∞, so that re1/c = 1−λ

λ , θ =
π and we obtain

dσ[0,1](λ) =
dλ

λ(1− λ)

1

π2 + log2(1−λ
λ )

Iλ∈[0,1]. (10)

This is actually a Cauchy distribution

dσ[0,1](ν) =
dν

π2 + ν2
, (11)

after the change of variables ν = log(1−λ
λ ) ∈ (−∞,∞). Thus, the spectral density of the

complete density matrix corresponds to free fermions ρ ∝ exp(
∑

j νjd
†
νjdνj ), with pseudo

energy densities {νj} given by the Cauchy distribution on the positive axis.
A comparison of the analytical expressions for the spectrum on different intervals with

a numerical simulation is shown in Fig. 2.
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Our method can be used to compute the mutual information for a variety of config-
urations. For instance, the von Neumann mutual information between two small distant
intervals I1 = [c1, c1 + ℓ1] and I2 = [c2, c2 + ℓ2], is (for c1 < c2)

i(1)(I1; I2) = ℓ1ℓ2
2c1(1− c2)

c2 − c1
log

(1− c1)c2
(1− c2)c1

+O(ℓ21, ℓ
2
2).

This echoes, once again, that quantum and classical correlations are long ranged out-of-
equilibrium and implies the volume law for the mutual information.

3 Mathematical method

The expressions for the spectrum of QSSEP follow from a quite general method that allows
to determine the spectrum of sub-blocks of any random matrix G satisfying three con-
ditions (namely U(1)-invariance, scaling with matrix size N and factorization) which are
outlined in the next section. The necessary ingredient is a family of correlation functions

gn(x1, · · · , xn) := lim
N→∞

Nn−1E[Gi1i2Gi2i3 · · ·Gini1 ]
c. (12)

Here we alternate between continuous arguments x and matrix indices i via x = i/N ∈
[0, 1]. Note that the order of indices in Eq. (12) forms a loop. In analogy to free cumulants
in free probability theory (see below), we call these functions ”local free cumulants” 5.
They fully determine the probability measure on the matrix G.

For the slightly more general aim of finding the spectrum of Gh := h1/2Gh1/2, with h
a diagonal matrix, we consider the functional

F [h](z) := E tr log(z −Gh) (13)

with tr = tr/N the normalized N -dimensional trace. Its derivative is the resolvent
R[h](z) := E tr(z −Gh)

−1 which contains information about the spectrum of Gh. In the
special case where h(x) = Ix∈I is the indicator function on an interval (or on unions of inter-
vals) we recover the spectral density of GI from the resolvent RI as RI(λ−iϵ)−RI(λ+iϵ) =
2iπℓIdσI(λ), which is what we are interested in.

Our main result is that F [h](z) is determined by the variational principle

min
az ,bz

[∫
[log(z − h(x)bz(x)) + az(x)bz(x)] dx− F0[az]

]
(14)

where the information specific to the random matrix ensemble we consider is contained in
the following generating function (with x⃗ = (x1, · · · , xn))

F0[p] :=
∑
n≥1

1

n

∫
(

n∏
k=1

dxkp(xk)) gn(x⃗). (15)

The extremization conditions read

az(x) =
h(x)

z − h(x)bz(x)
, bz(x) = R0[az](x), (16)

5They are local in the sense that they depend on the internal structure of G. This is different to
most of the usual random matrix ensembles (e.g. GUE or Haar randomly rotated matrices) for which the
correlation functions gn would be independent of the position x

6
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with R0[az](x) := δF0[az ]
δaz(x)

. Alternatively, Eqs.(16) read zh(x)−1 = R0[az](x) + az(x)
−1,

which resembles a local version of the so-called R-transform of free probability theory
[19–22] (hence the name ”local free cumulants” in Eq. (12)). A solution for bz determines
the resolvent via

R[h](z) =

∫
dx

z − h(x)b(x)
(17)

and thereby the spectral density.
In the case of QSSEP, it is known [15, 23] that the local free cumulants gn are free

cumulants w.r.t. the Lebesgue measure on the interval [0, 1]. We can thus use techniques
from free probability (notably the relation between the R- and Cauchy transform) to show
that bz satisfies the differential equations (see appendix B)

zb′′(x) + h(x)(b′(x)2 − b(x)b′′(x)) = 0. (18)

For h(x) = Ix∈I , this reduces to{
[log(z − bz(x))]

′′ = 0, if x ∈ I

bz(x)
′′ = 0, if x /∈ I

(19)

with boundary conditions bz(0) = 0 and bz(1) = 1. For I = I1 ∪ I2 · · · ∪ Ik, the union of
intervals, an ansatz for a solution inside the intervals is bz(x) = z+uje

vjx, while outside the
intervals bz is x-linear. The linearity coefficients and the coefficients uj , vj are determined
by imposing continuity of bz and of its first derivative. The resolvent is reconstructed using
Eq. (17), and the spectral density dσI by extracting the discontinuity of the resolvent on
its cuts. Solving these equations for I = [c, 1] leads to (7,8).

Essentially classical. Note that F0 depends only on a small part of the information
contained in the QSSEP correlation functions gn(x⃗). Indeed, due to the integration in
Eq. (15), the generating function F0 depends only on a symmetrized version of gn(x⃗)
which is invariant under permutation of its arguments, i.e. on

∑
σ∈Sn

gn(σ(x⃗)) with
σ(x⃗) := (xσ(1), · · · , xσ(N)) and Sn the symmetric group of order n. Through the rela-

tion ⟨e
∑

i hiτi⟩SSEP = E[Tr(ρ e
∑

i hic
†
i ci)], which relates the classical SSEP (with particle

density τi on site i) and the QSSEP, one can show (see Eq. (17) in [14] or section 4.2
in [24]) that this information is already contained in the classical SSEP. That is, the con-
nected density-correlation functions of the SSEP is given as sum of the QSSEP correlation
function of coherences gn(x⃗) with permuted arguments,

⟨τi1 ...τin⟩cSSEP = (−1/N)n−1 1

n

∑
σ∈Sn

gn(σ(x⃗)),

where continuous positions and discrete lattice sites are related by x = i/N . Whether
this phenomenon is specific to QSSEP or is also valid for more general chaotic mesoscopic
systems is an open question.

4 Sketch of a proof

We will explain this method and further applications in greater detail in a mathematical
follow paper [25]. Our method works if, in the limit of large matrix size N , the measure E
of the random matrix G satisfies three properties (see [15] section II.A for more details) :

7
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(i) local U(1)-invariance: In distribution, Gij
d
= e−iθiGije

iθj for any angles θi and θj

(ii) ”Loop” without repeated indices scale as E[Gi1i2Gi2,i3 . . . Gini1 ] = O(N1−n)

(iii) Factorization of the measure at leading order for products of ”loops”. Even if i1 = j1
is repeated, E[Gi1i2 . . . Gimi1Gj1j2 . . . Gjnj1 ] = E[Gi1i2 . . . Gimi1 ]E[Gj1j2 . . . Gjnj1 ]

These conditions ensure that the moments of G can be expressed as a sum over non-
crossing partitions of the set {1, · · · , n} (see Eq. (30) in [15])

ϕn := Etr(Gn) =
∑

π∈NC(n)

∫
gπ∗(x⃗) δπ(x⃗)dx⃗ (20)

where gπ(x) :=
∏

b∈π g|b|(x⃗b) with x⃗b = (xi)i∈b. With δπ(x⃗) we mean a product of delta
functions that equate all xi with i in the same block b ∈ π and π∗ is the Kreweras
complement of π (see below for an example and e.g. [20] for a set of lecture notes).

Similarly, the moments ϕn[h] := Etr(Gn
h) can be expressed as a sum over non-crossing

partitions, if above we replace gπ∗(x⃗) with gπ∗(x⃗)h(x1) · · ·h(xn). To better understand
the structure of this sum, we note that non-crossing partitions π ∈ NC(n) are in one-
to-one correspondence with planar bipartite rooted trees with n edges. Here is an ex-
ample for π = {{1, 3}, {2}, {4, 5}, {6}} (dotted lines) whose Kreweras complement is
π∗ = {{1̄, 2̄}, {3̄, 5̄, 6̄}, {4̄}} (solid lines).

2

1

6

2̄

6̄

5̄
3̄, 5̄, 6̄ 1̄, 2̄

1̄

3
4, 5 2

4̄

6

4̄ 3̄

5

4

1, 3

The blocks b of the partition π are associated with black vertices and the blocks w of the
Kreweras complement π∗ with white vertices. They are connected if they have an element
in common. The root is (by convention) chosen to be the block b containing 1.

To apply this correspondence to our problem, we define ϕn[h](x) = E⟨x|(Gh)
n|x⟩ with

ϕn[h]=
∫
ϕn[h](x)dx such that we can associate the root of the tree to the marked point x.

Then ϕn[h](x) is equal to a sum over all bipartite trees T• rooted at a black vertex and
with n edges in total. Their weight T•(h, z, x) is defined as follows : A black vertex carries
the integration variables xi, the root carries x. A white vertex whose neighbours are
x1, · · · , xk takes the value z−kh(x1) · · ·h(xk)gk(x1, · · · , xk). Finally one takes the product
over all vertices and integrates over all xi (except for the root x). By definition we set the
tree consisting of a root without legs to one.

xi

= z−kh(x1) · · · h(xk)gk(x1, · · · , xk)
x2

xkx1

=

Z
1

0

dxi

8
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As an analogue of the resolvent, but with a marked point, we define az(x) := E⟨x| h
z−Gh

|x⟩ =
h(x)
z

∑
n≥0

ϕn[h](x)
zn . The correspondence with trees implies that

az(x) =
h(x)

z

∑
T•

T•(h, z, x). (21)

Among these trees, we denote by T◦ those whose root has a single leg only. This defines

bz(x) =
z

h(x)

∑
T◦

T◦(h, z, x). (22)

The trees T◦ can be understood as the ”no x” terms in the expansion of E⟨x|(Gh)
n|x⟩,

i.e. those terms where none of the intermediate indices is equal to i with x = i/N . In this
sense, bz(x) =

z
h(x)E⟨x|

Gh
z−Gh

|x⟩[no x] 6.
Since any tree T• with l legs on the root can be written as a product of l trees of

the form T◦ we have
∑

T•
T•(h, z, x) = (1 −

∑
T◦

T◦(h, z, x))
−1 and this implies the first

relation in Eq. (16). For the second relation, we start with T◦ and cut the l outgoing legs
of the first white vertex. This generates a product of l trees T•. Then

∑
T◦

T◦(h, z, x) is
equal to ∑

l≥0

∫ ( l∏
i=1

dxi
h(xi)

z

∑
T•

T•(h, z, xi)

)
gl+1(x, x1, · · · , xl) (23)

which implies the second relation. Finally, expanding F [h](z) = log(z) −
∑

n≥1
z−n

n ϕn[h],
one sees that

−h(x)
δF [h](z)

δh(x)
=
∑
T•

T•(h, z, x)− 1 = az(x)bz(x), (24)

which justifies the variational principle in Eq. (14).

5 Conclusion

We have analyzed the mutual information in the open QSSEP, determined exact formulae
in various configurations and proved that it obeys a volume law. This reflects the pres-
ence of long range quantum correlations in out-of-equilibrium mesoscopic systems. The
derivation of these results is based on a new method that allows to evaluate the typical
spectrum of sub-blocks of structured random matrices. Here we applied it to QSSEP
but its scope is likely to be wider. For instance, the variational principle in Eq. (14) is
very similar to the one for the free energy of Bernoulli variables [24]. It also has po-
tential applications in many-body systems at equilibrium satisfying the ETH. Indeed, as
recently understood [26,27], a proper formulation of this hypothesis involves notions from
free probability. We showed in appendix A how to evaluate, within ETH, canonical or
micro-canonical expectation values of observables in terms of their local free cumulants.

Our analysis leads to the question : for which class of noisy driven systems does the
mutual informations satisfies a volume law? Clearly those systems have to be in the
mesoscopic regime, with a coherence length smaller than the observation scale. Does this
class coincide with that discussed in [15] whose coherent fluctuations show free probability
structures? The fact that the Anderson model has similar entanglement properties [13]
hints that a large variety of metallic materials should have entanglement properties similar
to the QSSEP universality class.

6Using this way of writing bz(x) opens the route for an yet alternative proof of our main result [25]
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Furthermore, we observed that the entanglement properties of QSSEP depend only on
a small part of the data available in the distribution of coherences gn(x⃗). In fact, although
mutual information in QSSEP differs from that in SSEP, the necessary data is indirectly
already contained in its classical version. One may therefore wonder, whether this relation
between transport properties (diffusion constant, mobility, i.e. classical properties) and
entanglement properties (quantum properties) extends to more general chaotic and diffu-
sive quantum systems. That is, we wonder if the necessary information for entanglement
properties is already hidden in the (classical) macroscopic fluctuation theory (MFT) [28],
or if not, what extra minimal information is needed. In other words, we may introduce
two notions of universality classes for quantum diffusive chaotic systems : (i) universality
for transport properties, this would be related to classical universality classes, and (ii)
universality for coherent or entanglement properties, this would be related to quantum
universality classes. Whether these two notions of universalities coincide or differ is still
an open question, and the answer to this question might depend on which properties we
include in the specification of the quantum universality classes.

Note that our analysis in this paper deals with the typical or mean entanglement
entropy. However, fluctuations of entropies are known in the case of the closed QSSEP
(periodic system without boundary driving) [29] and it would be interesting to decipher
how this extends to the out-of-equilibrium setting discussed here.

Finally, it would be interesting to find a protocol for information transfer in QSSEP
and link our results to its capacity as a quantum channel.
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A Application to the Eigenstate Thermalization Hypothesis
(ETH)

The variational principle described in the main text provides an efficient way to handle the
structure and consequences of contact points in say multiple products of random matrices.
As such it potentially has a larger domain of applicability. For instance, it also appears in
the classical problem of dealing with the free energy of Bernoulli variables [24]. It also has
potential applications in quantum many-body physics at equilibrium via the eigenstate
thermalization hypothesis [3–5], as we now explain.

Let us consider a closed macroscopic system with H its Hilbert space, whose dimension
dH is exponentially large in the system size or volume, and H its hamiltonian. Let |Ei⟩
be the energy eigenstates, H|Ei⟩ = Ei|Ei⟩, which we assume to be non degenerate for
simplicity. In a large but bounded volume, the energy spectrum is discrete, and the
splitting between two successive energies is exponentially small with the system size. The
density of state σ(E)dE, that is the number of eigenenergy is the interval [E,E + dE],
is thus exponential in the system size. By Boltzmann formula, σ(E)dE = eS(E)dE with
S(E) the entropy of the total system at energy E (S(E) is extensive in the system size).
We normalized it so that its total integral in one. The inverse temperature, at energy E,
is defined as βE = S′(E), where the prime denotes the derivative.

The eigenstate thermalisation hypothesis (ETH) is a statement about the structure of
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the matrix elements of physical observables in the energy eigenbasis. It asserts that the
matrix elements of say local operators A, in the energy eigenstates |Ei⟩ in the bulk of the
spectrum, take the following form [3–5]

Aij = A(Ēij)δij + e−
1
2
S(Ēij)RA

ij fA(Ēij , ωij) (25)

with Ēij = 1
2(Ei + Ej), ωij = Ei − Ej , and A(Ē) and fA(Ē, ω) smooth functions of

their arguments, with fA rapidly decreasing with ω, and RA
ij matrices of order one with

erratically varying elements in the range of energy around Ē, with zero mean and unit
variance (w.r.t. some measure to be discussed below).

Schematically, ETH implies that the matrix Aij can approximatively be thought of
as a (random) band matrix whose width is determined by the decay rate of fA as a
function of ω. One can show [3–5,30] that the decay rate at energy E is the temperature
1/βE , the natural energy scale at energy E. Furthermore, the function fA is expected
to be approximatively constant on an energy scale of the order of the Thouless energy
ET ≃ ℏD/L2, the inverse of the diffusion time, with D the diffusion constant and L the
linear size of the system. Since ET decreases only polynomially with 1/L, not exponentially
with L, there is an exponentially large number of states in any energy window of size ET .
The measure mentioned above, w.r.t. which RA

ij has zero mean and unit variance, is the
one obtained by sampling on an energy window of size the Thouless energy ET .

The ETH, together with the statement that RA
ij has zero mean and unit variance,

ensures that the one and two-point expectations, say in wave packets centred around
an energy E, coincide with the thermodynamic correlations at the inverse temperature
βE [3–5,30].

However, it has recently been understood [26,27] that the original formulation of ETH
needs to be generalized in order to be able to deal with multi-time correlation functions
of say collections of operators Aα at different times tα : namely, tr(ρβA1(t1) · · ·An(tn)),
with ρβ = Z−1 e−βH the equilibrium Gibbs states at the inverse temperature β = 1/kBT
and Z the partition function Z = tr(e−βH) where the trace is over the system Hilbert
space. The generalized ETH [26, 27] asserts that the expectation (w.r.t. to the sampling
measure on energy window of width the Thouless energy which we call the ETH measure)
of products of matrix elements of local operators Aα or Bα in the eigenenergy basis is such
that, for all distinct indices ik and jk,

(A1)i1i2(A2)i2i3 · · · (An)ini1 = e−(n−1)S(Ē12···n) κn(E1, E2, · · · , En), (26a)

(A1)i1i2 · · · (An)ini1 (B1)j1j2 · · · (Bm)jmj1 = (A1)i1i2 · · · (An)ini1 · (B1)j1j2 · · · (Bm)jmj1 ,
(26b)

with Ek the energy of the eigenstate |Eik⟩ and Ē12···n = 1
n(E1 + E2 + · · ·+ En) the mean

energy. Furthermore, the ETH expectations of product of matrix elements for which the
set of in-going indices is not a permutation of the set of out-going indices vanish. These
rules are enough to compute the expectation of any product of matrix elements since any
permutation can be decomposed into product of cycles. Of course, these properties directly
translate to those of the ETH expectations of the time translated operators Aα(tα) since
Aα(tα) = e+iHtαAαe

−iHtα have simple matrix elements in the energy eigenbasis.
Note that the indices appearing in Eq. (26a) form a loop, so that we can refer to such

expectations as loop expectations. The functions κn(E1, E2, · · · , En) has been understood
as free cumulants in [27]. It is easy to verify that those ETH expectation values satisfy
the three criteria – U(1) invariance, scaling and factorisation – necessary for the free
probability techniques to be emerging [15]. Of course, the κn’s depend on the operators
Aα. In the above notation κ1(E) = A(E). Equation (26b) indicates that the ETH
expectation of products of loops factorizes into products of expectations.
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As it was understand in [15, 27], the structure of the generalised ETH and that of
coherence fluctuations in mesoscopic systems, and in particular in Q-SSEP, has a similar
origin : the coarse-graining at microscopic either spatial or energy scales, and the unitary
invariance at these microscopic scales.

When computing multi-point thermal expectations, such as tr(ρβA1(t1) · · ·An(tn)),
one has to sum over intermediate energy eigenstates. That is : one has to sum over
multiple indices ik labelling complete sets of energy eigenstates. These sums cannot be
directly represented as integral over the energy spectrum, with density eS(E)dE, because
the matrix elements of the operators Aα vary erratically. Thus, one has first to do a local
sum, or a averaged smearing, by sampling the eigenstates on a energy window of size ET
around a given energy – and this leads to the ETH averages which are smooth as functions
of the energies – and, in a second step, one then represents the sum over all these local
averages by an integral over the energy spectrum. Symbolically, the rules to compute
correlation functions in ETH framework is (with dH the Hilbert space dimension).

d−1
H

∑
i

(· · · )⇝
∫

dEeS(E) ETH.average(....) (27)

For instance, tr(ρβA) = Z−1
∑

i e
−βEiAii = Z−1

∫
dEeS(E)−βE κ1(E) and Z =

∫
dEeS(E)−βE ,

which can evaluated via a saddle point as usual, while

tr(ρβAB) = Z−1
∑
ij

e−βEiAijBji

= Z−1

[∫
dE1dE2e

S(E1)−βE1eS(E2)−S(Ē12)κ2(E1, E2) +

∫
dE1e

S(E1)−βE1κ1(E1)
2

]
To go from the first to the second line, we have splitted the sum in two sub-sums, one in
which i ̸= j and the other with i = j, and then applied the ETH rules. For higher order
correlation functions this splitting procedure becomes more and more cumbersome. But
this is what the variational principle handles efficiently.

In general, one may evaluate the canonical expectation values tr(ρβA1(t1) · · ·An(tn))
or, if appropriately regularized, simply tr(A1(t1) · · ·An(tn)) with tr the normalised trace,
tr(· · · ) := d−1

H tr(· · · ) and dH the dimension of the system Hilbert space. Alternatively,
we may compute the micro-canonical expectation values ⟨E|A1(t1) · · ·An(tn))|E⟩, for a
given energy eigenstate (with extensive energy). By standard arguments, these will be
equivalent to the canonical Gibbs expectation values at inverse temperature βE .

To handle all possible expectations for all considered operators Aα(tα), let us introduce
a formal free algebra with generators aα and the formal series A defined as

A :=
∑
α

Aα(tα) aα (28)

The benefit of this formal manipulation is that we now have to deal with only one object,
namely A, to handle the collection of all operators. Of course A takes values in a large
formal free algebra. To know about the thermal expectations tr(ρβA1(t1) · · ·An(tn)), we
have to evaluate the expectations tr(ρβAn), or more generally,

tr (ρβAn
h) or tr (An

h) , with Ah = h1/2Ah1/2, (29)

with h a matrix, diagonal in the energy basis, with smoothly varying diagonal matrix
element h(E). Alternatively, we may deal with the micro-canonical expectation values

⟨E|An
h|E⟩. (30)
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Expanding tr(ρβAn
h) or ⟨E|An

h|E⟩ and picking the word a1a2 · · · an yields the expectations
tr(ρβA1(t1) · · ·An(tn)) or ⟨E|A1(t1) · · ·An(tn)|E⟩, respectively.

The problem is now to evaluate the expectations tr(ρβAn
h), tr(An

h) or ⟨E|An
h|E⟩ using

the ETH rules given, with the free cumulants of A as input data :

Ai1i2Ai2i3 · · ·Aini1 = e−(n−1)S(Ē12···n) κAn(E1, E2, · · · , En), (31)

This is exactly the problem the variational principle answers. Of course, the free cumulants
κAn depend on the set of operators Aα, on the times tα, and the free algebra elements aα.
Again expanding it in words in aα yields the mutual free cumulants of the operators Aα.

As in the main text, we define two generating function az(E) and bz(E) by

az(E) := ⟨E| h

z − Ah
|E⟩ = h(E)z−1

∑
n≥0

z−n⟨E|An
h|E⟩, (32)

bz(E) := ⟨E| zAh

h(z − Ah)
|E⟩[noE] = h(E)−1z

∑
n≥1

z−n⟨E|An
h|E⟩[noE]. (33)

Here ”[noE]” means that the eigenstate |E⟩, with energy E, does not appear in any of
intermediate states (or resolution of the identity) used to evaluate the matrix elements
⟨E|An

h|E⟩. By construction, the generating function for the multiple traces tr (An
h) can be

written in terms of the function az(E)

tr

(
1

z − Ah

)
=

∫
dEeS(E) az(E)h(E)−1. (34)

Alternatively, one may compute directly the canonical Gibbs expectation values via

Z−1tr
(
e−βH (z − Ah)

−1
)
= Z−1

∫
dEeS(E)−βE az(E)h(E)−1. (35)

As usual, the later can be evaluated via a saddle point method reducing it to the micro-
canonical expectation values at the energy corresponding to the inverse temperature β
(i.e. E such that βE = β).

Following the same reasoning as in the main text (see [25] for more details), it is then
easy to prove that

az(E) =
h(E)

z − h(E)bz(E)
, (36a)

bz(E) = R0[az](E), (36b)

with

R0[az](E0) :=
∑
n≥0

∫
(

n∏
i=1

dEie
S(Ei)) e−nS(Ē01···n) κAn+1(E0, E1, · · · , En) az(E1) · · · az(En)

(37)
where Ē01···n is the mean energy, Ē01···n = 1

n+1(E0 + E1 + · · · + En). Equation (36a) is
a consequence of the factorisation property (26). Equation (36b) follows from developing
b(z;E) in free cumulants and organising the sum according to the dimension of the block
to which E belongs to.

Since κAn+1 are rapidly decreasing as function of ωi := Ei − Ē01···n, the difference of
energy w.r.t. the mean energy, we can expand the entropy S(Ei) as S(Ei) = S(Ē01···n) +
S′(Ē01···n)ωi+

1
2S

′′(Ē01···n)ω
2
i + · · · . The first derivative of the entropy is the temperature

at the mean energy, S′(Ē01···n) = βĒ01···n . The second derivative is proportional to the
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inverse of the heat capacity and scales as the inverse of the volume of the system. It can
thus be neglected if the free cumulants κAn+1 decrease fast enough as functions of the ωi.
Hence,

∑
i S(Ei)−nS(Ē01···n) = βĒ01···n(Ē01···n−E0)+ · · · , and we can alternatively write

R[â](E0) as

R0[az](E0) =
∑
n≥0

∫ n∏
k=1

dEk e
−βĒ01···n (E0−Ē01···n) κAn+1(E0, E1, · · · , En) az(E1) · · · az(En)

(38)
In some cases, approximating βĒ01···n by βE0 could be a good further approximation.

The first few terms of the generating functions az(E) and bz(E), in the simplest case
with h(E) = 1, read

az(E0) = z−1 + z−2κA1 (E0)

+ z−3

[
κA1 (E0)

2 +

∫
dE1e

S(E1)−S(Ē02)κA2 (E0, E1)

]
+ · · ·

bz(E0) = κA1 (E0) +

∫
dE1e

S(E1)−S(Ē01) κA2 (E0, E1)
[
z−1 + z−2κA1 (E1) + · · ·

]
+ z−2

∫
dE1dE2e

S(E1)+S(E2)−S(Ē012) κA3 (E0, E1, E2) + · · ·

Of course, similar simplifications as those done in Eq. (38) can be applied here.
Equations (34) or (35) supplemented to (36a), (36b) and (38), thus expresses the

generating function of thermal expectation values in terms of the free cumulants. If we
view those free cumulants as a minimal set of data coding for the information relative to all
multi-point expectations, the equations (36a), (36b) and (34) encode the transformation
from this minimal data set to the physically relevant quantities, namely the multi-point
expectation values of local operators. If an analogy is needed, this is similar to the known
fact in statistical or quantum field theory that the one-particle irreducible diagrams form
a minimal complete data set and that the generating function of the connected correlation
functions is the Legendre transform of the effective action which is the generating function
of the one-particle irreducible diagrams. Here, the transformation from the free cumulants
to the thermal expectation values is not a Legendre transformation but the variational
principle formulated in the main text.

B Formula for F0[p] and equation for bz(x) in QSSEP

Here we derive an explicit expression for F0 from Eq. (15) for QSSEP and use it to derive
a differential equation for bz(x) in Eq. (19).

Recall the definition of the generating function F0[p] :=
∑

n≥1
1
n

∫
dx⃗ p(x1)...p(xn)gn(x⃗).

Defining I[p](y) :=
∫ 1
y dx p(x), we shall prove that for QSSEP,

F0[p] = w − 1−
∫ 1

0
dx log[w − I[p](x)], with

∫ 1

0

dx

w − I[p](x)
= 1, (39)

The QSSEP correlation functions gn are recursively given by (see Eq. (76) in [15])∑
π∈NC(n)

gπ(x⃗) = min(x⃗) =: φn(x⃗) (40)

with gπ(x) :=
∏

b∈π g|b|(x⃗b) and x⃗b = (xi)i∈b. We view them as the free cumulants of
indicator functions Ix(y) = 1y<x with respect to the Lebesgue measure dµ(y) = dy, since
the moments of these functions are precisely E[Ix1 ... Ixn ] = min(x⃗).
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Integrating Eq. (40) we have φn[p] =
∑

π∈NC(n) gπ[p], with φn[p] =
∫
dx⃗ φ(x⃗)p(x1)...p(xn)

and gn[p] =
∫
dx⃗ g(x⃗)p(x1)...p(xn). By convention we set g0[p] = φ0[p] ≡ 1. Let us now

define two generating functions, the R-transform (actually 1/w plus the R-transform) and
the Cauchy or Stieltjes transform,

R̃[p](w) =
∑
n≥0

wn−1gn[p], G[p](w) =
∑
n≥0

w−n−1φn[p].

By results from free probability theory, these two functions are inverses of each other,
R̃[p](G[p](w)) = w. Since the generating function F0 introduced in the text is such that

F0[vp] =
∑

n≥1
vn

n gn[p], we have 1 + v∂vF0[vp] = vR̃[p](v). Let us now set I[p](y) :=∫ 1
0 dx p(x)Ix(y). We have I[p](y) =

∫ 1
y dx p(x), and the Cauchy transform can be written

as

G[p](w) =

∫ 1

0

dx

w − I[p](x)
. (41)

Define now a new variable w = w[v, p], such that v = G[p](w). Then, using R̃[p](G[p](w)) =

w, the equation 1 + v∂vF0[vp] = vR̃[p](v) becomes

1 + v∂vF0[vp] = vw

Integrating w.r.t. v yields (with the appropriate boundary condition F0[0] = 0)

F0[vp] = vw − 1−
∫ 1

0
dx log[v(w − I[p](x))]

Indeed, computing the v-derivative of the l.h.s gives v∂vF0[vp] = vw − 1 + (∂w∂v )[v −∫ 1
0

dx
w−I[p](x)

] which, using equation (41), becomes v∂vF0[vp] = vw − 1. Setting v = 1 one

obtains Eq. (39).
Let us now derive a differential equation for bz(x) for QSSEP. Using Eq. (39), the

relation bz(x) =
δF0[az ]
δaz(x)

becomes

bz(x) =

∫ x

0

dy

w − I[az ](y)
, with

∫ 1

0

dx

w − I[az ](x)
= 1. (42)

Thus, bz(x) satisfies the boundary conditions bz(0) = 0 and bz(1) = 1. Furthermore,

1/b′z(x) = w − I[az ](x) and (1/b′z(x))
′ = az(x). Using now az(x) =

h(x)
z−h(x)bz(x)

, this gives,
after some algebraic manipulation,

zb′′(x) + h(x)(b′(x)2 − b(x)b′′(x)) = 0. (43)

For h(x) = Ix∈I , that is h(x) = 0 for x ̸∈ I and h(x) = 1 for x ∈ I, this yields the two
differential equations Eq. (19) given in the main text.

C Derivation of the spectrum of GI for I = [c, 1]

First we present the derivation of the easier case where I = [0, 1] which leads to Eq. (10)
in the main text. In this case a solution of Eq. (19) with correct boundary conditions is
bz(x) = z − z

(
z−1
z

)x
. Via Eq. (17) the resolvent becomes

RI(z) =

∫ 1

0
dx zx−1(z − 1)−x (44)
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and has a branch cut at z ∈ [0, 1]. Via Cauchy’s identity 1
u±iϵ−λ = PV ( 1

u−λ)∓ iπδ(u− λ)
on obtains the spectral density by RI(λ − iϵ) − RI(λ + iϵ) = 2iπℓIdσI(λ) and we find
dσI(λ) =

dλ
π

∫ 1
0 dx sin(πx)λx−1(1− λ)−x. Integrating over x leads to Eq. (10).

In the case of I = [c, 1], a solution of Eq. (19) with correct boundary conditions is

bz(x) =

{
αx if x < c

z − (z − 1)Q(z)y−1 if x > c
(45)

with x = c+ y(1− c). The coefficients α and Q(z) are determined by continuity of bz and
b′z at x = c, hence

zQ = (z − 1) + cαQ, (1− c)αQ = (1− z) logQ.

Eliminating α,

c̄ logQ = 1 + wQ, with c̄ =
c

1− c
, w =

z

1− z
. (46)

This specifies Q(w) or equivalently Q(z). The interesting part of the resolvent will thus
be ℓI

∫ 1
0

dy
z−1Q(z)1−y. And we have to understand the analytic structure of Q(z). We first

look for the domain in which (46) has real (positive) solution. For w real, this occurs for
w ∈ (−∞, wl] with wl = c̄e−1/c. Graphically this is the value of w where 1+wQ is tangent
to c̄ logQ. Hence for z ∈ (−∞, zl] ∪ [1,+∞), (46) has a real positive solution (Q > 0),
with zl =

wl
1+wl

∈ [0, 1], namely

zl =
c

c+ (1− c)e1/c
. (47)

Thus, (46) has no real solution on the interval [zl, 1]. Let us assume that (zl, 1) is the
branch cut and hence the support of the eigenvalues which is bigger than the sub-system
interval I = [c, 1] ⊂ (zl, 1). On the branch cut, i.e. for z ∈ (zl, 1) or equivalently for
w ∈ (wl,∞), there are two complex conjugated solutions. Let Q = e1/c reiθ, r > 0 and
define w = wlξ, ξ > 1 parametrizing the branch cut. Then real and imaginary part of
Eq.(46) become

1 + log r = rξ cos θ, θ = rξ sin θ. (48)

We can now compute the spectral density by looking at the discontinuity of the in-
tegrand (z − 1)−1Q(z)1−y. We have Q(λ ± iϵ) = e1/c rλe

±iθλ , thus (after the change of
variable y → 1− y)

dσ[c,1](λ) = Iλ∈[zl,1]
∫ 1

0

dy

π
(1− λ)−1(e1/c rλ)

y sin(yθλ) dλ.

Integrating over y yields

dσ[c,1](λ) =
dλ

π(1− λ)

θλ + (e1/c rλ) log(e
1/c rλ) sin θλ − (e1/c rλ)θλ cos θλ

θ2λ + [log(e1/c rλ)]2
Iλ∈[zl,1].

We can eliminate the trigonometric function using the relations satisfied by rλ and θλ, to
get

dσ[c,1](λ) =
dλ

πλ(1− λ)

θλ
θ2λ + [log(e1/c rλ)]2

Iλ∈[zl,1]. (49)
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D Illustration of the variational principle on Wigner’s ma-
trices

Wigner’s matrices are characterized by the vanishing of its associated free cumulants of
order strictly bigger than two. Thus, for Wigner matrices only g1 and g2 are non vanishing
and both are x-independent. All gk, k ≥ 3 are zero. Without lost of generality we can
choose g1 = 0 and we set g2 = σ2, because the matrix elements of Wigner’s matrices are
independent Gaussian variables with zero mean and variance E[XijXji] = N−1σ2. Then

F0[p] =
σ2

2

∫
dxdy p(x)p(y) and R0[p] = σ2

∫
dx p(x). For the whole interval (considering a

subset will be equivalent), the saddle point equations become (for h = 1)

a(x) =
1

z − b(x)
, b(x) = σ2A, with A =

∫
dx a(x).

The functions a and b are x-independent. This yields a second order equation for A,
namely A(z − σ2A) = 1. Solving it, with the boundary condition A ∼ 1

z + · · · at z large,
gives

A =
1

2σ2

(
z −

√
z2 − 4σ2

)
Thus the cut is on the interval [−2σ,+2σ] and the spectral density is

dσ(λ) =
dλ

2πσ2

√
4σ2 − λ2 Iλ∈[−2σ,+2σ]

Of course, that’s Wigner’s semi-circle law. Similar method can be applied to standard
sub-blocks of random matrix ensembles such as Haar, Wishart, etc. ensembles (see [25]
for more details).
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