Enhancement of High Harmonic Generation in Bulk Floquet Systems
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We formulate a theory of bulk optical current for a periodically driven system, which accounts for
the mixing of external drive and laser field frequencies and, therefore, the broadening of the harmonic
spectrum compared to the undriven system. We express the current in terms of Floquet-Bloch bands
and their non-adiabatic Berry connection and curvature. Using this expression, we relate spatio-
temporal symmetries of the driven model to selection rules for current harmonics. We illustrate
the application of this theory by studying high harmonic generation in the periodically driven Su-
Schrieffer-Heeger model. At high frequencies and low field amplitudes, we find analytical expressions
for current harmonics. We also calculate the current numerically beyond the high frequency limit
and verify that when the drive breaks a temporal symmetry, harmonics forbidden in the undriven
model become available. Moreover, we find significant enhancement in higher harmonics when the
system is driven, even for low field amplitudes. Our work offers a unified Floquet approach to
nonlinear optical properties of solids, which is useful for realistic calculations of high harmonic

spectra of electronic systems subject to multiple periodic drives.

I. INTRODUCTION

High harmonic generation (HHG) plays an important
role in extreme ultraviolet and attosecond physics [1].
The HHG in gaseous system, first observed experimen-
tally in 1961 [2], is usually understood within a three-
step re-collision model [3]. More recently, with its ex-
perimental realization [4-11] and theoretical modeling of
inter-band polarization and intra-band nonlinear current
in solids [12-16], HHG has emerged as a useful nonlin-
ear probe of electronic properties of condensed matter
systems, including topological materials [17-26].

Along with this renewed interests in HHG, periodically
driven quantum systems have gained attention in recent
years, in part due to the high degree of control they can
offer in experiments [27-59]. In contrast to their equilib-
rium counterparts, driven systems have rich nonequilib-
rium dynamics and can support nontrivial topology with
no equilibrium analogue. Due to its inherently nonlinear
character, it is important to study of the effect of ex-
ternal drive on HHG and its relationship with topology
in periodically driven crystalline systems. To do so, we
need a non-perturbative theoretical formulation of HHG
in such systems.

In this paper, we aim to advance our understanding
of the interplay among external periodic drive, topology,
and HHG by employing the power of Floquet theory [60—
62], applied to periodically driven solids in the bulk un-
der intense light. We note that the external periodic field
by itself may not generate a current: HHG requires the
presence of an optical field. We derive an expression for
optical current in a periodically driven quantum system
in terms of the occupation of Floquet-Bloch bands and
relate it to quantum geometrical quantities like the nona-
diabatic Berry connection and curvature. Along the way,
we reveal some subtleties in the relation between HHG
spectra and nonequilirbium topology. We demonstrate

the utility of this formulation by obtaining HHG selec-
tion rules due to spatiotemporal symmetries. More im-
portantly, our approach naturally extends recent work on
Floquet linear response theory [63] to general frequency
mixing between the drive and the probe fields, thus re-
vealing a mechanism for enhancement of HHG spectra in
periodically driven systems.

As a concrete illustration, we study HHG spectra in the
one-dimensional driven Su-Shrieffer-Higger (SSH) lattice
model [43], which admits various trivial and Floquet
topological phases. We confirm the general HHG selec-
tion rules in this model and demonstrate that by break-
ing the temporal part of a spatio-temporal symmetry,
one can obtain high harmonics that are forbidden in the
undriven model. This is only possible in the driven sys-
tem. We also obtain analytical expressions for the optical
current and HHG spectra in the high frequency approx-
imation. Assuming ideal and projected occupations of
Floquet-Bloch bands, numerical calculation shows that
there is a significant enhancement in higher harmonics
when the system is driven, even at lower field amplitudes.
This means HHG can be generated even at low pulse in-
tensities in a Floquet system.

The paper is organized as follows. In Sec. II, along
with a primer on Floquet theory, we present a general
formulation of optical current in a periodically driven
system and discuss its selection rules. In Sec. III, we
consider the periodically driven SSH model and apply
our formalism to obtain the optical current and its high
harmonics. In Sec. IV, we present and discuss numerical
calculations of HHG spectra in the driven SSH model.
We conclude in Sec. V with a summary and outlook.
Some details of our calculations are provided in two Ap-
pendices. Throughout the paper, we shall use the natu-
ral units i = e/c = a = 1, where a is the relevant length
scale, such as the lattice spacing.



II. OPTICAL CURRENT IN FLOQUET
SYSTEMS

A. Primer on Floquet theory

For a time-periodic Hamiltonian, f{(t) = ﬁ(t + 1),
with period T, the solution of Schrédinger equation
takes the form |¥,(t)) = e =t |®,(¢)), where 2, €
(—m/T,m/T] is the quasienergy, a conserved quantity and
the Floquet state, |®,(t)), is also periodic in time with
the same period 7', and satisfies the Floquet-Schrédinger
equation

[H(t) = i0] [®a(t)) = Za [Palt)) - (1)
Also, the time-ordered evolution operator
A t A
U(t,tg) := Texp {—z/ H(s)ds} (2)
to
— et HP(®) P(g 1), (3)
is decomposed into a periodic micromotion operator

P(t,to)

= P(t+T, to) P(t,to +1T)
Dq(t

>l o)l (4)
and the evolution under the Floquet Hamiltonian

Hp(t) =) Ea|®a() (Palt)]. (5)

[0

For a Hamiltonian that depends on two commensurate
frequencies (w, ), we can define v = wt and T' = Q¢ so
that H(y,T) = H(y 4 2x,T) = H(y,T + 2r). We can
then write the multi-mode Floquet-Schrédinger equation

[A1(3,T) = i(wd, + Q0)] @0 (3,1) = Za |@a(7.T)).
(6)
where |®,(7,T)) is periodic in v and T" with period 2.

We may expand any such function, f(v,I") in Fourier
modes, f(v,I) =3 e imy—tMT f(m.M) with

; ; dry dI’
(m,M) _ imy+iMT 7
gonn = femsatt o, 2 ()

where § is over a cycle of each integration variable. The
single-time Schrodinger equation and its solutions are ob-
tained simply by replacing v = wt and I' = Qt in the
multi-mode Schrédinger equation and its solutions.

B. Optical current and its harmonics

We now derive an expression for optical current in a
time periodic system using Floquet theory. The density
matrix of the system at some initial time ¢ is p(¢g), which
evolves in time through a unitary operator U (t,tp) as

ﬁ(t) = U@? tO)ﬁ(tO)UT (t, tO)'

(.

FIG. 1. Sketch for high harmonic generation in a Floquet
system. The system is driven by a drive frequency €2 and
irradiated by field frequency w. Here the output frequency is
mw + M.

JAVAVAVANS

mw + MQ

For further simplification, we assume that all the op-
erators can be written in the single-particle fermionic
basis and take periodic boundary conditions. So, the
Hamiltonian H(t) =3, éZThTS(k, t)éks, where éLr and
Crr are the creation and annihilation operators, respec-
tively, at lattice momentum k and quantum number r,
and h(k,t) is the time-periodic Bloch Hamiltonian. Sim-
ilarly, the current operator J(t) = D krs élrjrs(k,t)éks,
where j(k,t) = Oh(k,t)/0k.

The current is

J(t,to) = Tx [ﬁ(t)f(t)] (8)
= Ztr Ak, t,t0)] , (9)

where g¢,s(k,t0) = Tr[p (to)cksckr] ‘Tr’ is taken over
the many-body Hilbert space, and ‘tr’ is over the
single-particle Hilbert space for each momentum k.
Here, j(k,t,tg) = ul(k,t,t0)j(k,t)u(k,t,ty) is the
(single-particle) current in the Heisenberg picture and
u(k,t, tg) = Texp[—i fti) h(k, s)ds].
|pa(k,t)) of h(k,t), we find

= Zgag(k,to)jga(k,t)efi(eafef*)(tft(’), (10)
kapB

In the Floquet basis
J(ta tO)

where jga(k,t) = (pp(k,t)| j(k,t) |pa(k,t)) is periodic in
time, and €, are the single-particle quasienergies.

In the following, we specify the time dependence of
the Hamiltonian through a periodically driven internal
parameter () = >, 6(Me "M and an external elec-
tric field via the gauge potential A(t) = >, A e=imwt,
Thus, the Hamiltonian h(k,t) depends on the two fre-
quencies € of the drive and w of the external field. There-
fore, we may employ the Fourier expansion jga(k,t) =

Zm,M jéZ’M)(k)e_i(m'“+MQ)t to write

t tO chxﬁ k tO ](m M)(k) 7z(mw+MQ)t

Ba
kag
mM

w e~ Hea—ep)(t—to) (11)

The dependence on the initial time ¢y in Egs. (10)
and (11), where we set the occupation of the quasi-energy



bands, is the result of our assumption that the ensuing
dynamics is fully coherent. However, in reality the occu-
pation of the quasienergy bands, gn(k,to), depends on
a specific relaxation process for a given system. We are
interested in situations in which the relaxation process,
e.g. through suitable coupling to a thermal bath, results
in a diagonal population g.s = gadas independent of
to. This removes the dependence of the optical current
on the initial time. Physically, this means the system
approaches a Floquet steady state. Formally, we can ob-
tain this result by assuming g.g is independent of ¢y and
average the current over tg, to which only the diagonal
occupations in Floquet states contribute.

Then the current becomes periodic in time J(t) =
T), and

J(t+

J(t)= D galk)jla™ (k)e i mer MOt (12)

kamM

This form of the optical current clearly shows the fre-
quency mixing in the generation of its harmonics. For
example, if the drive frequency is an integer multiple of
the field frequency, 2 = Nw, the current acquires har-
monics m~+ N M of the field frequency. Conversely, when
w = nf) for integer n, the current acquires fractional
harmonics m + M /n of the field frequency. As we shall
demonstrate in concrete examples, some of these harmon-
ics may vanish or be enhanced depending on the order of
the process and selection rules imposed by spatiotempo-
ral symmetries.

We also note that this diagonal optical current may
appear to correspond to only the intra-band contribu-
tions. However, it is important to bear in mind that
each quasienergy band is obtained by a reconstruction
of the original energy bands of static system. Therefore,
the optical current, Eq. (12), already includes both intra-
and inter-band contributions of the static system.

C. Optical current from Berry connection and
curvature

We would like to recast the optical current in terms
of geometrical quantities like Berry curvature and Berry
connection. First, we note that in the Floquet basis, the
current matrix elements,

k) = (00,0 20D 141 1)
= [es () — €a (k) + 801 {9500k (k. 1)
+5aﬁakeﬁ(k)~ (13)

So the full expression of the current, Eq. (10), with diag-
onal Floquet population becomes

Xha

where g 1, (k,t) = (pa(k, t)|i0kda(k, 1)) is the Berry con-
nection of the Floquet band «. This expression makes it

) [Orha i (K, t) + Orea(k)] (14)

clear that all time dependence and, therefore, all higher
harmonics of the optical current result from the time de-
pendence of the Floquet Berry connection. As in the
static case, this also shows that a completely filled Flo-
quet band cannot contribute to DC current.

On the other hand, the gauge invariance of the opti-
cal current is not manifested in Eq. (14), since the Berry
connection 9, i (k, ) itself is not a gauge-invariant quan-
tity. Therefore, we now further recast this expression in
terms of the gauge-invariant Floquet Berry curvature,

o — 81&&1(1 k — 81@91(1,75’ (15)
=1 <at¢oz|ak¢a> -1 <ak¢a|8t¢oz> (16)

where d, . (k,t) = (da(k,t)]|i0ida(k,t)) is the non-
adiabatic (Aharonov-Anandan) connection of the states
in Floquet band « [64]. Numerically, we can also calcu-
late the Berry curvature more efficiently and accurately
without the need of fixing a special gauge [65].

To proceed, note that

atda,k = %a + ak<¢a|i8t¢a> (17)
= 8o + Ok (Da|h|0a) —Ok€q- (18)

Therefore, we find
Zga alkst) + O (k,t)],  (19)

where 14 (k,t) = (pa(k, t)| h(k,t) |pa(k,t)) is the expec-
tation value of the instantaneous Hamiltonian in the Flo-
quet band a. As before, due to periodicity in crystal mo-
mentum £k, this last term does not contribute in a com-
pletely filled band. However, in partially filled bands, it
can contribute to DC as well as the higher harmonics of
optical current.

We note that these expressions can be readily extended
to higher dimensions,

Zga
—Zga

where €, = 0;d, x — O+ and the Floquet Berry con-
nection ook = (9o |i0kda) and o1 = (Pa|i01Pa).

) [Orsla i (k, 1) + Oke(k)]  (20)

ok t) +Oen(k,t)],  (21)

D. Selection rules

Here, we analyze the constraints on the current and its
harmonics due to symmetries for the ideal Floquet occu-
pation with each band either fully occupied or empty.
There is a significant body of literature on selection rules
due to symmetries [66-69]. In this work, we are inter-
ested in discrete spatio-temporal symmetries. In partic-
ular, we consider a unitary mirror (Ir) and an antiuni-
tary time-reflection (© ) symmetries, which include time



glide operations,

hk,t) = ILh(—k,t +t1)Ip, (22)
hk,t) = OLh(—k, —t + tR)Op. (23)

Under Ir symmetry, the occupied Floquet bands o € occ
satisty Ip |¢O¢(k7 t)> = Z,@Eocc j,Boz(k" t) |¢5<_k7 t+ t1)>a
where J(k,t) is a unitary matrix. In Appendix A, we
show that this leads to a relation between the current at
different times,

J(t) = —J(t+1t1). (24)

Therefore, the current vanishes at an odd number of
times in any interval of length ¢; in the cycle, at the
boundary of which the current is nonzero. For t; = 7/w,
we get the following condition for the harmonics of the
current,

J®) = (—1)pt1g®), (25)

which means in the presence of Ir symmetry, only odd
harmonics will survive.

Under O symmetry, the occupied Floquet bands sat-
iSfy ®F |¢Ot(k7 t)> = ZﬂGocc ‘Iﬁa(k’ t) |¢a(_k7 —t+ tR)>’
where T(k,t) is an orthogonal matrix. As shown in Ap-
pendix A, this also leads to a relation between current at
different times,

J(t) = —J(~t +tg). (26)

As a result, the current must vanish at J(tr/2) =
J(T/2+tgr/2) =0. For tg = m/w we have the following
properties of the harmonics of the current,

J® = (_1)p+1J(—p)’ (27)

which means the odd harmonics of the current will be
real and even harmonics of the current will be imaginary,
and the DC component J(© = 0. If tr = 0 instead, the
current J(t) = —J(—t) is an odd function of time and we
find

JP) = _ j=p) (28)

which means J(® = 0 and all the other harmonics will
be imaginary.
When both Ir and ©p symmetries are present, and
taking t; = tg = m/w, we have
J®) = g — (—q)ptl ) (29)
which means that only odd harmonics are nonzero and
they are real.

E. Relation to topology

The expressions of the current in terms of the Floquet
Berry connection and curvature, Egs. (14) and (19), pro-
vide a link between the optical current and the quantum

geometry of Floquet bands. This geometry is also re-
sponsible for nontrivial topological properties of the sys-
tem [70]. Here, we examine the connection between the
optical current and nontrivial topology in different fre-
quency regimes.

In the low-frequency limit, the Floquet states |¢ (k, t))
approach, up to a smooth gauge [71], the adia-
batic states [1)2d(k,t)), i.e. the instantaneous eigen-
states of the driven Hamiltonian, h(k,t) |2 (k,t)) =
E,(k,t) [¢24(t)), assuming the instantaneous energy
bands FE,(k,t) remain gapped. Then, the optical
current of fully occupied bands approaches J(t) —
> acoce $ €24 (k,t)dk, where €24(k,t) is the adiabatic
Berry curvature. This is, of course, the Thouless pump,
in which a charge

Q= fj(t)dt = > j{%gd(m)dkdt =Ch* | (30)
agoce

equal to the Chern number Ch>?, of the occupied adia-

batic bands in (k,t) space, is pumped in each cycle.

While Egs. (14) and (19) hold formally at all frequen-
cies, the gap structure of Floquet bands deviates signif-
icantly away from the adiabatic limit. As a result, the
Floquet bands in the intermediate frequency range be-
come partially filled. In the high frequency limit, other
approximations such as rotating-wave frame and Floquet
Magnus expansion become available. In certain cases,
one can also justify or specifically engineer the Floquet
bands to be be fully occupied or empty. For example,
for high frequencies that are off-resonant with gapped
static bands, one may take the occupation of Floquet
bands to be nearly the same as the original static bands.
In such case, the optical current is obtained from the
non-adiabatic Berry connection and curvature of Floquet
bands.

We would like to note a subtlety related to the choice
of gauge in using Eqs. (14) and (19). Consider a driven
one-dimensional Hamiltonian h(k,t) with time-reflection
symmetry, e.g. h(k,—t) = h(k,t), and chiral symmetry
{C,h(k,t)} = 0 satisfying C = CT = C~!. Then, the
Floquet Hamiltonians hp(k,t.) at time-reflection sym-
metric times t, = 0,7/2, inherit the chiral symmetry
C [72]. The topology of the Floquet bands is then char-
acterized by two gauge-invariant winding numbers w(t.),

wt,) = % > %<C¢a(k,t*)|i8k¢a(k,t*)>dk ez

agoce
(31)
There is a bulk-boundary correspondence [72] between
w(ts) and the number of midgap bound states, vy and
vy, respectively, at quasienergies 0 and /T,

w(T/2) + w(0) w(T/2) — w(0)
Vp=——"""p"" ", Vo=—" (5.
2 2
It is possible to choose a smooth gauge at each t.,
|pa(kyts)) — gtha (ki) ba(k,t.)), such that

w(t) =2 3§ (GalktiOnsakt))d

agocce

(32)




It is then tempting to related w(7T/2) — w(0) to
fOT/ > J(t)dt. However, while both of these quantities
are gauge-invariant, this would not be in general cor-
rect because it is not in general possible to find a gauge
|pa(k, 1)) — eBbaBD 6 (k,t)) that smoothly connects
Ao (k,0) to Ay (k,T/2) in the cycle. The degree to which
this smooth gauge condition is broken is indeed what v,
quantifies.

III. HHG IN PERIODICALLY DRIVEN
SU-SCHRIEFFER-HEEGER MODEL

A. DModel and symmetries

In order to illustrate the physics of high harmonic gen-
eration in Floquet systems concretely, we consider the Su-
Schrieffer-Heeger (SSH) model with time-periodic hop-
ping amplitudes. In addition, an external time-periodic
and spatially uniform gauge field, A(¢), is introduced via
Peierls substitution k¥ — k — A(¢). The full Bloch Hamil-

tonian is

h(k,t) =w{l+ m(t) + [1 — m(¢)] cos[k — A(¥)]} o4
+w [l —m(t)]sinlk — A(t)]oy. (33)

Here, w is the average hopping amplitude. In the follow-
ing, we take the driven field A(t) = Agsin(wt 4+ 8) and
the driven hopping modulation m(t) = mg + my cos(2t).

The static SSH model (my = 0, 4g = 0) has a trivial
(mo > 0) and a topological phase (mg < 0) phase pro-
tected by the chiral symmetry, {h,C} = 0 with C = o,.
In addition, the static model has both unitary inversion
(or mirror) symmetry (I = o,,k — —k) and antiunitary
time-reversal symmetry (0 = K,k — —k , where K is
the complex conjugation).

In the driven model, these symmetries are in general
lifted by the external field. However, for certain drive
protocols, we may recover these symmetries upon a suit-
able mapping within the cycle. That is, the driven system
may have related spatiotemporal symmetries, in which
the temporal part of the Hamiltonian is also transformed.
Indeed, the inversion symmetry can be restored for the
driven system if there exists a time glide 7(¢;) : t — t+1;
within the cycle, for which A(¢+¢;) = —A(t) is odd and
m(t 4+ t;) = m(t) is even. Similarly, the time-reversal
symmetry is restored if there exists a reflection time tg,
for which A(tgr—t) = —A(t) is odd and m(tg —t) = m(¢)

J

is even. The spatiotemporal symmetries of the driven
system are, then,
I h(=k,t+t1)Ip = h(k,t),

IF = T(t])f, (34&)

and

On'h(—k,—t+tR)Or = h(k,t), ©Op =7(tr)O. (34b)
When the drive frequency is an even multiple of the field
frequency (2 = 2nw, n € Z), we may choose t; = 7/w for
any 6 to obtain symmetry under I, yielding J(t+7/2) =
—J(t). For § = £7, we can take tg = 7/w to obtain
symmetry under Op, whereby J(t + T/2) = —J(—t).
Similarly, if # = 0 or m, we can take tg = 0 to find
J(t) = —J(—t). Therefore, selection rules for the ideal
occupation of the Floquet bands apply to the harmonics
of the current in these cases as discussed in Sec. II D.

B. Current in the high frequency limit

In this section we derive an analytical expression for
the current in diagonal Floquet occupation using high
frequency approximation. We will calculate the Floquet
Hamiltonian and states as well as micromotion operators
using high frequency expansion. We assume {2 = Nw for
an integer V.

In the high frequency limit, the Floquet Hamiltonian
and micromotion operator are

(—=n)_p(n) 1
— 1,(0) [P, A =
=0+ S +o(%). (35)
) h(—n)einwt _ h(n)e—inwt 1
P(t) = exp 27;0 — +0 <wQ) )
(36)

respectively, where h(")(k) are the Fourier components
of the Bloch Hamiltonian h(k,t),

RO (k) = [(1+mo) + Re [fo(k)]]ow — Im[fo(k)]oy,
(37)

R (k) = fﬁn(k);f;(k)ow—i—i — :

where,

Falk) = T @Gy 4+ 0n-n) + e * { (1= mo) Fu(A0)e™ = T2 [ Fun(A0)e N + Frpn () V| (39)

2

and 7, are Bessel functions. Thus, we may write the Floquet Hamiltonian as hp(k) = dp(k) - o, with

dp(k) = <<1 +mo) + Re [fo(k)], ~Im [fo(k)], T Hn B =11 ‘"““”2) 7 (40)

and the micromotion as P(k,t) = exp [iV(k,t) - o], with

V(b 0) = 3 = (1m £ (5 0) Re (£ (h,0)),0), - (4)
n>0

nw
n>0

[
where fni(ht) = [fin(k) + fn(k)]einUJt'



N =Q/w  harmonic p Wi W Ws W,
even odd W1 W3 iWo W3
even even W Wy Wa Wa
odd odd iWr  iWs Wa Wy
odd even Wao Wy iWh W3

TABLE I. Choice of W; in Eq. (53), in terms of W;, Eqgs. (49).

a) b) c)
0] ~_ w=bw w = 10w w = 50w
im“‘ N N
,v: 1077} o Ful o Ful \ @ Ful \
=, 10| ®HFA HFA > HEA —
WS 2345671234561 234756
p p p

FIG. 2. Comparison of current harmonics obtained using
the analytical expression in the high frequency approxima-
tion (“HFA”) in Eq. (53) with the full numerical calculation
(“Full”). The parameters are chosen as mo = 0.3,m; =
0.17, A0 = 0.1,Q2 = w, and § = 0.

We can now use Eq. (10) to calculate the optical cur-
rent by writing

Oh(k,t)
ok

Jaa = (0a(k, 0)| P (k,?) Pk, t)|da(k,0)), (42)

where |¢,(k,0)) are the eigenstates of the Floquet Hamil-
tonian hg (k). The current operator Oh/0k = j- o, where

jk,t) = W[l—m(t)]( sin[A(t)—k],cos[k—A(t)],O). (43)

Then, P (k,t)[0h(k,t)/0k|P(k,t) = jr - o with

jr=jj+cos(2V)jL —sin(2V)j x V, (44)

where V(k,t) = [V(k,t)|, V(k,t) = V(k,t)/V(k,t),
j||(k’t) = j(k’t) : V(k,t)V(k,t) and jl(kvt) = j(kvt) -
Jjj(k,t) are the components of j(k,t), respectively, par-
allel and perpendicular to V(k,t). The eigenstates of
hp(k) with quasienergies +|dp(k)| are oriented along
:tap(k,t) = +dp(k,t)/|dp(k,t)| on the Bloch sphere.

TP (k) = (1 =mo) | Fo(A0) Wi + > Fon(200) Fp—2nn (Ao) Wa

nez

Thus, after some algebra, we find

IO = §lg(0) - g- (0] [ir(k.0) - dr ()] dk, - (45
where we denote the occupation of +|dr (k)| quasiener-
gies by g4 (k).

We can present explicit expressions for the harmonics
for sufficiently small Ap, such that dp and V can be

approximated well by neglecting %,~0(A4g). Then, V =
mqvosin(Nwt)/(Nw) with

vo = (1= Jo(Ao) cosk, Fo(Ao)sink,0),  (46)

and
dr = (1 +mo + (1 —mo) F(Ao) cosk,
(1 —mo)H(Ao)sin k70)7 (47)

and Then, dr, V and j are coplanar and j x V-dp =0.
So,

jp-dp ~[1—m(t)] {Wl(k) sin A(t) + Wa(k) cos A(t)

+ cos(2V) [Wa (k) sin A(t) + Wa(k) cos A(%)] } (48)

where
vo-dp
Wi=+—7 [cosk — F(Ao) cos 2k], (49a)
’UOdF
vo-dp . . .
Wy = ——5—— [sink — fo(Ao) sin 2], (49D)
’UOdF
w, = At mo)cosk+ (1= mo)foldo) g0
dr
1 .
W, = Ltmo)sink (49d)
dr
and
vg =1+ J7(Ao) — 2.50(Ao) cosk, (50)

df = (1+mo)? + (1 — mo)* 75 (Ao)
+2(1 —m3) Fo(Ao)cosk.  (51)
vo-dp =14 mg[l + ZZ(Ag) cos 2k — 2 7(Ag) cos k]
— J2(Ap) cos 2k. (52)

Altogether, we find J®) = §[g, (k) — g_(k)]J®) (k)dk,

- % [Z"Q(AO)Wg' + Y Fon(200) Ip-2nn—g(A0)Wa |, (53)
q==xN

nez



where we use the shorthands @y = mivy/(Nw), £ (Ag) =
Fn(Ag)e=? and W; are listed in Table. I. In Fig. 2,
we compare the harmonics obtained from the numerical
integration of the analytical expression in Eq. (53) to the
full numerical calculation reported in the next Section for
the ideal Floquet occupations, g— = 1,¢4+ = 0, showing
excellent agreement for sufficiently large frequencies.

IV. NUMERICAL RESULTS

In this section, we present our numerical results for the
current in the driven SSH model obtained by exact di-
agonalization of Floquet Hamiltonian and time evolution
operators. We have used the Floquet Berry curvature
method as given in Eq. 19 to numerically compute the
current. We have ensured our results converge both in
lattice momentum k& and time ¢ by taking a mesh in k
with 200 points as well as a mesh in ¢ with 256 points
for = Nw and 512 points for w = nf). In order to
investigate the effects of occupation of Floquet bands we
compare our results for the ideal Floquet and thermal
occupation projected to Floquet bands.

A. Ideal Floquet occupation

First, we consider an ideal Floquet occupation where
the Floquet state with lowest quasi-energy band is fully
occupied and the higher quasi-energy band is fully empty.
The quasienergies are plotted in Fig. 3(a)-(c) for the un-
driven model with § = 0, and for the driven model with
d/w = 0.17 and two values of drive frequency Q/w =1
and Q/w = 2. Below, we provide illustrative results for
Q = Nw as well as w = nf) with N and n positive inte-
gers.

We show the Floquet current within a period corre-
sponding to the field frequency in Fig. 4(a)-(c) and the
absolute values of its harmonics in Fig. 4(d)-(f) for dif-
ferent values of field amplitude Ag and = 0. As ex-
pected from our symmetry analysis leading to Eq. (29)
with t; = T/2,tg = 0, we find that for the undriven
model, Fig. 4(a) and 4(c), and the driven model with
Q/w = 2, Fig. 3(d) and 4(f), the Floquet currents at
times ¢t and ¢ + T'/2 have the same magnitude but oppo-
site sign. Consequently, we also see that only odd har-
monics are nonzero in these cases. However, in the driven
model with /w = 1, Fig. 4(b) and 4(e), these selection
rules are lifted and all current harmonics n # 0 become
nonzero. Also, we note the emergence of a multi-step
plateau in the HHG spectra that for a stronger optical
field and lower field frequency, see Fig. B1 in Appendix B.

Fig. 5 shows the gain in harmonics of the current in
the driven system for 2 = Nw. We call this the “Flo-
quet gain” because it becomes available when the system
is periodically driven along with the external field. We

(a) Un

1z

FIG. 3. Quasienergy bands eq(k), (a)-(c), of the driven SSH
model and their projected thermal occupations ga(k), (d)-
(f). Here, w/w = 3,mp = 0.3 and § = 0 in all cases, and
my = 0.17, for the driven cases in (b), (c), (e), and (f). For
the undriven cases in (a) and (d) m; = 0. We note that the
spatio-temporal symmetries are the same for the undriven and
) = 2w cases compared to the {2 = w case. As a result, the
first and third rows show very similar features different from
the second row, especially around crossings at k = £7/2.

see that as we increase the ratio of drive to field fre-
quencies, we can obtain more and more harmonics. This
Floquet gain holds even for low value of the field ampli-
tude as shown in Fig. 5(a). As expected, increasing the
field amplitude Aj leads to higher harmonic generation
both for undriven and driven cases. Interestingly, the
Floquet gain at frequencies M) & |m|w, or equivalently
at harmonic order p = M (2/w) £ |m/|, is prominent even
at low field amplitudes. In all panels, and especially in
(a), Floquet gain can be observed for m =1,2,--- up to
the nonlinear order with significant value in the undriven
model (leftmost column of each panel) and several val-
ues of M = 1,2,3 and 4. Due to the quick suppression
of nonlinear contributions with increasing m at low field
amplitudes, the Floquet gain can be distinguished easily
as streaks of high harmonic generation with slopes equal
to M at order p = M (Q2/w) £+ 1.

In Fig. 6, we plot the current harmonics as a function
of the field amplitude, Ay, and the drive amplitude m;.
For small amplitudes, the dependence follows a power
law with an exponent (, which increases as these ampli-
tudes increases. We note that at small field amplitude
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FIG. 4. Optical current and its harmonics in the driven SSH model with ideal Floquet occupation. For different values of field
amplitude Ao, (a)-(c) show the optical current as a function of time ¢ and (d)-(f) show the absolute value of current harmonics
with respect to harmonic order p. Here, w/w = 3, mo = 0.3 and 6 = 0 for all cases, and m; = 0.17 for the driven cases.

all HHG components, even those with p > 1, show a lin-
ear dependence on Aj due to frequency mixing with the
drive.

We also investigate the dependence of HHG on the
phase difference § — 7/2 between the field and the drive.
Optical current and its harmonics are calculated numer-
ically and plotted in Fig. 7 for several values of 6. For
all @ when = 2w and, separately, for 6 = n/2 and T,
we can explicitly observe the symmetries under Ir and
O, respectively, discussed under Egs. (34). In particu-
lar, for Q@ = 2w in Fig. 7(b) and (d), the symmetry under
Ir forces even harmonics of the current to vanish. Our
results show that, while these symmetry properties influ-
ence the shape of the current as a function of time, they
do not significantly affect the magnitude of its harmonics.

When the drive frequency is a fraction of the field fre-
quency so that w = nf) for integer n, then the optical
current for diagonal Floquet occupation produces frac-
tional harmonics of the field frequency. To calculate the
fractional harmonics numerically, we consider an ideal
Floquet occupation with the lower Floquet band fully
occupied. In Fig. 8 we show the absolute value of the
harmonics of the current as a function of harmonic order
for different field amplitudes. In general, we find harmon-
ics order p = m + M(§2/w) in agreement with Eq. (12).
Of course, we can also view this as the generation of high
harmonics of the drive frequency. From this perspec-
tive, the harmonic generation in the undriven system,
Fig. 8(a) provides the amplitudes needed for frequency
mixing with the drive.

We note that unlike the previous case, when the drive
frequency is the principal Floquet frequency neither the
inversion nor the time-reversal symmetry can be restored,
since there is no time glide t — t 4+ ¢y within the cycle

for which we can ensure m(t + to) = m(t) and A(t +
to) = —A(t), nor m(—t + to) = m(t) and A(—t + t9) =
—A(t). Therefore all the harmonics of the drive that were
forbidden in undriven case are now generated.

B. Projected Floquet thermal occupation

We now compare the optical current harmonics ob-
tained for a thermal density matrix po(k) = %e"m(k)/ To
projected on the Floquet states, where Tj is the tem-
perature (we set kg = 1), Z = tr[e " *)/T0] and the
static Hamiltonian ho(k) := h(k,to)|4o=0,m,=0. That is,
we retain only the diagonal elements

ol t0) = (9a (ks )] po ) (k. 10)
= 2 S EI G (Bl (ko) s (54)

where E})(k) and |49 (k)) are the energy eigenvalues and
eigenstates of ho(k), respectively. We see the dependence
of occupation on ty remains in Eq. (54) because the Flo-
quet Hamiltonian and, therefore, the Floquet state de-
pend on ty. We would average the current over ty; how-
ever, in our numerics we have seen only tiny differences
in the occupations of Floquet-Bloch bands for different
values of tg. So, we set tg = 0 for this calculation.

For Ty — 0, this corresponds to a quenched occupation
where the initial state is the ground state of the static
Hamiltonian ho(k) formed by the lowest static energy
band |¢ps), i.e. ga(k) = | (0%g(k)|Pa(k)) 2. We illus-
trate the projected Floquet occupation of quasienergy
bands in Fig. 3(d)-(f). The Floquet principal frequency
in this case is the field frequency w, which is resonant with
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FIG. 5. Floquet gain of the high harmonics of the current in
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the driven cases. The white background color denotes values
too small to show in our precision.
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FIG. 6. Current harmonics vs. the field amplitudes (a) and
vs. driven hopping term (b) in the driven SSH model with
ideal Floquet occupation. Here, w/w = 3, mo = 0.5, Q = w,
and 6 = 0. We have taken mi = 0.3 in (a) and Ao = 0.1 in
(b). At the bottom of panel (a), we show lines corresponding
to power-laws with exponent ¢ for easy comparison.

the energy bands Eﬂ. Therefore, there is a qausienergy
band inversion and quasienergy gap induced by the field
and the drive. Note also that the projected Floquet occu-
pations are not symmetric in k£ and that the asymmetry
increases with with the field amplitude Ay.

In Fig. 9, we plot the Floquet current within a drive
cycle and show its harmonics . Even though the Hamil-
tonian is symmetric under I and ©p, the asymmetry
of the projected Floquet occupation under k — —k now
breaks the corresponding selection rules of the optical
current. Therefore, we obtain many of the previously
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FIG. 7. Dependence of optical current and its harmonics on
0, with 0 — 7/2 as the phase difference between the field and
the drive, for ideal Floquet occupation. Here, w/w = 3, mo =
0.3,m1 = 0.17, and Ap = 0.71.

forbidden harmonics, such as J(©, even for the undriven
system. Interestingly, we find significant Floquet gain for
Q/w = 2 even at low field amplitudes.

V. CONCLUSIONS AND OUTLOOK

We have developed a theoretical framework using Flo-
quet theory to calculate the optical current in a period-
ically driven system. The Floquet optical current mixes
the field and drive frequencies, w and §2, respectively,
generating harmonics mw + M. The frequency mixing
broadens the spectrum of harmonic orders and enhances
the values of harmonics even for a low field amplitude.

This formulation naturally contains the Floquet theo-
retic approach to understanding high harmonic genera-
tion in initially undriven systems and the Floquet linear
response theory [63] as limiting cases when the drive am-
plitude and the field amplitude, respectively, approach
zero. In the latter case this work provides a nonlinear
Floquet theoretic framework for optical current for any
time periodic field.

The optical current can be recast in terms of the oc-
cupation of Floquet-Bloch bands and their non-adiabatic
Berry connection and curvature. This formulation nat-
urally brings out a relation between topology and opti-
cal current for sufficiently low drive and field frequencies
and exposes and clarifies subtleties of gauge fixing that
prevent a direct relation between current harmonics and
Floquet topological invariants for higher frequencies.

In the presence of spatio-temporal symmetries like in-
version and time reversal with time glide, we obtained
the properties of optical current and selection rules for
the harmonics. As an application of our formulation, we
studied the optical current and in the driven SSH model
and found analytical expressions for its harmonics at suf-
ficiently high frequency and weak field amplitude. In our
example, in the absence of the optical field, the driven
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hopping term by itself produces no current and, there-
fore, no HHG. However, the driven hopping term helps
in broadening the harmonic spectra of the optical drive.
Hence the two drives in our example are different from
the standard two-color drives where each drive itself pro-
duces current and harmonics. Symmetry analysis and nu-
merical calculations show that by altering the temporal
part of the spatio-temporal symmetry, we can obtain har-
monics that are forbidden in undriven cases. The broader
implication of this phenomenon is that without changing
the spatial structure or symmetry of a material, we can
procure forbidden harmonics by driving the system.

Importantly, frequency mixing between the drive and
the field opens a way to enhance the HHG spectrum.
This Floquet enhancement can be accessed naturally in
pump-probe setups, where the pump and drive frequen-
cies are commensurate. For non-optical drives, a more
realistic setup is when the drive frequency is a small com-
mensurate fraction of the field frequency, which always
breaks the temporal symmetry and leads to a broad-
spectrum HHG. Additionally, our calculations pertain-
ing to the driven SSH model may be tested in synthetic

quantum simulators. [73]

Our results demonstrates that we can broaden and en-
hance the spectrum of harmonic order by driving the
system. This work encourages further theoretical and ex-
perimental investigations of harmonic generation in bulk
driven quantum systems.
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Appendix A: Symmetries of the Floquet Hamiltonian

In this appendix, we derive the symmetries of the current from fully occupied Floquet bands, Egs. (24) and (26),
under the unitary mirror and antiunitary time-reversal symmetries, Egs. (22) and (23), respectively.

The unitary symmetry I transforms the Floquet unitary Ug(k,t) = Texp[—i ftt+T h(k,s)ds] = e~ Thrkt) a5
IpUp(k,t)I}, = Texp [i/h(k, s+ tl)ds] =Up(—k,t+ ). (A1)

Thus, I;hp(—k,t +t7)Ip = hp(k,t) and the projector Pocc(k,t) = >, coce |Pa(k, 1)) (Pa(k,t)] onto the occupied
Floquet bands is mapped as

IFPocc(k t)I;? - occ( k t+tl) (A2)

The occupied Floquet states are mapped explicitly as I [pa(k, 1)) = > 5coce Ipalkyt) [@a(—Fk,t + 1)), with a unitary
matrix J(k,t): for A, B € occ,

Bk, )37 (k. 0)]ag = > Tnalk, )5, (k. 1)

= Z <¢>\(_k,t+t1)|IF|¢a(kat)> <¢ﬁ(_k’t+t1)|IF|¢oz(kat)>*
= 37 (G(—hst + 1) Trlba(k,0) (Gak, OITE0a(—k,t + 1)

= <¢)\(7k7 t+ t])‘IFPOCC(ka t)I;H(ZSﬁ(*k, t+ t])>
= (pr(=k,t 4 t1)| Poce(—k, t + t1)| (=K, t + t1))
= O (A3)

Then, the current has the symmetry

J(t) = Z f bk, t)|Okh(k,t)|pa(k, 1)) j{tr e (b, t)Okh(k, t)|dk

aEcocc

= ftr[POCC(m)I}akh( k,t+tr)Ip]d ftr Ip Poce (b, ) TL0RM(—k, t + t1)]dk

- %tr[ Pree(—k, £ + 1) O h(—F, t + t1)]dk = —}{tr[POCC(k,t—i—tI)@kh(k,t—|—t1)]dk
—J(t+tr). (A4)

We note that the current vanishes when ¢t; = 0. This happens in our driven SSH model when the optical filed is
absent, A(t) = 0. Therefore, driving the hopping term alone cannot produce a current in our example under the ideal
Floquet occupation.

The antiunitary symmetry O transforms the Floquet unitary as

OpUp(k,1)0L = ] Ore hodol
sit—=t+T

_ H e+ih(—k,—s+tR)ds

s:it—t+T

T
( H e—ih(—k:,s)ds)
s:—t—T+tr—>—t+tr

= Ul (~k, —t + tg). (A5)

Here, [] denotes the time-ordered product over ¢; < to. Thus, @}hp(—k, —t+1tr)Op = hp(k,t) and

s:it1—to

GFPOCC(k7 t)GTF = Pocc(_ka —t + tR) (AG)
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FIG. B1. Plateau in the harmonics at low frequency and strong filed amplitude under ideal Floquet occupation. Here,
w/w=12,mo=03,Q2=w, 0 =0, and m; =0.17.

Explicitly, the occupied Floquet states are mapped as Op |d,(k,t)) = ZBEOCC Tpa(k,t) |@pa(—k,—t +tgr)), with an
orthogonal matrix ¥(k,t): for A, 8 € occ,

[‘I(k‘,t)TT(k,t)])\g = Z ‘IAa(k’t)‘Iﬁa(kat)

«€oce

= Z <¢)\(_k7 —t+ tR)|6F|¢a(ka t)> <¢ﬁ(_ka —t+ tR)‘®F|¢a(k7t)>

«E€oce

= > (da(—k, —t+1R)Or|da(k, 1)) (b (k,t)|O%|ds(—k, —t + t1))

aEcoce
= <¢A(7ka —t+ tR)|®Fpocc(kv t)@}‘hbﬁ(*k, —t+ tR)>
= (pa(=Fk, =t + tR)|Pocc(—k, =t + tr)|pp(—k, —t + tRr))
= 0xg, (A7)

where we have used the identity (|©r[x) = <X|9}|¢> for antiunitary © . Similarly, the current has the symmetry
J(t) = ?{tf[Pocc(k,t)akh(k,t)]dk
- %tr[P‘)CC(k’t)@%a’“h(_k’ —t+tg)Or]dk = ]{tr[GFPocc(k,t)@}akh(—k,—t + tgr)]dk

= %tr[POCC(—k:, —t + tR)Oh(—k, —t + tg)]dk = — j{tr[POCC(kz, —t + tg)Okh(k, —t + tgr)|dk
=—J(=t+1r), (A8)

as stated in he main text.

Appendix B: HHG Plateaux at Lower Frequency and Stronger Field Amplitude

In Fig. B1, we plot the HHG harmonics for smaller field frequency and larger values of the field amplitude. We can
now see a prominent multi-step plateau. Especially for Ay = 2.8, the first plateau can be seen from harmonic 1 to 5,
and the next plateaus from 7 to 9, and from 15 to 17 and so on. This multi-step plateau reflects the growing effects
in the non-perturbative regime.
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