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Abstract

The Neyman-Pearson strategy for hypothesis testing can be employed for goodness of fit
if the alternative hypothesis is generic enough not to introduce a significant bias while
at the same time avoiding overfitting. A practical implementation of this idea (dubbed
NPLM) has been developed in the context of high energy physics, targeting the detection
in collider data of new physical effects not foreseen by the Standard Model. In this
paper we initiate a comparison of this methodology with other approaches to goodness
of fit, and in particular with classifier-based strategies that share strong similarities with
NPLM. NPLM emerges from our comparison as more sensitive to small departures of the
data from the expected distribution and not biased towards detecting specific types of
anomalies while being blind to others. These features make it more suited for agnostic
searches for new physics at collider experiments. Its deployment in other contexts should
be investigated.
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1 Introduction

Testing the consistency between a set D = {xi}?fl of samplings of a random variable x, and
one hypothesis of Reference (R) for its expected distribution, is a problem known in statistics
as Goodness of Fit (GoF). The problem is so general that GoF methods can find application in
innumerable areas of science and technology.

In the context of high energy physics, a prime goal is to assess if the data collected in ex-
periments comply with the theoretical prediction for their distribution performed on the basis
of the Standard Model (SM) of fundamental particles and interactions. A non-standard data
behaviour would signal the existence of new fundamental physical laws—the so-called New
Physics—that supplement or replace the SM laws. In high energy physics as well as in many
other domains, GoF daily emerges as a necessity in order to assess and compare computer
codes that provide the theoretical predictions for data distributions. Studying the quality of
generative models is another example of this need, in the context of computer science. Moni-
toring complex apparatuses such as for instance particle detectors also requires GoE The goal
in this case is to monitor the data recorded by the apparatus in order to assess if it is operating
in normal design conditions. An overview of the vast GoF literature goes beyond the scope of
the present article. See [1] for references and a concise overview from a high energy physics
perspective.

Classifier-based goodness of fit A problem that is conceptually different but practically
related to GoF is the one of Two-Sample Testing (2ST). In 2ST, one is given a second set of
data that we denote as R = {xi}?jl , and aims at assessing whether or not the D and the R
data sets are drawn from the same (unknown) statistical distribution. The connection with
GoF stems from the fact that in most applications of practical relevance the data distribution
in the reference hypothesis is not known in closed form. The only available representation of
the R hypothesis is provided by a set of instances of the variable x that are known to follow
the R distribution, i.e. by a reference data set R. Depending on the specific application, R can
be obtained by simulation codes, by other natural data independent from D, or combinations
thereof. The GoF comparison between the data D and the distribution in the R hypothesis
is carried out in practice as a 2ST between D and the reference data set R. The GoF test
is thus effectively a type of 2ST where the two data sets D and R play an asymmetric role.
In particular, the R data set is of artificial origin and it is created within the design of the
test methodology. In principle, and in many practical applications, there is no obstruction to
increase the size of the R set—for instance by running more simulations—in order to offer a
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more faithful representation of the R distribution. When the R data set size Ny significantly
exceeds the D size Np, its statistical fluctuations are subdominant to those of the data set D.
The probabilistic outcome of the 2ST is thus nearly independent of the specific instance of R
that is employed and it depends only on the level of agreement with the R distribution of the
specific D set that is being tested, as appropriate for GoE.

Interpreting the GoF problem as a one of 2ST with unbalanced samples, Nr > Np, opens
the door to the deployment of 2ST methods for GoE Particularly relevant in our context are the
classifier-based 2ST and GoF methods first proposed by Friedman in Ref. [2]. The basic idea
is to train a classifier to tell apart the D from the R data. If the two data sets are drawn from
the same distribution, the trained classifier will be unable to discriminate. On the contrary,
it will possess some discrimination power if the distributions are different. The performances
of the trained classifier, as quantified by any standard classification metric, can thus be used
as a metric to assess the difference between the two data sets. This procedure defines a 2ST
and in turn a GoF test. More general metrics could be employed to define the GoF test, not
necessarily related with classification performances. One option mentioned in Ref. [2] is to
use standard univariate GoF metrics like Kolmogorov—Smirnov, or others, on the output of the
trained classifier evaluated on D and on R. In this case, the classifier is basically employed
for dimensionality reduction and the actual GoF test is performed with a traditional univariate
method.

Classifier-based GoF (C-GoF) methods have been investigated only sporadically in the high
energy physics literature. See Ref. [3-5] and more recently Ref. [6]. In computer science
instead, the simplest C-GoF implementation based on the classification accuracy metric [7]
has been studied and employed quite extensively to assess the quality of generative models.

Neyman-Pearson testing A third distinct statistical problem is the one of hypothesis test-
ing as formulated by Neyman and Pearson. This is connected with the GoF problem, which
is in fact a type of hypothesis testing. The null hypothesis under examination is the reference
hypothesis, Hy, = R. All the GoF methods proceed, like hypothesis tests do, by associating
to the data D some probabilistic quantity—such as a p-value p[D]—that is indicative of the
level of agreement of the data with their expected distribution in the R hypothesis. However,
the Neyman-Pearson theory of hypothesis testing [8] also requires a second hypothesis, the
alternative hypothesis H;, which is instead absent in the formulation of GoF problems. The
alternative hypothesis plays an essential role for the design of the hypothesis test that is ad-
equate for each specific problem. In particular, it controls the selection of the test statistic
variable, which in turn defines the p[D] association. The optimal choice is the one that, at
fixed type-I errors rate, minimises type-II errors defined with respect to the alternative H;.
In essence, Neyman-Pearson testing enables a relative assessment of the H, = R hypothesis
agreement with the data in comparison with the agreement of the alternative H; with the
same data. GoF is different as it aims instead at assessing the agreement of R with the data in
absolute terms.

Using Neyman-Pearson testing for GoF is straightforward, but dangerous. On one hand, a
very natural pragmatic approach to assess the R distribution agreement is indeed to try and see
if other distributions provide a much better fit to the data. This can be achieved by considering
a deformation of the R distribution that depends on free parameters w. This defines a family
of hypotheses, i.e. a composite hypothesis H,,, to be identified with the Neyman—Pearson
alternative H; = H,,. The hypothesis inside the family that best fits the data, Hg, can be
compared with R as a description of the observed data. In the classical Neyman-Pearson
theory, this comparison employs the likelihood ratio of the two hypotheses. On the other
hand, the choice of the alternative distributions one compares against can bias the outcome of
the test dramatically. As a general rule, the test will be sensitive to data departures from the
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Figure 1: Neyman—Pearson testing for GoF on a one-dimensional toy problem.

R distribution only if the true data distribution is part of the H,, set, or if it is approximated
reasonably well by some element of the set. The test will be instead weakly sensitive or blind
to true data distributions that are outside the set.

The panel on the right in Figure 1 provides a practical illustration of this behaviour for
one-dimensional data. The reference hypothesis R is that the data are distributed according
to the standard Gaussian, and in order to assess the compatibility of this hypothesis we have
considered three possible sets of alternatives H“}\;b’c. Each of them defines a different Neyman-—
Pearson test, and in turn a different GoF method to assess the compatibility of the data with
R. The upper and lower plots in the figure correspond to two different data sets D, 5, being
tested, each consisting of 50 data points. The data are visualised as histograms in the plots.’

The first alternative Hy, is the set of all Gaussian distributions. The best fit in this family,
displayed with a solid line in the top left plot, is quite better than the standard Gaussian
(dashed line) as a description of the first data set, which is drawn from a Gaussian with a
mean of 0 and a variance of 1.2. Correspondingly, the GoF p-value that we obtain in this case
is low, p?[D;] = 0.06, signalling a poor agreement of the standard Gaussian hypothesis with
the data. On the contrary, the best fit in H, is very similar to the standard Gaussian in the
case of the second data set and the corresponding p-value is high, p*[D,] = 0.68. The GoF
test designed as a Neyman—Pearson test with alternative H; = Hy, has failed to identify the
evident discrepancy between the D, data and the reference distribution.

The second alternative, H‘lfv, is an extension of H“fv where two Gaussian distributions are
present, with arbitrary mean and variance and arbitrary relative normalisation. The best-fit in
H‘lfv to the D, data (middle-bottom plot) is very different from the standard Gaussian, and offers
a much better description of the data. Consequently, p®[D,] = 0.05 and the discrepancy of D,
with the R hypothesis is clearly identified if employing H‘l,’v, rather than Hy,, for the Neyman—
Pearson test. This occurs because the true distribution of D, is a mixture of two Gaussians.
Thus it belongs to the Hf/’v set while it does not belong to Hy,. The general lesson is that the
alternative H,, should be as general as possible and capable to adapt itself—namely to provide
a good fit—to whatever the true data distribution is. Otherwise, the test is exposed to dramatic
failures as we have seen.

The capability of H,, to fit the data accurately is not the only factor that controls the sensi-
tivity. It is evidently easier for a more complex distribution with many free parameters to offer
a better fit to the data. This fact is taken into account in the Neyman-Pearson test strategy
when associating a p-value to the relative fit quality (i.e., the likelihood ratio) in the R and

The interested reader can find on https://github.com/GaiaGrosso/NPLM-GOF the straightforward imple-
mentation of the Neyman-Pearson [8] strategy we used to obtain these results.
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in the Hy hypotheses. The extreme situation is when the H,, distribution contains enough
parameters to fit all the statistical fluctuations in the data set, or even to accommodate each
individual point. In this case, the best-fit Hg will offer a “perfect” (but overfitted) description
of the data set, much better than the one provided by the R distribution, producing a very large
value for the likelihood ratio. Since statistical fluctuations are always present, this will occur
for any data set and regardless of whether the true data distribution is R or it is different from
R. The Neyman-Pearson p-value is defined by comparing the observed likelihood ratio with
the typical values assumed by the ratio for R-distributed data. Since both are equally large,
the p-value will loose sensitivity to anomalous data sets. This behaviour is illustrated by the
third alternative considered on the last panel of Figure 1, Hy,. The H;, distribution, defined as
the linear combination of 15 Gaussians, is too complex relative to the size Np = 50 of the data
sets. The test based on Hy, thus fails both on the D, and on the D, data sets. A successful GoF
strategy based on Neyman-Pearson testing should thus balance the flexibility of H,, against
the need of avoiding overfitting.

The connection between Neyman-Pearson testing and GoF was emphasised by Baker and
Cousins in 1983 [9], based on literature from the 20s. Their simple starting point was the
observation that if we use the data to construct a histogram with non-overlapping bins, the
numbers of counting in each bin are independent Poisson variables.? Independent Poisson
distributions with arbitrary expected in each bin is thus the most general possible alternative
hypothesis H,,. We can use this alternative for a Neyman-Pearson test assessing the agreement
with the observed countings of the predictions for the expected numbers in the R hypothesis.
Starting from this observation, Ref. [9] derived the y2 approach to the GoF of binned data as
a Neyman-Pearson test. The y2 GoF with binned data is widely employed. In particular it is
used in high energy physics to assess the SM agreement with data [10]. However, binning is
impractical for multi-dimensional data. Furthermore, the choice of the binning is problematic
and exposed to the same type of possible failures described above: too narrow bins can cause
overfitting while too wide bins can be unable to accommodate important features of the data
entailing sensitivity loss.

The New Phyisics Learning Machine (NPLM) Employing expressive models while avoid-
ing overfitting is the standard problem of machine learning research, and many solutions have
been developed in that context. In order to leverage on those, Ref. [11] proposed a systematic
approach to the design of GoF methodologies as Neyman—Pearson tests, in which the deforma-
tion of the R distribution that defines the alternative H,, is provided by a generic parametrised
family of functions F = {f,,(x), Y w}. In particular the functions f,, are conveniently taken to
parametrise the log ratio between the H,, and R distributions—see later eq. (1). The functional
set F could consist of neural networks [11-13], or be obtained with kernel methods [14,15],
and other options could be considered as well. Suitable regularisation strategies to avoid over-
fitting have been developed in each case [12, 14]. This Neyman-Pearson-based approach to
GoF was developed aimed at searching for New Physics in high energy collider data, and it
employs a Learning Machine. Hence it is denoted with the NPLM acronym.

The performance of the NPLM method has been investigated on a number of GoF problems
including toy or realistic problems of new physics detection at colliders [11-14] and data
quality monitoring [15]. Importantly enough, the NPLM extension to include imperfections
in the knowledge of the reference hypothesis—which is straightforward in the framework
of Neyman-Pearson testing—was developed and demonstrated in Ref. [13]. No systematic
comparison has instead been performed with the many other GoF methods that exist, mainly
outside the high energy physics literature. Initiating such a comparison is the goal of the

2This holds provided the number of data points Ny, is a Poisson-distributed random variable, as for natural
particle physics data. The distribution would be multinomial if N, was a fixed number.
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present article.

Overview of the paper Like any other practical GoE, the NPLM method operates as a 2ST
by comparing the data D with a reference data set R, as previously described. Furthermore, it
entails optimising the model parameters in order to single out the best-fit to the data, fg(x),
by a supervised training on the D and R data sets. The whole procedure is thus very similar
to the one of classifier-based approaches to GoE as we will outline in Section 2. A comparison
with C-GoF methods, with which it shares such strong similarities, is thus the natural first step
for a comparative assessment of the NPLM performances. The simplest C-GoF method [7] is
studied in Section 2. NPLM is found to perform better in all the benchmark problems that have
been considered for the comparison, and not exposed to strong sensitivity failures for specific
types of anomalous data sets.

The comparison is extended in Section 3 to a more general class of C-GoF tests that we
design following suggestions from the literature and based on the following logic. Two major
peculiarities single out NPLM among C-GoF methods. The first one is that the entire data sets D
and R are employed both for the training and for the evaluation of the trained model. Training-
test splitting is instead more naturally considered in the classifier-based approach. The second
NPLM peculiarity is the choice of the metric to be evaluated on the trained classifier output.
As in Neyman-Pearson testing, this is provided in NPLM by the log likelihood-ratio between
the Hy; and the R hypotheses, a quantity that has no interpretation as a classification metric.
In Section 3 we investigate variants of the NPLM method that eliminate these peculiarities,
opting for training-test splitting rather than in-sample evaluation, or for standard classification
metrics rather than the likelihood ratio. Following Friedman’s suggestion [2], the usage of
univariate GoF metrics (listed in Appendix B) is also investigated. The study of these C-GoF
inspired NPLM variants reveals that both these two peculiarities of the NPLM method are
beneficial for the sensitivity.

Though somewhat outside the main line of development of the present paper, it is inter-
esting to compare the NPLM performances on one-dimensional data with those of traditional
univariate GoF methods. The results are presented in Appendix C.

In Section 4 we summarise our findings and draw conclusions on their implications on the
merits of NPLM in the landscape of GoF methods. This is not straightforward, because the
outcome of GoF comparative studies risks to depend strongly on the specific benchmark prob-
lems that are considered for the comparison. This risk is mitigated by employing the largest
possible set of benchmarks, including those considered in previous NPLM studies [11-15] and
few new ones. While unavoidably partial and mostly only inspired by high energy physics
problems, our benchmarks are selected to probe the sensitivity to qualitatively different types
of anomalous data. For instance, anomalies that emerge as sharp features in weakly-populated
regions of the reference distribution, as opposite to departures in the bulk of the distribution.
As in previous works, we ensure that anomalous data of different types are comparable by
monitoring their “ideal” Z-score, Z;4. Z;q is defined as the sensitivity of a hypothesis test that
is fully optimised to the specific anomaly under examination, exploiting its prior knowledge.
We consider a “good” GoF method to be one that responds uniformly, i.e. with comparable
Z-score, to anomalies of different type but with comparable Z;4. Qualitatively, a more uniform
response is observed for NPLM than with the other GoF methods considered in this paper. The
notion of ideal Z-score, and the list of benchmark problems employed for the comparison is
reviewed in Appendix A.
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2 NPLM vs C-GoF

We start this section with a concise overview of the NPLM method [11-15], outlining its con-
nection with C-GoF approaches [2,7]. Next, we consider the simplest C-GoF method that we
introduce as a straightforward adaptation of the Classifier-based Two-Sample Test (C2ST) [7]
to the case of unbalanced samples N, > Np. Finally, we present comparative studies of the
NPLM and C2ST performances.

2.1 NPLM as a classifier-based GoF

The NPLM method works as follows. The alternative distribution in the H,, hypothesis of the
Neyman-Pearson test—see the Introduction for an overview and Figure 1 for an illustration—
is postulated to have the form

n(x|Hy) = en(x|R), (1)

in terms of a generic set of functions F = {f,,(x), V w}, to be specified. The symbol n denotes
a number density distribution, namely the probability density—whose integral over x is equal
to 1— times the total number of points that are expected to be found in the data set D. In
particular, n(x|R) denotes the distribution of the variable x in the reference hypothesis R and
n(x|H,,) denotes the distribution under the alternative H,,.

We are considering here the setup, typical of high energy physics, where the number of
points in D, Np, is itself a random variable, and follows the Poisson distribution. The expected
of this Poisson distribution in the R hypothesis, denoted as N(R), is the integral of n(x|R).
The expectation in the H,, hypothesis, N(H,,), is the integral of n(x|H,,) as defined by eq. (1).
Hence, N(H,,) depends on the function f,, and in turn on the alternative hypothesis parameters
w.

While introduced in the setup with variable Poisson-distributed Np, the NPLM method is
perfectly suited, and will be employed in some of the studies that follow, to deal with the setup
where Np is instead a pre-specified fixed number of samplings and not a random variable.
When dealing with this case, one replaces N(R) with N, in all the equations that follow.

The model f,,(x) needs to be trained in order to identify the specific distribution, n(x|Hg),
that best fits the observed data. Training is performed on the observed data set D, labelled
as y = 1, and on the reference data R labelled as y = 0. Training exploits a classical re-
sult of statistical learning: a continuous-output classifier trained to tell apart two sets of data
approximates—possibly up to a given monotonic transformation—the log ratio between the
distribution of the two training sets. A suitable loss function, for which this property is proven
explicitly in, e.g., Ref. [11,14], is the weighted logistic loss

N(R)

log[1+ e ]+ y log[1+e /()] 2
Nz

An alternative loss with the same property is the maximum-likelihood loss [11,13]

NER) (o) 1)y £ (). (3)

W, fw(x))=(0-y) N

The maximume-likelihood loss is a more natural choice in the context of Neyman—Pearson
testing, because its minimisation is equivalent to the maximisation of the likelihood in the
Nr — oo limit [11, 14]. In this way, the best-fit n(x|Hg) obtained with this loss coincides
with the maximum-likelihood best-fit that is employed in the classical Neyman—Pearson the-

ory [8].
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After training, NPLM proceeds as a Neyman-Pearson test by evaluating a test statistics
variable that is twice the logarithm of the likelihood ratio in the Hg; and in the R hypotheses.
The relevant likelihood for our problem is the extended likelihood

—N(H)

Np!

L(H|D) =&

[ [nCxim, )

xeD

for a generic hypothesis H. Therefore, using eq. (1)

L(Hg|D) _

2log w7
¢ L@®ID)

2 [N(R) —N(Hg) + ) fw(X)] : 5)

xeD

Recalling that N(H,,) is the integral of n(x|H,,) in eq. (1), and approximating the integral with
a Monte Carlo sum over the reference sample R, we finally obtain the Likelihood Ratio (LR)
test statistics variable that is employed in NPLM

g =2 [@ Da—ef5t)+ wa(x)] . (6)

NR XER x€D

Large values of ¢, signal that Hg; offers a better description of the data than R, as the likelihood
is larger. In turn, this disfavours R being the true distribution of the data.

Like for any test of hypothesis, or two-sample test, the value of the test statistics variable
is not an indicator of the data agreement with the R hypothesis under examination in absolute
terms, but only in comparison with the typical values it assumes when the data are truly
distributed according to R. A proper probabilistic indicator of the compatibility of the data
with R is the p-value

p[t] =f dt’ p(t'IR), 7
t

which accounts for the test statistics variable probability distribution in the R hypothesis,
p(t|R). In some cases, p(t|R) can be estimated analytically. This is not the case in NPLM,
and p(t|R) is computed empirically by employing artificial sets of data—called toy data—that
follow the R distribution by construction. The toy data sets are built out of R-distributed sam-
plings, different from those employed to form the reference sample R.

It is worth noting that the test statistics variable (6) features both an explicit dependence
on the data D—in the second summation—and an implicit dependence from the fact that the
best-fit model f(x) does depend on the data set D, which is used for training. In order to
compute p(t|R) we thus need to first train the model, and next evaluate t,;, on each toy data
set. Also notice that t;; depends, both explicitly and implicitly, also on the reference data
set R. We explained in the Introduction that it is expected—and can be verified—that the
dependence on the R set is weak in the unbalanced limit Np > Np, as the R set provides
in this limit a nearly perfect representation of the R hypothesis distribution. Nevertheless,
the statistical fluctuations of the R set are taken into account in our evaluation of p(t|R) by
employing toy data sets also for the reference sample.

There are currently two implementations of NPLM, where the model f,,(x) is respectively
a neural network (NPLM-NN [11-13]), or it is built with kernel methods (NPLM-KM [14,15]).
Each implementation comes with a dedicated prescription for the selection of the model, train-
ing and regularisation hyper-parameters. These prescriptions form an integral part of the
NPLM method as they ensure the required balance between the models’ flexibility and the
need of avoiding overfitting. The selected hyper-parameters depend in general on the ex-
pected data size N(R), on the reference size Ny, on the dimensionality of the variable x and
ultimately on its distribution in the R hypothesis. Therefore, the hyper-parameters need to
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be selected for the NPLM application to each given GoF setup. On the other hand, the hyper-
parameters selection does not depend on and it is not optimised for the detection of any specific
type of data departure from the reference hypothesis, as appropriate for a GoF method. After
the hyper-parameters are selected for a given reference hypothesis, the GoF algorithm must
run identically on all the data sets that are employed for testing its sensitivity to anomalous
data and no a posteriori re-optimisation is allowed.

The comparisons performed so far—in particular in Ref. [14]—did not reveal a major dif-
ference in performance between the NPLM-NN and the NPLM-KM implementations, suggesting
that the specific model employed for f,,(x) is not the key factor controlling the sensitivity. Fur-
thermore, since NPLM-NN employs the maximum-likelihood loss (3) while NPLM-kM uses the
weighted logisitc loss (2), the choice of the loss function is also expected to play a minor role.
Several of the benchmark problems of the present paper have been studied both with NPLM-NN
and with NPLM-kM, obtaining similar performances.

The NPLM method can be interpreted as a classifier-based method, if we follow the general
notion of C-GoF given by Friedman in Ref. [2]. In fact, a general C-GoF is any algorithm that
performs the three following operations. First, training a classifier between D and R. The
NPLM model f,,(x) is in fact a continuous-output classifier that we train between D and R. The
correspondence can be made more explicit by defining a classification function c,(x) € [0,1]
out of f,,(x) € R by the monotonic transformation

1

1+ e fu® " ®

cw(x) =
Notice that the weighted logistic loss (2) reduces to the weighted binary cross-entropy after
this transformation. Second, evaluating the trained classifier on D and R. This is what NPLM
does on the right hand side of eq. (6). The third step is to define and compute, on the evalu-
ated classifier, some test statistics variable that is sensitive to the discriminating power of the
classifier between the two sets. The t,, test statistics (6) is definitely not a standard metric of
classification. But nevertheless it is preferentially large it the fi; function is large and positive
(i.e., ¢ — 1) on the D set and large and negative (i.e., ci; — 0) on the R set. Therefore, it is
indicative of the f ability to tell apart D from R and as such it can be used as a classification
metric.
In spite of this formal correspondence with C-GoE NPLM is a very different approach.
Its peculiarities including the choice of the test statistics stem from its origin as a Neyman-—
Pearson test and are unrelated with the theory of classification. This is effectively illustrated by
comparing NPLM with the simplest C-GoF method that we review in the following section. We
will come back in Section 3 to the discussion of the NPLM peculiarity in the general landscape
of C-GoF tests.

2.2 C2ST with unbalanced samples

C2ST [7] was originally formulated as a 2ST with balanced data sets, Ngx = Np. We first
discuss it in this configuration before introducing its straightforward adaptation to the unbal-
anced case N > Np. The number of samplings Ny, (and Ny) is a pre-specified fixed number.
We will consider the case in which it fluctuates as a Poisson variable in the next section.

The first step is to split the D and R sets in two equal parts, obtaining two pairs of samples
(D;,R¢) and (D,,, R..) to be used for training and for testing, respectively. Each of the four
sets contains Np/2 points. This training-test splitting is very natural in the classifier-based
context. The aim there is to probe the dissimilarity of D to R by assessing the performances
that a classifier can attain in distinguishing them. Test data that are independent from the
training data are evidently needed for this assessment.
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Figure 2: C2ST. Left panel: t,. distributions in two different hypotheses for the underlying
data distributions. Central panel: Type-II error at 95% confidence level varying N, with v
set at 3. Right panel: Type-II error at 95% confidence level varying v with Np = 2000.

Again very naturally from the viewpoint of classification, the binary accuracy of the trained
classifier, with a threshold of 1/2, is used as test statistics

oo = - | 20 Tewl) <1/20+ 3. Thel) > 1721 ©)

XE€ER¢e X€Dy,

where T denotes the indicator function.

We implemented the C2ST method in the simplest setup considered in Ref. [7], where the
variable x is one-dimensional and the R hypothesis for its distribution is the standard Gaussian.
The number of samplings is fixed to Np = N = 2000 if not specified otherwise. Smaller data
size setups have been also considered with 100, 200, 500, or 1000 data points. As in [7],
we employ a neural network with architecture 1-20-1, Adam optimizer, binary cross-entropy
loss function and 100 training epochs. As compared with the other models studied in [7],
this is among those that offer the best performances on the one-dimensional problem under
examination.

We generate, according to the standard Gaussian hypothesis R, 100 toy instances of the
D and of the R data sets. For each toy, training is performed on half of the data and the
tacc test statistics (9) is evaluated on the remaining data. The resulting p(t,.c|R) distribu-
tion is displayed on the left panel of Figure 2 (light blue histogram). As noticed in [7],
p(tacc|R) is well-approximated by a Gaussian with a mean of 0.5 and a standard deviation
of 1/(24/Np) = 0.011. Using this distribution we can associate a p-value to the observed
value of t,.. by means of eq. (7).

As in [7], we test the method performances to detect anomalous data sets D that follow a
Student-t distribution rather than the standard Gaussian. The Student-t is characterised by the
number of degrees of freedom, v, and for larger v it approaches the standard Gaussian making
increasingly difficult to detect the anomaly. The t, .. distribution on 100 D sets drawn from the
Student-t with v = 3—while the R sets are of course still drawn from the standard Gaussian—
is displayed on the left panel of Figure 2 (light green histogram). As the distribution is quite
different from the one observed in the R hypothesis, the test possesses good discriminating
power. The median p-value is found to be below what can be quantified empirically with 100
R-distributed toys, so below around 0.01.

In light of some confusion that occasionally emerges in the literature (see e.g. [16,17])
on the usage of classifier-based tests, it is worth stressing that the classification accuracy—
or its complement, the misclassification error—should not be confused with the p-value or
any other probabilistic indicator of the data agreement with the R hypothesis. The accuracy
will be typically poor, and close to the random classifier accuracy of 0.5. The discrimination
power of the test emerges from relatively small departures of ¢, .. from 0.5, which are however
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Figure 3: C2ST vs. NPLM. Same as Figure 2, comparing the C2ST method with balanced
samples (C2ST-B), the one with unbalanced samples (C2ST-U) with N /N = 5, and the
NPLM method.

highly unlikely to occur for R-distributed data. The left panel of Figure 2 displays this typical
behaviour.

The central and right panels of Figure 2 display the performances of our implementation
of C2ST and their agreement with the original results in [7]. The plots show the type-II error
of the test at 95% confidence level. Namely, we set a threshold p = 0.05 on the p-value,
below which we label the R hypothesis as excluded. Next we compute the probability of
not excluding R when the data are in fact not distributed according to R, but to one of the
alternatives.® As expected, the probability of type-II error decreases with Np, (central panel)
as larger data sets possess more discriminating power. It increases with v (right panel) as the
Student-t distribution approaches the standard Gaussian.

The C2ST method is easily extended to the case of unbalanced samples N > Np. Train-
ing/test splitting is performed in equal portions as before. The loss function is the weighted
cross-entropy—specifically, the later eq. (11) with N(R) replaced by Np. The test statistics
variable is the balanced classification accuracy

torce = 1= 2 Wel0) <1/2]+ 1 D Tegx) > 1/2]. (10

R XER;e D XE€D,

We tested this version of the C2ST strategy in the same setup above, but raising Ny to
5 times Np. We employ the same neural network model, but we notice that more training
epochs are needed for convergence owing to the larger training set. We employ 500 epochs
apart from the setup with Np = 100, where 100 epochs are used. The number of epochs
has been selected by running training on few R-distributed toy data sets, and monitoring the
evolution of the balanced accuracy during training. We selected the number of epochs at which
the accuracy on a validation sample stopped improving.

The results are displayed in Figure 3. As expected, C2ST with unbalanced samples is more
effective than the balanced one because it exploits the larger statistics that is available in the
‘R sample. Notice that performances do not improve indefinitely increasing Ny, at fixed Np.
As soon as Ny, exceeds Np by a factor of few, it offers a description of the R distribution that
is “perfect”, in comparison with the description of the true distribution that is offered by the
data D. Therefore the performances quickly saturate and no significant gain will be observed
if raising N /Np above 5. The figure also displays that an even more significant performance
gain is attained with the NPLM method, in the same setup with N /Np = 5. This is discussed
in the following section.

3The results are presented in this form for a direct comparison with Ref. [7]. No hard exclusion threshold on
the p-value will be employed in the rest of the paper.
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2.3 Performance comparison

For a first comparative assessment of the performance, we applied NPLM to the Gaussian
vs Student-t discrimination problem. Specifically, we employed the NPLM-NN implementa-
tion based on neural networks. The hyper-parameters are selected on the basis of the y?2-
compatibility criterion of Refs. [12,13], focusing on a simple neural network model (1,3, 1).
With the Gaussian reference distribution, Np /Np = 5, and for N = 100, 200, 500, 1000 and
2000, this criterion results in weight clipping regularisation parameters of 6, 5.2, 5, 4.7 and
4.2, respectively. 100000 training epochs ensure convergence in all configurations. After this
choice of the hyper-parameters is performed, based exclusively on y2-compatibility in the R
hypothesis and with no reference to any alternative distribution to be later employed to test the
performances, the method is applied to the anomalous data sets generated with the Student-t
distribution.

The NPLM results, reported in Figure 3, are significantly better than the ones of C2ST.
The possible origin of the improved NPLM performances, on these and other benchmarks
considered below, is discussed briefly at the end of this section. In Section 3 we analyse in
detail the main methodological differences between C2ST and NPLM and assess their impact
on the performances.

We now turn to the benchmark GoF problems defined in Appendix A. These are mostly in-
spired by and representative of use cases that are encountered in high energy collider physics,
hence the the total number of sampling in the D data set, Np, is a Poisson-distributed ran-
dom variable as explained in Section 2.1. However, the C2ST method is not ideally suited
to deal with this setup. Before comparing it with NPLM, we thus need to introduce one last
improvement of the C2ST methodology.

If Np is a random variable and not a pre-specified number, its observed value carries infor-
mation on the viability of the R hypothesis. The expected value of Ny, in the R hypothesis is
N(R). Hence in particular if Ny, departs from N(R) more than typically expected from Poisson
fluctuations, this very fact signals that the data are in tension with R even if their probability
distribution was identical to the one predicted by the R hypothesis. The plain C2ST method is
not suited to exploit Np as a discriminating variable, because of two issues.

The first issue is that the regular weighted binary cross-entropy loss function is specifically
designed to be insensitive to the size of the two training samples, hence in particular to Np. The
trained classifier resulting from the optimisation of the loss will depend only on the probability
distribution of the two classes. In particular in the extreme case where the data probability
distribution is identical to the reference one, the trained classifier function will be close to the
non-decision boundary of 1/2 and retain no information on the possible departure of N from
N(R). This is easily remedied by weighting the loss function with N(R) in place of Np, namely
using
N(R)
Nz
Notice that this loss function is identical to eq. (2) after trading f;, for c,, by eq. (8).

Unlike the regular weighted cross-entropy, which employs Ny, in place of N(R), the min-
imisation of eq. (11) is sensitive to Np. In particular, large Ny, will boost the importance of
the second term of the loss function, which will be evaluated on a larger D set. The trained
classifier function cg; will be thus pushed towards 1 if N is large. It will be conversely pushed
towards O if Np is small.

The second issue is that the C2ST test statistics (10) does not respond well to c4(x) clas-
sifiers that are systematically larger or smaller than the threshold of 1/2. If the cg(x) is either

Ey,cw(x))=—(1—-y)

108[1—CW(X)]—}’ IOg[Cw(X)] . (11)

“This does not happen with the regular weighted cross-entropy because the increase (for large Np) of the
second term is accompanied by the increase of the first one due to its prefactor, which is proportional to N, in the
regular cross-entropy and not set to the fixed value of N(R).
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Figure 4: Power curves for C2ST and NPLM in the five signal benchmarks considered for the
1D exponential setup. The sensitivity of the event-counting test (AN/+/N(R)) is also shown.

always smaller or always larger than 1/2, t;, is equal to the random classifier accuracy of
0.5. A test based on the t,. test statistics is thus insensitive to departures of Ny, from N(R),
because their effect on the trained classifier is precisely to push it above or below 1/2 uniformly
in the x space. We thus consider a modified version of the balanced accuracy

;o2 N(R) D0 Ieg(x) <1/2]+ D) Ileg(x)>1/2]| . (12)

t =
BACC N(R N N
( )+ D R XER e x€D;,

In the limiting case Np > N(R), such that cg is pushed above 1/2 everywhere, the modi-
fied accuracy equals t;, . = Np/(Np + N(R)) > 0.5, while if Np < N(R) and ¢ < 1/2,
t +cc = N(R)/(Np +N(R)) > 0.5. In both cases the test statistics will thus assume an anoma-
lously large value, above the indecisive classifier threshold of 0.5, offering sensitivity to the
anomalous observed value of Np.

The modified C2ST method based on t, .., and employing the loss function in eq. (11), has
been found to perform better than the regular C2ST on the benchmark problems we studied,
and in particular as expected on those data sets where N, departures from N(R) are statistically
significant. The modified C2ST results are thus used for a fair comparison with the NPLM
performances.

Among the benchmark GoF problems of Appendix A, we consider those with 1D exponen-
tial reference distribution (Expo) and the 5D ones with di-muon final states with invariant
mass cuts at 60 and at 100 GeV (uu-60 and uu-100). For C2ST we employ a 1-20-1 network
and a 5-20-1 network for the 1D and 5D setups, respectively. We use Adam optimiser, 500
training epochs in 1D and 3000 epochs in the 5D setup. The number of epochs is selected with
the criterion explained at the end of Section 2.2.

The NPLM performances on the benchmark problems are illustrated by the NPLM imple-
mentation based on neural networks. The hyper-parameter selection is performed with the
habitual NPLM-NN strategy and the selected hyper-parameters are reported in Appendix A.
Most of the benchmark problems we consider here have been investigated already in previous
works and the performances of NPLM-NN compared and found similar to those of the NPLM-
KM implementation that employs kernel methods [14]. This is confirmed by the NPLM-KM
results on the same benchmarks reported in the following. See for instance Figures 11 and 12.

The results are presented—in Figures 4 and 5—by plotting the test power as a function of
its significance (or size) Z,. These power curves are obtained as follows. The p-value returned
by the GoF test on each data sample is converted into a significance Z-score by the definition

p[Z]=J dz'¢(z)=1-G[Z], = Z[p]=G '[1—p], (13)
VA
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Figure 5: Power curves for C2ST and NPLM in the five signal benchmarks considered for the
uu-60 and uu-100 setups. The sensitivity of the counting test (AN/4/N(R)) is also shown.

where g is the standard Gaussian pdf and G™! the inverse of its cumulative. With this defini-
tion, a significance of Z = 2 (or, of 20) corresponds to a p-value of around 2.3%. The power
curve is the probability of obtaining on data a Z-score that is larger than a given threshold Z,,,
i.e., a p-value that is smaller than the corresponding p[Z,]. This probability, p(Z > Z,|Hy),
can be evaluated under different hypotheses Hy for the true data distribution in order to test
the ability of the GoF test to spot out data departures from the R hypothesis. Notice that if the
true hypothesis is R, p(Z > Z,|R) = p[Z,] by definition. This curve is the contour of the grey
region in the plots. It represents the power curve of the test under the R hypothesis. A GoF
method can be claimed to be sensitive to a certain alternative Hy # R only if the corresponding
power curve is well above the grey region, with higher curves indicating better performances.

The NPLM power curves are always above those obtained with C2ST, signalling univer-
sally better performances. Particularly striking are the results obtained in those configurations
where the anomalous data behaviour is due to the presence of few signal events that emerge in
a weakly-populated region of the reference distribution. For instance, in the H; benchmark—
see Appendix A and in particular Figure 8—the signal consists of an average of S = 10 events on
top of B = 2000 background events that follow the reference distribution. This small S/B ratio
can be sufficient to spot out the anomalous nature of the data, because the signal events are
untypical (specifically, x is large) in the R hypothesis distribution. In fact, the NPLM method
displays good sensitivity. C2ST is instead completely blind to the 1D H; signal, with a power
curve that is right on top of the reference hypothesis curve. The same behaviour is observed
in those 5D problems that similarly display a small S/B.

The C2ST insensitivity to this type of configurations can be understood as follows. The
trained classifier has a chance to feature a good discriminating power between the two samples
only in those regions of x where there is a discrepancy between the true and the reference data
distribution. In the non-discrepant regions instead, the trained classifier function oscillates
around 1/2 and classifies D and R data points randomly. The number of accurately classified
points in the latter region will be around a half of the number of points in that region, with
fluctuations of the order of the square root of the number of points. If this number is overly
large in comparison with the number of points that fall instead in the discrepant region, the
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good classification performances in that region are overwhelmed by the statistical fluctuation
in the non-discrepant region. The classification accuracy does not display an anomalously
large value and the anomalous nature of the data set cannot be detected.

The situation is radically different in NPLM because the NPLM test statistics t,; in eq. (6)
weights individual points in the D set by the value assumed by the f(x) function on that
point, unlike the accuracy used by C2ST that weights the same all the well-classified points.
Recalling eq. (8), we see that fg; is close to zero when cg; ~ 1/2, corresponding to an indecisive
classifier. On the contrary, f; is large in absolute value for confident classification ¢ ~ 0 or
¢w ~ 1. This mitigates the contribution from the non-discrepant regions and enhances the
one from the discrepant regions, where f;; is large. This inherent virtue of the usage of the
likelihood ratio test statistic in NPLM was emphasised already in Ref. [11].

The C2ST method displays some sensitivity to those anomalies that emerge from a distor-
tion of the reference distribution that is less localised in the x space, but still its performances
are way inferior to the ones of NPLM. Often, C2ST is even less sensitive than a basic GoF
strategy that is merely based on the counting of the total number of observed events. The
power curve of the counting test is displayed as dashed lines in the plots. The test is based on
the test statistics variable AN/4/N(R), where AN = |Np —N(R)|, and thus it is only sensitive
to departures of Np from the expected number N(R). Therefore it is completely insensitive
to those setups where the expected Ny, in the alternative hypothesis is identical to N(R), and
very weakly sensitive to small S/B setups. The fact that C2ST is often less effective than the
counting test shows that for C2ST it is still difficult to exploit the discriminating power of Np,
even in its improved version.

3 Classifier-inspired NPLM variants

The NPLM advantages observed in the direct comparison with C2ST must be due to some
aspects of the NPLM method which depart strongly from the classifier-based approach that
underlies the C2ST method design. In this section we identify these peculiarities and assess
their impact by studying the performances of some variants of the NPLM strategy.

We emphasised in Section 2.1 that, while NPLM formally belongs to the general family of
classifier-based methods as defined by Friedman in Ref. [2], it displays a number of peculiari-
ties that stem from its origin as a Neyman—Pearson test. One of these peculiarities is definitely
the usage of the maximum-likelihood loss in eq. (3). However, we argued that this can not
be responsible for the good NPLM performances because the NPLM implementation based on
kernel methods employs the more standard logistic loss function in eq. (2) and it is as effective
as the implementation with neural networks that uses maximume-likelihood. Unpublished tests
performed with neural networks and logistic loss, mentioned in Ref. [11], further support the
claim that the maximum-likelihood loss is not essential for the NPLM performances.

The models used in the two NPLM implementations (neural networks and kernels) are
routinely employed as classifiers and therefore their choice is not a peculiarity of the NPLM
method. What is instead peculiar is the NPLM selection of the model hyper-parameters in-
cluding regularisation, and this aspect could in principle play an important role. On the other
hand, the NPLM hyper-parameters selection protocol in essence just aims at preventing over-
fitting to occur on R-distributed toy data, a criterion that would be reasonable also from a
classifier-based perspective. Therefore, studying the impact of the hyper-parameters on the
performances is not directly relevant for the NPLM comparison with classifier-based methods.

In what follows, we will then focus on two remaining unique aspects of NPLM: the in-
sample evaluation of the classifier without train-test splitting and the usage of the likelihood
ratio as test statistics. The impact on the performances of these two choices are discussed in

15



SciPost Physics Submission

1-100 —+— w/split —f— NPLM-NN
7'-2-a 7'-2b 7'-3-a 7'-3-b EFT
1.0 - -
0.8l e S st & e e
PR N =N N N
S04 RN N NNy N
" 02 AN i N& Lz
0.0 . N
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Z, Z, Zy Z, Z,
(=100 —+— half -4~ NPLM-NN
Z-2-a 7'-2b 7-3-a 7"-3-b EFT
1.0 -
0.8 [ S 1\ % R \r -_—'\b'i"‘
2N N N N
Sod N N Ny A N
E0.2 N\, e R \N*“T B
0.0 e s el
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Zy Z, Zy Zy Z,

Figure 6: Power curves in the train-test split configuration (first row of plots) and in the
default NPLM configurations but using only half of the data statistics (second row). The
baseline NPLM results are shown for comparison.

the next two sections in turn.

3.1 Train-test splitting

Estimating the performances of a classifier requires test data that are independent from the
data used for training. The splitting of the D and R data sets into training and test is thus a very
natural design choice in the classifier-based approach as previously emphasised in Section 2.2.
Equally naturally, no such splitting should be performed from the viewpoint of a Neyman-—
Pearson test. The aim there is to assess how well the data are described by the distribution that
best fits them within a certain family. Therefore, the fit (i.e., the training) must be performed
with the very same data used to test. In NPLM, the test statistics—specifically, the likelihood
ratio test statistics in eq. (6)—is thus evaluated on the entire sets of available D and R data
that are also employed for training.

In order to assess the impact of this in-sample evaluation on the NPLM performances, we
consider a variant of NPLM in which the D set is first split into two equal parts, obtaining a
set D,, that is employed for training and an independent set, D,,, on which the test statistics
is evaluated. The same R is used for training and testing.> Other than that, we proceed like
in baseline NPLM using the likelihood ratio test statistic and selecting the model, training and
regularisation hyper-parameters to avoid overfitting on R-distributed data sets. Notice that
the selected parameters are different (see Appendix A) than the ones of regular NPLM method
applied on the same setup but without the train-test splitting, because training is performed
in the latter case with the total D statistics while only half of the statistics is employed here
due to the splitting.

The results are displayed in Figure 6 in terms of the power curves defined and computed
as explained previously in Section 2.3. The benchmarks used for the assessment of the perfor-
mances are those in the 5D di-muon setup with m,,, > 100GeV (uu-100). The same bench-

>We could have decided to split R as well, but it is expected to give the same performances because for N > Np,
the R set can be regarded as a nearly perfect description of the R distribution. The result of training and the value
of t,, are thus independent of the specific instance of the R set that is employed.
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Figure 7: Test statistics distributions in the reference hypothesis and in one of the alternatives
for the baseline NPLM method employing the full data statistics (left), the one employing only
half of the data (middle) and the NLPM variant with train-test splitting (right).

mark is also employed in Figure 5 (bottom) for the comparison with the C2ST method. In the
first row of Figure 6, the baseline NPLM performances are compared with those of the NPLM
variant that employs test-training splitting. We see that test-training splitting is detrimental
for the sensitivity in all cases. The in-sample evaluation of the test statistics is thus found to
play a key role for the NPLM method sensitivity. This finding explains the NPLM advantages
in comparison with C2ST, but only partially. Indeed, the comparison with Figure 5 reveals
that the performances of the NPLM variant with test-train splitting are still superior to those
attained by the C2ST method.

In the second row of Figure 6 we display results (labelled as NPLM-half) obtained as
follows: after training on the (D,,,R) data sets we evaluate the test statistics on the same
(D;,,R) and we ignore the test data D,,. This is of course equivalent to run the baseline
NPLM method in a setup where only half of the data statistics is available, entailing sensitiv-
ity loss. The sensitivities obtained in this configuration are comparable to those of the NPLM
method variant with test-train splitting. Splitting the data in equal portion for train and test
is thus as ineffective as ignoring half of the available data points.

Inspecting the distribution of the test statistics in the different configurations, displayed in
the three panels of Figure 7, helps gaining an intuitive understanding of this result. The NPLM
model learns from the training data and thus it is exposed to the statistical fluctuations that
are present in the specific instance of the sample D used for training. When the data are R-
distributed (light histograms), statistical fluctuations are in fact all what there is to be learned,
since D is distributed like the reference by construction. This produces a positive value for
the test statistics evaluated on the same samples used for training (left and middle panels).
When the data follow instead a different distribution than R, their statistical fluctuations are
accompanied by a systematic discrepancy from the reference data. The test statistics (dark his-
togram) thus emerges as the sum of a contribution from statistical fluctuations that is typically
as large in size as it was for R-distributed data, plus the systematic contribution. This latter
contribution is responsible for the shift of the test statistics distribution, and in turn for the
sensitivity of the method to the alternative data distribution. The amount of shift is controlled
by the data statistics and it is obviously larger when the full data statistics is employed (left
panel) than if only half of the data (middle panel) are used.

When evaluated on test samples that are different from those used for training, the t,, dis-
tribution behaves instead as on the third panel of Figure 7. The statistical fluctuations learned
on the training data are different from the ones that are present in the test data. The trained
model thus offers a poor description of the test data and ¢, is typically negative, and especially
so for R-distributed data because statistical fluctuations are all what the model learns. The sys-
tematic shift is still present in t,; when the data are distributed according to the alternative,
because the systematic component of the data departures from the reference is present both
in the training and in the test data. The size of this shift is again controlled by the statistics
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of the data, and of course the relevant data are only those used for evaluating the test statis-
tics. These are half of the total in the test-train splitting setup, like in the configuration where
only half of the available data are used. Since the shift controls the sensitivity, it is reasonable
to expect, as we find, that the performances of the two configurations are comparable, and
inferior to those of the baseline NPLM because of the effective loss of data.

3.2 Alternative test statistics variables

The ratio between the likelihoods is a standard measure of the relative fit quality of two hy-
potheses. Hence, the NPLM choice of the likelihood ratio test statistics t, in eq. (6) is very
natural or even obliged from the perspective of a Neyman—Pearson test. From the viewpoint of
classification instead, this choice is highly unnatural as emphasised in Section 2.1. We evaluate
its impact on the performances by studying a number of NPLM variants that employ different
test statistics variables to be evaluated on the trained classifier. We will consider variables that
are either standard metrics for classification performances, or standard test statistics variables
for one-dimensional GoF methods as in Friedman’s proposal [2]. These variables and their
performances are discussed in the next two sections in turn. In all cases, we proceed like in
the baseline NPLM method with in-sample evaluation of the test statistics and the habitual
selection of hyper-parameters for a direct assessment of the effect of the choice of the test
statistics on the performances.

3.2.1 Standard classification metrics

The most standard classification metric is probably the classification accuracy. The detailed
definition of this quantity must take into account that in our framework the D and R data sets
are unbalanced and that the D size Np, is a discriminating variable. As in Sections 2.2 and 2.3,
this leads to the definition

1 N(R)

ACC; =
" N(R)+Np | Ng

D Meq(x) <tl+ Y Meg(x) > 1] |, (14)

X€R x€D

where c(x) is related to the trained NPLM model f(x) by eq. (8). We consider two versions
of the accuracy test statistics

1/2 max

tacc = ACCy/2, thee = max [AcC,] . (15)

t€[0,1]

The first one, with the threshold t = 1/2, is effectively equal to the C2ST test statistics variable
in eq. (12). The different normalisation accounts for the fact that the accuracy is evaluated on
the full data sets. The second tests statistics, t,., employs a variable threshold optimised on
the data under consideration.

Another widely employed metric for classification is the Area Under the ROC Curve (AUC).
This the integral of the Receiver Operating Characteristic (ROC) curve, built by varying the
classification threshold in the plane formed by the probability of false and of true positive. A
straightforward adaptation of the standard AUC to our setup, where the samples are unbal-
anced and Np is discriminant, is readily obtained as follows.

The false positive probability can be estimated as usual by the false positive rate

FP, = é > Ileq(x) > t]. (16)
XER

The true positive probability is instead most conveniently expressed, for our purposes, in terms
of the classification accuracy
TP, = 2ACC; + FP, — 1. 7
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The above equation relies on the regular definition of the accuracy as the average between the
true positive and the true negative probabilities.

Eq. (14) provides a definition of the accuracy that accounts for the unbalance in the samples
and retains the discriminating power of Np,. We exploit the same definition in the calculation
of the AUC as the integral of eq. (17), obtaining the AUC test statistics

taue = Jdt TP, = ZJdt
1/2

Figures 11 and 12 displays the performances of the t,c;, ty& and t, test statistics vari-
ables on the benchmarks defined in Appendix A. The baseline NPLM performances are superior
in general, and the classification metrics are exposed to dramatic failures in certain configura-
tions. In particular, the classification metrics fail when the anomaly in the data emerges from a
small fraction of signal events. We find here the same behaviour we observed in Section 2.3 for
the C2ST method. We attributed this failure to the fact that individual data points weight the
same in the classification accuracy metrics while points that are recognised as highly anoma-
lous weight more in the likelihood ratio test statistics employed in the baseline NPLM method.
The only exception to this trend is observed in the bottom panel of Figure 11, showing the
performances over the DQM benchmark. In this case, the performances of the classification
metrics exceed those of the likelihood ratio test. We don’t have a complete understanding of
this result; a possible reason could be the significantly lower size of the data sample, which pre-
vents an accurate approximation of the likelihood ratio shape. Further studies will be needed
to understand this result.

dFp,
dt

dFR,
dt

1
ACC — 3. (18)

3.2.2 One dimensional GoF variables

We now turn to a series of test statistics variables that are commonly employed for GoF on one-
dimensional data. Some of these variables need a slight adaptation to our setup, in which the
GoF is addressed as a two-sample test—i.e., the reference distribution is not known in closed
form but only a reference sample is available—and the total number of events in one of the
two classes is a discriminating variable. These straightforward adjustments, and the definition
of the test statistics variables, are reported in Appendix B. The univariate data sets © and R
employed in the test statistics evaluation consist of the trained classifier c(x) evaluated on D
and R as in Friedman’s proposal [2].
The results are reported in Figures 13, 14 and 15, and described below.

22 tests Histogramming the data ©® and comparing the numbers of counting in each bin
with the reference hypothesis predictions is the most common GoF method. If the reference
distribution is not known in closed form, the predictions can be readily obtained from the
histogram of the 9 data. The y? (see eq. (21)) is the appropriate test statistics variable to
perform this comparison. The method is subject to strong ambiguities in the choice of the
binning strategy and in the number of bins ny;,;. The standard binning strategy we employ is
to adapt the width of each bin in order to make it contain exactly N(R)/ny;,, expected events
in the R hypothesis. Different choices are considered for ny;,.

The results, presented in Figure 13, display in the first place a considerable dependence
of the sensitivity on the number of bins. The most effective choice of ny;,; depends on the
source of the anomaly in the data, and therefore it can not be optimised because the essence
of the GoF problem is to identify anomalous data sets without prior bias on the source of the
anomaly. The observed sensitivity pattern follows the basic intuition: signals that are more
localised require narrow binning to be seen, while distortions of the reference distribution that
are spread on a wider range benefit from broader bins. The baseline NPLM results are always
better or comparable to the y2 test with the highest power curve in each benchmark problem.
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EDF tests Several univariate GoF methods are based on the Empirical cumulative Distribu-
tion Function (EDF). The most known example is the Kolmogorov-Smirnov (KS) test, others
are the Cramer—von-Mises (CvM) and the Anderson-Darling (AD) tests. The performances of
the corresponding test statistics variables (see egs. (24,25)) are reported in Figure 14.

EDF test statistics variables perform in general slightly better than y2. In some cases they
even display comparable performances to baseline NPLM, however none of the tests in this
family is universally better than the others in all benchmarks. The different weights that the
different tests give to the tails of the data distribution makes them more or less sensitive to
different types of anomalies.

Spacing statistics We finally consider the Moran (M) and the Recursive Product of Spacing
(RPS) tests (egs. (28,31)), as representative of and approach to GoF that exploits the distance
between samplings. We see in Figure 15 that the performances are generically poor.

The survey performed in the present section enables us to reach a sharp conclusion on the
crucial role played by the choice of the likelihood ratio test statistics (6) for the NPLM method
performances. This choice, as well as the in-sample evaluation of the test statistics studied in
the previous section, stems from the origin of NPLM as a Neyman—Pearson test rather than a
classifier-based GoF method. Our results thus point to the superiority of Neyman-Pearson test
approach.

4 Conclusions

We presented a first assessment of the performances of the NPLM method for GoE which is
based on Neyman-Pearson testing, in comparison with the performances of classifier-based
methods. The study has been carried out in two ways. First, by a direct comparison with the
C2ST method, taken as representative of the classifier-based approach in its most direct and
simple form. Second, by an assessment of the impact on the performances of the most peculiar
methodological choices of NPLM, which directly stem from its origin as a Neyman—Pearson
test. In particular, we analysed the effect of the in-sample evaluation of the test statistics
variable and the usage of the likelihood ratio test statistics. Both, as foreseen in baseline NPLM,
have been found to bring strong advantages. The NPLM method has been also compared,
in Appendix C, with several standard GoF methods that exist for one-dimensional variables.
Globally better performances are obtained.

These results indicate that performing a Neyman-Pearson test of the reference hypothe-
sis against a suitably designed set of alternative hypotheses, like NPLM does, is a powerful
approach to GoF that deserves further studies.

It is not straightforward to extrapolate our findings beyond the specific framework we em-
ployed for the comparison and to turn them into general statements on the NPLM advantages
in comparison with other approaches to GoFE. An inherent feature of the GoF problem is the
difficulty of identifying a sharp figure of merit to rank the effectiveness of different methods.
The sensitivity to anomalous data drawn according to some specific alternative to the refer-
ence hypothesis is a clear figure of merit for hypothesis tests, because the goal of a hypothesis
test is precisely to tell apart the reference hypothesis from one specific and pre-specified al-
ternative. A GoF test aims instead at identifying data that are anomalous with respect to the
reference hypothesis, regardless (if possible) of the specific alternative distribution according
to which the data are truly distributed. The sensitivity to anomalous data is still the figure of
merit. However, a wide set of different alternative hypotheses for their true distribution must
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be considered for a meaningful assessment. Still, the assessment will never be fully conclusive
as the result does depend in general on the alternatives that have been considered. NPLM
has been found generally better than the other methods over all the benchmark problems we
studied. Furthermore, none of the other methods performs comparably well as NPLM on all
the benchmarks. Nevertheless, these results could in principle change if the comparison was
extended to include other benchmarks.

One bias that definitely affects our selection of the benchmarks is the origin of NPLM as
a method to search for new physics in high energy collider data. Many of our benchmarks
have thus been selected, in the previous NPLM literature, to be representative of this type of
problems. However, we also considered the DQM benchmarks, which are unrelated with new
physics at collider and are based on natural data collected at a muon detector. Furthermore,
our benchmark problems do not seem to display any strong peculiarity, apart from being ar-
guably difficult GoF problems: the reference and the alternative distribution are on the same
support and the discrepancy emerge either from a small localised excess (or deficit) of events
or from a distributed distortion of the reference distribution. Since our benchmarks are not
peculiar and are reasonably varied, there is no reason to expect that our findings would be
radically different on different problems. However, it should be noted that in our benchmarks
we only deal with data of limited dimensionality. NPLM has been applied to data with up
to 100 dimensions so far, and a comparison with other GoF methods suited to deal with this
dimensionality could be considered in the future. NPLM is instead probably not suited to deal
with order thousands dimensionality problem like for instance the validation of generative
models for images.

Previous works [11-15] remarked a certain degree of uniformity of the NPLM response to
qualitatively different types of anomalies injected on top of the same reference distribution.
This uniformity is defined—see Appendix A for a review—as a correlation between the median
sensitivity of NPLM and the median sensitivity, Z;q, of the fully optimal hypothesis test designed
to detect the specific source of anomaly under consideration. We do not observe this uniformity
for C2ST nor for any of the other GoF methods we studied in this paper as NPLM variants. ® The
complete sensitivity loss of certain methods to specific type of anomalies, accompanied with a
more moderate degradation of their sensitivity in comparison with baseline NPLM, exemplifies
this lack of uniformity. We are currently unable to turn these qualitative observations into
quantitative statements on the level of uniformity of the sensitivity of NPLM and other GoF
methods. Challenges stem for the lack of theoretical understanding on the possible origin of
this universality and the conditions for its validity, or that it can be meaningfully stated like we
do as a correlation between the sensitivity of the method and Z;4. The proper quantification of
Ziq is often in itself a technical challenge. Advances in this speculative direction are potentially
very interesting and should be pursued.
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A Benchmarks

The only way to assess the performances of GoF methods is to study their ability to identify
anomalous data sets drawn according to some alternative hypothesis that is different from
the reference hypothesis. Benchmark problems and the corresponding benchmark data sets
for GoF performance studies are thus defined by one given R hypothesis for the reference
distribution, plus one given alternative hypothesis.

The selection of the benchmarks is unavoidably arbitrary. Therefore, it must be justified to
the extent that possible taking into account that the purpose of GoF is to spot out generic data
departures from the R hypothesis regardless of the specific alternative that underlies their
distribution. We thus organise our benchmark problems as specific alternatives that could
be possibly encountered in a number of GoF setups. One setup is defined by one chosen
reference probability distribution and number of expected events N(R). Additionally, since the
GoF methods we investigate are in fact two-sample tests, the size of the available R sample—or
the ratio N /N(R)—is also specified in the definition of the setup.

The GoF setups and benchmarks employed in this paper are described in the following
sections. It should be noted that the vast majority of these benchmarks were defined and
studied in previous NPLM works [11-15], and they have not been designed specifically for the
comparative studies of the present article.

Within each setup, we would like our GoF method to be sensitive to data generated ac-
cording to any possible alternative distribution. Clearly in practice we can only study the sen-
sitivity to a limited number of different alternatives, to be selected with care trying to cover
qualitatively different types of data anomalies. For instance, anomalies emerging from small
discrepancies of the distribution over a wide region of the x variable are different from sharply
localised signals emerging in the tail of the x distribution, or in the bulk. A GoF test can be more
or less sensitive to anomalies in one class than in the other. This is confirmed by the results
of the present article: the sensitivity degradation of the many methods we studied—relative
to the baseline NPLM sensitivity—is more or less pronounced for the different alternatives we
considered in each setup. This result also confirms, a posteriori, the validity of our benchmark
problems selection as probing different sources of anomalies in the data that can be easier or
harder to see for a generic GoF method.

A different question is which level of sensitivity it is legitimate to expect from a “good”
GoF method for each of the different alternatives that we might consider in one given setup.
We cannot really expect sensitivity to all alternatives. One can always consider an alternative
distribution that is so close to the reference distribution not to produce any visible anomaly in
the data becoming impossible to be seen. Some sensitivity has to be expected only for alterna-
tives that are easy enough to be detected, according to some notion of “easiness” that has to
be defined. Such notion can be naturally introduced for comparing alternative distributions of
a specific type, based on the value of their adjustable parameters. For instance, sharps peaks
are characterised by the area below the peak region, and higher peaks are obviously easier to
see. On the other hand, a different and more abstract notion is needed in to compare alterna-
tive hypotheses in different classes, which are controlled by different and not commensurable
adjustable parameters.

In previous works on NPLM [11-15] we introduced and employed the notion of ideal sen-
sitivity or ideal median Z-score, Z;4. The definition of this quantity emerges from the powerful
result known as the Neyman-Pearson lemma [8], which identify the hypothesis test strategy
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that is in absolute the most sensitive (highest power for given size) to one given alternative hy-
pothesis tested against one given reference (or null) hypothesis. The sensitivity of such optimal
test, Z,q, is an absolute measure of how different the alternative is from the reference hypoth-
esis, and of how easy or hard it is to tell them apart. It does not correspond to the sensitivity
that has to be expected from any GoF method. Any test of hypothesis, apart from the opti-
mal test itself, must produce a sensitivity that is below Z;4, again due to the Neyman-Pearson
lemma. In particular, the GoF test sensitivity Z must thus be smaller than Z;3. Computing Z4
for each alternative hypothesis that is being tested serves instead to assess how easy or hard
the alternative hypothesis is to be discriminated from the reference. Aspirationally, a “good”
GoF method should be a one that responds uniformly—i.e., with comparable Z—to all the al-
ternatives with comparable Z,4. This uniform response is qualitatively observed for the NPLM
method within each of the GoF setups we studied (but not across different setups). This is
reviewed in the next sections.

A.1 Expo

This is a simple univariate setup that represents an energy or transverse-momentum spectrum
that falls exponentially. Such type of distributions are fairly common in collider physics ex-
periments. Studying GoF techniques in this setup is thus illustrative of some of the challenges
associated with the search for new physics at these experiments. NPLM performances in the
Expo setup were studied in Refs. [11,13]. A minor extension of these studies has been per-
formed for this paper as described below.
The reference distribution is
n(x|R) =N(R)e™, (19)

where the expected number of collected events in the reference hypothesis, N(R), is set at
2000. The R sample is composed of N = 100 N(R) events. We consider (see Figure 8) a total
of five alternative hypotheses for the true data distribution, mimicking qualitatively different
ways in which the data can depart from the reference hypothesis expectation:

H;: a peak in the tail. This is modelled by adding to the exponential reference distribu-
tion a Gaussian distribution with mean 6.4, standard deviation 0.16 and an area of 10
events. The additive Gaussian contribution is called a signal and the expected number
of signal events, N(S), is equal to 10. The total number of expected events in the H;
hypothesis is N(H;) = N(R) + N(S) = 2010.

H,: a quadratically growing excess in the tail, modelled as an additive contribution to
the reference distribution that is proportional to x?e™* and normalised to N(S) = 90
signal events. The total number of events is N(H,) = N(R) + N(S) = 2090 and it is
different from N(R). Therefore, both the number of events and the distribution shape
contribute to the data departures from the R hypothesis.

H,: similar to H, but with only shape effects. This is engineered by lowering the area of
the exponential component of the distribution to N(R)’ = 1890 and adding N(S) = 110
events with the x?e™ distribution. In this way, N(H,) = N(R) and the total number of
events is not a discriminant variable. Notice that, unlike H; and H,, the H;, distribution
is not an additive modification of the reference distribution.

Hj: a peak in the bulk of the reference distribution, modelled as a Gaussian with mean
1.6 and standard deviation 0.16. The expected number of signal events is N(S) = 90.

H,: a defect in the tail of the distribution obtained by cutting the reference exponen-
tial distribution above the threshold x > 5.07. The total number of expected events is
reduced, relative to N(R), to N(H,4) = 1987.
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Figure 8: The five alternative distributions that are considered in the Expo setup. The refer-
ence distribution is shown dashed in all plots.

Expo
Alternative | Zi4 | zZ | YAVAR
H, 47 25| 05
H, 44|25 06
le 44 | 3.0 0.7
Hy 52 (39| 0.8
H, 45|26 06

Table 1: Z-scores for the Expo setup.

The specific tuning of the parameters—such as the number of expected signal events, or the
value of the threshold in the case of Hy—that define these alternative hypothesis is such that
the median ideal Z-score of all the alternatives is around 5¢. The ideal Z-score Z4 is obtained
as a direct application of the Neyman-Pearson lemma, exploiting the analytic knowledge of
the reference and of the alternative distributions. Namely, we perform a hypothesis test using
the test statistics variable [8]

e N — n(x|H)
= 2108 [ e N l;! n(xIR) } ' @
For each H=H; _4, we compute empirically the distribution of the corresponding variable ty
under the R hypothesis by toy experiments. We then compute the median p-value on data that
follow the alternative distribution, and eventually the median Z-score defined as in eq. (13).
The results are reported in the second column of Table 1.

The second column of the table displays the median Z-scores of the NPLM tests when
the data are distributed according to the alternative hypotheses. These results correspond
to the point on the Z, axis where the power curves cross 1/2. They are obtained with a
(1,4,1) network and weight clipping regularisation parameter of 8. The hyperparameters
selection has been performed with the habitual NPLM criterion of y2-compatibility [12,13].
No preprocessing of the variables given as input to the network is performed since the data
naturally have unit mean and unit variance. Data are instead shifted and scaled to have zero
mean and unit variance—for R-distributed data—in the other NPLM applications considered
in this paper.

We also employ the kernel-based NPLM implementation in the Expo setup. The hyper-
parameters are set to the values (M, o, 1) = (5000, 2.3, 10719), which we obtain following the
general hyper-parameters selection prescription detailed in Refs. [14,15]. These are slightly

different from the ones used selected in Ref. [14] due to the different range of the input vari-
able.

24



SciPost Physics Submission

A2 uu

This is a more complex setup inspired by the realistic problem of an agnostic search for physics
Beyond the Standard Model (BSM) with LHC data. In particular, the setup targets LHC final
states with two muons of opposite charge. The goal is to assess whether the distribution of
the kinematical variables that characterise the muons are well described by the corresponding
Standard Model (SM) predictions. This use case was proposed in [12] and further investigated
in Refs. [13,14].

The data sets are available on Zenodo [18] and consists of collections of the five variables
describing the kinematics of two muons produced in the final state of proton-proton collisions
at the LHC: the transverse momenta of the two muons (pr;, pr2), their pseudorapidities (7,
75) and their relative azimuthal angle A¢ .

The reference hypothesis is the adequacy of the SM as a description of the process. There-
fore the reference-distributed data are obtained by Monte Carlo simulations that are based on
the SM theory. The main SM process that contributes to this final state is the Drell-Yan process
where the muons emerge from the decay of a virtual photon or Z-boson particle generated in
the annihilation of a quark-antiquark pair in the colliding protons. The SM theory also predicts
the total number of events with two muons that are expected to be observed after a certain
number of protons have been collided. More precisely, the number of expected events is pro-
portional to the integrated luminosity of the LHC collider that is employed in the analysis. By
varying the data luminosity that we decide to employ, we can thus control the total number of
expected events N(R) of our GoF case study.

Additionally, we can decide to restrict our analysis to the subset of the events that satisfy
certain cuts on the kinematics of the muons. 7 Two choices are considered, defining two distinct
GoF setups denoted as uu-60 and uu-100. In the first one, a 60 GeV lower cut selection is
performed on the invariant mass of the two muons, while a 100 GeV cut is performed in the
second setup. The 60 GeV cut, already considered in [12], corresponds to the threshold below
which muons are hard to identify experimentally and the SM predictions for their distribution
become more difficult to obtain. This cut includes the mass of the Z-boson particle of around
90 GeV, which can thus be produced resonantly and dominate the composition of the uu-60
reference distribution. The cut at 100 GeV was instead introduced in [13] and excludes the
resonant Z-boson production entailing a strong change in the reference distribution of the uu-
100 setup relative to that of the uu-60 setup. In order to maintain a comparable number of
expected events in the two setups, the integrated luminosities have been chosen to be 0.35 fb™!
for the uu-60 and 3.5fb™! for the uu-100 setup. This choice corresponds to N(R) = 18740
and N(R) = 84530 in the two setups.

The alternative hypotheses we would like to be sensitive to are physical law not foreseen
by the SM, but by some BSM theory. Simple BSM benchmark theories are thus employed to
generate anomalous data sets. Namely, we consider a so-called Z’ model where a new mas-
sive spin-one particle is present with the same couplings of the SM Z-boson. A Z’ particle with
200 GeV or 300 GeV mass is considered in order to probe its effect in different regions of the
reference SM distribution. We also consider a non-resonant deformation of the SM distribution
due to a new EFT interaction operator of dimension-6. Specifically, we consider an operator
cw/ AZJE‘HJ f . Where J f o is the SU(2);, SM current. The energy scale A is fixed at 1 TeV and the
Wilson coefficient ¢y, determines the strength of the effect. In the uu-60 and uu-100 setups,
the following benchmarks are considered:

wu-60:
Z'-2-a:

7 Acceptance cuts py > 20 GeV and |n| < 2.4 are applied in all cases.
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a Z' with 200 GeV mass and a cross-section such as to produce N(S) = 80 expected
events in addition to the N(R) = 18740 events from the SM background.

Z'-2-b:
a Z’ with 200 GeV mass and N(S) = 160.

Z'-3:
a Z’ with 300 GeV mass and N(S) = 40.

EFT-a:
the EFT operator with Wilson coefficient ¢}, = 1.2. The total number of expected events
in the presence of the new operator is 18747.

EFT-b:
the EFT operator with Wilson coefficient ¢, = 1.5. The total number of expected events
becomes 18783.

uu-100:

Z'-2-a:
a Z’' with 200 GeV mass and N(S) = 120 expected events.

Z'-2-b:
a Z’' with 200 GeV mass and N(S) = 240 expected events.

Z'-3-a:
a Z’ with 300 GeV mass and N(S) = 60.

Z’-3-b:
a Z’ with 300 GeV mass and N(S) = 120.

EFT:
the EFT operator with Wilson coefficient ¢y = 1.5. The total number of expected events
becomes 87290. In the uu-100 setup, N(R) = 84530.

All benchmarks considered in uu-60, except for Z'-2-b, were previously studied in [12], while
the benchmarks in yu-100 have been defined so that the ideal reaches are comparable to the
uu-60 ones.

As in the Expo setup, we need to quantify the ideal Z-score of our benchmarks. However,
this is more difficult to achieve in this case because the distribution of the reference and of the
alternative hypotheses is not available in closed form. We thus have to rely on approximations
of the ideal Z-scores, obtained as follows. For the Z’ case, we assume based on experience that
the invariant mass of the muons is the most effective variable to identify the presence of the
Z’ in the data, and that a simple cut-and-count strategy in an invariant-mass window around
the Z’ mass offers nearly optimal sensitivity. The width of the window is optimised for each
benchmark signal. The sensitivity we obtain by counting events in the window and comparing
with the reference model prediction for the expected countings is reported in Figure 9. Notice
that very high Z,4 sensitivities can be estimated with the cut-and-count strategy thanks to the
analytic knowledge of the (Poisson) distribution of the number of events in the window.

The situation is different for the EFT benchmarks. Also in this case, it could be reasonable—
though more questionable—to assume that the invariant mass is the only discriminant variable,
but a simple cut-and-count strategy would not produce nearly optimal sensitivity. We need to
bin the invariant mass and compare the countings in each bin with the reference predictions.
The number of bins and the binning strategy can be optimised. However, the distribution of
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Figure 9: Correlation between the median ideal sensitivity and the median NPLM-NN sensi-
tivity in the uu-60, uu-100 and pu-100-half setups.

the test statistic variable to be employed for the comparison is not known in closed form. The
sensitivity must therefore be estimated empirically by running toy experiments to determine
the test statistics distribution in the R hypothesis. This prevents in practice to estimate the
sensitivity if it is above around 50. When this occurs—specifically, for the EFT benchmark in
the uu-100 setups—we report in Figure 9 the lower bound on the sensitivity that is obtained
empirically, plus a very rough sensitivity estimate based on fitting the empirical test statistic
distribution with a Gaussian and extrapolating to higher values of the test statistics than those
observed in the toys. Overall, our Z;4 estimates are not accurate enough to draw robust con-
clusion on the uniformity of the NPLM sensitivity in this setup. Nevertheless, the correlation
between Z;y and the median NPLM sensitivity is reported in Figure 9. In some cases, the em-
pirical determination of the NPLM sensitivity is impossible and the results consists for of a
lower bound and a rough estimate based on Gaussian extrapolation as previously described.

The NPLM-NN hyper-parameters selection for this setup was discussed in [12] (see also [13]):
we use a fully connected feedforward neural network with three layers of five nodes each and
weight clipping value set at 2.15.

The uu goodness of fit setups are employed extensively in the main text to illustrate the
NPLM sensitivity. In Section 3.1 (see in particular the bottom plots in Figure 6) we also use
NPLM to address the uu-100 GoF problem using only half of the data statistics. This is ef-
fectively a different setup, denoted as uu-100-half, where N(R) and the number of expected
events in all the alternative hypotheses is reduced by a factor 2. In the uu-100-half setup, the
weight clipping regularisation parameter resulting from y2-compatibility is equal to 2.4.

The hyper-parameters of the kernel-based implementation NPLM-KM in all the three uu
setups are set to (M, o, A) = (2 x 104, 3,107°) like in Ref. [14].

A.3 DOM

Goodness of fit methods can be used to monitor the quality of the data produced by a complex
apparatus such as a particle detector, i.e. for Data Quality Monitoring (DQM). The R hypothesis
is that the detector is operating in normal design conditions, therefore the R-distributed sam-
plings of the detector readout x are obtained from the normal apparatus operations. Anomalies
in the x distribution can emerge from many different sources of technical failures.
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The DQM GoF setup was introduced in Ref. [15] to exemplify this use case. It is based on
natural data, available on Zenodo [19], from cosmic-ray muons at a drift tube chamber. The
five variables collected by the apparatus are four drift times associated with the muon track
and the angle formed by the muon track with the vertical axis. The data set consists of 3 x 10°
data points collected under reference working conditions, and smaller (order 10* points) data
sets where some of the detector parameters are artificially altered. In this work we consider
two types of anomalous working conditions: the cathod (Ca) anomaly where the voltage of
the cathodic strips is reduce to 75% of their nominal value and the threshold (Thr) anomaly
where the frontend threshold (is lowered to 75% of its nominal value. More anomalies have
been studied in Ref. [15].

Using these data, the DQM setup for GoF is defined as follows. The data set size is fixed to
Np = 250, corresponding to one possible choice of the size of the data batches to be monitored.
Unlike in previous setups, Ny, is fixed and is not a random variable. The size of the R data set
is set to Np = 2000. A total of four benchmark anomalous data distributions are considered:

Ca-50: a mixture of 50% of Ca anomalous data and 50% of R-distributed data.
Ca-70: a mixture of 70% of Ca anomalous data and 30% of R-distributed data.
Thr-50: a mixture of 50% of Thr anomalous data and 50% of R-distributed data.
Thr-70: a mixture of 70% of Thr anomalous data and 30% of R-distributed data.

We exclusively employ the NPLM implementation based on kernel method to address the
DQM GoF problem. As in [15], the hyper-parameters are set to (M, o, A1) = (2000, 4.5,107°).

B One dimensional GoF methods

The literature on goodness of fit tests for a one-dimensional variable x is vast. Studying all the
existing tests would be impossible and not particularly useful. We instead select a number of
tests that are representative of different approaches that have been considered by statisticians
throughout the years. These are described in turn in the rest of this appendix.

It should be kept in mind that ours is not strictly a GoF problem, because the data dis-
tribution in the reference hypothesis is not known in closed form. It is rather a two-sample
test—though with unbalanced samples—between two sets ® and R of univariate data of size
Np and Ny, respectively. For the studies in Section 3.2.2, these data are obtained by apply-
ing the trained classifier to the D and R sets. For those in Appendix C, the data are directly
provided by the D and R sets in univariate GoF problem.

Furthermore, in our setup Ny, is a Poisson-distributed variable with expected N(R) in the
reference hypothesis, and not a pre-specified fixed number. Some of the classical GoF strategies
we consider require minor adjustments in order to deal with this peculiarity, and in order to
be used for two-sample tests instead of GoF tests.

x?2 tests Histogramming the data ® and comparing the numbers of counting in each bin with
the reference hypothesis predictions is probably the most common GoF method in high-energy
physics. The corresponding test statistics is the Pearson’s y>
Dpins
0; —e;(R
foy = Z oi—e(R) , 21)

z
= eR)

where the o; is the number of points in the © set that fall in the i-th bin and e;(R) is the
expected number in the R hypothesis. If the reference distribution is not known in closed
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form, the predictions for the expected numbers e;(R) are readily obtained from the histogram
of the R data. The ¢, test statistics is thus automatically suited to be employed for a 2ST.
Furthermore, it is automatically sensitive to the total number of observed events Ny and to its
possible departures from the expected total number in the R hypothesis, N(R).

The y2 method is subject to strong ambiguities in the choice of the binning strategy and
in the number of bins ny;,;. We construct non-overlapping bins that cover the entire support
of the variable x in such a way that each of them contains exactly e;(R) = N(R)/ny;,, expected
events in the R hypothesis. Namely, we compute the i/ny;,, percentiles of the R data set,
fori=1,...,n,, —1 and we use them as the upper extreme of the i-th bin and as the lower
extreme of the i—1-th bin. The first and the last bin extend up to the lower and upper boundary
of the support of x. The number of bins ny;, is left as a free parameter of the of the test.

Under certain conditions, the ¢, distribution in the R hypothesis can be accurately esti-
mated by asymptotic formulas. We do not employ these formulas and opt for a fully empirical
determination of the distribuyion by toy experiments.

EDF test Several GoF tests, including Kolmogorov-Smirnov (KS), are based on the Empirical
cumulative Distribution Function (EDF) of the data ©. The EDF function is defined by counting
the number of instance of x in ® that fall below a threshold y. Specifically, we define

EDFo(y) = I(x < y), (22)

N(R) XED
where 1T is the indicator function. Notice that this is different from the regular definition
because of the 1/N(R) normalisation factor, which would normally read 1/Np.

The reason for this unconventional definition is that the regular normalisation washes out
the sensitivity to the number of observed data points, which we instead want to retain. Stated
differently, in our case we are not interested in the regular cumulative distribution function
defined as the integral of the probability distribution function, but rather to the integral of the
number density distribution. Eq. (22) is in fact an approximation of the latter integral, times
the fixed constant 1/N(R).

The regular EDF-based GoF tests are based on the comparison of the EDF function (22)
with the cumulative distribution function of the variable x in the R hypothesis. This is not
known in closed form in our case, but it can be estimated using the $R sample:

1
CDFy(y) & EDF(y) = = D, Ix < ). 23)

XER

By employing the EDFy, function in place of CDFy, all the regular test statistics variables for
EDF tests can be employed. We consider the following options:

Kolmogorov-Smirnov (KS): the test statistics is

txs = max |[EDFp(x) —EDFy(x)| . (24)
X

Cramer-von-Mises (CvM) and Anderson-Darling (AD): the test statistics takes the
generic form

dEDF
t =Np J w(x) [EDFp(x) — EDF%(X)]Z —Ax. (25)
The weight function w(x) is equal to 1 in CvM, and equal to
1
wap(x) = (26)

EDFy(x) (1 —EDFg(x))’

in the case of the AD test.
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Spacing statistics The last family of tests we consider is based on spacing statistics. Here,
the degree of agreement of the data sample © with the reference distribution is quantified
based on the distance between the events in the data sample. These tests are constructed
by first transporting the data points into a space where they are uniformly distributed in the
reference hypothesis. Departures from uniformity in the new space signals disagreement of the
original distribution. The transport is defined by the cumulative in the R hypothesis, CDFy(x).
When this is not available, as in our case, the transport to the uniform variable u is defined
with the EDF of the R sample, namely

x — u=EDFy(x). 27

Operating with the transformation on the © data set, and sorting the result such that
u; < u;,1, we define a sample of spacings (i.e., distances) S = {s; }NDJr1 withs; =uy, sy, = 1—un,,
and s; = u;,; —u;. Notice that the sum of all elements in S is equal to one by definition. The
elements of the sample S are employed to define the test statistics variable. In the simplest
version, the Moran (M) test, the test statistics is the negative sum of the logarithms of each
spacing

M= —Z log(s). (28)
SES

A more complex version is the recursive product of spacing (RPS) test, which was re-
cently proposed in Ref. [20]. The RPS proposal is to include spacings of higher order—i.e.,
distance between non-consecutive points—in the test statistics, in a recursive manner. The
recursion defines a total of Np + 1 samples of distances, S () where $© = S. The S sample
contain Np + 1 — k points

S(k) { (k)}ND+1 —k i (29)
defined by the recursion relation
k k k k k
P =6+ 5/ Z (57 + 550)- (30)

The normalisation ensures that the sum of all the elements of each S® set is equal to one.
The RPS test statistics is given by sum of the Moran statistics for each set

Np
Lrps :_Z Z log(s). (31

k=0 sesk)

C Comparison with 1D GoF tests

When the data are one-dimensional, GoF is sometimes regarded as a solved problem. On one
hand, it is arguably true that a careful inspection of a one-dimensional set of data would always
allow the analyser to identify departures from the reference hypothesis expectations. Visual-
ising histograms with different binnings, looking for outliers or anomalous concentrations of
data points are common analysis strategies that do not even necessarily require a rigorously
defined GoF test. On the other hand, human inspection of the data could be unfeasible in some
cases and the process of anomalous data detection might need to be automated. Furthermore,
a standardised quantification of the anomaly could be required, which human analysers can
hardly provide. It is thus important to study and develop GoF methods also in the simpler
setup of univariate data. This appendix is devoted to the study of the Expo setup defined in
Section A.1. We already discussed the NPLM sensitivity in this setup, and the sensitivity of
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Figure 10: Power curves for the traditional GoF tests on the five signal benchmarks of the
Expo setup, compared with NPLM.

a number of NPLM variants inspired by the classifier-based approach. We discuss here how
the Expo GoF problem is addressed by regular GoF methods—defined in Appendix B—directly
applied to the data and without employing classifiers.

The results are reported in Figure 10, and compared with the NPLM-NN results. We see
that the NPLM power curves are always well above those of the spacing statistics tests. The
x?2 tests can give comparable performances to NPLM for suitable (but selected a posteriori)
Npins, DUt they are exposed to dramatic failures in particular in the H; and H, benchmarks.
EDF-based tests perform better. In particular, the AD test is equivalent to NPLM for H; and
H,, slightly better than NPLM in the case of H, and Hj, but it fails rather strongly on the H;
benchmark. Overall, the results confirm the general pattern observed in the rest of the paper:
the NPLM method performs well and it is much less exposed than other methods to strong
sensitivity failures for specific types of anomalous data. It thus qualifies as a “good” approach
to GoE

D Figures
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Figure 11: Classification metrics: Power curves for the NPLM variants that employ standard
classification metrics as test statistics variables, compared with baseline NPLM.
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Figure 12: Classification metrics: Power curves for the NPLM variants that employ standard
classification metrics as test statistics variables, compared with baseline NPLM.
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Figure 14: EDF metrics: Power curves for the NPLM variants that employ EDF-based test

statistics variables, compared with baseline NPLM.
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