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Abstract: Motivated by the study of entanglement island in the Karch-Randall braneworld,

it has been conjectured and proven in general that entanglement island is not consistent with

long-range (massless) gravity. In this paper, we provide a careful check of this conclusion in a

model of massless gravity that is constructed using the Karch-Randall braneworld. We show

that there is indeed no entanglement island and hence not a nontrivial Page curve due to

the diffeomorphism invariance if we are studying the correct question which is though subtle.

Moreover, we show that this conclusion is not affected by deforming the setup with the Dvali–

Gabadadze–Porrati (DGP) terms. Furthermore, we show that the consistency of holography

in this model will provide nontrivial constraints to the DGP parameters. This study provides

an example that causality and holography in anti-de Sitter space can be used to constrain low

energy effective theories. At the end, we clarify several subtleties in the braneworld gravity

which are overlooked in the literature and we discuss the robustness of the above results

against possible coarse-graining protocols to define a subregion in a gravitational theory.
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1 Introduction

The Karch-Randall braneworld [1, 2] considers a very simple scenario— embedding a brane

whose geometry is asymptotically AdSd in a bulk spacetime with asymptotically AdSd+1

geometry. It however provides the playground to study long-standing questions in quantum

gravity such as the black hole information paradox and it has taught us many important

lessons about quantum gravity. This is all due to its doubly holographic nature [3–5].

One example of the aforementioned progress is the calculation of the Page curve of the

black hole radiation. The original version of the Karch-Randall braneworld provides the holo-

graphic dual of the set-up that is used to define and calculate the entanglement entropy of

the black hole radiation (see Fig.1). This set-up considers coupling the asymptotically (large)

AdSd black hole spacetime to a thermal bath which is modeled by a d-dimensional confor-

mal field (CFTd) theory on a half Minkowski space. The coupling is achieved by gluing the

asymptotic boundary of the black hole spacetime along the boundary of the half-space CFTd

by imposing transparent boundary condition for the energy flux. The black hole radiation

can be modeled in this set-up as a subregion R of the bath CFTd. Then we can calculate

the time-dependence of this subregion entanglement entropy as the entanglement entropy

of the black hole radiation (see Fig.1). In the Karch-Randall braneworld, the AdSd black

hole can be thought of as the brane and the AdSd+1 bulk provides the holographic dual of
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this d-dimensional set-up. The aforementioned entanglement entropy can be calculated in

the AdSd+1 bulk using the Ryu-Takayanagi surface [6, 7]. The calculation shows that at late

times the entanglement wedge of R contains a region I on the brane that is disconnected from

R and this region is defined as the entanglement island of R and moreover the entanglement

entropy of R follows a unitary Page curve [4, 5]. In this calculation, the late time emergence

of the entanglement island is essential to have the unitary Page curve [3, 8, 9]. Neverthe-

less, the original version of the Karch-Randall braneworld also captures another important

property of the d-dimensional set-up we mentioned that is that the graviton in the AdSd
black hole spacetime becomes massive due to the bath coupling [10]. This can be seen in the

Karch-Randall braneworld by studying the Klauza-Klein spectrum of the AdSd+1 graviton

[1]. Motivated by this observation it was conjectured and proved that entanglement island

cannot exist in massless gravity theories for a large class of situations including asymptotically

AdS spacetimes [11–13].

Interestingly, before the general proof was given in [13], it was shown in [12] that entan-

glement island doesn’t exist in a massless gravity theory that is constructed as a modification

of the original version of the Karch-Randall braneworld. This was called wedge holography in

[14]. In this scenario we embed two Karch-Randall branes M(L)
d and M(R)

d (i.e. with asymp-

totically AdSd geometries) into an asymptotically AdSd+1 bulk such that the two branes form

the boundary of a wedge Wd+1 (see Fig.2). This system is described by the following action

S1 = − 1

16πGd+1

∫
Wd+1

dd+1x
√
−g(R− 2Λ)− 1

8πGd+1

∫
M(L)

d ∪M(R)
d

ddx
√
−h(K − T ) , (1.1)

where K is the trace of the extrinsic curvature on the brane (which in general takes different

values on the two branes), hµν is the induced meric on the brane, T is the tension of the

brane (which in general takes different values on the two branes) and Λ = −d(d−1)
2L2 (later we

will set the AdS length scale L = 1 for convenience) is the bulk cosmological constant. This

system has three equivalent descriptions:

1. Bulk description: Einstein gravity in an AdSd+1 space M′
d+1 containing two AdSd

branes M(L)
d and M(R)

d ,which intersect each other on the asymptotic boundary (we call

the place they intersect as the defect and it is (d-1)-dimensional) and therefore form

the boundary of a wedge Wd+1 (see Fig.2);

2. Intermediate description: Two d-dimensional CFTs coupled to gravity on distinct

asymptotically AdSd spaces ML
d and MR

d , with these systems being connected via a

transparent boundary condition at a defect M(0)
d−1 = ∂ML

d = ∂MR
d ;

3. Boundary description: A (d− 1)-dimensional CFT on M(0)
d−1.

A consistent background of such system has to satisfies three sets of differential equations– the

bulk Einstein’s equation and the two brane embedding equations with Neumann boundary

condition for bulk metric fluctuations near the brane. It was shown in [12] that there is no
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entanglement island in one such consistent background that is relevant to the study of black

hole information paradox (as will be reviewed in Sec.2). The essential reason was that now the

subregion R is on the brane M(R)
d and due to diffeomorphism invariance of massless gravity

the subregion R itself should be determined dynamically. It was shown in [12] that a natural

dynamical principle gives a vanishing R as well as its entanglement island I.
Nevertheless, [15, 16] claimed that this conclusion that there is no entanglement island

in this wedge holography set-up can change by adding appropriately chosen DGP terms

SDGP = − 1

16πG
(L)
d

∫
M(L)

d

ddx
√
−hRB − 1

16πG
(R)
d

∫
M(R)

d

ddx
√
−hRB , (1.2)

where RB is the d-dimensional Ricci scalar on the brane. This modification adds internal

gravitational dynamics on the branes such that in the intermediate picture the theory is no

longer purely induced from the bulk.

The first aim of this paper is to carefully clarify the relevant question to entanglement

island we asked in [12] in each description of the wedge holography set-up. This can be

used to show that there is indeed no entanglement island with physically reasonable values

of G
(L)
d and G

(R)
d . Moreover, this motivates another basic consideration that can be used to

further constrain the values of G
(L)
d and G

(R)
d . This consideration is based on the consistency

of wedge holography in the boundary description. As we will see that this result should be

understood as the statement that causality and holography in anti-de Sitter space can be

used to constrain low energy effective theories. This is the extension of the earlier program of

using holography to constrain low energy effective theories in de Sitter space [17] to anti-de

Sitter space.1 The second aim of this paper is to give a precise description of the intermediate

picture and discuss possible coarse-graining protocols under which we may be able to define a

subregion in a gravitational theory and hence may have entanglement island and the problems

of these protocols.

The paper is organized as follows. In Sec.2 we will review our study in [12] to carefully

clarify the questions we considered in each description of the wedge holography. We will use

this to show that there is in fact no entanglement island in the set-up considered in [15, 16]

due to diffeomorphism invariance. Then we show that the consideration in the boundary

description will give us two criteria to further constrain the parameters in G
(L)
d and G

(R)
d . In

Sec.4 we will derive the precise description of the intermediate description and show how we

could derive island formula in this description. Moreover, we discuss two classes of coarse-

graining protocols that is usually claimed to be able to define a subregion in a gravitational

universe and relax the diffeomorphism invariance constraint on the existence of entanglement

island in the literature [23, 24]. We show that it’s subtle for them to be consistently defined

and once they are consistently defined we either lose entanglement island or have a nontrivial

modification of the gravitational theory. At the end, we will conclude in Sec.5.

1See [18–22] for other examples of using holography to constrain low energy effective theories in anti-de

Sitter space.
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Figure 1: We show the Penrose diagram of an eternal black in AdSd coupled to d-dimensional

baths that is used in the calculation of the Page curve of black hole radiation. The baths are

the shaded green region and the geometry of the baths are d-dimensional Minkowski space.

We specify the two red vertical lines as the conformal boundary of the AdSd black hole. We

choose time evolution as indicated in the diagram. We also specify two Cauchy slices of

this time evolution as the two blue curves and on each of them we denote the subsystem

R = RI ∪ RII in red. We emphasize that the Cauchy slices of this time evolution all go

through the bifurcation horizon so they don’t touch the black interior.

2 No Entanglement Island in Massless Gravity

In this section, we review the result that there is no entanglement island in the wedge holog-

raphy model of massless gravity in [12]. We will clarify the question that we considered in

the intermediate description and show that introducing DGP terms doesn’t in fact change

this conclusion. At the end, we will consider the question in the boundary description and

see that it could be used to constrain DGP terms in wedge holography.

2.1 The Set-up

As we discussed in the introduction, a consistent background where we could study wedge

holography should satisfy

δS1 = 0 , (2.1)

where S1 is given by Equ. (1.1) and the boundary condition for the metric fluctuation is of

the Neumann type:

δgµν ̸= 0 , i = L,R (2.2)

where ni denotes the unit normal direction of the (two) brane(s). This gives us three equations

Rµν −
1

2
gµνR+ Λgµν = 0 , Kµν = (K − T )hµν , (2.3)

where the second equation should be satisfied for each brane with their own values of tension

and hµν is the induced metric on the brane.
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A general solution of all these three equations is hard to find either due to the complicated

backreaction of the brane to the bulk geometry [4] or the nonstationarity of the branes in a

generic bulk solution of the Einstein’s equation (the first equation) [25]. Nevertheless, it is

known that a nice natural solution exists which can be used to study black hole physics in

wedge holography [12]. It is known as a black string. The bulk metric is given by

ds2 =
1

u2 sin2 µ

[
−h(u)dt2 +

du2

h(u)
+ dx⃗2 + u2 dµ2

]
, h(u) = 1− ud−1

ud−1
h

, (2.4)

where the polar coordinate µ takes its value in (0, π), {µ = 0} ∪ {µ = π} corresponds to the

asymptotic boundary and uh is the parameter parametrizing the temperature of the black

string. The two branes are located at constant-µ hypersurfaces µ = µL < π
2 and µ = µR > π

2

and their tensions are given by

TL = (d− 1) cosµL , TR = −(d− 1) cosµR , (2.5)

which are both positive.

We can see that this (d+1)-dimensional geometry is a foliation of d-dimensional AdS

Schwartzschild black holes with a foliation parameter µ. The two branes will intersect each

other at u = 0 (a (d-1)-dimensional manifold) on the asymptotic boundary. Since the two

branes are of positive tension, they will cutoff the bulk region from them to their closest part

of the asymptotic boundary (µ = 0 for left brane and µ = π for right brane). Hence the left

over region in the bulk is a (d+1)-dimensional wedge bounded by the two branes and the

geometries on the two branes are AdSd Schwartzschild black holes. (Fig.2.) We notice that

the intermediate picture Penrose diagram of this case is different from the usual case with a

flat bath Fig.1.

2.2 The Question and the Result without DGP Terms

The question we asked in [12] is that in the intermediate picture whether we could find

entanglement island I on the left brane for a well-defined subregion R on the right brane. To

do so we considered R to be of the type that is relevant to the computation of Page curve

in the Karch-Randall braneworld. That is that R should straddle the two exteriors of the

black hole geometry on the right brane (see Fig.3). Moreover, for R itself to be well-defined

and consistent with diffeomorphism invariance in massless gravity we defined it dynamically

in [12] by minimizing the entropy functional over both I and R:

S = min ext
I,R Sgen(R∪ I) , Sgen(R∪ I) = Smatter(R∪ I) . (2.6)

Here we notice that the generalized entropy doesn’t contain the usual area term due to the

fact that there is no internal gravitational dynamics on the branes and, as we will discuss

later (see Sec.4.1 for details), this would be changed with DGP terms added. A more careful

definition of R and how Equ. (2.6) can be derived is discussed in Sec.4.2. The power of the

Karch-Randall braneworld models is that we can use the (d+1)-dimensional bulk to compute
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µL π − µR•◦

Figure 2: The black string in wedge holography. We embed two KR branes in the setup as

the two solid green lines. The shaded region behind them is cutoff. The physical space in the

bulk is the wedge-shaped region bounded by the two branes. The two branes intersect at the

red defect on the asymptotic boundary of the bulk. The dashed black line is the black string

horizon separating the exterior and interior regions. The dashed green lines are hypersurfaces

of constant µ. The geometry on each constant-µ slice, including the two branes, is the AdSd
Schwartzschild black hole. We show one asymptotic exterior of the geometry and we always

put in mind that the geometry we consider is actually maximally extended which has two

exteriors.

the highly nontrivial quantity Smatter(R ∪ I). It can be computed by the Ryu-Takayanagi

formula [6] by looking for entangling surfaces that are homologous to R ∪ I and using the

one γ that minimizes the area functional to be the one that compute Smatter(R∪ I):

S = min ext
I,R

A(γ)

4Gd+1
, (2.7)

where A(γ) is the area of the minimal surface γ. This formula tells us that we have to further

minimize over the possible ending points for the area functional of minimal area surface γ and

the output of this minimization is the entanglement island I and a well-defined subregion R.

As it is standard for disconnected boundary subregions in AdS/CFT correspondence,

there two possible topologies of the minimal area surface γ. One gives a connected entangle-

ment wedge of R∪ I in the bulk and the other gives a disconnected one (see Fig.4). We call

them γc and γdc respectively. γc has two components one in each exterior of the bulk wedge

and γdc has two components one close to each brane and all go through the interior of the

black string (if R ∪ I is non-empty). Moreover, γc is confined to a constant time slice in t

of Equ. (2.4) and γdc is not confined to such a slice and its area depends on t where t is the

time-coordinate of the Cauchy slice (constant-t slice) we take to define the subregion R as

shown in the intermediate picture Penrose diagram Fig.3 (the corresponding diagram in the

bulk is in Fig.4). We proved in [12] that with the minimization procedure in Equ. (2.7) done

each component of γc must be the black string horizon and so the entanglement island I and

R must both be empty. Hence there can be no entanglement island in this model.
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Figure 3: The Penrose diagram of the intermediate picture. We have two black holes (i.e

the geometry on the two branes) coupled to each other by gluing them along their common

asymptotic boundaries. The left asymptotic boundary of the left black hole is glued with the

right asymptotic boundary of the right black hole. We take a constant time slice (the blue

slices union the green and orange slices) of the time evolution that we are considering in the

calculation of entanglement island and Page curve. The time is defined on the asymptotic

boundary (the defects). The orange region is a putative subregion R and the green region is

a putative entanglement island I of the subregion R. As opposed to the situation in Fig.1

the bath (the green shaded region) is now an AdSd black hole.

Nevertheless, we should be careful about the value we get from Equ. (2.7) as it computes

the fine-grained entanglement entropy of the subregion R. If R is empty then S should be

zero but this is not consistent with the result we would obtain if we use γc as the union of two

horizons. To resolve this issue, we should also consider γdc. The output of the minimization

Equ. (2.7) for γdc is that γdc shrinks all the way to the union of two points and is hence empty

which gives 0— the smallest possible value of S according to Equ. (2.7). Therefore, we still

have the result that both I and R are empty and we also have the physically consistent result

that the resulting entanglement entropy calculated by Equ. (2.7) is zero.

2.3 Adding DGP Terms Doesn’t Change the Result

If we have DGP terms Equ. (1.2) added to the system Equ. (1.1), the entropy functional

Sgen(R∪I) would have additional area terms than just Smatter(R∪I).2 As a result, instead

of Equ. (2.6) we would have

S = min ext
I,R Sgen(R∪ I) , Sgen(R∪ I) = Smatter(R∪ I) + A(∂I)

4G
(L)
d

+
A(∂R)

4G
(R)
d

, (2.8)

2Moreover, the brane embedding equation will be different from the second equation in Equ. (2.3) with a

d-dimensional Einstein term added. However, it can be shown that the constant−µ slices of Equ. (2.4) still

satisfy the resulting brane embedding equation with the tensions modified comparing to Equ. (2.5) [26–28].
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•
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∂I

∂R

γc1

µL π − µR
•◦

•

•

∂I

∂R

γc2

(a) The Connected Case

µL π − µR•◦

•

•

∂I

∂R

γdcL

µL π − µR
•◦

•

•

∂I

∂R

γdcR

(b) The Disconnected Case

Figure 4: The bulk diagram indicating the bulk configuration corresponding to the constant

time slice in Fig.3. The two horizons in each panel should be identified as the horizon on each

panel should be the bifurcation horizon. The entangling surface γc = γc1∪γc2 in the connected

case lives on this constant time slice (and we use solid red lines for them). Nevertheless, the

entangling surface γdc = γdcL ∪ γdcR is not confined on this constant time slice and is time-

dependent (we draw them by dashed red lines to indicate the fact that they are not confined

on this diagram).

where A(∂I) and A(∂R) are the area of the boundary of the entanglement island I and the

subregion R. Similar to Equ. (2.7) this quantity can be computed purely geometrically where

we could use the Ryu-Takayanagi formula to replace Smatter(R∪ I) by A(γ)
4Gd+1

:

S = min ext
I,R

(
A(γ)

4Gd+1
+

A(∂I)
4G

(L)
d

+
A(∂R)

4G
(R)
d

)
, (2.9)

where γ is a bulk minimal area surface that is homologous to R∪I on the two branes. Again

there are two possible topologies of γ— γc connects ∂I and the left brane to ∂R on the right

brane and γdc has two disconnected components homologous to I and R separately.

Nevertheless, for the interpretation of Equ. (2.9) as calculating entanglement entropy we

have to ensure that the functional to be minimized is positive for any minimal area surface

γ, otherwise the result of the minimization would give us a negative value which cannot

be interpreted as the entanglement entropy of a quantum state. For such choices of the

parameters Gd+1, G
(L)
d and G

(R)
d the result of the minimization is again that both R and I
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are empty (the orange and blue region in Fig.3 all shrink to zero) and S = 0. This tells us

that there is no entanglement island.

2.4 A Question in the Boundary Description

In Sec.2.2 and Sec.2.3, we studied a question that is relevant to entanglement island in the

intermediate picture of the wedge holography and we got consistent results from holography

with the general principle that entanglement island is inconsistent with long-range gravity

[13]. However, as we reviewed in the introduction, the wedge holography has three equivalent

descriptions and for the internal consistency of wedge holography we also have to make sure

that the boundary description is self-consistent.

In the boundary description, the black string Equ. (2.4) with the the branes Equ. (2.5)

is described by the thermal-field double (TFD) state of two CFTd−1’s each lives on one

asymptotic defect [12]. Moreover, the entanglement entropy Sdefect between the two defects

in this state is the thermal entropy for each of the defects and it is captured by the black

string horizon H and is computed as

Sdefect =
AH

4Gd+1
+

A∂HL

4G
(L)
d

+
A∂HR

4G
(R)
d

, (2.10)

where ∂HL and ∂HR denotes the induced horizons on the left and right branes respectively. In

the absence of DGP terms the expression only contains the first term. A basic consistency of

wedge holography is that the result Equ. (2.10) should be consistent with the Ryu-Takayanagi

formula. The Ryu-Takayanagi formula tells us that Sdefect is computed by

S = min ext
∂γR,∂γL

(
A(γ)

4Gd+1
+

A(∂γR)

4G
(L)
d

+
A(∂γL)

4G
(R)
d

)
, (2.11)

where γ is a bulk minimal area surface that connects the two branes and homologous to the

defect and ∂γR and ∂γL are the cross-section of γ with the right and left branes respectively

(see Fig.5). In other words, the consistency of wedge holography would require that the

output of the minimization in Equ. (2.11) is that the entangling surface γ should be the black

string horizon H.

For setups (combinations parameters Gd+1, G
(L)
d and G

(R)
d ) where the the output of the

minimization in Equ. (2.11) is not the black string horizonH, the wedge holography cannot be

consistently defined or these setups are not consistent with wedge holography. Moreover, for

these setups the entanglement wedge of the defect determined by the RT surface γRT would

be smaller that the black string exterior that include the defect we are considering. This is

the same as saying that the causal wedge of the defect is bigger than its entanglement wedge.

Hence the causality and holography are not consistent in these setups and these setups should

be in the swampland.
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∂HR

H

Figure 5: The calculation of the entanglement entropy of one of the defects. The red surface

γ is a putative output of the minimization in Equ. (2.11). For consistency of the wedge

holography γ should in fact be the black string horizon i.e. the black dashed line.

3 Consistency of Wedge Holography and the Swampland Bounds

From our study in Sec.2.4 we see that the consistency of wedge holography requires that in

the background geometry Equ. (2.4) the black string horizon H : u = uh should compute

the entanglement entropy between the two defects in the TFD state. The formula of this

entanglement entropy is given by Equ. (2.10). Moreover, this result should be consistent with

the Ryu-Takayanagi formula which tells us that the black string horizon H should be the

solution of the minimization problem defined in Equ. (2.11).

These consistency conditions convey nontrivial messages as they input important con-

strains on the DGP parameters G
(L)
d and G

(R)
d . Firstly, the entanglement entropy between the

two defects has a clear statistical meaning as the Hilbert spaces of the two defects are cleanly

factorized as a tensor product of two CFTd-1 Hilbert spaces.3 This tells us that the entangle-

ment entropy between them should be positive and finite (upto an IR divergent factor due to

the infinity volume). In other words the algebras associated with the two defects are Type I

Von-Neumann algebras [31–37] which again tells us that the entanglement entropy between

them is positive and finite. Moreover, the requirement that the answer of the minimization

problem Equ. (2.11) should be the black string horizon H gives another constraint. This

requirement can be understood as a direct consequence of the entanglement wedge recon-

struction of holography which in our case says that the physics of the defect is fully captured

by the physics in the bulk region Σγmin inclosed by the answer γmin of the minimization prob-

lem Equ. (2.11) (the defect is on the boundary of Σγmin). This says that the bulk domain of

dependence of Σγmin should include or equal to the bulk domain of dependence of the defect

and meanwhile doesn’t intersect the bulk domain of dependence of the other defect. In other

3Here is a caveat that we are literally considering the Hilbert space of a CFTd−1 which means that we

shouldn’t take the infinite central charge c → ∞ limit. The reason is that in this limit the Hilbert space is

generated as a Fock space by single-trace operators and the resulting theory doesn’t behave as a CFTd−1 due

to the Hagedorn growth of the partition function at high temperature [29, 30].
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words, this requirement comes from the consistency between holography and causality. This

condition exclusively determines that γmin = H.

In summary, we have two swampland constraints on the DGP parameters G
(L)
d and G

(R)
d

from the consistency of wedge holography

• Condition 1: Sdefect =
AH

4Gd+1
+

A∂HL

4G
(L)
d

+
A∂HR

4G
(R)
d

≥ 0 .

• Condition 2: The answer of the minimization problem on the RHS of Equ. (2.11) is

the black string horizon i.e. γmin = H.

Here we quickly exploit the first constraint. In the background geometry Equ. (2.4), we can

compute

AH
4Gd+1

+
A∂HL

4G
(L)
d

+
A∂HR

4G
(R)
d

=Vd−2

(
1

4Gd+1

∫ µR

µL

dµ

ud−2
h sind µ

+
1

4G
(L)
d

1

ud−2
h sind−1 µL

+
1

4G
(R)
d

1

ud−2
h sind−1 µR

)
,

(3.1)

where Vd−2 is the transverse space volume and is always positive. Hence we have the following

constraint

1

4Gd+1

∫ µR

µL

dµ

ud−2
h sind µ

+
1

4G
(L)
d

1

ud−2
h sind−1 µL

+
1

4G
(R)
d

1

ud−2
h sind−1 µR

≥ 0 . (3.2)

This constraint can be exploited numerically for a given dimension d. We defer such an

detailed exploration together with that of the Condition 2 to [28].

4 The Intermediate Picture and Coarse-Graining

In this section, we study more details of the intermediate picture. We firstly show the precise

description of the intermediate picture. Then we show how Equ. (2.6) as well as Equ. (2.8)

can be derived where the minimization over R is a direct consequence of diffeomorphism

invariance. At the end, we discuss possible coarse-graining protocols that we can take R in

Equ. (2.6) and Equ. (2.8) as a fixed region (i.e. we don’t have to minimize over R) and the

problem of these protocols.

4.1 The Precise Description of the Intermediate Picture

For the sake of convenience, let’s firstly consider the case without the DGP terms which is the

conventional description of the braneworld models [1, 38, 39]. Motivated by the early studies

of holography and braneworld [40], it is usually stated that the intermediate picture of the

Karch-Randall braneworld is described as a system of a conformal field theory with a UV-

cutoff and coupled to dynamical gravity in AdSd meanwhile this system in AdSd is coupled

to a d-dimensional bath glued along the conformal boundary of the AdSd. The bath can be
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gravitational or nongravitational, for example in the wedge holography model Equ. (1.1) the

bath is gravitational and in the original version of Karch-Randall braneworld [1] the bath is

nongravitational.

This conclusion comes from the observations that first the Karch-Randall brane cuts off

part of the bulk geometry and second the boundary condition for bulk metric fluctuation close

to the brane is of the Neumann type Equ. (2.2). Combined with the AdS/CFT correspondence

[41–43] the first observation tells us that the matter field on the brane is dual to the bulk

gravity and hence is a CFT with a UV cutoff and the cutoff scale is set by the bulk brane

position µB. The second obervation tells us that the metric on the brane is fluctuating i.e.

the intermediate picture is a gravitational theory.

Nonetheless, it is never made clear what this conclusion precisely means for example given

the CFTd that is dual to the bulk AdSd+1 gravity (without the brane) then how one could

get the theory on the brane (i.e. the intermediate picture) when the brane is introduced.

The statement that the CFTd would then have a UV cutoff presumably means that the

matter theory in the intermediate picture is from an irrelevant deformation of that CFTd

and the cutoff scale denotes the strength of this deformation. Moreover, such a deformation

should be different from the usual picture of the renormalization group (RG) flow where the

UV cutoff scale comes from momentum space Wilsonian procedure. There are two reasons

that they are different: 1) The Wilsonian procedure hides the UV details of the theory into

the effective coupling constants and the physics below the UV cutoff scale is insensitive to

this operation. This would predict that a light signal send from the bulk to the brane will be

reflected back to the bulk just like the brane is not there.4 This clearly doesn’t make sense as

this signal absorbing and emission procedure is highly nonlinear in the intermediate picture

and there is no reason that its bulk dual would be as simple as the above expectation. 2) Fine-

grained quantities such as the replica entropy5 is not sensitive to the Wilsonian procedure

[45]. This suggests that the subregion replica entropy is invariant under the RG flow. This

clearly contradicts the calculation based the RT formula in the braneworld holography where

the RT surface computing the replica entropy6 never penetrates the brane but instead ending

on it which gives a cutoff scale dependent answer for the replica entropy. This issue is partly

resolved by the recent study of the holographic dual of the T T̄ -deformation of CFT [47–51]

where the CFT is deformed in a controllable way and the entanglement entropy is shown

to be non-invariant under the deformation [52]. Hence, the matter field in the intermediate

4More precisely, before the Wilsonian procedure there is a deformation of the CFTd introduced. Such

deformations in AdS/CFT are generically multitrace deformations and their holographic duals are known [44]

as modifying the boundary conditions of bulk fields.
5The replica entropy is the entropy calculated by the replica trick which however takes into account the

conical singularity of the replica manifold. For quantum field theory its value is different from entanglement

entropy if the theory is non-minimally coupled with the metric. The replica entropy is called the black hole

entropy in [45]. The replica entropy is Wilsonian RG invariant but the entanglement entropy is not [45].
6Analogous to the AdS/CFT results [46], using the replica trick and the holographic duality the replica

entropy in the intermediate picture is mapped to the area of the bulk RT surface with ending points on the

brane.
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picture is the holographic dual of the cutoff AdSd+1 bulk and it is described by a T T̄ -like

deformation of the CFTd on the brane.

Furthermore, the statement that the brane part of the intermediate picture is gravita-

tional means that in the path integral description of the intermediate picture the metric on

the brane is fluctuating i.e. we are integrating over it in the path integral. But it is not

clear if this metric has its own kinetic term (for example the Einstein-Hilbert term) or not.

Interestingly, it was proposed in [53] that replacing Dirichlet boundary condition to Neu-

mann boundary condition in the AdS/CFT promotes the boundary metric to a dynamical

field in the path integral description but doesn’t add any kinetic term of it. Hence, in our

case there is no kinetic term for the metric in the intermediate picture. This can be seen

by the following consideration. We can understand the perturbative Hilbert space (the Fock

space) either from the intermediate picture point of view or the bulk point of view. They

are equivalent since the intermediate picture and the bulk picture are dual to each other.

To construct this Hilbert space, we can do the perturbative canonical quantization in the

intermediate picture. When we consider the situation where the metric is dynamical, if there

is no kinetic term for the metric then we don’t have creation and annihilation operators for

the graviton. Hence in this case we have equal number of creation and annihilation operators

to construct the Fock space representation of the perturbative Hilbert space as in the case

where the metric is not dynamical. Nevertheless, if we have a kinetic term for the metric then

we have creation and annihilation operators for the graviton when the metric is dynamical.

Therefore, the (perturbative) Hilbert space would be larger than the case where the metric

is not dynamical. Meanwhile we can also construct the Hilbert space by doing canonical

quantization in the bulk picture. For the bulk picture described by the action Equ. (1.1) with

Neumann boundary condition Equ. (2.2) for the bulk metric fluctuation, if we do canonical

quantization then the number of creation and annihilation operators associated with the bulk

metric is the same in the Dirichlet boundary case. The reason is that the Neumann boundary

condition in this case is equally as restrictive as the Dirichlet boundary condition. This is

because in the Neumann case the second equation in Equ. (2.3) restricts the bulk metric

fluctuation δgµν to satisfy ∂nδgµν − 2T
d−1δgµν = 0 near the brane and in the Dirichlet case δgµν

is restricted to be zero near the brane so the two boundary conditions are just projecting

into different sets of bulk modes with equal dimensionality. We call these two sets of modes

MD and MN . Furthermore, if we have a DGP term on the brane in the bulk picture then

the Hilbert space for the Dirichlet boundary condition case is the same as the case without

the DGP term as the bulk modes satisfying the bulk equation of motion and the boundary

condition are still MD. Nevertheless, if we consider now the Neumann boundary condition

case then the boundary equation of motion for the bulk metric fluctuation δgµν is naively

given by the linearized equation

∂nδgµν −
2T

d− 1
δgµν −

Gd+1

Gd
(d-dimensional linearized Einstein’s equation for δgµν) = 0 .

(4.1)

So a bulk metric fluctuation δgµν can be expanded using the modes from MD ∪MN . Let’s
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schematically denote such a fluctuation by

ˆδgµν = ÂDδg
D
µν + ÂNδgNµν , (4.2)

where ÂD(N) denotes the creation and annihilation operators in the Dirichlet (Neumann)

sector. This is the standard expression in the canonical quantization. Nevertheless, we should

be careful with the boundary equation of motion Equ. (4.1) as obviously Equ. (4.2) doesn’t

satisfy Equ. (4.1). More precisely the left hand side of Equ. (4.1) reads (near the brane)

ÂD∂nδg
D
µν − ÂN

Gd+1

Gd
(d-dimensional linearized Einstein’s equation for δgNµν) . (4.3)

There are two obstructions for this to be zero. The first is that ÂD and ÂN are supposed to

be independent operators. The second is that in the one-brane case the bulk analysis implies

that δgNµν are massive graviton modes [1] therefore

(d-dimensional linearized Einstein’s equation for δgNµν) = m2δgNµν , (4.4)

where m2 is the mass for the given mode δgNµν (different modes δgNµν ’s would have different

mass). The first obstruction is easy to understand as the equation of motion Equ. (4.1) is

actually an interacting equation (the interaction strength is controlled by Gd
Gd+1

) and for the

(perturbative) canonical quantization (in the weak interaction regime) we can forget about

the interaction when we are constructing the Fock space. Therefore, we can isolate the second

order derivative terms in Equ. (4.3) which is exactly the second term. Naively the vanishing

of this term is the interaction free equation of motion that is used construct the Fock space.

Nevertheless, the second obstruction tells us that this expectation cannot be satisfied and the

correct free equation of motion we can use is a massive equation. Hence, in the one-brane

case the DGP term should be introduced together with a graviton mass term. This ensures

Equ. (4.4) which is a consistency condition. However, the choice of the mass parameter is

not arbitrary and it is controlled by the bulk analysis. For the consistency with the picture

that the graviton localized on the Karch-Randall brane is the first massive mode δg
N(1)
µν in

MN [1], we have to choose m2 to be m2
1 where m2

n (n = 1, 2, 3 · · · ) is the mass square for the

tower of modes in MN . This tells us that the mode functions that we can use to construct

the Fock space are those from MD ∪ δgµν
N(1). For each of them we have the associated

creation and annihilation operators. Hence now we see that the Fock space (the perturbative

Hilbert space) is larger than the Dirichlet boundary condition case. This is also consistent

with the result in the intermediate picture (i.e. the modes are the original field theory (no

metric fluctuation) modes with the massive graviton modes (for a specific mass)).

From the above analysis, we see that the precise description of the intermediate picture

of the original version of the Karch-Randall braneworld Equ. (1.1) is given by the following

path integral for the brane part7

Zbrane
intermediate =

∫
[Dhµν ][Dϕmatter]he

iSCFT+TT̄ -like deformation [ϕ;h] . (4.5)

7For some evidence of this result see [50, 51].
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Here we emphasize that the matter field measure also depends on the metric and this is

important for subtle quantum effect such as graviton mass [54]. Again the full intermediate

picture includes also a bath and that can be easily included with Equ. (4.5) equipped. The

background metric is a solution of the induced gravitational equation

⟨Tmatter
µν ⟩ = 0 , (4.6)

which is the saddle point approximation of the metric integration in Equ. (4.5). Moreover,

the DGP term on the brane can be now understood as adding a kinetic term for the metric

hµν in the intermediate picture (i.e. add 1
16πGd

∫
ddx

√
−gR[h] to the exponent in Equ. (4.5))

meanwhile a proper graviton mass term should also be added for the consistency with analysis

in [1]. Without the DGP term the replica entropy on the brane is the matter field entangle-

ment entropy (for a subregion which can be defined diffeomorphism invariantly for example

the exterior of the black hole, see Sec.4.3).

4.2 The Derivation of the Modified Island Formula

In this section, we discuss the derivation of the formula Equ. (2.6) as well as Equ. (2.8). For

simplicity, we only consider the case without the DGP terms i.e. Equ. (2.6). Then the result

Equ. (2.8) in the case with the DGP terms is easily obtained resorting to the calculation in

[55].

Firstly, let’s consider the case of a fixed subregion R. The entanglement entropy of R
can be calculated using the replica trick

SR = lim
n→1

1

1− n
ln tr

(
ρnR
)
= lim

n→1

1

1− n
lnZn , (4.7)

where ρR is the reduced density matrix of the subregion R. The appearance of the entangle-

ment island is due to the the replica wormhole contribution to the gravitational path integral

[56] representation of the replicated partition function Zn. It is easy to see that we would

get Smatter(R ∪ I) with island included. The question in our case is how to understand the
min ext

I . In the case that we have kinetic terms for the metric it is the result of the saddle

point approximation of the gravitational path integral [46, 55, 57] where min ext
I comes from

solving the resulting backreacted gravitational equation (and the entropy functional will be

Smatter(R ∪ I) together with additional geometric terms due to the nontrivial kinetic terms

for the metric in the total action). In our case, this can be understood by the interesting

property that the replica entropy is RG invariant [45]. In other words, to compute SR (with

R fixed) we can firstly integrating out the matter fields in the intermediate picture which

would give us an effective gravitational action Seff [h] [58].
8 The resulting effective action is

a higher curvature gravity where the higher curvature expansion is controlled by the cutoff

scale of the matter fields. The leading order term is a cosmological constant and the next

the leading order term is the Einstein-Hilbert term [59]. The RG invariance of the replica

8For free fields Seff [h] can be computed by the heat kernel method [59].
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entropy tells us that Smatter(R ∪ I) equals to the generalized Wald entropy Sgrav(R ∪ I) of

the region R ∪ I [57] computed by Seff [h] as both of them are equal to the replica entropy

of the subregion R ∪ I. Moreover, as a gravitational theory the resulting SR computed by

Seff [h] is given by

SR = min ext
I Sgrav(R∪ I) , (4.8)

for the same reasons as in AdS/CFT [46, 55, 57]. So using the RG invariance of the replica

entropy we have the result

SR = min ext
I Smatter(R∪ I) . (4.9)

Here we emphasize that the right hand side is computed in the background geometry as

described in Fig.3 and it is a result of the saddle point approximation of the path integral

over metric as discussed at the end of Sec.4.1.

Nevertheless, we’ve ignored the fact that R is a subregion in a gravitational universe.

The definition of R should be consistent with diffeomorphism invariance and holography.

A natural choice would be that before we perform the path integral over the metric in the

universe (i.e. the gravitational bath) that contains R we define R for each geometry by taking
min ext

R of Smatter(R∪ I) in that geometry. As a result, a diffeomorphism invariant quantity

we get is

S = min ext
I,R Smatter(R∪ I) , (4.10)

and it is the entanglement entropy of the resulting radiation region Rmin from the extrem-

ization and minimization. The right hand side in this formula is computed in the geometry

of Fig.3 as a result of the saddle approximation of the metric integration and Rmin lives on

this geometry as well.

As we discussed in Sec.2.2 this formula tells us that both the entanglement island I and

the radiation region R are empty. This is a direct consequence of diffeomorphism invariance.

4.3 Robustness of the Result Under Coarse Graining

There are possible coarse-graining protocols that we could have entanglement island in the

intermediate picture of the wedge holography model.

There are two types of such protocols [23, 24]. The first type of protocols is to turn off

gravity on the universe that contains the radiation region with the hope that we wouldn’t

have to impose diffeomorphism constraints and so able to specify arbitrary R [23]. Then

the calculation reduces to the standard calculation of a nongravitational bath [12] where the

entanglement island and nontrivial Page curve emerge. The second type of protocols is to

specify R in a diffeomorphism invariant way which however could give a nonvanishing result

for R. An example is [24] where the boundary ∂R of R is defined by firstly choosing a

time band Γ on the asymptotic boundary and then taking the domain of dependence of the

complement of R as the bulk (the bulk of the gravitational bath) domain of dependence of

this time band Γ. This is done for each metric on the bath that we are integrating over (see

Fig.6). Then using the saddle point approximation for the metric integration we get R as

specified by the above protocol on the black hole geometry (see Fig.7).
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ΓΓ ∂R∂R ••

Figure 6: A demonstration of the protocol proposed in [24] to specify R in a gravitational

universe diffeomorphism invariantly. The red boundary lines are the fixed asymptotic bound-

aries where Γ (the blue intervals) is a time band and the bulk geometry is not fixed. The

proposal is that for each bulk geometry we specify R in the following way. We first determine

the bulk domain of dependence of Γ (the bulk region enclosed by Γ and the green lines) whose

boundary is ∂R and the domain of dependence of R is determined as shown in the figure as

the interior of the orange diamond. Then we have to integrate over the geometries.

However, there are various problems with these coarse-graining protocols. The first class

requires a consistent decoupling of gravity in a gravitational theory. In Einstein’s gravity

this is usually claimed to be achieved by sending the Newton’s constant GN to zero which

will localize the path integral over the metric to the metric that satisfies Einstein’s field

equations and with fluctuations suppressed.9 In our case, the gravity is induced and the

induced Newton’s constant is controlled by the cutoff scale of the matter field. Hence to

decouple gravity in this way we have to tune up the cutoff scale of the matter field. Hence,

in the bulk description, the consistent way to decouple gravity is to dial the bath brane all

the way to the conformal boundary. And we know that when the gravity is decoupled in

the bath in this way the graviton in the gravitational universe (the brane) that is coupled to

the bath becomes massive [1, 10]. The second class relies on the specification of a boundary

time band Γ which however wouldn’t be consistent with holography. The reason is that due

to holography the boundary has a unitary dynamics with a time evolution generator and so

the time band essentially encode all the physics of the boundary [61–65]. Or in other words

a consistent choice of the time band Γ with holography would be to choose Γ as the whole

boundary. This will again give R = ∅.10

9Up to the subtlety of the introduction of free graviton [60].
10Including the Hamiltonian into the algebra is important for holography otherwise many techniques in

quantum gravity which makes use of the existence of a time evolution, such as the gravitational path integral,

would breakdown.
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ΓΓ ∂R∂R ••

Figure 7: For simplicity, we only show the Penrose diagram of the gravitational bath. The

saddle point approximation of the metric integral Equ. (4.6) determines the background

geometry to be a black hole. The subregion R in this diagram is determined by the protocol

as discussed in Fig.6.

5 Conclusion

In this paper, we provide a careful check of the conclusion that entanglement island is not

consistent with massless gravity in a model of massless gravity constructed using the Karch-

Randall braneworld- the wedge holography model. This model is doubly holographic and it

has three equivalent descriptions. We discovered that the consistency of holography in this

model provides interesting bounds on the DGP parameters. Moreover, we provide a careful

analysis of the intermediate description of this doubly holographic model and we see that it

is described by an induced gravity theory with the matter field as a T T̄ -like deformation of

the CFTd that duals to the gravity in the AdSd+1 bulk (with no brane). We also show that

to match the bulk analysis a graviton mass term should be introduced when we introduce

a DGP term and the mass square is given by that of the first normalizable KK mode for

bulk graviton with Neumann boundary near the brane. We used the intermediate picture to

show that entanglement island doesn’t exist due to diffeomorphism invariance. At the end,

we discussed two classes of coarse-graining protocols that could relax the constraint from

diffeomorphism invariance on the existence of entanglement island. We found that defining

them consistently is subtle and once they are defined consistently we either lose entanglement

island or we modify the gravitaitional theory on the gravitational universe (the brane)that is

coupled to the bath to be massive .
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