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ABSTRACT: We propose swampland criteria for braneworlds viewed as effective field theo-
ries of defects coupled to semiclassical gravity. We do this by exploiting their holographic
interpretation. We focus on general features of entanglement entropies and their holo-
graphic calculations. Entropies have to be positive. Furthermore, causality imposes certain
constraints on the surfaces that are used holographically to compute them, most notably
a property known as causal wedge inclusion. As a test case, we explicitly constrain the
Dvali-Gabadadze—Porrati term as a second-order-in-derivatives correction to the Randall-
Sundrum action. We conclude by discussing the implications of these criteria for the
question on whether entanglement islands in theories with massless gravitons are possible
in Karch-Randall braneworlds.
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1 Introduction

Braneworld models of the universe as being embedded in a higher-dimensional spacetime
have led to a plethora of insights into particle physics and quantum gravity [1]. The original
scenario of Randall and Sundrum [2] considers (d+ 1)-dimensional’ “bulk” Einstein gravity
d(Qd L_21) (with L a length scale),
and two d-dimensional branes, both with action proportional to their worldvolumes. The

with Newton constant G441, cosmological constant A = —

Randall-Sundrum (RS) brane actions take the schematic form

Igs =T V=i (1.1)
brane

T is a tension parameter for the brane with induced metric g. Furthermore, one may
instead consider only one brane [3], which results in an infinite anti-de Sitter (AdS) bulk.
While the action (1.1) does not directly arise in string theory, it can be thought off as
a low-energy effective action for any brane-like object. For a brane whose only degree
of freedom is its geometric embedding, the action (1.1) is the only zero-derivative term
consistent with symmetries, in particular reparameterization invariance.

Among its many phenomenological aspects (see for example [4-8]), the braneworld
program provides a framework for studying quantum features of gravity on the branes [9,
10]. Furthermore, if the branes themselves have AdS geometry—in which case we call them
Karch-Randall (KR) branes [11, 12]—then we can apply the AdS/CFT correspondence [13]
to establish a “doubly holographic” principle under which the braneworld has an additional
third description as a non-gravitating, strongly-coupled conformal field theory. Thus, we
can apply the usual tools of holography relating the classical bulk to the CFT in order
to study semiclassical gravity on the branes indirectly while circumventing several, more
complicated calculations. As discussed below, one recent application of double holography
has been to tackle the black-hole information problem beyond 2d gravity (as in [14]).

We can go beyond the RS term. In principle, the branes are coarse descriptions of
warped compactifications in string theory, since, as mentioned above, the RS Lagrangian
(1.1) is only the leading-order possible term in a derivative expansion [15, 16]. Since such
branes can for example be coarse descriptions of warped compactifications in string theory,
the action could have higher order corrections that go beyond the leading order RS term to

include higher-derivative interactions. One such example is the Dvali-Gabadadze-Porrati

(DGP) [17, 18] term
1

- 167TGb brane

ViR, (1.2)

where R is the Ricci scalar computed from § and Gy, is a new coupling. This is one of several

Ipgp

two-derivative terms one can include as a correction to the RS action, following the standard
logic of effective field theory (EFT) [19]—we expect “effective terms” in the Lagrangian
that are higher order in the derivatives and come from the (assumed) UV completion.
Furthermore, features of the UV completion in turn put constraints on what the coupling

I Technically, [2] takes d = 4 to reflect our universe, but we keep d general for now, only requiring d > 2.



coeflicients of these terms may be. Any choice of couplings in the EFT inconsistent with
the existence of some UV completion describes a theory in the swampland [20-22].

Holography is intrinsic to the underlying string (or UV-complete) theory. Nonetheless,
it is often assumed to persist to semiclassical regimes of quantum gravity [23]. However, if
this is true then we may use the tools of holography to put swampland constraints on EFTs
of gravity (cf. [24-28]). This observation has been used to constrain two-dimensional branes
equipped with RS and Jackiw—Teitelboim terms [28]. In the same spirit, we apply this idea
to the analogous brane-localized couplings [(1.1) and (1.2)] in higher (d > 2) dimensions by
specifically focusing on aspects of “entanglement structures” (particularly Ryu—Takayanagi
surfaces [29, 30]) constructed in the bulk spacetime and from some subregion of the dual
CFT. Our goal is to put physical limitations on doubly holographic braneworlds using two
criteria [31] based on the following considerations.

Entanglement structures are built from minimal, extremal codimension-2 bulk sur-
faces whose areas (including possible boundary terms dependent on the brane-localized
couplings) compute entropies of CFT subregions. With that in mind, one immediate phys-
ical requirement of entropy is that it must be positive, which follows from entropy being
defined as the logarithm of the number of microstates. However, certain ranges of brane-
localized couplings may induce negative entropies through the boundary terms of the bulk
entanglemnet surfaces. We deem such couplings as being in the swampland.

Additionally, we can look to the relationship between entanglement structures and
causal structures. Both entanglement and causality can be used to devise proposals for a
bulk region naturally associated with the degrees of freedom on R [32-36]. Fundamental
causality conditions in the field theory imply that the resulting bulk “causal wedge” asso-
ciated with R must always be included in the analogous “entanglement wedge” of R—a
property called causal wedge inclusion (CWI). And so, we employ CWI as a swampland
criterion on brane-localized couplings in braneworld theories.

We should say that using CWI as a swampland condition (but without branes) is not
new. It has also been used to constrain Gauss-Bonnet gravity [26] and explored in Einstein
cubic gravity [37]. However, causality in these “higher-derivative” theories need not be the
same as in Einstein gravity, in that the fastest causal modes may not be lightlike but rather
superluminal [38, 39], so causal structures often need to be reformulated. Fortunately, this
is not a problem if we only have higher-derivative terms localized to the brane [40, 41].

1.1 Relevance to black-hole information

In recent years, doubly holographic braneworld models like those studied in this paper
have served as tools by which to probe the problem of black-hole information in d > 2
dimensions [14, 42]. Indeed, one of our motivations for constraining such models is to rein
in their application, so that we are not led to artificial conclusions by unphysical setups.
Let us review the recent progress of black-hole information in AdS. The basic setup of
[43, 44] is to couple a gravitating black hole to a non-gravitating thermal bath. We work in
a semiclassical regime with quantum fields turned on but not backreacting onto the metric.
Hawking radiation is collected in a subregion R on some Cauchy slice of the bath. As we
want to include quantum effects, the entropy of this Hawking radiation S[R] is computed



by the quantum extremal surface prescription [45], which yields the “island rule” [46]:

S[R] = min ext (Sscl[R UZ]+ ﬁ[g?) . (1.3)
7 is a bulk region that is disconnected from R, and so we call it an “island.” Sg[RUZ] is the
entropy of matter fields in R UZ, and A[0Z] is the area of the boundary of the island. We
need to find Z such that the expression in parentheses, which is a “generalized entropy,” is
minimized. For both evaporating [43, 44] and eternal [47] 2d black holes, S[R] was found
to follow the usual time-dependent Page curve [48]—thereby preventing an information
paradox—thanks to the emergence of an island (i.e. a transition from Z = & to Z # &).

The higher-dimensional setup of [14] relies on treating the matter as holographic so
that Sg. can be computed using bulk geometry [49]. This is accomplished by embedding
a single d-dimensional KR brane in a (d + 1)-dimensional AdS black geometry. However,
[50] shortly after claimed that the existence of a time-dependent Page curve and an island
may be due to the semiclassical theory on the brane being one of massive gravity, a feature
long attributed to the presence of a non-gravitating bath [51, 52].

This aspect of the one-brane setup motivated the study of a two-brane setup embedded
in bulk AdS spacetime [53]. Here, one of the branes acts as a gravitating bath, and so the
semiclassical theory on the branes maintains a massless graviton in its spectrum [54]. To
be concrete, we introduce the following terminology for the three different perspectives of
the (two-KR-brane) braneworld afforded by double holography:

(I) the bulk, which is classical (d+ 1)-dimensional Einstein gravity on a “wedge” [55, 56]
with d-dimensional KR branes (i.e. with AdS geometry);

(IT) the intermediate picture, which is the effective field theory describing semiclassical
d-dimensional (and notably, massless [54]) gravity on AdS; and

(ITI) the defect system, i.e. the (d — 1)-dimensional CFT on the tip of the bulk wedge.

Any version of the black hole information problem must be posed in the intermediate
picture, in which we must explicitly account for quantum corrections. However, if there is
a known bulk picture, then we can map the problem to an easier one of classical geometry
in the bulk [49]. This is the power of double holography, as we will see in Section 2.

In [53], we studied two d > 2 dimensional, single-sided AdS-Schwarzschild black holes
in the intermediate picture coupled to one another at infinity. However, unlike with a
non-gravitating bath, the radiation region R (assumed to not be anchored to the defect)
must be dynamically determined to protect diffeomorphism invariance, i.e. we minimize
over both Z and R in the island rule (1.3) to compute the entropy S.

With that in mind, one can consider several scenarios of how to divide the system in
order to define an entanglement entropy. The most suitable for our purposes is to study in
the fully quantum defect system (I) the von Neumann entropy of the entropy on the defect
in the thermofield double state (TFD). That is, we trace out the degrees of freedom of the
double to obtain a density matrix for the CFT on the defect and calculate the associated
entropy. In prescriptions (II) and (III) we are respectively looking either for a quantum



extremal surface on the brane or, equivalently, a classical RT surface in the bulk that
separates the two defects of the thermofield double state from each other.

In [53], we solved this particular problem using a bulk geometry with two d-dimensional
KR branes [with the RS action (1.1)] embedded in a (d+ 1)-dimensional AdS black string.
We found that the entropy is computed by the bulk black string’s horizon area, thus follow-
ing a “trivial” (time-independent) Page curve rather than a “nontrivial” (time-dependent)
one. The Page curve’s triviality in theories of massless gravity was earlier suggested by
[50, 57] and asserted in [58, 59]. Furthermore unlike in the case with a non-gravitating
bath, no entanglement island (in the sense of a disconnected bulk region) is formed.

Recent work [60—62] has claimed that one may get nontrivial Page curves and islands
even with a gravitating bath (and thus, massless gravity) by turning on brane-localized
couplings—particularly DGP terms (1.2)—treated as higher-derivative corrections to RS
terms (1.1). Such a result requires that the coupling G}, in (1.2) be negative on at least one
of the branes, but this alone is not necessarily an unphysical assumption for AdS branes.
However, in such theories, one may get entropies that are smaller than Bekenstein—-Hawking
or even time-dependent. We assert that such answers would violate bulk causal wedge
inclusion, putting such scenarios in the swampland. In other words, the radiation entropy
for UV-consistent couplings must be the bulk Bekenstein-Hawking value at all times.

1.2 Outline

In Section 2, we will set the stage by reviewing the holography of the two-brane setup, in
particular discussing how the branes modify the usual entanglement entropy prescriptions
[29, 30]. We will also justify both the positivity of entropy computed by the codimension-2
entanglement surfaces and the rationale for CWI.

In Section 3, we will scrutinize RS + DGP gravity [(1.1) supplemented by (1.2)] through
both analytic and numerical methods. We find that a range of combinations of DGP
couplings are disallowed by our swampland criteria. We further characterize how our
swampland constraints on these couplings are affected by the particular choice of brane
embeddings, which corresponds to the brane tensions in a known way.

In Section 4, we discuss the consequences of our exclusion criteria on the physics
of two-brane braneworld models in the intermediate picture. In particular, we describe
the implications for black-hole information in higher-dimensional (d > 2) KR branes with
massless gravity. Essentially, our criteria—particularly CWI—mandate that UV-consistent
two-brane setups furnish a trivial semiclassical Page curve for the entropy of Hawking
radiation on the brane, in accordance with the ideas of [53, 57, 59], with the entropy
always given by the horizon area. Thus, braneworld theories with massless gravity on the
brane and whose entanglement structures yield nontrivial Page curves [60—62] contradict
CWI and should be considered in the swampland.



2 The holography of two-brane models

We first review the holographic interpretations of the two-KR-brane setups with just RS
terms so as to lay the groundwork for applying the tools of holography to more exotic
braneworld constructions.

We start by recalling the setup in question. It consists a bulk spacetime M with two
codimension-1 boundaries Q1 and Q. The action (including Gibbons-Hawking terms) is

1 d(d—1)
=— V=g |R+——"|+ E \/ —81G 4175 1
Irs1 167G g41 /M g[ L? } 87TGd 1 SrGan ), (21)

where g; is the metric of Q; and Kj; is the trace of the extrinsic curvature K; ,,, = V,n;,
of Q; (with n;, being the unit normal and the p, v indices projected onto g;). For now, we
have suppressed the coordinate dependence to simplify the notation. Additionally, i = 1,2
labels the two branes while Greek letters are spacetime indices. The equations of motion
of this action are

d(d—1)

G;w = W‘q’“”

(2.2)
Ki,,uu = (K’L - 87TGd+1T‘i)§i,uu- (23)

(2.2) implies that the bulk geometry is locally AdSg11. (2.3) contracted with g; yields

87TGd+1d

K; =
d—1

T;. (2.4)
In other words, solutions to (2.3) are constant-curvature boundaries in AdSy 1.

We are interested in branes that model Lorentzian universes, and so we want these
branes to be timelike. This is only the case when the tensions are “subcritical” or

d—1

T < ————.
IT:] 817Gy 1L

(2.5)
For such tensions, the resulting brane has AdS; geometry [11] and is thus deemed a Karch—
Randall (KR) brane. Critical tensions saturating this bound yield Minkowski spacetime
instead, and so the near-critical limit is the regime in which the brane’s cosmological
constant is small. This is often the limit of interest because it is the regime where the
lowest-mass Kaluza—Klein (KK) mode of linearized fluctuations of the brane “localizes,”
yielding a bound graviton on the brane coupled to parametrically heavier CFT modes [11].
However, we will generally allow any subcritical tension and assume that there is some
holographic description of the (d+1)-dimensional bulk theory as d-dimensional semiclassical
gravity on the brane? and coupled to CFT fields [63]. We call this lower-dimensional theory
the “intermediate picture” due to its role in double holography [49].

KR branes can be engineered by foliating AdSg41 into AdSy slices (cf. [64]). The
individual foliates in such a slicing reach the conformal boundary. Taking just one of these

2In this interpretation of the universe on the brane, the lowest-mass KK mode is still the graviton, but
it has finite mass and is no longer parametrically lighter than the higher KK modes constituting the CFT.



(a) (d + 1)-dimensional bulk (b) d-dimensional branes

Figure 1: A schematic representation of the two-brane setup of interest in this paper.
(a) is the classical bulk configuration consisting of two KR branes (in red) embedded in
an ambient AdSgy; spacetime. (b) is the brane-localized “intermediate picture” of two
interacting AdS,; universes coupled together along a (d — 1)-dimensional interface (the
“defect”). Both pictures can be seen as dual to a (d — 1)-dimensional CFT on this defect.

slices as a KR brane yields a setup in which the intermediate picture describes a gravitating
universe on AdS, coupled at infinity to a non-gravitating CFT. When we instead construct
a setup using two KR branes, they intersect along a (d — 1)-dimensional surface (called the
defect) at the conformal boundary. In the intermediate picture, this defect is viewed as an
interface between the two gravitating AdS; universes, and the full system has a massless
graviton.® See Figure 1 for schematic representations of these dual setups.

So far, we have discussed the bulk perspective and the intermediate picture. How-
ever, the AdS/CFT correspondence [13] would suggest that there is a third description—a
conformal field theory on the defect (since it is the boundary of the bulk spacetime) [12].
The correspondence between the bulk and defect systems has more recently been dubbed
“wedge holography” [55, 56]* and falls under the broader umbrella of “double holography”
equating the (d+ 1)-dimensional bulk, d-dimensional intermediate, and (d — 1)-dimensional
defect systems. The upshot is that physical quantities of the (d — 1)-dimensional CFT are
dual to various geometric data in the (d + 1)-dimensional bulk theory, and the dictionary
translating between these two pictures can be used to further understand semiclassical
physics in the intermediate picture without explicitly accounting for its quantum effects.

2.1 Entanglement entropy

The main entry of the holographic dictionary of relevance to our paper is the classical
prescription for computing entanglement entropies of CFT subsystems. In AdS/CFT with
no branes, the formula is given by the Ryu-Takayanagi (RT) prescription [29] (or its
covariant extension of Hubeny-Rangamani—Takayanagi [30]); for a subregion R of the
boundary CFT, the entanglement entropy to leading order in the limit Gy, < L4 is

S[R]

= minext A . 2.6
. minext Al (26)

3Technically, the massless graviton exists in tandem with massive modes. This is called “bigravity” [54].

4Tt behooves us to mention that this logic also goes through for the configuration consisting of just one
brane. There, the dual field theory is a BCFT [65, 66]. The relationship between this BCFT and the bulk
theory has been dubbed the “AdS/BCFT correspondence” [67, 68].
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(a) No branes (b) With two KR branes

Figure 2: Schematic representations of the Ryu—Takayanagi surfaces for a fixed-time CFT
subregion R in (a) AdS with no branes and (b) AdS with two KR branes. In (a), the surface
is anchored to the boundary of R (i.e. 9yg = dR); this is a Dirichlet condition on y%. In
(b), the CFT subregion is the (d — 1)-dimensional defect at fixed time, and % is anchored
to the branes via a Neumann condition. We use Neumann for physical reasons; a Dirichlet
condition would break diffeomorphism invariance on the brane.

Here, vg is a (d — 1)-dimensional surface that is homologous to the CFT subregion R,
where “homology” means that there exists some codimension-1 bulk region 3 such that

0YX =vyrUR, Ovyr =0R, (2.7)

and A[yg] is the area functional for such surfaces. Essentially, this formula equates en-
tanglement entropy with the area of the smallest extremal surface “anchored” to the CFT
subregion R (Figure 2a). However, note that this does not include contributions from
quantum fields in the bulk.

We can ask how this prescription is modified with two KR branes. The proposal
[14, 53, 55, 56] is to equate the von Neumann entropy of the defect at some fixed time
with a minimal extremal surface in the bulk via a modification of (2.6). Essentially, the
homology condition (2.7) is modified such that the surface is anchored to the branes,
rather than to the conformal boundary (Figure 2b). This generically introduces boundary
terms in the entropy functional, and the extremization procedure also requires us to choose
boundary conditions (dynamical or fixed) for the intersection of the surface with the branes.
While a fixed boundary condition like Dirichlet is technically a mathematically consistent
choice [69], imposing it amounts to partitioning degrees of freedom on the brane by hand,
a procedure that we assert is physically incompatible with diffecomorphism invariance [53].
And so, we impose dynamical (e.g. Neumann) conditions on the RT surface.

In the intermediate picture, this same entropy is interpreted as a generalized entropy
that accounts not just for a leading-order semiclassical entropy, but also for quantum fields
on the brane. Typically, the generalized entropy is calculated by a quantum extremal
surface (QES) [45] rather than an RT surface, and the QES may even be the boundary of
disconnected pieces of the entanglement wedge called “entanglement islands” [43, 44]. By
the power of double holography, the generalized entropy in the intermediate picture can be
computed by the area of a classical RT surface in the (d + 1)-dimensional bulk [49]. This
is the key feature of double holography that we will exploit in this paper.



In other words, the semiclassical entropy on the brane, which might normally be com-
puted by employing the quantum extremal surface prescription, is encoded by a classical
surface in the bulk. As classical surfaces are rather tractable to compute, double hologra-
phy has allowed the use of one-brane setups to study the entropy of quantum fields in the
presence of a gravitating black hole coupled to a non-gravitating thermal bath. Indeed,
this has been the main approach to study higher-dimensional (d > 2) semiclassical gravity,
starting with [14] and extended by [18, 50, 70] and many others as part of the entanglement
island program.

While we will briefly discuss black-hole information and islands, our primary focus is
on how the bulk entropy prescription can be used to constrain brane-localized couplings
added by hand to the theory. In other words, we are assuming the holographic dictionary
to be a fundamental aspect of UV physics that is capable of providing swampland criteria
on effective field theories of gravity (cf. [24-27]).

We now briefly justify the two main swampland criteria rooted in entanglement. We
will later explain how we concretely use them in Section 2.2.

Positivity of entropy One immediate swampland criterion is the positivity of entropy.
Generally, entropy is a logarithmic count of the number of microstates {2 in a system,

S ~logQ, Q>1. (2.8)

Entanglement entropy is typically UV-divergent in QFT [71]. This is reflected in the RT
prescription through the fact that RT surfaces reach the conformal boundary, thus formally
being infinite in area. Nonetheless, technically S > 0 for these “absolute” entropies.

In two-brane configurations, we no longer have this positive divergence in the area.
Instead, the full entropy functional picks up “boundary-term” contributions from the cou-
plings on the branes, and so it is a priori possible to have a functional with negative values.
However, a negative-entropy RT surface would contradict (2.8), and so couplings giving
such a result would have to be in the swampland.

The basis of CWI Another swampland condition coming from AdS/CFT is causal
wedge inclusion (CWI)—the property that the entanglement wedge always contains the
causal wedge. Let us discuss why such a criterion is fundamental.

First, we recall the motivations and definitions of the causal and entanglement wedges.
Both ideas came out of attempts [32-36] to answer to the question, “What is the holographic
dual of the reduced density matrix pg on the CFT subregion R?” Recall that this reduced
density matrix is defined by tracing out complementary degrees of freedom R¢ and encodes
the microstates counted by the entanglement entropy of R:

pr = Trre (p), S[R] = —Trg (prlogpr). (2.9)

Starting with R, we define its future domain of dependence D[R] as the points p for which
all past-directed causal curves starting at p intersect R. We analogously define the past
domain of dependence D_[R] as the points from which all future-directed causal curves
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Figure 3: On the left, a cartoon of causal wedge inclusion (CWI) for a CFT subregion
R at fixed boundary time ¢ = 0. The inner (blue) wedge is the causal wedge CW[R],
while the outer (green) wedge is the entanglement wedge EW[R]. We can further consider

the cross-section of this picture with the initial bulk Cauchy slice (right), in which vz
(green, dashed) is the RT surface wrapping around EW[R]| while £z (blue, dotted) is
the codimension-2 surface wrapping around CW[R]. CWI implies that the region on this
Cauchy slice bounded by £z must be within the analogous region bounded by ~x.

intersect R. The union D[R] = D[R] U D_[R] is the full domain of dependence and is
shaped like a diamond.

The causal wedge CW[R] is defined in terms of the domain of dependence in the
boundary system D[R]. Basically, we take all bulk causal curves which start in D_[R]
and end in D[R] [33]. If R is a fixed-time subregion (say at ¢t = 0), this comes with a
codimension-2 surface £ that is anchored to R and bounds the ¢ = 0 cross-section of the
causal wedge.

Meanwhile, the entanglement wedge EW[R] is defined in terms of the RT surface g
of R. Suppose that R is spacelike. We then take the bulk codimension-1 “homology
surface” bounded by R and g within the Cauchy slice containing R [i.e. X in (2.7)]
and define EW[R] as the domain of dependence of this homology surface [36]. Just like
CWJ[R], the entanglement wedge asymptotes to D[R].> However, EW[R] is constructed
from entanglement structure and is generally distinct from CW[R]. In particular, for R at
t = 0, the corresponding RT surface vz need not be the same as {r.

In fact, one can argue that the entanglement wedge is generally supposed to reach
further into the bulk than the causal wedge [36]. This is precisely the statement of CWI
and is depicted in Figure 3. Furthermore, for a boundary subregion R at ¢t = 0, CWI implies
a condition on the codimension-2 surfaces éx and ~yr residing on the bulk ¢ = 0 Cauchy
slice—the region bounded by vz must contain the region bounded by £z. Physically, CWI
states that the RT surface of R is generally causally disconnected from the domain of
dependence D[R], at best only being accessible via null signals, and the argument relies
on causality in the boundary theory.

Let us give the intuition behind this argument; for a more thorough proof, see [36].
Again, take R to be a CFT subregion on the ¢t = 0 Cauchy slice. Suppose that the RT
surface v is located between g and R on this slice. This implies that the RT surface can
be reached causally by timelike signals sent from the domain of dependence D[R].

®This is because the bulk and boundary causal structures are compatible with one another (cf. [40, 41]),
and so null rays confined to the boundary can also be seen as bulk null rays “at infinity.”

~10 -



Such timelike signals can be realized in the field theory as small perturbations of the
Hamiltonian which evolves the reduced state on R. The perturbed state is

prr = UprUT, (2.10)

where U is some unitary with support on just D[R].

If g is in the causal wedge, there exists a perturbation which corresponds to a defor-
mation of the bulk metric in the vicinity of vg. Thus, applying this perturbation would
alter the area of yg and change the entropy. However, on the CFT side, we can use the
invariance of the partial trace under change of basis (since the Hilbert spaces on R and
R’ are isomorphic) to equate the nth Rényi entropy of the perturbed state to that of the
original state:

Snlpri] = - log Trr/[(pr/)"] = - log Trr[(pr)"] = Snlpr]. (2.11)

n—1 n—1

Recall that the entanglement entropy is the n — 1 limit of the Rényi entropy. So, the

entanglement entropy should not change under the perturbation. This is a contradiction
and we thus conclude that vz cannot be strictly within the causal wedge of R, after all.

2.2 Black spacetimes as a testing ground

As one application of entropy positivity and CWI as swampland constraints on higher-
derivative corrections to the RS action, we examine two-KR-brane systems embedded in
eternal one-sided “black” spacetimes—those which are time-independent and have a single
horizon—in the bulk. In principle, we may consider other two-brane setups in other ge-
ometries, and doing so may yield additional nontrivial constraints on brane couplings. We
focus on black spacetimes because they have particularly useful entanglement and causal
features.

Positivity of horizon entropy The original motivation of the RT prescription was
the Bekenstein—-Hawking identification of a black-hole horizon’s area with the black hole’s
entropy [42, 72], which was also found in string theory [73]. Indeed, RT is meant to be a
generalization of the Bekenstein—-Hawking formula. We recover the latter when we consider
a CFT in a thermal state, which is realized holographically by a one-sided black hole. When
R is taken to be the full boundary, then the associated RT surface is the horizon.

In two-brane setups embedded in black holes, the entropy functional is generically
modified by boundary terms coming from brane-localized couplings. Nonetheless, the hori-
zon is still expected to be an extremal surface. Given this, the quantity Ay (defined as the
sum of the “bulk” horizon area with its boundary terms at the branes) must then at least
upper-bound the black-hole entropy Sy, and so the positivity of the entropy implies

Ap
Sp=-——>0. 2.12
TeN (2.12)
A negative value of Ay, (induced by sufficiently negative boundary terms in the functional)
would contradict the positivity of entropy. However, we might mathematically get such a

result from the brane-localized couplings, so we place such theories in the swampland.
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CWTI in black spacetimes Consider a one-sided eternal black geometry at some initial
Cauchy slice t = 0. We take R to be the full (again one-sided) boundary of this geometry
at this slice. In this case, D[R] is the full boundary, with the earliest and latest points
respectively being past and future timelike infinity. The bulk causal wedge CW[R] can
then be constructed by shooting null rays from these points. Upon doing so, we see that
the t = 0 slice of CW[R)] is precisely the exterior region outside of the horizon,® and so the
t = 0 bounding surface &z of the causal wedge is itself the horizon.

The point is that applying the CWI criterion in black geometries simply becomes a
matter of explicitly computing the RT surface vz with R being the boundary system at
t = 0. For a general braneworld with Einstein gravity in the bulk, vz will be either
the horizon (in accordance with the Bekenstein-Hawking formula [42, 72]) or some other
surface. The former is consistent with CWI, so the only point of concern is the latter case.

Fortunately, non-horizon surfaces can easily be seen to contradict CWI. In the maxi-
mally extended spacetime at ¢ = 0, there is no interior geometry. Thus, the only conceivable
non-horizon candidates for vz are those that intersect the horizon or those that reside com-
pletely in the exterior. In either case, there would be a part of the ¢ = 0 slice of the exterior
that is not a part of the entanglement wedge, which would imply CW[R] ¢ EW[R].

So, to summarize how to use CWI to potentially rule out a theory, we start by taking a
two-KR-brane setup embedded in a black spacetime. We then search for ¢ = 0 non-horizon
extremal surfaces anchored to the branes. If we find one, we can compute its entropy Sext
and compare it against that of the horizon Sy,. A priori we have the following possibilities:

Sext > Sn = no violation of CWI, (2.13)
Sh > Sext = theory violates CWI. (2.14)

A theory with a non-horizon extremal surface for which the latter holds is in the swampland.

Black string with RS terms A simple test is to check that both criteria are satis-
fied in two-KR-brane configurations solving the equations (2.2)—(2.3). We do not expect
braneworld theories with only RS terms to reside in the swampland, since the bulk action
is just Einstein gravity while the brane action has only the terms corresponding to zeroth
and first derivatives of the metric.” One black solution in which we can test this claim is
the following (d + 1)-dimensional planar AdS black-string geometry:

L? du? ud-1

—h(u)dt? + — + udp® +di?|, h(u) =1

ds* = - —-
i h(u) g1

= (2.15)

Here, t € R, u > 0, and p € (0, 7) are respectively the time, radial, and angular coordinates
while # € R%"2 represents the d — 2 remaining transverse, planar directions. The defect
is located at u = 0, and u = wuy, is the horizon. The equation of motion (2.3) is solved by
“planar KR branes” parameterized as

SIn fact, the causal wedge is the full exterior on the same side of the horizon as R. One can see this by
drawing the Penrose diagram and shooting null rays from past and future timelike infinity.

"The zeroth-derivative term is the RS term and has one free parameter—the tension. The first-derivative
term is the Gibbons—Hawking term proportional to extrinsic curvature, and its coefficient is fixed (relative
to the bulk Einstein action’s coupling) by requiring that the variational principle is well-defined.
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Figure 4: A fixed-t, fixed-Z slice of a planar black string in AdS consisting of two planar
KR branes (in red), each at a fixed angle 61,60, € (0, g) with respect to the conformal
boundary of the underlying AdS;;1 spacetime. The defect (the red point) is at uw = 0 and
the horizon (the dashed line) is at u = uy. The branes have constant extrinsic curvature,

and so this geometry solves the equations of motion with the RS action (2.2)—(2.3).

,u:91, ,LL:7T—92, (2.16)

for constants 01,02 € (0,7) with 6; + 03 < 7, and taking u € (01,7 — 03). See Figure
4 for a visual depiction. Not only do these hypersurfaces each have constant extrinsic
curvature, but the induced geometry of each is a planar AdS-Schwarzschild black hole.
Both the tensions 77,75 and the induced curvature radii /1, of these branes are well-
defined functions of the angles:

(d—1)
87Gas1L

In [53], we had explored the bulk entanglement surfaces in this two-KR-brane configuration.

T, = cosb;, ¢; = Lcsch;. (2.17)

With just RS terms, the entropy functional has no boundary terms (see [18]), so we had
found that the RT surface computing the entropy of the defect at ¢t = 0 is always the
horizon. Then, the entropy is computed by just the bulk area of the horizon:

Ldfl T—09 du
Shlpe = / d:i"'/ _ 2.18
s AGapaul ? Jra2 Jo,  sin?lp (2.18)

This is always positive. Furthermore, because the horizon is the RT surface, the entangle-
ment wedge is precisely the causal wedge. Thus, there is no violation of CWI.

3 Constraining the DGP term

We can apply the criteria for entanglement surfaces in Section 2 to KR braneworlds beyond
those with just RS terms. We do so in an explicit simple model, finding that violations
are indeed mathematically possible and can be used to rule out particular brane-localized
couplings on physical grounds.

The simplest higher-derivative term we can add to the RS action is one that is linear
in the brane’s intrinsic Ricci curvature. Following the conventions of [18, 74], we write the

=@/MH{R+C“CE”}

Gay1 5
v —3; -8 T;
* Z 87TGd+1 / 0 [ mGanTit 2Gr, ZR

full action as

(3.1)
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which has an additional term—the DGP term [17]—for each brane. The DGP Lagrangian
is proportional to the Ricci scalar R; computed from the metric gi- The Gy, ; couplings are
new parameters each controlling the strength of this term on the associated brane.

We should mention that the original DGP model describes flat branes living in a flat
bulk [17]. In the original model, there is no RS term and no bulk cosmological constant,
and the gravitational coupling flows from G}, at high energies to G411 at low energies.
However, we are mainly interested with using the machinery of AdS/CFT to put theories
in the swampland. To learn anything about flat branes in flat space, we may take flat-space
limits of our AdS constraints. The punchline is that the the constraints from entanglement
lose all power under flat-space limits, and that the only constraint we are left with is
that G, > 0 in order to not have a wrong-sign Euclidean action with maxima instead of
minima.® We will discuss these points in Appendix A (specifically, A.2).

In the current section, we first discuss the parameter space of two-KR-brane setups
with RS + DGP terms, as well as how the entropy functional gets modified by DGP terms.
We then compute the equations for extremal surfaces in the presence of these branes. What
follows are our main results, i.e. the constraints put on this class of braneworld models,
which we obtain via both an analytic approach and a numerical approach. Analytically,
we will find that violations of CWI require at least one DGP coupling to be negative. We
find further analytic lower-bounds on DGP couplings by requiring positivity of the horizon
entropy. Last but not least we numerically find theories violating CWI leading to even
more refined bounds.

3.1 Parametrizing KR branes with RS 4+ DGP terms

Here we consider the DGP term as a higher-derivative correction to the RS term on a KR
brane as in [18], so we are studying AdS branes in an AdS bulk. The brane-embedding
equations are modified relative to (2.3) by adding terms that depend on Ricci curvature:

. Gat1 | 5 1=
Ki,ul/ = (Kz - 87TGd+1E)gi,uu - Gi—’— |:Ri,uu - 2Rigi,p1/:| . (32)
)
However, the solutions turn out to be geometrically the same as without the DGP term,

but with the tension parameter being redefined.” In terms of the angular parameterization
(2.16), the brane tension of a KR brane with RS + DGP terms (derived in Appendix A) is

d—1 (d—1)(d—2)

=~ cosf; — in?6;. 3.3
" 8aGa L T 16nGygL? (8:3)

We mention that the DGP term is one of three second-derivative terms we can add to the
brane action. We can also add an action f \/—gi(cle + CQKZWK,;,W) whose terms are
products two first-derivative factors. Interestingly, [28] finds that the consistency of the

8This is a very general constraint that we will also impose in AdS, but note that it is not rooted in
entanglement structure. Only minima of the action dominate the semiclassical gravitational path integral.

9 Another approach taken by [18] to studying DGP is to shift the tension by some amount proportional
to the Ricci curvature of the branes. This cancels the explicit contribution of Ricci terms to the brane
stress tensors and yields the equations (2.3).
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bulk variational principle implies ¢1 K;3!"” + co KI"" = 0, and contracting this against K; .,
reveals that the corresponding action vanishes on-shell. So, these terms do not alter the
embedding equations (3.2). However, it is not immediate if or how these terms modify the
entropy functional. For simplicity, we opt to only add a DGP term.

It is convenient to define a dimensionless parameter explicitly describing the relative
strength of the DGP term against the RS term. We do so in terms of each brane’s “effective”
gravitational coupling, which is calculated in detail in Appendix A by integrating out the
bulk extra dimension and isolating the d-dimensional Einstein—Hilbert term in the resulting
effective action [18].1° From that analysis, this coupling (the “effective Newton constant”)
on an brane with no DGP term is just

1 L
= . 3.4
Grs (d—2)Gapn1 (3:4)

If we apply that same procedure with a DGP term with coupling G}, present, however,
then we get

1 L 1 1 G
2 :+:<+RS>. (3.5)
Getilgsipep (d—2)Gay1 Gy Grs Gy,
So, in (3.1) we define the dimensionless parameters
Grs Grs
A o= 2BS oy, = RS 3.6
! Gp1 2 Gy 2 (3:6)
as stand-ins for the couplings. In terms of 6; and A;, the tension of brane i is
d—1 i
L= m <cos 0; — EZ sin? 92-) ) (3.7)

We can and will trade the physical parameters (T;, Gy,;) for (6;,\;) in our analysis. The
latter will turn out to be mathematically more convenient.

The limit Aj, A2 — 0 recovers the RS action (2.1). Meanwhile taking either A < —1
yields a negative effective Newton constant. This would lead to the “wrong sign” in the
Euclidean actions, and so classical saddles would be maxima rather than minima.'' Such
saddles would actually be suppressed in the gravitational path integral and thus ill-defined
as semiclassical configurations, and so the region

{)\1 < —1} U {)\2 < —1}, (3.8)

is considered pathological for these branes.

While the bulk classical solutions to (3.1) are essentially the same as for without
DGP terms, there is a key change in applying the RT prescription that we must address.
In the entropy functional, we pick up contributions from the areas of the intersection

ONote that [18] takes two copies of a bulk geometry with a brane glued together via Israel junction
conditions, whereas we consider one bulk geometry with an “end-of-the-world” brane. This changes the
KR brane’s effective Newton constant by a factor of 2 and also alters the effective cosmological constant.

11 As mentioned above, this constraint—that the brane’s Geg coupling must be positive—applies to flat-
space DGP constructions, such as the original one of Dvali, Gabadadze, and Porrati [17].

~15 —



points between v and the branes, in accordance with the semiclassical island rule [18, 49].
Specifically, the entropy functional is

(A[’YR] N Alyr N Q4] N Ayr N Qz])

S[R] = minext

yr~R \ 4G 441 4Gy 1 4Gy o
. L ~ .
= 4Gd+1 H'lyglNG’I}ét |:A[’7'R} + ﬁ <)\1A['7R N Ql] + )\QA[’YR N QQ}):| R (3.9)

where A is a (d — 1)-dimensional “bulk” area functional while A is a (d — 2)-dimensional
“boundary” area functional. In the RS limit A\;, Ao — 0, we recover (2.6). The inclusion of
boundary terms in the extremization does not alter the bulk equation for extremal curves
YR, but it does affect boundary conditions.

We reiterate that we apply both the positivity of horizon entropy and causal wedge
inclusion (CWI) as swampland criteria on entanglement entropy. With that in mind,
our goal is to use the DGP-modified entropy functional in the black-string solution (2.15)
(Figure 4) to constrain the space of DGP couplings (A1, A2). Technically the two-KR-brane
RS + DGP models have four free parameters which include not just these two couplings
but also the brane angles (01,62). Thus we find #-dependent constraints on A; and Ag.
This will allow us to explore how these constraints depend on the brane angles.

We should mention that our approach of using entanglement here builds on some
previous work of [18], which finds DGP couplings yielding negative Geg (ie. A < —1)
to be unphysical through using the entropy functional rather than the wrong-sign-action
argument. Using a class of extremal surfaces in AdS described as “bubbles,” [18] argues
that the entropy functional supplemented by DGP terms (3.9) has no global minimum when
Gef < 0. Thus, the A1, A2 < —1 regimes of the DGP couplings are deemed pathological.
Notably, the constraints we find are independent from the considerations of [18].

3.2 Extremal curves in the RS + DGP black string

We again consider the (d+ 1)-dimensional black string in the bulk with planar branes given
by (2.15)—(2.16). For convenience, we fix L = 1. To reiterate, the metric and branes are

ds? = — L —h( )dt2+d—u2+ 2du® + da? h()—1—ﬁ (3.10)
T T sin? p1 “ h(u) won S R uﬁfl, ‘
Q1 D= 91, QQ =T = 92. (3.11)

We take R to be the defect system at t = 0. The time-independent extremal curves may
then be parameterized as

u=u(u), wue (br,m—0b). (3.12)

From the metric (3.10), we have that the bulk area functional is

m—02 u
Alu(p)] = Vd—2/ dp \/ ()" + u(p)?

o TG sin T\ ()
T—05
— Vi /9 s Lalp (), o (1)) (3.13)
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where Vj_o = [d# and we denote the integrand as a Lagrangian Ls. Furthermore, the
boundary area functional for the intersection between u(u) and p = o is

~ Va2

Alu = _ : 3.14
)] = e (3.14)
And so, the entropy functional is
_ 2
Vd—2 . =02 / 1 )\l
= t dp Ls[p, , - , 15
S[R] Gy Minex (/91 pLslp, ul(p), w' ()] + 7— 2 Cursin 072 (3.15)

where we have defined u; = u(f;) and uy = u(m — 62) to make the notation more compact.

Note that the DGP couplings A1 and As only explicitly appear in the boundary terms,

although they will implicitly affect the extremal surfaces through boundary conditions.
Now, we extremize the functional in (3.15). Taking the variational derivative and

integrating by parts yields (up to the fixed factor of Ajgdfl)

m—b2 oLy d [0Ls
58 ~ d . )
>, # 5 aa (a0)]

_ | 9%
ou’

o,
ou'

A1 sin 04

3.16
A9 sin 09 Sy ( )
(uy sin 6 )41 ’

 (ugsin )1

]5U1+

pu=01 p=m—02

where du; and dus are first-order variations of the surface’s endpoints. Setting the first

term to 0 yields the Euler-Lagrange equation for L4, which we solve to write a second-order
ODE for u(u):

anu u u/2 _ u/2
u”" = —(d - 2)uh(u) + (d — 1)u cot {1 — ;h(zjb) " + h(lu) ZLQ] — (d25) - (3.17)

The second and third terms are the boundary conditions on Q; and Qa, respectively.

Taking the dynamical boundary conditions [i.e. du; # 0 and dug # 0 in (3.16)] yields
ull ) u/2 ul . u/2
— = —(sinbh)h L 2<0, 2= (sinf)h 2 2> 1
N (sin01)h(uq) () +uj <0, N (sin 69)h(us) h(2) +u3 >0, (3.18)

where we have defined v} = v/(61) and v}, = u/(7 — 63). The inequalities follow from

0, € (0,7) = sin6; >0, wu; € (0,uy) = h(u;)) >0, u,eR, (i=1,2), (3.19)
and fix the signs of % and % With this in mind, we rearrange these expressions to write

) ()\1 sin 91)2h(u1)2u% 9 ()\2 sin (92)2h(UQ)2U%
1= - y U2 = " ) (320)
1 — (A sinfq)2h(uy) 1 — (Mg sinbs)2h(usg)

and solve for v} and uf:
_ ()\1 sin 91)h(U1)U1 u, _ ()\2 sin 92)h(U2)’U,2 ‘
V1= (sin0)2h(uy)’  ° /T — (A2sinfy)2h(us)

We immediately observe that the horizon u(p) = wuy, is still a solution even with the DGP

uj = (3.21)

boundary conditions above. This means that the horizon is always a valid candidate for
the RT surface. We will use this fact in the following discussion.
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Figure 5: A plot of the two-brane DGP parameter space (A1, A2) for d = 4. The upper-
right (green) region {A\; > 0} N {A2 > 0} cannot be excluded by our swampland criteria
because the horizon is always the (positive-entropy) RT surface. The colored lines demar-
cate the boundaries of regions excluded by the positive-horizon-entropy requirement for
fixed #; and 62, which parameterize the branes as per (3.10)—(3.11). We exclude points
below these lines. Additionally, the constraints have a reflection symmetry seen by swap-
ping the labeling of the branes (1 <+ 2). We see that thinner wedges yield more restrictive
bounds on (A1, A2). The intersection of all (6, 63)-dependent regions describes the cou-
plings for which the horizon entropy is negative for all brane angles. This is shown in black
and lies entirely within the unphysical Geg < 0 region, with latter being shaded grey.

3.3 Analytic criteria for DGP couplings

We now take an analytic approach to our exploration of the parameter space of DGP
couplings (A1, A2) by employing the RT prescription. By noting that the horizon of the
black string is always at least a candidate surface, we can make the following assertions:

(1) Theories in which the RT prescription selects the horizon and computes a positive
entropy cannot be excluded.

(2) The horizon entropy upper bounds the RT entropy.

In this section, we will use these statements to explore the DGP parameter space without
numerically constructing extremal surfaces. The results are summarized in Figure 5. Fur-
thermore, we reiterate that the region {\; < —1}U{\2 < —1} is already deemed unphysical
by both our wrong-sign-action argument and an entropy argument by [18].

Entanglement does not constrain {\; > 0} N {\y > 0} We first consider the case of
nonnegative DGP couplings on both branes. In this case, it turns out that our swampland
criteria do not apply. Specifically, the entropy functional (3.15) is always positive, and
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we can and will also show that the RT surface is always the horizon, which is consistent
with CWI. To do the latter, we study locally smooth extremal surfaces assumed to not be
the horizon, finding that they are always be UV-divergent and, thus, always subdominant
to the (UV-finite) horizon in the functional integral that computes the entropy. In other
words, we find non-horizon candidates (i.e. finite extremal surfaces) for the RT prescription
necessitate either DGP coupling being negative.
Suppose that we have an extremal surface that is anchored to brane 1 at a point
u = u; < up and brane 2 at a point u = ug < uy. Then, from the boundary conditions
(3.21), we have that
uh <0, uh>0. (3.22)
Pictorially in Figure 4, such an extremal surface bends “away” from the horizon at both
branes. Thus, «/(u) must change sign at some y = po somewhere in the bulk, i.e. there
exists pg € (61, ™ — 62) at which
lim o'(u) <0, lim «'(u) > 0. (3.23)
=iy p—pd
A priori, there are two possibilities if u(u) is locally smooth. The first is simply that
u'(po) = 0. However, from the equation of motion (3.17) we would have that

" (10) = —(d — 2)u(uo) hfu(po)], (3.24)
where u(pg) € (0,u1) and thus hlu(ug)] > 0. It follows that u”(ug) < 0, but this is
inconsistent with (3.23). We deduce that the sign change cannot happen smoothly.

The other possibility is that ' has a discontinuity at p = pg, i.e. that the limits in
(3.23) are respectively —oo and +oo. The resulting surface would not be globally smooth,
but it would consist of two locally smooth components, where each reach the defect at u = 0.
Nonetheless, we can still discard such a surface by noting that it has a UV divergence in
its entropy and thus is larger than the (UV-finite) horizon entropy.

We emphasize that the argument for this statement goes through if either DGP cou-
pling is zero. Indeed, we had already proven the statement for Ay = Ao = 0 in [53]. For just
one positive and one zero DGP coupling, we can take without loss of generality A\; = 0.
In this case, we must exploit the fact that «”(6;) = 0 by the equation of motion (3.17).
Thus, for some small € < 1, v/(0; + €) < 0 and, because we still have uf, > 0, there exists
a = po where u/(p) changes sign. However, we reiterate that such a sign change cannot
happen smoothly because u”(19) < 0 by the equations of motion; this completes the proof.

To summarize, for nonnegative DGP couplings A1, Ao > 0, the RT surface is always the
horizon because the only other extant extremal surfaces are UV-divergent, so we never find
a violation of CWI in this part of parameter space. Our search for CWI-violating theories
in the swampland must involve at least one negative DGP coupling.

Positivity of entropy constrains {\; < 0} U{As <0} For a (d+ 1)-dimensional AdS
black string with two branes, the entropy density, which we define as the functional (3.15)

in units of the prefactor 42;?1’ is computed to be
1 02 du 1 A A )}
Sh=—= / + + . 3.25
" uﬁ72 [ 0, sin~ty  d—2 (simd2 0, sin?26, (3:25)
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It is evident that if either DGP coupling is sufficiently negative, then the horizon entropy
is negative. While this is mathematically possible, we argue that this is unphysical.

We briefly reiterate the main points regarding horizon-entropy positivity discussed
in Section 2. Recall that the entropy computed through the RT prescription is formally
absolute rather than relative, and so it counts an absolute number of microstates. This
must be at least 1, and so the entropy cannot be negative. In typical AdS calculations, RT
formally gives UV-divergent but positive answers. However, in a two-brane setup, the RT
prescription gives UV-finite answers which may concernedly be negative.

With that said, recall that the black-string horizon is extremal for all DGP couplings,
since it solves (3.17) and (3.20). Thus, the horizon entropy upper-bounds the entropy S

from RT and
Va2

4G

In other words, a negative horizon entropy implies a negative RT entropy.

Sh<0 = S<

Sh < 0. (3.26)

Now we rule out parts of (A1, A\2) parameter space in which either DGP coupling is
negative enough to induce a negative horizon entropy. First, consider fixed brane angles
f1 and 65. The excluded region is then determined by a linear constraint:

1 m—02 du 1 Al A9 >:|
Sh=—rs + + <0
h uﬁf2 [/@1 sindty  d—2 <sind2 6, sin? 20,

A A 02 g
- - d_lg + - d—22 < _(d - 2) / . d/jl :
sin ¢6#; sin®"“ 6y 6, sin®

(3.27)

The “bounding line” of this region depends on the values of #; and 6. Furthermore, this
constraint depends on the dimension parameter d. As such, for concreteness we set d = 4,
discussing general d in Appendix B. For d = 4, the horizon’s entropy density is

T g A A
Sy = / 5 fu3 + .1 5 + .2 5
0, uf sin® p - 2(uysinb) 2(uy, sin 62)

2

1 0;
= % ; [csc 6; cot ; — log <tan 2) + )\ csc? (91'] . (3.28)

We can then write the unphysical region as

. 2 2 )
Ao < — <sm 02) Al — sin? 02 Z [CSC 0; cot 8; — log (tan %)} . (3.29)

sin 91 i—1
1=

Let us now explore more f-independent bounds. For convenience, we define notation for
the fixed-(61, f2) unphysical regions in (A1, A2) space and the corresponding bounding lines:

8(91, 02) = {)\2 < LB()\la 01, 92)} , (3.30)
sin 65\ 2 2 0
Lp(A1;01,02) = (sin01> A1 — sin” 05 ;:1 [csc 6; cot 6; — log <tan 5 >] . (3.31)

There are two natural #-independent regions to construct: the intersection (B and the
union |J B of B(61,02) over all valid choices of brane angles. We do so in that order.
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The intersection describes the part of parameter space in which the horizon entropy is
always negative regardless of the brane angles. Thus, it is natural to put the intersection in
the swampland. To find this region, it is helpful to define the contribution of an individual
brane to the entropy:

Sﬁi) = |:CSC 0; cot 0; — log (tan 9;) + A esc? 91'] : (3.32)

1
2

Sl(li) has a positive singularity as 6; — 0% for \; > —1. So, if either DGP coupling is at or
above —1, then we can get a positive horizon entropy by taking the corresponding angle
to be sufficiently small. This means that

(B C{h<-1}n{x < -1} (3.33)
Meanwhile, for A; < —1 the sign of the singularity flips, and S}(li) also has a negative

singularity as ; — 7~. Thus, the profile of S}(f) develops a maximum in 6; at

1
O; = ——. 3.34
cos 3 ( )

i

We can explicitly compute the value of this maximum:
; A1 A+ 1
Siw = S =2 “log ( it ) . (3.35)

Up to a positive factor, the total horizon entropy at a point in {A; < —1} U {A\y < —1} is

upper-bounded by the sum of these maxima, and so
St + 82, <0 — &, <0, V(Ql,eg). (3.36)

Hence, the couplings (A1, A2) for which S1. + Sa2. < 0 are precisely those in [ B. We find
the boundary of this region by setting the sum of maxima to 0, which is equivalent to

M+ 1 A1+1 Ao+ 1
— -1 = 0. 3.37
2 4 Og[()\l—1> <)\2—1>] (3.37)

This produces a curve in (A, \2) space bounding the region of couplings for which horizon

entropy is always negative, and thus we write

ﬂB_{M;AQ_i]Og[GiD (iii)] <0}. (3.38)

The takeaway is that combinations of two very negative DGP couplings should be seen as

be highly pathological, particularly since this regime is also ruled out by other arguments
(namely our wrong-sign-action argument and the RT bubbles of [18]).

Next, the union only tells us where at least one set of brane angles furnishes a negative
horizon entropy. Put another way, the complement of the union consists of the DGP param-
eters that are unaffected by the positivity of horizon entropy, and knowing the union helps
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visualize which part of the parameter space might conceivably be subjected to swampland
constraints. With that in mind, we now compute the union. We argue that'?

UB={n<-13u{da< -1} U{\ + X <0} (3.39)

Notably, (3.39) contains positive-negative combinations of DGP couplings, including ones
which yield Geg > 0 on both branes.

To prove (3.39), we first check that {\ < =1} U{X2 < =1} U{\ + X2 < 0} C UB.
To do so, we compute (3.30) in the following three limits:

B (g g) = {\+ A < 0}, (3.40)
B (0, g) =\ < -1}, (3.41)
B (g,o) = o < —1}. (3.42)

Now, we want to show that points that are not in the union of (3.40)—(3.42) also never
accommodate negative horizon entropies. Since all of the fixed-(6;, #2) bounds are linear in
DGP couplings, we just need to confirm three statements for the bounding lines Lg (3.31):

(i) any bounding line must have negative slope;
(ii) any bounding line must intersect A\; = 0 at some A2 < 0; and,
(iii) any bounding line which intersects A\;+A2 = 0 once does so in {\; < —1}U{\s < —1}.

These conditions ensure that any point contained in some excluded region B(61,62) will be
in the union of of (3.40)—(3.42), thus proving (3.39). (i) is immediate from (3.31):

dLg sin 6\
- 4

A1 <sin 91> <0 (343)
To check the other two statements, it helps to fix 65 = 6 and set 81 = 7 — 8 — §, where
0 € (0,7 —6). We then write

Lp(0,m — 0 —6,0) = —sin? 6 F(8,9), (3.44)

F(6,0) = cscOcotf — csc(f + d) cot(f + 0) — log [tan <Z> cot (0;—6” : (3.45)
The derivative of F with respect to § is 2 csc®(f + &), which is positive for all valid brane
angles. Furthermore, F'(6,0) = 0, so we infer that F > 0. Thus, (3.44) is negative,
confirming (ii).

To check (iii) directly,'® we start by denoting the intersection between a bounding line

Lp and A\ + A2 = 0 by (A}, A3). We then use this intersection constraint to solve for A} as
a function of # and §:

F(6,6)
csc2 0 —csc2(0 +6)

— AN =Lg(A\],m—0—146,0) = X[(0,0) = (3.46)

2This turns out to be the union of all fixed-(01, 62) constraints in any number of spacetime dimensions.
In contrast, the intersection depends on d. We show this in Appendix B.
13We use a more indirect method in Appendix B which can be applied in any number of dimensions.
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Over the full domain of ¢, this function has the endpoint values
A1(0,0) =sec, A (0,7 —0)=—1, (3.47)

We also observe that the derivative of A} with respect to d is positive for § € (0,7) and
6 € (0,7 —60). So now if we assume 6 > 7, then we have enough to deduce that A\} < —1.
However, if § < 7, then we note that there is a pole at § = 7 — 20. Nonetheless, the
derivative is still positive, so it turns out that

de(0,m—20) = AN >1, de(n—20,m1—0) = A\ < —L. (3.48)

The points for which A} < —1 are in {\; < —1}. Meanwhile, since \5 = —\j, the points
for which A} > 1 are in {Ay < —1}. Thus, (iii) is true.

With (i)—(iii) in hand, we can conclude that any bounding line Lp(\1;61,62) must
be contained within the union of (3.40)—(3.42), and so (3.39) is true. We reiterate that
|U B includes DGP parameters for which the effective Newton constant on each brane is
positive, unlike (] 5.

3.4 Numerical violations of causal wedge inclusion

From the equation of motion (3.17) and boundary conditions (3.21), we can numerically
solve for the (static) extremal surfaces for particular choices of brane angles (61, 62) and
DGP parameters (A1, A2). We may then check whether or not there exists an extremal
surface with total entropy strictly smaller than the horizon. This would be a violation of
causal wedge inclusion (CWI) and put that combination of parameters in the swampland.

We first obtain a plethora of numerical extremal surfaces. Specifically, we shoot from
brane 1 with fixed angle #; and over a range of initial parameters u; and couplings ;.
Note that the value of u} is set by (3.21). We then filter the list of these solutions down
to those consistent with a particular value of 8 at the second brane. For these remaining
points, we compute the entropy density Sext numerically and the entropy density of the
horizon &y, analytically (3.28). Then, we repeat the above process by shooting from brane
2. In the end, we have a large list of points in (A, A\2) parameter space with fixed #; and
0o for which there is a non-horizon extremal surface, along with the associated entropies.

With that list in hand, we delete any points which seem pathological, such as those
with large (and thus potentially numerically unstable) areas. Guided by both the positivity
of horizon entropy Sy > 0 and possible cases (2.13)—(2.14) diagnosing whether or not we
have a violation of CWI, we sort the points (A1, A2) in this list into three subsets:

()\1, )\2) for which Sext > Sh > 0, (3.49)
(A1, \2) for which S, <0, (3.50)
()\1, )\2) for which Sh > Sext and Sh > 0. (3.51)

(3.49) consists of points that cannot be ruled out by the entropic swampland conditions
considered in this paper, but we emphasize that these points may still appear in the patho-
logical region with at least one negative effective Newton constant {\; < —1}U{Ay < —1}.
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Meanwhile, the regions (3.50) and (3.51) are unphysical. Specifically, the points in (3.50)
must be contained within the analytically excluded region B(6, 62) defined in (3.30). Points
in (3.51) would not be in the analytically excluded region since they furnish positive horizon
entropy, but they would still violate CWIL.14

The primary fact that want to demonstrate is that this last set of points overlaps
with the part of the (A1, \2) parameter space that is not already excluded by either the
positivity of horizon entropy or the positivity of the brane’s effective Newton constant, i.e.
that (3.51) includes points for which [recalling (3.30)—(3.31)]

Ay > LB()\1;92,02) and )\1,)\2 > —1. (3.52)

We can be more ambitious and ask for a complete understanding of the DGP couplings
that allow for non-horizon extremal surfaces, as well as how such a set partitions into
subsets (3.49)—(3.51). While our approach does this to some extent, we emphasize that
our numerics provide only evidence for such information, rather than proof. However, the
numerics are still sufficient to exclude a region of parameter space within (3.52).

Inspecting the found points For various combinations of fixed (61, 62), we present the
resulting sets of points in Figure 6. We observe points in (3.49) (red), (3.50) (blue), and
(3.51) (green). By definition, the blue points are below the bounding line (3.31) along
which &y = 0, while the red and green points are above this bounding line. Based solely
on these numerics, we make several observations.

First, note that the blue points are in the region {A\; < —1} N {2 < —1}, i.e. they
appear at couplings for which both effective Newton constants are negative. This suggests
that any couplings which allow negative horizon entropy and a non-horizon extremal surface
are deeply pathological, since they violate multiple swampland criteria. Furthermore, these
points are completely disconnected from the others.

Indeed, the red and green points appear to form a single connected region above the
bounding line Lg (3.31). Most of the red points, which we reiterate correspond to couplings
that do not violate CWI, are pathological anyway because they furnish at least one negative
effective Newton constant, i.e. Ay < —1 or Ay < —1. Interestingly, some are not sick, and
these points are near but notably not arbitrarily close to the {\ < —1} U {\y < —1}
region. However, we caution that this part of the parameter space near the boundary of
{AM < =1} U{X2 < —1} is subject to higher numerical errors and such points may be
artifacts of those errors. We will elaborate on this point later.

Meanwhile, the green points designating CWI-violating couplings appear within the
region {A\; < —1} N {Aa < =1} N {1 + A2 < 0}.15 Nonetheless, for a given 6; and 65,
they appear to exclude points not already ruled out by the positivity of horizon entropy
and effective Newton constant. Thus, CWI indeed provides another nontrivial swampland
criteria for braneworlds.

14 A priori this set may also include more strongly pathological points for which Sexs < 0. Not only would
such points violate CWI, but they would also have a negative entropy as determined by the RT prescription.
15Some green points are hidden below the red points, but even those green points are within this region.
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Figure 6: The points in (A1, A2) parameter space for which we find non-horizon extremal
surfaces, for fixed angles #; and #3. The colors correspond to (3.49) (red), (3.50) (blue),
and (3.51) (green). The thick dashed lines are the (6, 62)-dependent bounding lines (3.31)
below which &, < 0, while the light dashed line is Ay + A9 = 0. We have also shaded the
region in which either effective Newton constant is negative.

We should say that these numerics do not suggest that CWI is a stronger condition
than the positivity of horizon entropy. This would only be a true statement if the set of
points ruled out by CWI contains the region B(61,62) (3.30) in which &, < 0, but our
numerics only find non-horizon extremal surfaces within a subset of B(6;,62).

How does this story depend on the combination of angles? The key observation here
is that the green and red points are above but still “close” to the bounding line Lg. For
combinations of brane angles which yield a “wider” wedge, i.e. smaller values of 61 + 05,
this line resides within {\; < —1} U {\2 < —1}. This would make CWI become “weaker”

as a swampland criteria, since CWI-violating points would approach by the region in which
one of the effective Newton constants is negative.
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Figure 7: A cartoon of a possible time-dependent entangling surface in the two-brane
setup with DGP couplings, shown on the ¢ = 0 slice of the maximally extended black-
string geometry, in which the horizons are identified. If such a surface exists, then it would
need to be asymmetric with respect to the Zs symmetry of the two-sided geometry, and so
it would have a twin with an identical entropy. Nonetheless, either surface would violate
causal wedge inclusion—we can see that the entanglement wedge (in green) does not include
the full exterior of either side and thus never includes the causal wedge of either defect.

For “thinner” wedges, the bounding line intersects the region with positive effective
Newton constants, i.e. increasing 01 + 62 also pushes Lg up and to the right in the (A1, A2)
parameter space. This also pushes the red and green points up, and such combinations of
brane angles is when CWI distinguishes itself from the other swampland conditions.

Possible expansion of excluded zone The key takeaway is that CWI certainly ex-
cludes DGP couplings that otherwise seem okay. The green points in Figure 6 are certainly
sick. However, there are various nontrivial features of the plots. In particular, the switch
between the green region and red region seems somewhat arbitrary, and there is also a gap
between the red/green region and the bounding line Lg. This latter feature in particular
suggests that CWI does not actually lower-bound the DGP couplings.

We caution that the numerics could be subject to some slight instability originating
from the shooting procedure, particularly when dealing with surfaces which are numerically
close to the horizon. Such surfaces appear in our numerics near the boundary of the
{AM < =1} U {2 < —1} region. Furthermore, in our approach we only completely specify
one of the DGP couplings, whereas we read off the other coupling from a list of solutions.
Thus, some of the green or red points are only really specified up to some error, and
if the difference between Sy (computed analytically) and Sex¢ (computed numerically) is
within the margin of error of the shooting then the switch between red points and green
points is also ambiguous. However, we emphasize that our numerics are relatively stable
against changes in precision, and so we believe these errors to be insignificant for most
couplings—particularly for green points that are further from the red region in Figure 6.

We also do not search for potential extremal surfaces that go into the black-string
interior (Figure 7) and thus correspond to a time dependence in the entanglement entropy
for the one-sided defect. Such surfaces require that \; < 0 and Ay < 0 due to their
shape, but they are harder to construct because they are not Zo symmetric with respect
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to the maximally extended geometry.' Nonetheless, these would also violate causal wedge
inclusion and could in principle be used to rule out theories, possibly filling the gap between
the CWl-excluded and positive-entropy-excluded regions observed in Figure 6.

However, it is possible that such surfaces are not even mathematically feasible. In AdS
black geometries without branes, entanglement surfaces akin to Figure 7 and anchored to
the conformal boundary are not allowed because horizons in those settings are “extremal
surface barriers” [75]. So, the only way to get time-dependent surfaces without branes is
to compute the entropy of a boundary region supported on both sides of the maximally
extended geometry (cf. [76]). However, it is not clear that such a mathematical obstruction
exists for surfaces ending on KR branes. If it does, then it would be a mathematical
statement—rather than just a physical one—that the entanglement entropy of the defect
in the one-sided geometry can only follow a trivial (time-independent) Page curve.

4 Discussion

To summarize, we have explored how entanglement structure constrains effective field the-
ories of gravity on branes in AdS. Our core philosophy is that the AdS/CFT dictionary,
being a feature of UV physics, gives rise to swampland criteria that may be implemented in
semiclassical holographic models. As a case study, we have used this idea to put nontrivial
constraints—both analytic and numerical—on the RS + DGP braneworld model of gravity.
We should emphasize that the end-of-the-world branes we consider in this paper are of
a particular class. They are “constant-angle” branes (3.11) embedded in a bulk AdS space
(3.10). In principle, one may consider other foliations of the bulk into KR branes. This
would yield more configurations, and in principle holography could be used to put different
constraints on higher-derivative brane couplings. We leave this to future explorations.

Trivial massless Page curves We briefly comment on the significance of these results
to the recent discourse on the black hole information paradox. The typical (d > 2) higher-
dimensional realization of Page curves as describing the evolution of semiclassical black hole
information relies on the construction with one-KR-brane embedded in an ambient AdS
geometries with a nontrivial blackening factor. The first such construction was numerical
[14] and a simple analytical model was provided by [50] shortly after. Moreover, [50] claimed
that the existence of a nontrivial Page curve may be due to the semiclassical theory on the
brane being a massive gravity theory, a feature that has long been ascribed to the presence
of a non-gravitating bath glued on at the asymptotic infinity [51, 52].

This aspect of the one-brane setup motivated a study of a two-brane setup embedded
in a bulk black string geometry in [53]. Here, one of the branes acts as a gravitating
bath, and so the semiclassical theory on the branes maintains a massless graviton in its
spectrum [54]. We had found the entropy of radiation collected in the gravitating bath to
be eternally computed by the bulk horizon area. Thus, the entropy of radiation was found
to be constant in time, in agreement with the claims of [57].

18One may consider surfaces that are anchored to the branes, dive into the horizon, and satisfy this Zs
symmetry as in [60]. However, those surfaces contribute to the entropy functional of the purified defect
system. This entropy is 0, and the corresponding bulk RT surface “shrinks” onto the brane’s horizon [31].
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Recent work [60—62] has proposed that our prior result is changed by adding DGP
terms to the two-brane setup. The basic claim is that for at least some combinations of
DGP couplings (with at least one being negative) the bulk horizon no longer computes the
minimum of the entropy functional, allowing for time-dependent RT surfaces. Furthermore,
one may also get static RT surfaces that are not the horizon. In making this case, among
other cases [60] explicitly finds the latter type of surface for a particular combination of

parameters, which in our conventions are!”

01 ~ 1.090, 622 0.585, A\ =0, b Ay ~ —0.984. (4.1)

However, we would assert that the DGP couplings allowing for any such non-horizon RT
surfaces in the first place would be in conflict with causal wedge inclusion. In the language of
the current paper, we would put semiclassical massless-gravity theories furnishing nontrivial
time-dependent Page curves or any static non-horizon bulk RT surfaces into the swampland.
Thus, the lessons of [60] are unphysical. See [31] for more specific discussion of this point.

In fact, our numerics loosely indicates that most (but conceivably not all) DGP cou-
plings for which there even exists a UV-finite extremal surface apart from the horizon
are sick, either because of a violation of causal wedge inclusion or some other physical
pathology such as a negative effective Newton constant.

In conclusion, we have shown how swampland constraints can restrict the viability
of AdS gravity theories with a holographic interpretation. Indeed, holography is funda-
mentally a feature of UV physics, and so care must be applied in assuming that it holds
semiclassically to avoid misleading conclusions. Our work here focuses on entanglement
structure in braneworld models, with an eye towards their recent application to the black
hole information problem. The takeaway is that the existence of a holographic dictionary
is an important limitation on physically consistent semiclassical models of gravity.
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Appendices

A Effective action with RS + DGP gravity

We briefly review the derivation of the semiclassical gravitational action on the brane with
both an RS and a DGP term. We discuss this in the case of a semi-infinite (d + 1)-
dimensional bulk geometry M with one d-dimensional brane Q (as in [18, 74, 77, 78]), but
the basic results carry over to the two-brane configuration. The starting point is the bulk
action with brane-localized terms (leaving Gibbons-Hawking terms implicit),

1

:W%/MF{RjL } /f( T+16GR) (A1)

Einstein—Hilbert RS + DGP

where ¢ is the bulk metric, ¢ is the induced brane metric, and tildes denote curvature
invariants of the latter. We implicitly work with a bulk metric of the form

L7 —h(u )dt2+d + di® + uPdp? (A.2)
—_— —— +d¥" 4 u , .
u?sin? p h(u) a
where u > 0, (t,Z) € R¥!, and p € (0, 7). p = 0 designates the position of the brane, and
0 is geometrically the angle between this brane and the conformal boundary. h(u) is some

ds®> =

analytic function for which this metric satisfies Einstein’s equations (2.2).

We then treat the brane like a cutoff surface and integrate the Einstein—Hilbert term
over the bulk radial direction. [18] computes the resulting dimensionally-reduced action to
be of the form

! [20d-1) L - .
Lgiver = 16de+1/\/ g[ TR O (A.3)

There is an infinite tower of higher-derivative corrections, but in the semiclassical regime
we are simply concerned with the Einstein-Hilbert terms on the brane consisting of R°
and R! terms. Because we are dealing with just one copy of the bulk instead of two (cf.
[18]), the effective action includes only one copy of Igiver:

1 .
I = Igiver —g|-T : Ad
offt = ldive +/Q\/ g< + 167erR> (A.4)

Plugging in (A.3) then yields

d—1 . L 1 3 )
I = —g|(————-T )R Ng
o /Qm [<8ﬂGd+1L ) e <167T(d —2)Gap * 167er> R+ol& )]

(A.5)

We then write the action in the form

/ V=7 {52:2) + R+ O(Rﬂ , (A.6)

I
off = 167rGeff
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where the Geg is the effective Newton constant (i.e. the coupling of the effective Einstein—
Hilbert terms) and /g is the effective curvature scale,'® each of which are respectively
identified as

1 L 1 12 87Gap1 L (d—2)Gasr !
1— T 1| . (A
< i1 ) [ oL (A7)

G~ (@-2)Gar ' Gy By I?
A.1 The X\ and 0 parameters

Throughout this paper, we study a particular class of “planar” KR branes (3.11) with
AdS; geometry embedded in a bulk AdS;.; spacetime (3.10). We find it more useful to
parameterize the embeddings of our branes not by (7, Gy,) but by alternate parameters
(0,X). 6 measures the angle between the brane and the conformal boundary while A
captures the relative contributions between the RS and DGP terms to the effective Newton
constant. We now define the mapping between these different sets of parameters.

Taking G%) — 0 in (A.1) to remove the DGP term, we are simply left with the RS
term. The effective RS Newton constant and curvature scale are then identified as

1 L 1 2 87G i1 L
— — == (1 - =27, A8
Grs (d—2)Ggy1’ 6%{8 L? ( d—1 ) (A-8)

The RS Newton constant partly contributes to the effective Newton constant of the brane
with RS + DGP terms (A.7). This motivates us to define a dimensionless parameter,

Grs
A= A9
s, (4.9)
describing the relative strength of these two terms. The effective Newton constant is then
1 1
=—(14+X). A.10
G GRS( ) (A.10)

In particular, we have a negative effective Newton constant if A < —1.
Next, we write the dynamical boundary condition of the brane with a DGP term. In
RS, recall that it is (2.3). More generically, the boundary condition takes the form

K;w - Kg,uu = T,LLV’ (A'll)
where T}, is the brane’s stress tensor (with a factor of 87G4;1 included in the definition),

B 167Gy 0o

Tyy=——————. A12
K /_g 59;“/ ( )
For the brane action in (A.1), this is simply
- 1 -
T = —81Ga1T G — % Ry — SR
Gy, 2
(A.13)

- AL ~ 1~
= _87er+1Tguu - ﬂ <Ruu - 2Rg,u1/> .

18We emphasize that this effective curvature scale is not the same as the induced curvature radius of the
brane read off the induced metric, e.g. (2.17).
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We have used the relationship between Grg and G411 to write the right-hand side in terms
of A\. We can then solve for the tension by contracting (A.11) with the induced metric
tensor. This yields

d—1 AL ~
T=—"K+ —R. A.14
87TGd+1 d + 2d R ( )
Now by computing the curvature invariants associated with p = 6 in (A.2),
d - did—1
K = T cos 0, R= _(Lz) sin? 0. (A.15)
we can at last write the tension as a function of A and 6:
d—1 A
T=—"— — Zsin?0) . Al
S7GaniL <cos€ 5 Sin 9) (A.16)

Equipped with (A.9) and (A.16), we may use the parameters (f,\) to fix the explicit
couplings (T, Gy,). We thus parameterize the effective theories in terms of the former.

A.2 Flat-space limits

The DGP term is often used to construct models of flat branes in flat space [17], with the RS
tension being a bare vacuum energy [79]. However, our paper is about swampland criteria
emerging from AdS/CFT, and so we are considering the DGP term in the context of AdS
branes in AdS space as in [18]. Nonetheless, to connect to braneworld phenomenology, we
can ask what happens to our constraints by taking one of two flat limits.

Roughly speaking, the first limit is to take the bulk curvature radius L to be large
(making the bulk cosmological constant vanish) and the brane tension to be 0. The second
is a flat limit of just the effective theory on the brane in which we take the effective length
scale (A.7) to be large. However, we find that the constraints from entanglement lose all
power in either case.

Let us be more specific. The first flat-space limit we can consider is one in which we
take

L—oo, T—0, Gd+17 Gyp-fixed. (A17)

In other words, we are eliminating the cosmological constant terms in (A.1). This yields
the original DGP model [17] with flat branes in a flat bulk. Instead of (A.5), the resulting
semiclassical theory on the brane is

L—o0, T—0 1 — = ~
Log ey / V=3 [R+0(R )} , (A.18)

i.e. we have that Gog = G}, and feg — oo. Note that in this regime, the requirement that
Gegr > 0 turns into the constraint Gy, > 0.
(A.17) is perfectly compatible with the semiclassical regime of the Ryu—Takayanagi

prescription Gg,1 < L%!. However, by keeping G441 and G}, finite while sending L — oo,
we are essentially imposing the limit
Grs _ (d—2)Gat

A A IGr —0 (A.19)
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Our entanglement-based swampland criteria, which require at least one negative DGP
coupling in the two-brane setup, are no longer applicable.

Another possibility is to consider a “flat-brane” limit in which the effective cosmological
1
lon

constant ~ vanishes. This can be done by taking the following limit of the tension:

d—1

T — ——.
87TGd+1L

(A.20)
For a given A, we can rephrase this in terms of a limit on the brane angle 6. From (A.16),
we get (A.20) by taking one of two values for the brane angle:

0 — 0" or §— Cos™! (1 + /2\> . (A.21)
For the first brane angle, we are essentially taking the planar brane to the conformal
boundary. In the case of two planar branes forming a wedge, this makes the wedge wider.
As seen in the main text however, the excluded points would then be pushed into the
{AM < —1}U{A2 < —1} region, in which Geg < 0 on at least one of the branes. Meanwhile,
the second brane angle only makes sense when we assume A < —1. So for this flat limit,
we see that the swampland constraints coming from entanglement are simply subsumed by
the requirement that G¢g > 0 and thus lose all power.

However, we should emphasize that we are working with a particular slicing whereby
the brane is a constant-p hypersurface in (A.2). It is conceivable that another configuration
of branes could yield well-defined bounds in flat-space limits. We leave this to future work.

B Dimension dependence of the positive-entropy constraint

In general, the entropy density of the (d 4+ 1)-dimensional black string’s horizon with two
RS + DGP branes is given by (3.25), which we recall here:

1 m—02 d,u 1 ( A1 A2 >:|
Sh=——= + + . B.1
h uﬁ*Q [/@1 sind—1 pwood—2 sin26;  sin? 20, (B.-1)

01 and 60, are the angles of the branes while A\; and Ao are their respective DGP couplings.

Furthermore, d is the number of brane dimensions. Physically, (B.1) must never be nega-
tive, but mathematically there exist ranges of A\; and Ay for which &y < 0. For fixed brane
angles (61, 602), we denote this part of the (A1, \2) parameter space by

0 ¢ 1 A A

o 1 2
= B.2
Ba(01,62) {/91 sind-1 7 + d—2 (sind_2 01 * sind—2 92) < 0} (B-2)

and assert that it resides in the swampland.

In the main text (Section 3.3), we use this condition to rule out a section of the DGP
parameter space for d = 4. For fixed angles, the constrained region is linear, and we also
compute both the intersection By and the union |J By of these excluded regions over
all choice of (61,602). The intersection is the region of DGP parameter space in which we
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get a negative horizon entropy for any choice of brane angles, while the union is that in
which we find a negative horizon entropy for at least one choice of brane angles. However,
the details may depend on d. Our goal in this appendix is to describe this dependence.
Roughly speaking, the intersection becomes smaller as d is tuned larger, but the union is
d-independent.

Intersection of excluded regions First, we observe that the horizon-entropy density

can be rewritten as a sum over the two branes:

2 jus
1 () @y [2 __du Ai d—2
Sh = = ZSh (d), &, = ) i + 75 OC 0;. (B.3)
=1 7

As in the d = 4 case, 8}@ generally'? diverges as #; — 01 or §; — 7. The signs of
these divergences depend on \;, and the divergence at 8; = 0 is particularly important for
determining the intersection. If there is a positive divergence there, then we may force the
entire sum to be positive by taking #; < 1, .
We can find the signs of these divergences by examining the derivative of S}(f) with
respect to 6;,
oS\
00;

= —csc?10; (14 Nicosb;). (B.4)

)

divergence as 6; — 0™ must be positive, while the divergence as §; — 7~ is negative. For

For |A\;| < 1, this quantity is negative, and so S}(li monotonically decreases. Thus the

|Ai] > 1, however, the derivative has a zero at 6; = 6., where

cos b, = —ii. (B.5)
Furthermore, we observe that \; > 1 implies that this is a minimum, whereas \; < —1
implies it is a maximum. So, both divergences are positive for \; > 1, whereas they are
negative for A\; < —1.
Taken together, these observations imply that if either Ay > —1 or Ay > —1, then
we may take one of the angles to be very small, inducing a positive blow-up in the total
entropy. And so,

de C {/\1 < —1} N {)\2 < —1}. (B.G)

We had found this in d = 4, but we have just shown that (B.6) is true in any number of
dimensions. Recalling that {A\; < —1} U {A2 < —1} is already deemed pathological both
because of our wrong-sign-action argument in the main text and the RT bubble argument
of [18], (B.6) means that the DGP couplings for which we get negative horizon entropy for
all combinations of brane angles are already sick.

To compute the intersection more precisely, we must specify d. Upon doing so, we
compute the maximum value of S}(j)(d) as a function of )\;. For example, these maxima for

19The exception is for d = 3, for which the setting A\; = 1 cancels the 6; — 7~ divergence and taking
i = —1 cancels the 6; — 07. These are edge cases, so we ignore them.
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Figure 8: The (A1, \2) parameter space with the d-dependent contours demarcating the
intersection (over brane angles) of all regions excluded by horizon-entropy positivity. We
depict contours for a variety of (brane) dimensions d. The intersection for a given d is the
region below the corresponding contour.

the first three values d = 3,4, 5 are

51 (3) o, =ML (B.7)
(i) _A T Ai+1
sPwl,_, =5 - pee(35). (B.3)
(V) _12-A

A B.
U6, =5 (B.9)

The point is that a pair of couplings (A1, A2) is in [ By precisely when the sum of the
maxima for brane 1 (i = 1) and brane 2 (i = 2) is negative. We can find this region by
finding the contour in (A1, A2) parameter space along which the sum of maxima are 0, then
by noting that the horizon entropy becomes negative if either DGP coupling decreases. In
other words, the intersection of excluded regions is everything to the lower-left of the zero
contour. These contours for various dimensions are shown in Figure 8.

Union of excluded regions We can also ask what part of the (A1, \2) parameter space
allows for at least one combination of brane angles furnishing a negative entropy, so as
to get a sense of how much of the parameter space could potentially be impacted by the
swampland constraints.?’ This turns out to be

UBa={M < -1} U{da <=1} U{M + A <0}, (B.10)

regardless of the number of dimensions. The argument is similar to that of the main text.
First, we note that

i m(1-4) 1 1 i
S}(l)(d) = \g; (( - 2)) §B (Sin2 0;;1 — g, 2> + di 5 csc?=26;, (B.11)
2

20To be more specific, the complement of the union is the part of the parameter space in which we will

never get a negative horizon entropy and thus have no theories ruled out by the positivity requirement.
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where B is the incomplete beta function and we employ a dimensional regularization
scheme?! to write a finite entropy. We then take the following extremal combinations
of brane angles:

1
(91 — %7 02 N g — Sl(ll)(d) + 81(12)(60 ~ m(/\l + )\2)7 (B‘12)
1
0 =0, 0= T = 5O+ 82 (d) ~ (dtzl)cscd—2 o, (B.13)
b T 0 = SO+ s~ L et )

For these respective combinations of brane angles, requiring positive horizon entropy ex-
cludes the region {A\; < —1}, {A2 < —1}, and {\1 + A2 < 0}, and so we at least have

UBac{nm<—13u{da<—13U{h + 2 <0} (B.15)

Now, we argue that any point outside of the set on the right-hand side cannot furnish
negative horizon entropy for any combination of angles. To do so, we write the general-d
bounding line in slope-intercept form:

N = Lis (s 01, 02) (Sin92>d_2A (d—2)sin® 26 / T _dw (B.16)
= 101,02) = — | — — (d —2)sin _— .

2 B,d(A1; 01,02 sin 0, 1 2 " sind1

As the constraint for fixed (61,62) is linear, it is sufficient to show the following three
statements, which we had shown for d = 4 in the main text:

(i) any bounding line must have negative slope;
(ii) any bounding line must intersect A\; = 0 at some A2 < 0; and,
(iii) any bounding line which intersects A1 +Xa = 0 once does so in {A\; < —1}U{A2 < —1}.

(1) is immediately true; the slope read from (B.16) is always negative. (ii) is true because
the integral [ csc?™1 1 is of a positive function over a positive interval (6; < 7 — 63), and
sin 05 is also positive.

(iii) is difficult to prove directly in general d, but we can prove it indirectly by using
the linearity of the bound for fixed (61,602) in conjunction with (i) and (ii). Denote the
intersection of a bounding line Lp 4 with A; + X2 = 0 by (A}, A3). Then, for any Lg 4 with a
negative slope and negative As-intercept, A} € (—1,0) implies that Lg 4 intersects Ay = —1
at some \g > 1, whereas A} € (0,1) implies that Lg 4 intersects Ay = —1 at some A; > 1.

So, we now show that the bounding line evaluated at A\; = —1 must have a value below
1. This argument along with the symmetry of the problem under interchanging 1 <> 2 is
sufficient to also assert that bounding lines intersect Ao = —1 only at A; < 1. Fixing 8, = 0
and setting 61 = 7 — 6 — 6 where ¢ € (0,7 — ), we evaluate
sin?=2 0 ™0 dp

—(d—2)sin?24

Lg4g(—1;m—0-6,0) = ————— -
sa(=Lim ) sind_2(0 +9) r_g—s sin®

(B.17)

2IThe dimensional regulator cancels the even-d divergence of the beta function, allowing us to ignore it.
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At 6 = 0, this evaluates to 1. Furthermore, its derivative is

OLg 4 sin?29
: =—(d—2)——————[1+cos(0+9)] <O0. B.18
90 |\ =_1 ( )sind_l(ﬁ +9) | ( ) ( )
The punchline is that a bounding line Lg 4 cannot actually intersect Ay = —1 at a point
where Ay > 1. By essentially the same reasoning, this line cannot intersect Ay = —1 at

a point where A\; > 1. Lastly, we note that A} # 0 unless the bounding line is itself
A1+ A2 =0. Ergo, \} ¢ (—1,1), and so (iii) is true.

With (i)-(iii) proven, we conclude that any excluded region B;(6;,62) is contained
within the union {A\; < =1} U {X2 < =1} U{A\ + A2 < 0}. Thus, (B.10) is true for any
number of spacetime dimensions.
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