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Abstract

The mode-coupling theory of the glass transition (MCT) has been at the fore-
front of fundamental glass research for decades, yet the theory’s underlying
approximations remain obscure. Here we quantify and critically assess the
effect of each MCT approximation separately. Using Brownian dynamics sim-
ulations, we compute the memory kernel predicted by MCT after each approx-
imation in its derivation, and compare it with the exact one. We find that some
often-criticized approximations are in fact very accurate, while the opposite is
true for others, providing new guiding cues for further theory development.
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1 Introduction

Predicting the dynamics of dense and supercooled liquids stands out as one of the largest
unsolved problems in classical physics. The most striking feature is that the dynamics
exhibit an orders-of-magnitude slowdown as the glass transition is approached, whilst the
microstructure remains almost unaltered. Concomitantly, complex two-step relaxation
and stretched exponential behavior emerge, structural relaxation becomes increasingly
heterogeneous in space and time, and the Stokes-Einstein relation is violated [1, 2]. The
mode-coupling theory of the glass transition (MCT) is widely considered to be the only
first-principles approach that can describe the dynamics of glass-forming liquids [3–8].
MCT is able to predict the drastic increase of the relaxation time upon supercooling
from solely structural information as input, it provides an intuitive mechanism for the
slowdown in terms of the cage effect, and it makes precise predictions for the remarkable
relation between exponents governing the two-step relaxation process. During the last
decades the theory has been successfully applied to a wide range of different systems, e.g.
those including confinement [9,10], curved geometries [11], self-propelling particles [12–17],
molecular particles [18–22], polymers [23–27], multiple particle species [28–31], external
fields [32–34], aging [35, 36], shear [37, 38], high dimensionalities [39–41], and re-entrant
phenomena [42,43].

Even though MCT is by no means an exact theory, it is all-pervasive in theories of
the glass transition and arises naturally from many different theoretical approaches and
perspectives. For example, it is central to the scenario sketched by random first order
transition theory [44], and provides a clear connection between the theories of spin-glasses
and structural glasses [45–47]. In particular, schematic MCT is exact for some spin-
glasses [45]. In a field-theoretic setting, MCT can be derived as a self-consistent one-loop
resummation [46, 48–50], and has been likened to a Landau theory [46, 51] as well as a
mean-field theory [40,44,52] for the glass transition. Various kinetic-like approaches have
also led to the same MCT equations [48,53].

Despite its successes and ubiquity, MCT is also criticized for failing to capture several
key qualitative and quantitative features of glassy dynamics. In particular, it typically
overestimates the glassiness of a material to a varying degree which depends on the specific
system studied [7,54]. Additionally, the theory does not account for the so-called dynamic
crossover [55, 56]. Specifically, MCT predicts that the structural relaxation time scales
as a power law with temperature and ultimately diverges at an ideal glass transition.
In many simulations and experiments of glass-forming liquids, this power law is indeed
also observed, but typically only at mildly supercooled temperatures; instead of diverging,
the experimental relaxation time eventually crosses over into an Arrhenius (exponential)
scaling [57–60]. The temperature at which this crossover occurs is usually referred to as
the mode-coupling temperature TMCT. The inability of MCT to predict the crossover to
Arrhenius behavior renders the theory generally only applicable at relatively weak degrees
of supercooling [7, 56].

Interestingly, the crossover temperature TMCT, like the theory it is named after, emerges
repeatedly as an important and almost universal characteristic temperature for liquid dy-
namics near the glass transition. In fact, apart from the Kauzmann temperature TK and
the experimental glass transition temperature Tg itself, the mode-coupling temperature is
the only one to appear so consistently. Physically, TMCT is often interpreted as the temper-
ature below which structural reorganizations become dominated by collective ‘activated’
or ‘hopping’ events instead of non-cooperative relaxation [1,60–62]. Relatedly, around this
crossover temperature, the potential energy landscape manifestly loses all its delocalized
unstable modes, suggesting that the crossover is caused by a localization transition [63].
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In the random first order transition theory scenario, this is interpreted as a transition to a
‘mosaic’ of local metastable states [44]. It is thus evident that the breakdown of MCT at
TMCT coincides with a physical change in the behavior of glassy liquids. Consequently, a
clear understanding of this breakdown is vital in order to advance towards a more accurate,
and ultimately exact theoretical description of the glass transition.

Many attempts have been made to rectify MCT, but these have either been largely
fruitless, at least in a qualitative sense, or they have abandoned the first-principles ap-
proach in favor of ad hoc corrections to change the predicted scenario. These efforts
include (but are not limited to) extended MCT [64, 65], generalized MCT [66–69], and
its off-diagonal cousin [70, 71], and more formal theories [72, 73]. There is a large divide
between these different approaches, not only in the method by which they attempt to
improve upon the theory, but also in the choice of the specific MCT approximations they
seek to address. The reason for this disunity of the field is mainly that the various ap-
proximations made in the derivation of MCT are notoriously unintuitive, technical, and
uncontrolled, rendering it difficult to decide which approximation should be improved in
the first place. Given that there is no consensus on which of the MCT approximations
should be addressed, it is not surprising that there also exists no agreement on the method
by which to do so. Moreover, during the conception of the theory it has been suggested
that the MCT approximations should be treated as one entangled set [74]; While this may
be understandable from a purely technical point of view, it makes it even more obscure
how to move forward.

Here we present a fundamentally new approach to investigate the validity and failures
of MCT. Instead of heuristically comparing its predictions with experimental and simula-
tion observations (which has been the approach thus far [29,54,55,75,75–82]) we rigorously
disentangle the different MCT approximations made in the derivation of the theory to re-
veal its inner workings. Arguably this approach has been deemed too challenging in the
past due to the technicalities involved, yet here we show that it is now clearly within
computational reach. Specifically, we identify and critically assess five different approx-
imations made to the MCT memory kernel: (i) neglecting projected dynamics; (ii) the
projection on density doublets; (iii) the diagonalization approximation; (iv) the factor-
ization approximation; and (v) the convolution approximation. We compute the memory
kernel before and after applying each of these approximations directly from simulations
of a frequently used model liquid, unambiguously judging their validity. Our approach
thus exposes the anatomy of microscopic MCT, allowing us to rule out a complete class of
MCT improvements and providing much-needed guidance for the development of a more
accurate first-principles theory of the glass transition.

2 Exact theory of the dynamics of colloidal liquids

Let us first specify our system of interest. We consider the dynamics of a three-dimensional
colloidal fluid of N particles. The position ri of particle i evolves according to the over-
damped Langevin equation [83]

ṙi = ζ−1Fi + ξi(t), (1)

in which ζ is the friction coefficient, Fi is the potential force acting on particle i, and
ξi(t) is a random force that satisfies ⟨ξi(t)⟩ = 0, and ⟨ξi(t) · ξj(t′)⟩ = 6D0δijδ(t − t′),
in which D0 = kBT/ζ is the self-diffusion coefficient. We denote the thermal energy by
kBT . For the interaction term we use the repulsive Weeks-Chandler-Andersen potential
(see Appendix B.1 for details). In order to assess the MCT approximations in the cleanest
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possible test case, we avoid any potentially confounding effects due to polydispersity or
non-additivity [75], and hence we focus on a simple monodisperse system in the liquid
regime.

The particle trajectories generated by Eq. (1) contain in principle the full dynam-
ics of the system, but one can equivalently consider the joint probability distribution
P (r1, . . . , rN , t), which specifies the probability density of finding a particle i in a vol-
ume dri centered around ri at time t. In equilibrium, when the probability density is
time-independent, P (r1, . . . , rN ) defines an ensemble average of some observable A as

⟨A⟩ =
∫

dr1 . . . drNA(r1, . . . , rN )P (r1, . . . , rN ). (2)

The probability density function formally evolves in time according to the Smoluchowski
equation Ṗ (r1, . . . , rN , t) = ΩP (r1, . . . , rN , t), in which Ω is the Smoluchowski operator

Ω =

N∑
i=1

[
D0∇2

i − ζ−1∇i · Fi

]
. (3)

This operator will become important when defining the MCT approximations below.
In the context of dense liquids and the glass transition, we are mainly interested in

the structural relaxation dynamics of the liquid. A standard probe for such structural
relaxation is the intermediate scattering function

F (k, t) =
1

N

〈
ρ∗ke

Ω†tρk

〉
=

1

N
⟨ρ∗kρk(t)⟩ . (4)

Here ρk =
∑

j e
ik·rj is a density mode, i.e. the Fourier transform of the microscopic

density at wave vector k (k = |k|). The operator Ω† is the Hermitian conjugate of
the Smoluchowski operator, which does not act on the probability distribution P in the
definition of the ensemble average. The initial condition of the intermediate scattering
function is the static structure factor S(2)(k) ≡ F (k, t = 0), where we have added the
superscript (2) to clarify that this is a two-point density correlation function. Note that
for isotropic liquids such as the one considered in this work, F (k, t) and S(2)(k) depend only
on the magnitude k of the wave vector. Both F (k, t) and S(2)(k) can be readily obtained
from scattering experiments or computer simulations and are therefore also widely studied
in theories and experiments of dense liquids [84].

In order to obtain an exact equation of motion for the density modes ρk(t) and their
associated correlation function F (k, t), we use the operator formalism of Mori and Zwanzig
[85,86]. The basic principle is to decompose the space of dynamical variables into a resolved
subspace, which is spanned by the density modes, and an unresolved subspace containing
all other dynamical variables. Briefly, we perform this decomposition by introducing a
projector P = ρk⟩ ⟨ρ∗kρk⟩

−1 ⟨ρ∗k that projects onto the space spanned by the density
modes, and the associated orthogonal projector Q = 1− P. For technical reasons unique
to Brownian systems (elaborated in Appendix A), we also need a second exact projection

step with the projectors P ′ = ρk⟩
〈
ρ∗kΩ

†ρk
〉−1 〈

ρ∗kΩ
† and Q′ = 1 − P ′. The framework

enables us to write a generalized Langevin equation for the density modes such that the
only coupling between the resolved and the unresolved space is contained in the so-called
fluctuating force Rk(t) and a memory kernel K(t) that describes the time-autocorrelation
function of the fluctuating force. By multiplying the resulting equation with ρ∗k(t) and
taking an ensemble average, we find the following equation of motion for the intermediate
scattering function [8, 87,88]:
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∂F (k, t)

∂t
+

D0k
2

S(k)
F (k, t) +

∫ t

0
dτK(k, t− τ)

∂F (k, τ)

∂τ
= 0. (5)

Here, the memory kernel is defined as

K(k, t) =
1

Nk2D0

〈
R∗

ke
Ω†Q′′tRk

〉
. (6)

In this representation, Q′′ = QQ′, and

Rk = QΩ†ρk = −D0k
2ρc(2)(k)ρk +

i

ζ

∑
j

(k · Fj)e
ik·rj (7)

is the fluctuating force, in which c(2)(k) is the direct correlation function [84].
Equation (5) provides an exact description of the dynamics of a dense liquid. Explic-

itly, if we would be able to compute the exact memory kernel K(k, t), the exact density
correlation function F (k, t) can be obtained. However, the kernel poses a major theoret-
ical bottleneck, since there exists no general theory that allows for an exact prediction
of K(k, t). It is the aim of mode-coupling theory to approximate this memory kernel
such that it can be evaluated in a self-consistent manner. The first difficulty in treating
K(k, t) lies in the fact that the exact kernel evolves according to a different differential

equation than standard observables, that is, it evolves with eΩ
†Q′′t instead of the standard

eΩ
†t. This means that it is non-trivial to compute it either from theory or from standard

particle-based simulations [89,90].
Nonetheless, it is possible to write an exact integral equation for the memory kernel

by using the Dyson operator identity [91]. The result is

K(k, t) = KΩ†(k, t) +

∫ t

0
dτK(k, t− τ)W (k, τ) (8)

in which both KΩ†(k, t) and W (k, τ) are functions that evolve with standard Brownian
dynamics and can thus be measured directly from simulations. Their precise definitions
are given in Appendix A. Once these functions are measured, we can numerically solve
the integral equation of Eq. (8) to find the exact memory kernel K(k, t) governing the full
dynamics. This exact kernel will serve as our benchmark in order to assess the quality of
the various MCT approximations.

As a consistency check, we have verified our procedure for obtaining the exact memory
kernel by inserting the calculated K(k, t) from Eq. (8) back into Eq. (5). The resulting
F (k, t) can then be compared to F (k, t) measured directly from the same simulations.
This comparison is made in Fig. 1, where the full lines are the direct measurement and
the dashed lines are the solutions of Eqs. (8) and (5) at the location of the main peak of the
structure factor. These results show that the intermediate scattering function is indeed
very faithfully recovered by our procedure, confirming that the obtained K(k, t) is a very
accurate reconstruction of the exact memory kernel and thus an accurate benchmark for
MCT. Numerical details of this procedure are presented in Appendix B.2.

3 Approximations of the memory kernel

Having established the exact equation of motion and the exact memory kernel, we now
proceed to assess the validity of various approximations made to the memory kernel within
the framework of MCT. In order to do so, we follow the standard MCT derivation [3, 8]
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Figure 1: Intermediate scattering functions F (k, t) for our colloidal liquid as a
function of time t for different temperatures, evaluated at the location of the
main peak of the static structure factor (k = 7.0). The solid lines correspond
to F (k, t) obtained from direct simulation measurements, while the black dashed
lines correspond to the numerical solutions of the exact equations (5) and (8).
This comparison serves to validate our numerical procedure to extract the exact
memory kernel via Eq. (8).

and evaluate the memory kernel after each main step in the derivation. For completeness
we also present the full derivation of MCT in Appendix A. Our key result is presented in
Fig. 2, which shows the obtained approximate memory kernels, as well as the correspond-
ing intermediate scattering functions, for the highest and lowest temperatures considered
in this work. All comparisons are made at the wave number corresponding to the main
peak of the static structure factor, i.e. k = 7.0. This wave number is chosen as it corre-
sponds to the typical distance between nearest neighbors, and hence to the typical cage
size; Within MCT, this length scale governs the cage effect and is deemed the most impor-
tant for structural relaxation [92]. In the next subsections, we discuss each of the MCT
approximations in order of appearance in the derivation.

3.1 Neglecting projected dynamics

The exact memory kernel K(k, t) = 1
Nk2D0

〈
R∗

ke
Ω†Q′′tRk

〉
is propagated in time using

the operator eΩ
†Q′′t. Unfortunately, the presence of the orthogonal projector Q′′ ren-

ders the time evolution of the memory kernel physically non-intuitive and mathemati-
cally intractable, since it does not behave in accordance to the same physical laws that
underlie the normal Brownian dynamics of microscopic observables (which evolve with

eΩ
†t). There exists some analytical work for simple systems expanding eΩ

†Q′′t in poly-
nomials of Q′′, which thus can be applied to provide increasingly accurate expressions
for the memory kernel [93, 94]. However, within mode-coupling theory, the approxima-

tion eΩ
†Q′′t = eΩ

†(1−P ′′)t ≈ eΩ
†t is employed to keep the theory tractable. We refer to
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Figure 2: The memory kernel and associated intermediate scattering functions
for our colloidal liquid at several steps in the derivation of mode-coupling theory.
The top panels show the memory kernels at T = 1.0 (left) and T = 3.0 (right) as
a function of time. Here, K is the exact memory kernel, KΩ† is the kernel with

projected dynamics, Koffdiag, Kgmct, Kmct, andK
(2)
mct are the memory kernels after

the doublet projection, diagonalization, factorization, and convolution approxi-
mations, respectively. For the meaning of the error bar in the off-diagonal kernel,
we refer to the Appendix. The inset is a zoom-in of the final relaxation behavior.
The bottom panels show the intermediate scattering functions at the same tem-
peratures as a function of time according to each of the different memory kernels,
obtained by solving the corresponding generalized Langevin equation. The black
dashed line indicates the exponential relaxation that corresponds to a liquid with
no memory. In the bottom left figure, we show in the inset the intermediate

scattering functions obtained from K(t), K
(2)
mct, and from a full self-consistent

solution, denoted as F
(2)
scmct, of the mode-coupling equations using only structure

as input.

this approximation as neglecting the projected dynamics. Note that the neglect of P ′′ in
the propagator is also trivially required after the final MCT approximation is made (see
Sec. 3.4) [3]. In the present work, however, we treat the neglect of P ′′ as the first explicit
MCT approximation, as it can be imposed separately from later MCT approximations.
This first step implies that K(k, t) ≈ KΩ†(k, t) where KΩ†(k, t) is the same function that
appears in the integral equation of Eq. (8) for the exact memory kernel.

Figure 2 shows both the exact memory kernel K(k, t) and the approximate kernel
without projected dynamics, KΩ†(k, t), at the wave number corresponding to the main
peak of the static structure factor. It is clear that when t → 0, the two kernels become
equal. While this is mathematically trivial, it can also be physically understood by the
realization that the fluctuating force Rk resides in the subspace orthogonal to the density
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modes, implying that projections onto the orthogonal subspace have no effect when applied
directly. However, as t increases, the influence of the part of the fluctuating force that
evolves into the space spanned by density modes grows, resulting in a slower initial decay of
the true memory kernel compared to the one with standard Smoluchowski dynamics. The
results is that KΩ†(k, t) corresponds to more liquefied short-time dynamics than K(k, t).

Interestingly, the relaxation of the projected kernel KΩ† at long times is in fact slower
than that of the exact memory kernel, developing a very low shoulder that delays the final
relaxation process. This can be seen most clearly in the insets of Fig. 2. The corresponding
intermediate scattering functions FΩ†(k, t) reveal the same pattern, i.e. after an initially
faster decay, they ultimately relax over a longer time scale than the exact F (k, t) at both
temperatures. This clearly implies that the orthogonal dynamics are not simply “rescaled”
regular dynamics, and that the neglect of P ′′ thus introduces a non-trivial modification of
the full time-dependent dynamics.

3.2 Projection on density doublets

The next step in the derivation of mode-coupling theory is to project the memory kernel
on the space spanned by doublets of density modes. The motivation for this projection is
that, next to the singlet density modes ρk which we have explicitly included as our resolved
variables in the Mori-Zwanzig formalism, the most important dynamic observables for
structural relaxation are products of two density modes ρkρk′ [95]. As we have not included
them directly in the theory, their effects must still be contained within the memory kernel,
and can thus be extracted by projecting it on the space of all density doublets ρqρq′ . After
carrying out this projection, we obtain what we call the off-diagonal memory kernel, which
contains only contributions originating from the space of density doublets,

Koffdiag(k, t) =
ρ2D0

4N3

∑
q′q

V ∗
k,q′

〈
ρ∗q′ρ∗k−q′ρq(t)ρk−q(t)

〉
Vk,q. (9)

Note that here the density modes evolve in time with normal dynamics eΩ
†t. In the above,

we have introduced the vertex as

Vk,q =
N

2ikρD0

∑
q′′

〈
ρ∗qρ

∗
k−qρq′′ρk−q′′

〉−1 〈
ρ∗q′′ρ∗k−q′′Rk

〉
, (10)

which can be interpreted as a static coupling constant for wave vectors k and q. The
inverse four-point structure factor(

S(4)
)−1

(q,k− q,q′′,k− q′′)/N3 ≡
〈
ρ∗qρ

∗
k−qρq′′ρk−q′′

〉−1
(11)

appears here as the normalization of the density-doublet projector such that it is idempo-
tent.

While the time-dependent off-diagonal four-point density correlation function in Eq. (9)
can be evaluated numerically, its static inverse is unfortunately more problematic. The
reason is that it is defined by the relation

2
∑
q1q2

〈
ρ∗k1

ρ∗k2
ρq1

ρq2

〉−1
〈
ρ∗q1

ρ∗q2
ρk3ρk4

〉
= δk1k3δk2k4 + δk1k4δk2k3 , (12)

rendering the problem of finding it an intractably large linear algebra problem. To proceed,
we therefore simplify the vertices by neglecting the off-diagonal terms, retaining only the
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terms in the sum for which q′′ = q and q′′ = k− q, i.e.,

Vk,q ≈ N

ikρD0

〈
ρ∗qρ

∗
k−qρqρk−q

〉−1 〈
ρ∗qρ

∗
k−qRk

〉
(13)

= (k̂ · q)c(2)(q) + k̂ · (k− q)c(2)(k− q)− kρc(3)(−k,k− q,q), (14)

where we have introduced the direct correlation functions c(2) and c(3). These can be
related to the corresponding structure factors as 1/S(2)(k) = 1− ρc(2)(k), and

S(3)(k1,k2,k3)

S(2)(k1)S(2)(k2)S(2)(k3)
= 1 + ρ2c(3)(k1,k2,k3). (15)

Here, the three-point structure factor is defined as S(3)(k1,k2,k3) = ⟨ρk1ρk2ρk3⟩ /N .
It is important to note that we have now made two independent approximations in this

step: the projection on density doublets and the diagonalization of the inverse four-point
structure factor in the vertex. We currently have no direct means to separate the effects of
these two approximations. Fortunately, however, there is a way in which we can indirectly
estimate the validity of the static diagonalization approximation in isolation, namely by
considering the t = 0 limit of the dynamic four-point correlations. We shall revisit this
point in Sec. 4.

To assess the overall quality of this step, we measure the off-diagonal kernel of Eq. (9)
with the approximated vertices of Eq. (14) from our simulation data. The results in Fig. 2
clearly show that this step causes a significant overestimation of the memory, resulting
in an error in the relaxation time of an order of magnitude. The size of this error seems
to increase as the temperature is lowered, suggesting that the discrepancy might become
more severe as the glass transition is approached. Moreover, the shoulder that is already
visible in the memory kernel KΩ† is much more pronounced in the off-diagonal kernel.
The presence of this shoulder suggests that the relaxation of the off-diagonal memory
kernel consists of a slow and a fast relaxation process, where the slow process is spuriously
causing an overestimation of the structural relaxation time.

3.3 Diagonalization

Up to this point, we have expressed the approximate memory kernel in terms of static
system properties ρ, D0, S

(2)(k), and S(3)(k1,k2,k3), and a time-dependent part given by
the off-diagonal four-point correlation function

F (4)(k1,k2,k3,k4, t) =
〈
ρ∗k1

ρ∗k2
ρk3(t)ρk4(t)

〉
/N. (16)

To proceed, there are two possible approaches. Firstly, one may construct a separate equa-
tion of motion for F (4), which can be solved self-consistently with Eq. (5). This approach
is called off-diagonal generalized mode-coupling theory [70,71]. The main drawback of this
idea is that the integrals involved are difficult to evaluate numerically within reasonable
computational time due to the large combinatorial space of wave vector arguments. The
second approach is much more common [96] and is also used in classical mode-coupling
theory: from the four-point function F (4), all off-diagonal terms are neglected. Specifically,
we keep only two diagonal terms in the sum of Eq. (9), that is, the terms where q′ = q
and q′ = k−q. Thus, upon diagonalization only those remain and all other terms vanish:

Kgmct(k, t) =
ρ2D0

2N3

∑
q

|Vk,q|2
〈
ρ∗qρ

∗
k−qρq(t)ρk−q(t)

〉
. (17)
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We stress that, similar to the diagonalization of the inverse four-point structure factor(
S(4)

)−1
in the vertices, this technical approximation is uncontrolled.

The reason we choose to denote this memory kernel with the subscript ‘gmct’ is that
this is the same kernel that appears in the first equation of the Generalized Mode-Coupling
Theory (GMCT) hierarchy [67–69]. GMCT attempts to improve on MCT by retaining
the diagonal four-point function explicitly and constructing a new equation of motion for
it (i.e. avoiding factorization, which shall be treated in the next step, Section 3.4). Briefly,
GMCT proceeds by re-applying the Mori-Zwanzig formalism using density doublets as the
resolved variables and projecting the new fluctuating force on density triplets, yielding a
six-point density correlation function in the new memory kernel. In principle this scheme
can be continued for arbitrarily many density modes, creating an infinite hierarchy which
can be truncated or solved self-consistently at arbitrary finite order. In this way, GMCT
seeks to delay the factorization approximation of MCT. We note that in some works,
the dynamic diagonalization approximation and factorization are collectively referred to
as “the factorization approximation”, because the factorization of a four-point function
implies its diagonalization. For clarity we keep them separate here.

Figure 2 shows that the diagonalization approximation of the dynamic four-point den-
sity correlation has a major effect on the predicted memory kernel: compared to the
off-diagonal kernel of the previous step, the kernel is reduced by approximately a factor
of two, and the time scale of relaxation is about an order of magnitude faster. This large
effect of the diagonalization approximation can be seen as a confirmation that the ap-
proximation is inherently uncontrolled, but at the same time it also partially corrects for
the significant overestimation error introduced in the previous step. Note also that the
clear shoulder present in the off-diagonal kernel has disappeared, suggesting that the two
relaxation processes seen in the decay of the off-diagonal memory can in fact be identified
as a fast process characterized by diagonal density decorrelations and a slow off-diagonal
contribution.

3.4 Factorization

The next and sometimes last step in the derivation of classical mode-coupling theory is to
factorize the diagonal four-point function in terms of a product of two-point functions,

Kmct(k, t) =
ρ2D0

2N3

∑
q

|Vk,q|2
〈
ρ∗qρq(t)

〉 〈
ρ∗k−qρk−q(t)

〉
(18)

=
ρ2D0

2N

∑
q

|Vk,q|2F (q, t)F (|k− q|, t). (19)

We denote this memory kernel with the subscript ‘mct’ since it is the standard kernel that
is widely used in microscopic mode-coupling theory [5]. Notably, this kernel is expressed
in terms of the intermediate scattering functions F , and hence Eq. (5) now becomes a
self-consistent equation. In order to test the factorization approximation, however, we do
not solve Eqs. (5) and (18) self-consistently, but rather we evaluate the kernel of Eq. (18)
directly from simulation data, similar to how the previous memory kernels were computed.

From Fig. 2 it can be seen that the data of Kgmct are identical to those of Kmct

within our error margins. This forces us to conclude that, at least in the liquid regime,
the factorization approximation of diagonal density correlations is very accurate and
can be employed without caution. We have confirmed that

〈
ρ∗k1

ρ∗k2
ρk1(t)ρk2(t)

〉
and〈

ρ∗k1
ρk1(t)

〉 〈
ρ∗k2

ρk2(t)
〉
show similar agreement in our simulations.

The validity of the factorization approximation is, in fact, not very surprising, since
there exists a host of literature (e.g. [97]) showing that the four-point dynamic suscep-
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tibility χ(4)(k1,k2, t) =
〈
ρ∗k1

ρ∗k2
ρk1(t)ρk2(t)

〉
−

〈
ρ∗k1

ρk1(t)
〉 〈

ρ∗k2
ρk2(t)

〉
scales as O(N) 1

whereas the two terms on the right hand side scale with O(N2). The notion that rela-
tive fluctuations are vanishingly small in the thermodynamic limit is typical in statistical
physics. Since the fluctuations captured in χ(4) are a direct measure for the error of the
factorization approximation, one can readily infer that in the thermodynamic limit, the
factorization approximation becomes exact. This statement holds throughout the super-
cooled phase as long as χ(4) remains finite, which simulations indicate it does [97–99]
(mode-coupling theory predicts it to diverge only at the ideal glass transition, but to re-
main finite everywhere else [32]). In this light it is hard to justify attempts to avoid or
delay the factorization of four-point density correlations in cases where one is willing to
diagonalize them.

3.5 Convolution approximation

The last approximation usually employed in the derivation of MCT is the convolution
approximation for the vertices [100], which simplifies the required static input for the
theory. Although there are analytical results for the three-point direct correlation function
c(3) of hard particles [101], the theory becomes more tractable if it only requires two-point
functions as input. To this end, the convolution-approximation is often employed, setting
c(3) = 0 [102] (see [31, 103, 104] for notable exceptions). We add a superscript (2) to
the mode-coupling theory memory kernel Kmct(k, t) to indicate that structural triplet
correlations are neglected. Note that we could also have made this approximation at any
earlier point in the theory, but we conjecture that the effect of it is insensitive to when it
is actually employed.

We show in Fig. 2 that the neglect of triplet correlations in the vertices only has a small
quantitative effect on the dynamics, very weakly increasing or decreasing the predicted
memory kernel and intermediate scattering functions depending on the temperature. Note

that the lines for Kgmct(k, t), Kmct(k, t), and K
(2)
mct(k, t) lie very close together and are

therefore hard to distinguish. This is clear evidence that the inclusion of triplet correlations
is unnecessary for our colloidal liquid at the density and temperatures considered in this
work.

The fact that the triplet correlations have no significant influence on the predicted
dynamics indicates that, at least in the liquid regime studied in this work, the microscopic
structure is still well described by two-point correlation functions only. In general, however,
the validity of the convolution approximation depends highly on the material and state
point studied. For example, the incorporation of triplet correlations is known to be more
important for strong network-forming systems than for fragile models such as the one
studied here [104], and supercooling to lower temperatures may also give rise to non-
trivial higher-order structural features [105–110].

4 Discussion

In this work we have explicitly resolved each of the main approximations comprising the
standard mode-coupling theory of the glass transition, allowing us to unveil the effect
of each consecutive approximation on the predicted memory kernel for a model colloidal
liquid. In all cases, the approximate kernel could be benchmarked against the exact
result, providing an unambiguous test for the theory’s validity. Let us now discuss the

1In fact, χ4 can be obtained by taking two functional derivatives of the free energy with respect to
intensive fields. This means that χ4 must extensive.
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relative importance of each MCT approximation step. Our main results, summarized in
Fig. 2, clearly show that, apart from the factorization and convolution approximations, all
approximations have a significant and non-trivial effect on the memory kernel. Specifically,
the first three approximations affect both the absolute magnitude of the kernel and the
time scales of decay, biasing the predictions either towards more liquid-like or more glassy
dynamics and imposing qualitatively different decay patterns. Curiously, after the final
MCT approximation is made, the predicted intermediate scattering function is closest to
the exact dynamics, at least in the regime of dense (yet not supercooled) liquids studied
in this work. We also point out that the MCT approximations which are virtually exact,
i.e. factorization and convolution, are ironically the ones for which the most attempts have
been made in the past to circumvent them.

Our work identifies two key approximations that manifestly impact the memory kernel
the most, both of which involve neglecting off-diagonal four-point density correlations.
Explicitly, when going from KΩ† to Koffdiag we neglect the static off-diagonal terms in
the vertices, and when going from Koffdiag to Kgmct we neglect the dynamic off-diagonal
terms. These two steps coincide with a significant increase and decrease of the approximate
memory kernel, respectively. However, recall that the diagonalization of the static four-

point function only applies to its inverse
(
S(4)

)−1
[see Eq. (14)], whereas for the dynamic

case the diagonalization approximation is applied to the standard correlation function. We
surmise that this causes the two diagonalization approximations to have, in effect, opposite
signs. The combined result of both approximations is thus a fortuitous cancellation of
errors, which we believe also underlies, at least in part, the success of standard MCT.

As already mentioned in the introduction, it is well known that standard MCT has
the general tendency to overestimate the glassiness of a system. Our results of Fig. 2
now allow us to expose precisely which step in the MCT derivation is responsible for
this overestimation, namely Koffdiag. Recall that at this step the projection onto density

doublets is introduced, combined with our diagonalization of
(
S(4)

)−1
. Unfortunately, we

are currently unable to directly separate the effects of these two approximations due to
the great computational difficulties associated with evaluating the off-diagonal version of(
S(4)

)−1
. However, we can provide indirect evidence that the static diagonalization, rather

than the projection on doublets itself, is the more likely cause of the overestimation error
of Koffdiag. Briefly, we find that the diagonalization of the dynamic four-point function
introduces a change in the predicted memory kernel of around 50% at t → 0 (comparing
Koffdiag with Kgmct at T = 1.0). We expect that employing this same approximation
to the inverse four-point correlation function in each vertex should introduce at least a
similar error in the opposite direction (going from KΩ† to Koffdiag). This is also consistent
with what we observe in Fig. 2. Strengthened by the fact that the projection on density
doublets itself is sometimes claimed to be exact [68]2, we conjecture that the main source
of error in MCT ultimately stems from the neglect of off-diagonal density correlations.

In contrast to the method by which we have evaluated the MCT memory kernel, which
is to use the intermediate scattering function F obtained from simulations, the usual way
to solve MCT is to do so self-consistently. That is, the two-point correlation function F
that appears in Kmct is chosen such that it satisfies equation (5) with Kmct as memory
kernel. This self-consistency effectively magnifies the error made by MCT, since any small
error propagates iteratively through both the kernel and F itself. From the main results in
Fig. 2 we can already infer that self-consistent MCT should yield an overestimation of the
intermediate scattering function as compared to our directly calculated Fmct. To see this,
we write Kmct ≡ Kmct[F ] and note from our results that Fmct > F for all times, at least

2Even if the projection on doublets were not exact, it should be very accurate in systems with sufficiently
high temperatures such that structural two-body correlations dominate higher order ones.
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at low temperatures. It follows that Kmct[Fmct] > Kmct[F ], and hence the overestimation
error will be further increased in subsequent self-consistent iterations until convergence is
reached. To numerically confirm that this is indeed the case, we show the self-consistent

MCT solution F
(2)
scmct in the inset of the bottom left panel of Fig. 2. Explicitly, for our

system at T = 1, self-consistent MCT predicts a relaxation time of τα = 0.6, whereas
our measurements give τα = 0.3 for MCT, and the true relaxation time is only τα = 0.2.
In addition to this overestimation, the self-consistency property also gives rise to the
prediction of a spurious divergence of the relaxation time. Overall our main results thus
understate the severity of the errors made by self-consistent MCT.

Using our results, we have argued that there is little reason to attempt to improve
MCT by delaying or avoiding the factorization approximation specifically. Nevertheless,
such attempts have had significant success in recent years in the form of (diagonal) gener-
alized mode-coupling theory, as it typically improves upon the quantitative predictions of
MCT [67–69,111, 112]. In hindsight, we believe that these improvements are again fortu-
itous consequences of another cancellation-of-errors effect. In order to solve the equation
of motion for the diagonalized four-body correlator

〈
ρ∗kρ

∗
qρk(t)ρq(t)

〉
, several additional

approximations are made within GMCT, whose effects seem to partially cancel the errors
made by the standard MCT, yielding quantitatively improved results. If, within GMCT,
an exact equation of motion for diagonal four-body correlators in terms of the intermediate
scattering function was employed, the theory would reproduce the factorization approxi-
mation in the thermodynamic limit and therefore the results of GMCT would be equivalent
to that of MCT.

5 Conclusion and Outlook

In conclusion, we have unveiled the effect of each of the approximations that enter the
mode-coupling theory derivation. Our results explicitly show that the success of standard
MCT is rooted in a remarkable cancellation of errors, as conjectured earlier from a different
perspective [113]. We have found that the diagonalization approximation in the statics
and dynamics has the most significant impact on the predicted dynamics. It is clear from
our results that any attempt to improve this approximation by including off-diagonal
density correlations should treat both the statics and dynamics on an equal footing lest
the predictions of the theory may be worsened.

In future research we aim to apply our methods to a more supercooled system in order
to evaluate whether our conclusions hold when the glass transition is approached. Prelim-
inary results suggest that they do. Similarly, it is still an open question to what degree
our findings depend on the type of dynamics studied and on the fragility of the material
in question. We believe that more work in this direction should inform a more systematic
approach to improving one of the most promising theories of the glass transition.

One can envision several routes toward a more quantitative dynamical theory of the
glass transition. Firstly, the effects of the projected dynamics can be dealt with rigorously
in a self-consistent manner; Indeed, it is not hard to express W (k, t) directly in terms of
F (k, t) and its derivatives, which can then be used in conjunction with Eq. (8) to include
the effects of projected dynamics. Secondly, in order to include off-diagonal four-point
correlations into the theory, novel numerical schemes may be employed, especially efficient
integration and inversion routines, to evaluate the off-diagonal memory kernel. To alleviate
the computational costs, one may also seek to restrict the full wave vector space to only the
most important off-diagonal correction terms. In this regard, including e.g. only the wave
vectors corresponding to the main peaks of S(4) [110] might already provide a reasonable
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improvement. Finally, formal perturbative diagrammatic corrections to MCT have been
derived [48, 72]. Numerical integration or analytic analysis of the diagrams involved may
provide invaluable new insights in the microscopic dynamics of the glass transition.
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A The memory kernel equation

In order to write an equation of motion for the intermediate scattering function F (k, t),
we separate the evolution of it into a part that propagates in the space spanned by the
density modes, and a space orthogonal to it. This we do by multiplying by 1 = P + Q,
in which P = ρk⟩ ⟨ρ∗kρk⟩

−1 ⟨ρ∗k is the projector onto the space spanned by the density
modes, and Q = 1− P its orthogonal complement. This yields

∂F (k, t)

∂t
=

1

N

〈
ρ∗kΩ

†(P +Q)eΩ
†tρk

〉
(20)

= −k2D0

S(k)

(
F (k, t) +

∫ t

0
dτKred(k, t− τ)F (k, τ)

)
where we have used the Dyson decomposition identity,

eΩ
†t = eΩ

†Qt +

∫ t

0
dτeΩ

†Q(t−τ)Ω†PeΩ
†τ (21)

and introduced the reducible memory kernel Kred(k, t) = 1
k2ND0

〈
R∗

ke
QΩ†QtRk

〉
. Here

Rk = QΩ†ρk is the fluctuating force.
Because Eq. (20) is difficult to work with numerically, it is customary to perform a

second projection with projector operator P ′ = ρk⟩
〈
ρ∗kΩ

†ρk
〉−1 〈

ρ∗kΩ
† in order to change

the form of the time integral into one that is more stable [87]. After invoking the Dyson
decomposition identity again in the form

eQΩ†Qt = eQΩ†Q′Qt +

∫ t

0
dτeQΩ†Q(t−τ)QΩ†P ′QeQΩ†Q′Qτ , (22)
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we find

Kred(k, t) = K(k, t)−
∫ t

0
dτKred(k, t− τ)K(k, τ), (23)

in which K(k, t) = 1
Nk2D0

〈
R∗

ke
Ω†Q′QtRk

〉
is the irreducible memory kernel. In Laplace

space, Eqs. (20) and (23) can be straightforwardly combined to give in real space

∂F (k, t)

∂t
+

D0k
2

S(k)
F (k, t) +

∫ t

0
dτK(k, t− τ)

∂F (k, τ)

∂τ
= 0. (24)

In the main text, we have introduced Q′′ ≡ Q′Q to simplify notation.
To confirm that we have not yet made any approximations, we can use the Dyson

identity one last time,

eΩ
†Q′Qt = eΩ

†t −
∫ t

0
dτeΩ

†Q′Q(t−τ)Ω†(1−Q′Q)eΩ
†t, (25)

to find an integral equation for the irreducible memory kernel, yielding

K(k, t) = KΩ†(k, t) +

∫ t

0
dτK(k, t− τ)W (k, τ) (26)

in which we introduce the fluctuating force auto-correlation function

KΩ†(k, t) = (Nk2D0)
−1

〈
R∗

ke
Ω†tRk

〉
(27)

and the correlation function between the fluctuating force and Ω†ρk,

W (k, t) = (Nk2D0)
−1

〈
ρ∗kΩ

†eΩ
†tRk

〉
. (28)

Since the latter two quantities evolve in accordance with the standard evolution oper-
ator eΩ

†t, we can measure them directly from particle resolved Brownian dynamics simu-
lations. The results are shown in Fig. 3. The first of the two can be rewritten as

KΩ†(k, t) =
1

N

(
β

ζk2

〈
h∗ke

Ω†thk

〉
−2

ρc(k)

ζ

〈
ρ∗ke

Ω†thk

〉
+D0k

2 (ρc(k))2
〈
ρ∗ke

Ω†tρk

〉)
,

(29)

in which we have introduced hk = i
∑

j(k·Fj)e
ik·rj . We denote this quantity as KΩ† seeing

that it is equivalent to the irreducible memory kernel K evolving with the Smoluchowski
operator Ω† instead of with Ω†Q′Q. Similarly, for W (k, t) we can write

W (k, t) =
1

N

(
β

ζk2

〈
h∗ke

Ω†thk

〉
−1 + ρc(k)

ζ

〈
ρ∗ke

Ω†thk

〉
+D0k

2ρc(k)
〈
ρ∗ke

Ω†tρk

〉)
.

(30)

The latter two equations show that these functions have many terms in common (in fact,
their definitions differ only by a Q), which is reflected in their remarkably similar decay
as presented in Fig. 3(c,d).

Now that we have measured the functions W (k, t) and KΩ†(k, t), we can solve the
integral equation Eq. (8) numerically, and insert the result into Eq. (5). The intermediate
scattering function found by this method can be compared to one directly measured from
the same simulations. This comparison is made in Fig. 1.
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Figure 3: Time-correlation functions as a function of time t at the peak of the
static structure factor kσ = 7.0 obtained by direct simulation measurement.
Panel (a) shows the correlation between the density modes ρk and the momentum
averaged longitudinal stress hk, and (b) displays the auto-correlation function of
that stress. In (c) and (d) we show W (k, t) and KΩ†(k, t) which together deter-
mine the irreducible memory kernel as expressed by Eq. (8) of the main text. The
data are extracted from Brownian dynamics simulations of a Weeks-Chandler-
Andersen system at number density ρ = 0.95 for four different temperatures
above the crystallization transition.

In order to derive the mode-coupling equation, we follow the main text and start with

the irreducible memory kernelK(k, t) = 1
Nk2D0

〈
R∗

ke
Ω†Q′QtRk

〉
. As a first step, we replace

the orthogonal dynamics with standard dynamics, yielding

KΩ†(k, t) =
1

Nk2D0

〈
R∗

ke
Ω†tRk

〉
. (31)

The second step is to project on density doublets,

Koffdiag(k, t) =
1

Nk2D0

〈
R∗

kP2e
Ω†tP2Rk

〉
, (32)

in which the projection operator P2 projects on the space of all density doublets, i.e.

P2 =
1

4

∑
k1k2k3k4

ρk1ρk2⟩
〈
ρ∗k1

ρ∗k2
ρk3ρk4

〉−1 〈
ρ∗k3

ρ∗k4
. (33)

The prefactor is included to prevent over-counting. Substituting (33) into (32), we find

K(k, t) ≈ 1

16Nk2D0

∑
ki

∑
k′
i

⟨R∗
kρk1ρk2⟩

〈
ρ∗k1

ρ∗k2
ρk3ρk4

〉−1
〈
ρ∗k3

ρ∗k4
eΩ

†tρk′
1
ρk′

2

〉
×
〈
ρ∗k′

1
ρ∗k′

2
ρk′

3
ρk′

4

〉−1 〈
ρ∗k′

3
ρ∗k′

4
Rk

〉
. (34)

Inserting the definition of the Smoluchowski operator and integrating by parts, it is
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not hard to show that〈
ρ∗k1

ρ∗k2
Rk

〉
= −D0Nδk,k1+k2 (35)

×

[
(k1 · k)S(2)(k2) + (k2 · k)S(2)(k1)−

k2S(3)(−k1,−k2,k1 + k2)

S(2)(k)

]
.

This leads us to define the vertex

Vk,q =
N2

2ρ

∑
p

〈
ρ∗qρ

∗
k−qρpρk−p

〉−1
(36)

×

[
(k̂ · p)S(2)(|k− p|) + (k̂ · (k− p))S(2)(p)− k

S(3)(−p,p− k,k)

S(2)(k)

]
,

so that the memory kernel reduces to

Koffdiag(k, t) =
1

4

D0ρ
2

N3

∑
qq’

V ∗
k,q′

〈
ρ∗q′ρ∗k−q′eΩ

†tρqρk−q

〉
Vk,q. (37)

Next, we neglect all the off-diagonal elements of the inverse four-point structure factor
in the vertex, keeping only p = q and p = k− q:

Vk,q ≈N2

ρ

〈
ρ∗qρ

∗
k−qρqρk−q

〉−1
(38)

×

[
(k̂ · q)S(2)(|k− q|) + (k̂ · (k− q))S(2)(q)− k

S(3)(−q,q− k,k)

S(2)(k)

]
.

This approximation is fully uncontrolled. We then factorize the diagonal inverse structure
factor into the product of two two-point functions, yielding

Vk,q ≈ 1

ρ
S(2)(q)−1S(2)(|k− q|)−1 (39)

×

[
(k̂ · q)S(2)(|k− q|) + (k̂ · (k− q))S(2)(q)− k

S(3)(−q,q− k,k)

S(2)(k)

]
= (k̂ · q)c(2)(q) + k̂ · (k− q)c(2)(|k− q|)− kρc(3)(−q,q− k,k). (40)

As we discuss in the main text, this step is exact in the thermodynamic limit. Lastly, we
do a convolution approximation of S(3), neglecting c(3), and find

Vk,q ≈ (k̂ · q)c(2)(q) + k̂ · (k− q)c(2)(|k− q|), (41)

where we have used the definition of the direct correlation function 1/S(2)(k) = 1−ρc(2)(k).
To arrive at the final mode-coupling theory equation, the dynamical off-diagonal memory
kernel can be diagonalized and factorized as indicated in the main text.

B Numerical Details

B.1 Brownian Dynamics Simulations

The results from this work are obtained from trajectories of Brownian dynamics simu-
lations performed with the LAMMPS software package [114]. We use a purely repulsive
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single-component system of Weeks-Chandler-Andersen type, characterized by the pair in-
teraction potential

U(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]
+ ϵ (42)

for r/σ < 21/6 and U(r) = 0 for all other r. Here, r is the inter-particle distance, σ = 1
describes the particle size and ϵ = 1 is the interaction strength. All results are presented
in terms of these units. The simulations contain N = 2000 particles confined within
a cubic box with number density ρ = 0.95 and periodic boundary conditions. At the
lowest temperature studied, kBT = 1, this system has a liquid-solid coexistence region for
ρ ∈ (0.96, 1.03) [115], which we just stay below.

We integrate the Brownian equations of motion, Eq. (1), using a time step of ∆t = 10−5

and friction coefficient ζ = 1. First, we equilibrate the system for 107 time steps and we
subsequently run an equal number of steps for production. During the production run,
we save the particle positions on a quasi-logarithmic grid in order to compute the time-
dependent quantities. For each of the 4 temperatures studied, we run 50 independent
simulations, allowing us to take proper ensemble averages.

B.2 The exact memory kernel

In order to solve the integral equation (8) to find the exact memory kernel, we first
obtain KΩ†(k, t) and W (k, t) at k = 7.0 from the simulation trajectories. To do so,
we straightforwardly evaluate their definitions, Eqs. (29) and (30), whereby we average
over all 50 independent simulation trajectories, over all allowed wave vectors in the range
k ∈ (7.0±0.1), and over a small number of time origins. Because the evaluation of Eq. (8)
is highly sensitive to noise, we additionally apply a locally estimated scatterplot smoothing
(LOESS) filter with polynomial degree 2 and a smoothing parameter of 0.1 [116]. The
resulting smoothed functions are inserted in a discretized version of Eq. (8), for which
we have used a non-equidistant Simpson’s rule on a logarithmic grid [117]. The memory
kernel is subsequently found by solving the resulting system of equations.

To validate the obtained memory kernel, we insert it into Eq. (5), which is solved by
the method presented by Fuchs and coworkers [118]. The resulting intermediate scattering
function is compared with the measured one in Fig. 1.

B.3 Off-diagonal memory kernel

To simplify the computation of the off-diagonal memory kernel, Eq. (9), we write it as

Koffdiag(k, t) =
ρ2D0

4N3
⟨B∗(k, 0)B(k, t)⟩ , (43)

in which B(k, t) =
∑

q ρq(t)ρk−q(t)Vk,q. We compute this function B(k, t) at the peak
of the static structure factor for all t by explicitly performing the sum over all allowed
wave vectors q up to some cutoff kc. The auto-correlation function of the result yields
the off-diagonal memory kernel. We have found that the cutoff required for convergence
of this memory kernel is much larger than that needed for diagonal memory kernels. In
particular, the cutoff chosen for this memory kernel is temperature dependent and given by
kc = 83.0, 84.7, 86.2, 88.3 for T = 1.0, 1.5, 2.0, 3.0, respectively. These values are obtained
by computing the off-diagonal memory kernel as a function of this cutoff from one set
of simulation trajectories and performing a sinusoidal fit to the data. This procedure is
illustrated in Fig. 4. The one-sided error bars in Fig. 2 are set equal to the amplitude of the
fitted sine wave, providing an overestimation of the convergence error in the off-diagonal
memory kernel.

18



SciPost Physics Submission

Figure 4: The off-diagonal memory kernel as a function of the cutoff value in the
sum from the definition of B(k, t) for different values of t at T = 1.0. The high
kc data is sinusoidally fitted to estimate the maximal convergence error. The
vertical dashed line indicates the cutoff used in this work.

The triplet correlation function c(3)(k,q) appearing in the vertices contributes signifi-
cantly only for small values k and q [102]. Therefore we set it equal to zero for values of
q > 10.0, saving computation time and decreasing the amount of noise. For simulations
closer to the glass transition, where triplet correlations may play a more dominant role, it
might be necessary to increase this cutoff, or forgo it completely. We use the same cutoff
for the triplet correlations in the diagonalized kernels.

B.4 GMCT and MCT memory kernels

The diagonal memory kernels Kgmct, Kmct, and K
(2)
mct converge faster than the off-diagonal

one. This allows us to decrease the cutoff wave number of the sums in their definitions
to kc = 40.0, equal to that used in many numerical implementations of the standard
MCT equations. The convergence error decreases as t increases, because the intermediate
scattering function, and thereby the integrand, decays as F (k, t) ∼ e−D0k2t for small t and
large k. We estimate that at t = 10−3 and t = 10−2, the relative convergence errors are
at most 5% and 0.2%, respectively. For smaller t, the error is larger, but the influence of
the memory kernel on the dynamics at such short time scales is negligible.
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