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Symmetry protected topological (SPT) phases are one of the simplest, yet nontrivial, gapped sys-
tems that go beyond the Landau paradigm. In this work, we study an extension of the notion of
SPT for gapless systems, namely, gapless symmetry protected topological states. We construct
several simple gapless-SPT models using the decorated defect construction, which allow analyti-
cal understanding of non-trivial topological features including the symmetry charge under twisted
boundary conditions, and boundary (quasi)-degeneracy under open boundary conditions. We also
comment on the stability of the gapless-SPT models under symmetric perturbations, and apply
small-scale exact diagonalization when direct analytic understanding is not available.
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1 Introduction and Summary

1.1 Gapped Quantum Matter

The study of topological phases of quantum matter has led to tremendous progress in understand-
ing quantum many body systems beyond the Landau paradigm. The gapped phases are so far
relatively well understood. Based on their symmetry and entanglement properties, the gapped
phases can be classified into the following categories [1]:

1. Trivially gapped phase: There is a single ground state on an arbitrary spatial manifold, and
a finite energy gap from the first excited state in the thermodynamic limit. The ground state
preserves the global symmetry, and can be deformed to the trivial product state through
finite depth locally-symmetric unitary transformation without closing the energy gap. Its
entanglement entropy obeys area law while the subleading contributions vanish in the ther-
modynamic limit. The ground state is short range entangled [1].

2. Symmetry protected topological (SPT) phase: Similarly to the trivially gapped phase,
there is still a single ground state on an arbitrary closed spatial manifold and a finite en-
ergy gap from the first excited state in the thermodynamic limit. The ground state preserves
the symmetry and is short-range entangled. The global symmetry should be anomaly free.
However, unlike in the trivially gapped phase, when placing the system on a spatial man-
ifold with nontrivial boundaries, due to the nontrivial physics appearing at the boundaries,
there are either multiple ground states, or the energy spectrum becomes gapless in the ther-
modynamic limit. There is no finite depth locally-symmetric unitary transformation that
maps the ground state to a trivial product state. 1 A systematic construction of gapped SPT
phases is the decorated defect construction [7–9].

3. Topological ordered (TO) phases and symmetry enriched topological (SET) phases:
The low energy is described by a symmetric topological quantum field theory (TQFT).
The number of ground states depends on the topology of the spatial manifold. In particular
when the spatial manifold is Sd there is only one ground state. The ground states also have a
finite energy gap from the first excited states in the thermodynamic limit. The entanglement
entropy of the ground state has a constant contribution besides the area law part, which
survives in the thermodynamic limit. This is termed topological entanglement entropy [10–
13]. There are also nontrivial physics (e.g. gapless edge modes, spontaneous symmetry
breaking or gapped TQFT) on the boundary when the spatial manifold is open. Finally, as
the line operators (worldlines of anyons) are topological, they do not obey area law, and the
theory is deconfined.

1There are also exotic phases that do not require onsite unitary symmetries, but still satisfy the above properties,
i.e. no degeneracy on closed manifolds and nontrivial boundary physics. They include Kitaev’sE8 state in 2+1d [2,3]
and w2w3 theory in 4 + 1d [4–6]. We also consider them as SPT phases where the symmetry is the spacetime
diffeomorphism.
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4. Symmetry breaking phases: There are multiple ground states even when the spatial man-
ifold is Sd, due to spontaneous breaking of the global symmetry. These phases are within
the Landau paradigm. There are also phases where the Landau symmetry breaking order
and SPT/TO/SET orders coexist.

From the description above, it is clear that the SPT phase is the simplest, yet nontrivial, gener-
alization of trivially gapped phase that goes beyond the Landau paradigm. We use gapped SPT
phases to emphasize that the conventional SPT phases are for gapped systems.

1.2 Properties of Gapless SPT States
{sec.proposal}

In contrast to the gapped topological phases of quantum matter which are relatively well-understood,
a systematic understanding of gapless quantum systems is still under development. See [14–26]
for recent developments. The simplest type of gapless systems with non-trivial topological fea-
tures are the so-called gapless symmetry protected topological states, studied in [14–16, 27, 28].
Let’s summarize their common properties:

1. The gapless system has the global symmetry Γ. Γ should be anomaly free and is not spon-
taneously broken by the ground state under periodic boundary conditions.

2. When placing the system on an arbitrary spatial manifold with periodic boundary condi-
tions, the system should have a non-degenerate ground state with a finite size bulk gap
which decays polynomially with respect to the system size.

3. When placing the system on a spatial manifold with nontrivial boundaries, there are degen-
erate ground states with a finite size splitting decaying qualitatively faster (e.g. exponen-
tially, or polynomially with a larger decaying constant) with respect to the system size.

4. When placing the system on a closed spatial manifold where the boundary conditions are
twisted by the global symmetry Γ, a.k.a. twisted boundary conditions, the ground state
carries nontrivial Γ symmetry charge.

5. The criticality is confined. In particular, if the criticality has a 1-form symmetry, it should
not be spontaneously broken.

The above properties are similar to those of the gapped SPT states, but there are major differences.
For instance, the gap of gapless-SPT vanishes in the thermodynamical limit, while it remains open
for the gapped-SPT. Moreover, the number of nearly degenerate states under OBC may differ from
that of the gapped SPT. 2

2We would like to comment that the fifth property is not implied by the first four. One example is the second order
phase transition between a (2 + 1)d topological order and a trivially gapped phase. This system does not have any
0-form global symmetry and thus trivially satisfies the first four properties. Yet, as discussed in [29], this model has
an emergent 1-form symmetry which is numerically demonstrated to be spontaneously broken, hence is deconfined.
The fifth property is introduced to exclude this possibility.
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Contains gapped sector No gapped sector

Non-intrinsic gapless SPT [14, 15, 30] purely gapless SPT [15]

Intrinsic intrinsically gapless SPT [16, 30, 31] intrinsically purely gapless SPT

Table 1: Classification of gapless SPTs by whether they are purely gapless (horizontal direction)
and intrinsically gapless (vertical direction). {tab:summary}

The examples of gapless-SPT states studied so far can be schematically organized by two
features, as shown in Table 1.

• The vertical direction is distinguished by whether the gapless-SPT is intrinsic or non-
intrinsic. If the topological features mentioned in the previous paragraph is can be realized
by a gapped-SPT, then the gapless-SPT is non-intrinsic. Otherwise, it is intrinsic [16].

• The horizontal direction is distinguished by whether the gapless-SPT has a gapped sector.
When there is a gapped sector, the degeneracy under OBC has at most exponential splitting
decay. Otherwise, the splitting can be polynomial decaying, and was named as purely
gapless-SPT.

The first example of gapless-SPT, which is non-intrinsic and contains a gapped sector, was first
studied in [14]. The intrinsic gapless-SPT with a gapped sector was first studied in [16]. The
gapless-SPT states without gapped sector (i.e. purely gapless SPT) was much less studied. The
first example was found in [15] involving the time reversal symmetry and an on-site Z2 symmetry,
and the terminology “purely" was proposed in [32], and examples with only on-site symmetries
are demanding. A more systematic treatment of purely gapless-SPT states, both non-intrinsic and
intrinsic, with on-site symmetries will be discussed in an upcoming work [33]. For simplicity, we
will use the following short hand notations to label the four classes of gapless-SPTs respectively:

• gSPT = gapless-SPT,

• igSPT = intrinsically gapless-SPT,

• pgSPT = purely gapless-SPT,

• ipgSPT = intrinsically purely gapless-SPT.

This work will focus on systems with a gapped sector, i.e. gSPT and igSPT. 3

3Throughout this paper, “gSPT" specifically refers to non-intrinsic and not purely gapless-SPT. When we don’t
want to specify whether it is intrinsic or not, and would like to emphasize its gaplessness (to contrast with the gapped
systems), we will use “gapless-SPT".
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1.3 Decorated Defect Construction
{sec.ddc}

A useful method to construct the gSPT and igSPT with a gapped sector is the decorated defect
construction (DDC). The DDC was first used to construct gapped SPT states [7–9]. Applying
the same construction to gapless system inspired the discovery of the first examples of gapless-
SPT [14]. Later, by incorporating the symmetry extension method [34], the DDC also inspired
the discovery of first examples of intrinsic gapless-SPT [16]. Our goal of this paper is to review
this construction, and apply it to constructing bosonic spin models with on-site symmetries. Such
models are simple, from which certain analytic results concerning their symmetry properties can
be achieved. These models will also play an important role in our upcoming works [33, 35].

1.3.1 Constructing Gapped SPT
{sec.constructgappedSPT}

The decorated defect construction was first devised to systematically construct gapped SPT phases,
starting from the known lower dimensional gapped SPTs [7–9]. Suppose one would like to con-
struct a gapped SPT system with global symmetry Γ. Assume Γ fits into the symmetry extension

1→ A→ Γ→ G→ 1 (1.1) {ext}

whereA is the normal subgroup of Γ, andG := Γ/A. For simplicity, we assume that the extension
is central, i.e. G does not act onA.4 One starts with a phase whereG is spontaneously broken, and
on each codimension p G-defect one decorates a (d + 1 − p) dimensional gapped SPT protected
by symmetry A (i.e. A gapped SPT). As we would like to eventually proliferate the G-defect
network to restore the entire Γ symmetry, the decorations should be consistent such that G-defect
of each codimension should be free of A-anomaly, and in particular, there are no gapless modes
localized on G-defects. Otherwise, if there are nontrivial gapless degrees of freedom localized on
the G-defects, proliferation would not yield a gapped phase with one ground state. After defect
proliferation, the resulting theory is a gapped SPT protected by the Γ symmetry. The topological
action of Γ gapped SPT is given by the Γ cocycle FΓ

d+1 which is a representative element in the
cohomology group [36]5

[FΓ
d+1] ∈ Hd+1(Γ, U(1)). (1.2)

We remark that a given Γ can fit into multiple symmetry extensions with different pairs (A,G).
For a given extension (A,G), as long as we exhaust all possible ways of decoratingA gapped SPT
on G-defects, proliferating the G-defects exhausts all possible Γ gapped SPTs. Hence different
choices of (A,G) yield the same set of Γ gapped SPTs, and one can choose the most convenient
pair (A,G).

4The decorated defect construction of gapped SPTs was first discussed [7] in the special situation where the
extension (1.1) is trivial, i.e. Γ = A×G. The construction was later generalized to non-trivial extension (1.1) in [9].

5If Γ is a continuous symmetry, the cohomology group should be Hd+1(BΓ, U(1)) where BΓ is the classifying
space of Γ.
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1.3.2 Constructing Gapless-SPT
{sec.constructSPTC}

Let us proceed to construct the Γ symmetric gapless-SPT states by modifying the decorated defect
construction reviewed in section 1.3.1. We still assume that the global symmetry Γ fits into the
symmetry extension (1.1), and start with a gapped phase where G is spontaneously broken. On
each codimension p G-defect, one decorates a (d+ 1− p) dimensional A gapped SPT. We finally
fluctuate the G-defect network to the critical point, and define the critical point to be the gapless-
SPT.

Comparing with the decorated defect construction of the gapped-SPT, the construction of the
gapless-SPT has several important new features. As one no longer demands that fully proliferating
the G-defect network leads to a gapped SPT phase, the consistency condition for the decoration
can be relaxed. Depending on whether the consistency condition is preserved or relaxed, the
resulting gapless-SPT are non-intrinsic and intrinsic respectively.

1. gSPT: The A gapped SPTs decorated on the G-defects satisfy the same consistency condi-
tion as those for constructing the gapped SPT. Concretely, theG-defect of each codimension
is free of A anomaly. This means that further increasing the G-defect fluctuating strength
leads to a Γ gapped SPT, and gSPT is the phase transition between G spontaneously broken
phase and Γ gapped SPT. In particular, when the extension (1.1) is trivial, i.e. Γ = A× G,
the construction was discussed in [14, 15]. See the left panel of figure 1 for the schematic
phase diagram of gSPT.

2. igSPT: The A gapped SPT decorated on the G-defects satisfies only a weaker, modified
consistency condition. Concretely, the symmetry breaking phase we started with has a par-
ticular anomaly of a particular (non-normal) subgroup Γ̂ of Γ, where G ⊂ Γ̂. The choice of
Γ̂ and its anomaly should be considered as part of input data of the construction. The defect
decoration is constrained such that the anomaly of Γ̂ in the G symmetry breaking phase is
precisely cancelled against the anomaly induced by the defect decoration.6 After decora-
tion, the total symmetry group Γ is anomaly free, and fluctuating the G-defect network to
the critical point yields a Γ anomaly free igSPT [16] . See the right panel of figure 1 for the
schematic phase diagram of igSPT

It is natural to assume that the process of defect decoration and the process of G-defect fluc-
tuation commute with each other. Then we may simplify the decorated defect construction by
directly starting with a gapless critical system and decorating its G-defects. The gapless critical
system is obtained by fluctuating the G-defects of the G symmetry breaking phase before deco-
rating the A gapped SPTs, and from section 1.2 we require such critical system before decoration
should have a non-degenerate ground state under periodic boundary condition, and is confined. 7

6The phenomenon of induced anomaly also appear in the discussion of anomalous-SPT [9, 37] and symmetry
extended boundary of gapped SPT [34, 38].

7We will see in later sections that the defect decoration can be implemented by a unitary operation, which does
not change the energy spectrum. This implies that the ground state degeneracy should be one both before and after
defect decoration.
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λ λ

Figure 1: Phase diagram of non-intrinsically and intrinsically gapless-SPT. The horizontal
axis is the strength of G-defect fluctuation. For the non-intrinsic case (left panel), the G-
defects can be fully proliferated and one obtains Γ gapped SPT. For the intrinsic case, one
can only fluctuate the G-defects to the critical point. Further increase the fluctuation will not
drive the system to Γ symmetric gapped SPT phase. {fig.phasediagWS}

For the gSPT, we need to start with a critical point without any anomaly. While for the igSPT, we
need to start with a critical point with a particular Γ̂ anomaly.

As commented in section 1.3.1, for a given Γ, there can be multiple choices of the symme-
try extension (1.1). We noticed that the gapped SPT can be constructed using arbitrary (A,G).
However, this is no longer true for the igSPT. Note that one needs to specify an anomaly of Γ̂

(which includes G) as an input data of the decorated defect construction of igSPT. By definition,
the resulting igSPT depends on the choice of symmetry extension (1.1), Γ̂ and the anomaly of Γ̂.

In this work, we will use the DDC to construct “canonical" bosonic spin models of gSPT and
igSPT and discuss their topological properties. We also briefly comment on the stability under
perturbations, while leaving an analytic study to an upcoming work [33].

1.4 Probing gSPT and igSPT
{sec.signaturestability}

Given a gapless system with a non-degenerate ground state in the bulk with finite size, how can
we tell whether it is a nontrivial gapless-SPT? If it is nontrivial, how can we tell whether it is
intrinsic or non-intrinsic? There are several features commonly discussed in the literature:

1. degenerate ground states under OBC,

2. non-trivial symmetry charge of the ground state under the twisted boundary condition.

It is well-known that these features are useful in probing non-trivial gapped SPT phases [39–42].
The first feature is limited in two aspects: (1) It is useful for (1 + 1)d systems [39, 40], but for
higher dimensions the boundary is extensive and the degeneracy on the boundary depends on the
boundary dynamics. (2) For a generic Hamiltonian respecting the symmetry, the ground states
on a finite open chain are only quasi-degenerate with exponentially small splittings, instead of
being exactly degenerate [14]. This makes the identification of degenerate ground states subtle,
especially in the gapless systems. While we can still separate the quasi-degenerate ground states
with exponentially small finite-size excitation energies from gapless excitations with power-law
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finite-size excitation energies, the distinction can be challenging in practical numerical calcula-
tions.

We highlight that the second feature is merely based on the global symmetry, hence (1) can be
applied to arbitrary spacetime dimension, and (2) is expected to be stable and exact for a generic
Hamiltonian in the given gSPT and igSPT phase. This stability is also helpful for numerical
calculations, as we will see later. See [43] for an application of twisted boundary condition to
Lieb-Schultz-Mattis ingappability. Moreover, as discussed in [15], the charge under the twisted
boundary condition is equivalent to the charge on the edge of the string order parameter for CFTs,
and the latter is more commonly discussed in the literature. We prefer to discuss the twisted
boundary condition rather than the string order parameter because the twisted boundary condition
is less well-explored in the literature, and having a systematic and elementary discussion here
should be more beneficial. Moreover, the twisted boundary condition can be generalized more
naturally to higher dimensions.

1.5 Organization of the Paper

We emphasize that the concepts and methods to be discussed in this paper, including the decorated
defect construction, and the application of twisted boundary conditions to probe the gapless SPT,
have been discussed in previous works already, in particular [14–16]. The goal of this paper is
to apply the decorated defect construction to build concrete (1 + 1)d lattice spin models of gSPT
and igSPT and study their properties in great detail. Our models are simple enough so that one
can extract the ground state symmetry charges under various boundary conditions analytically,
although the models are not exactly solvable.8 Although the DDC was both applied to constructing
gSPT in [14] and igSPT in [16], we believe that it is educational to present the construction of
both gSPT and igSPT in a single place, highlighting the usefulness of DDC. It turns out that the
examples constructed in this work pave the way to our later explorations of unified treatment of
gSPT, igSPT, pgSPT and ipgSPT [33].

This paper is organized as follows. In section 2, we discuss in detail an analytically tractable
example of gSPT, where Γ = Z2×Z2, A = Z2, G = Z2 and the spacetime dimension is d = 1+1.
In section 3, we discuss in detail an analytically tractable example of igSPT, where Γ = Z4, A =

Z2, G = Γ̂ = Z2 and d = 1 + 1. We discuss a more realistic spin-1 model in section 4, which
hosts both gSPT and igSPT simultaneously. There are several appendices. Appendix A shows the
stability of boundary degeneracy of Z2 × Z2 gapped SPT. Appendices B, C and D are devoted
to further detailed discussions in section 3. Appendix E discusses an example of igSPT which
involves time reversal symmetry.

8Our models do not involve fermions, but it can be shown that under Jordan-Wigner transformation, our model
are equivalent to one of the models discussed in [44].
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2 gSPT: (1 + 1)d Spin Chains With Z2 × Z2 Symmetry
{sec.Z2xZ2}

In this section, we study a concrete lattice model of gSPT: (1 + 1)d spin chain with global sym-
metry Γ = Z2 × Z2. We let A = Z2, G = Z2, and the symmetry extension in (1.1) is trivial. For
clarity, we use the superscript A and G to label the two Z2’s.

2.1 Spin Chain Construction
{sec.spinchainZ2Z2}

We construct the 1 + 1d spin chain with Γ = ZA2 × ZG2 global symmetry. Since there are two Z2

symmetries, it is natural to assign two spin-1
2
’s per unit cell: the spin-1

2
’s living on the sites are

charged under ZG2 while those living in between the sites are charged under ZA2 . The symmetry
operators are defined to be

UA =
L∏
i=1

τx
i+ 1

2
, UG =

L∏
i=1

σxi (2.1)

where σai and τa
i+ 1

2

, a = x, y, z, are Pauli matrices acting on the two spin-1
2
’s, and L is the number

of unit cells. Both symmetry operators are on-site9 and therefore Γ is anomaly free. As explained
in the introduction, we would like to start with a ZG2 spontaneously broken phase, with the Hamil-
tonian

H0 = −
L∑
i=1

τx
i+ 1

2
+ σzi σ

z
i+1. (2.2) {Z2SSBHam}

It has two ground states

|±〉 =
∑
{τz
i+ 1

2

}

|{τ z
i+ 1

2
}, {σzi = ±1}〉. (2.3) {Z2SSBGS}

Each of them spontaneously breaks ZG2 but preserves ZA2 .

2.1.1 Domain Wall Decoration
{sec.DW}

To construct a ZA2 × ZG2 gSPT, we decorate each ZG2 domain wall by a 0 + 1d ZA2 SPT in a
consistent way.10 Each ZG2 domain wall is associated with a ZG2 group element g. g = 0, 1 means
the domain wall is trivial/nontrivial, i.e. the adjacent σz spin configurations are the same/opposite,
respectively. We present the domain wall configuration using both the spacetime picture and the
Hamiltonian picture.

9A symmetry operator is on-site if it can be written as a product of local operators on mutually adjacent but
un-overlapping patches, U =

∏
i Ui, where i labels the patches.

10In (1 + 1)d, we only have codimension 1 defects, i.e. the domain walls. For this reason, the decorated defect
construction is more conventionally called the decorated domain wall construction.
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si
sj

gij

[g]

Figure 2: Triangulation of 2d spacetime. The black and red solid links are where the back-
ground field gij = 0, 1 respectively. The red dashed line in the dual lattice is the spacetime
trajectory of the Z2 domain wall [g], i.e. Z2 symmetry defect line. Flatness of g ensures that
[g] forms loops. {fig.2dspacetime}

The Spacetime Picture: It is useful to first discuss the domain wall in the spacetime picture.
The spacetime is triangulated into 2-simplices. See figure 2 for an illustration. Each site i is
assigned a Z2 group element si = 0, 1, which corresponds to σzi = (−1)si in the Hamiltonian
picture. Each link is assigned a Z2 1-cochain gij = sj − si. The gij is understood as a flat
background field for the ZG2 symmetry, and it measures the local domain wall excitation on the
link. The locus where gij = 1 form a closed loop [g] in the dual spacetime lattice, representing
the worldline of the domain wall, a.k.a. the ZG2 symmetry defect line. Decorating the ZG2 domain
wall by a 1d ZA2 SPT [7, 14] means that we insert a ZA2 Wilson line, a.k.a. 1d ZA2 SPT, supported
on [g]

exp

(
iπ

∫
[g]

a

)
= exp

(
iπ

∫
M2

a ∪ g
)

(2.4) {Z2Z2decoration}

in the path integral. The flatness of the ZA2 background field a ensures that the decoration is
consistent: the domain wall junctions do not have ZA2 anomaly. This fits into the construction of
gSPT mentioned in section 1.3.2. The equality in (2.4) used the Poincare duality to transform the
integral on [g] into the integral over the entire 2d spacetime M2. The topological term on the right
hand side of (2.4) is precisely the effective action of ZA2 × ZG2 gapped SPT.

The Hamiltonian Picture: In the Hamiltonian picture, domain wall decoration is implemented
as follows [14]. We first identify the configuration representing the ZG2 domain wall, i.e. σzi σ

z
i+1 =

−1. Then on the link (i, i+ 1), we stack a ZA2 SPT (2.4), which assigns the wavefunction a minus
sign if τ z

i+ 1
2

= −1 (i.e. ai,i+1 = 1 in the spacetime picture) on the wall. Combining the two steps,
one assigns a minus sign to the two configurations (σzi , τ

z
i+ 1

2

, σzi+1) = (1,−1,−1), (−1,−1, 1)

and leaves the wavefunction unchanged for other configurations. This operation can be realized
by acting the unitary operator

UDW =
L∏
i=1

exp

[
πi

4
(1− σzi )(1− τ zi+ 1

2
)

]
exp

[
πi

4
(1− σzi+1)(1− τ z

i+ 1
2
)

]
(2.5) {UDW}
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on the states (2.3) [14]. In terms of the Hamiltonian, domain wall decoration just amounts to
conjugating the original Hamiltonian (2.2) by UDW , yielding

H1 := UDWH0U
†
DW = −

L∑
i=1

(σzi τ
x
i+ 1

2
σzi+1 + σzi σ

z
i+1). (2.6)

The ground states of H1 are still (2.3), but the first excited states associated with the domain wall
excitations are decorated.

2.1.2 ZA2 × ZG2 gSPT
{sec.Z2Z2SPTC}

The next step is to fluctuate the decorated domain walls. It is helpful to discuss the fluctuation
without decoration first. The fluctuation is well-known to be achieved by adding a transverse field
∆H = −λ

∑L
i=1 σ

x
i , so that the ZG2 spontaneously broken ferromagnetic phase of the Ising model

(when λ < 1) is driven to the ZG2 preserving paramagnetic phase (when λ > 1) where the domain
walls are fully proliferated. The transition happens at λ = 1, which is of second order, and is
described by a critical Ising CFT.

After domain wall decoration, the fluctuation should be realized by adding a decorated trans-
verse field UDW∆HU †DW = −λ

∑L
i=1 τ

z
i− 1

2

σxi τ
z
i+ 1

2

. As the unitary transformation UDW does not
change the energy spectrum, the critical point also takes place at λ = 1. The decorated model
UDW (H0 +∆H)U †DW at λ = 1, is the ZA2 ×ZG2 gSPT [14] (see also section 1.3.2 for the definition
of gSPT)

HgSPT = −
L∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1 + τ z

i− 1
2
σxi τ

z
i+ 1

2

)
. (2.7) {Z2Z2SPTC}

When λ > 1, the domain wall is fully proliferated, yielding a ZA2 × ZG2 gapped SPT described by
the well-known cluster model [45–47]

HSPT = −
L∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + τ z

i− 1
2
σxi τ

z
i+ 1

2

)
. (2.8) {Z2Z2SPT}

See figure 3 for the phase diagram before and after decoration.
As commented in section 1.3.2, we can simplify the above construction of gSPT by directly

starting with the ZG2 Ising CFT (whose Hamiltonian is given by H0 −
∑L

i=1 σ
x
i ), and conjugate it

by UDW . This simplification will be useful in section 3.

2.1.3 More On UDW
{sec.moreonUDW}

We make a remark on the unitary operator UDW . Although HgSPT and H0 −
∑L

i=1 σ
x
i are related

through a unitary transformation UDW , they are actually not equivalent as the ZA2 ×ZG2 symmetric
Hamiltonians. Recall that two Γ symmetric Hamiltonians H1, H2 are considered equivalent if
there is a locally-symmetric unitary transformation U = exp(i

∫ t1
t0
dtV (t)) where V (t) is a sum

11



ZG2 SSB Trivial
ZG2 SSB

Decorated
ZA2 × ZG2

Gapped SPT

ZG2
Ising CFT

ZA2 × ZG2
gSPT

Defect

Decoration
λ λ

Figure 3: Phase diagram of ZG2 Ising CFT (before decoration) and ZA2 × ZG2 gSPT (after
decoration). The horizontal axis represents the transverse field λ. {fig.Z2Z2}

of local operators satisfying [V (t),Γ] = 0, such that UH1U
† = H2 [1, 36]. Since UDW is a

product of local unitary operators and each of them only acts on one or two unit cells, UDW is
a local unitary transformation. Moreover, UDW on a closed chain with the periodic boundary
condition is symmetric in the sense that [UDW ,Γ] = 0. Nevertheless, as each local operator
exp(πi

4
(1 − σzi )(1 − τ zi+ 1

2

)) does not commute with UA and UG, UDW is not a locally-symmetric
unitary transformation. As an indication, UDW does not commute with the symmetry generator
Γ on an open chain, in contrast to the closed chain discussed above. In summary, HgSPT and
H0 −

∑L
i=1 σ

x
i are not related by ZA2 × ZG2 locally-symmetric unitary transformation, hence they

are not equivalent as ZA2 × ZG2 symmetric systems. This also justifies that the gSPT is protected
by the ZA2 × ZG2 .

It is interesting to compare UDW with the Kennedy-Tasaki (KT) transformation [48–50] intro-
duced for integer-spin chains. Although the KT transformation is also implemented by a unitary
operator UKT , there are several differences. First, UKT is non-local, unlike UDW which is as
discussed above a product of local unitary operators. Second, the KT transformation is useful
for an open chain rather than for a closed chain, which is mapped to a non-local Hamiltonian by
UKT . Lastly, it maps a gapped SPT phase (on an open chain) to an SSB phase, while UDW maps
a gapped SPT phase to a trivially gapped phase. The KT transformation will be relevant for the
discussion in Section 4. In a later work by the same authors [35], we uncover that the KT trans-
formation on a closed chain is related to the UDW in the following way, KT = KW · UDW · KW,
where KW is the Kramers-Wannier transformation for both ZA2 × ZG2 symmetries.

2.2 Trivializability Upon Stacking Gapped SPTs
{sec.equivalence}

In this section, we will show that upon stacking a ZA2 × ZG2 gapped SPT, the ZA2 × ZG2 gSPT is
equivalent to ZG2 Ising criticality via a symmetric local unitary transformation.

Let us consider two decoupled systems. The first system is a ZA2 × ZG2 gSPT given by (2.7).
The second system is a ZA2 × ZG2 gapped SPT given by (2.8). Since two systems are decoupled,
the two Hamiltonians act on decoupled Hilbert spaces. We use the Pauli operators {σai , τai+ 1

2

} for
the first system, and {σ̃ai , τ̃ai+ 1

2

} for the second system. The Hamiltonian for the entire system is

12



the sum

HgSPT +HSPT = −
L∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1 + τ z

i− 1
2
σxi τ

z
i+ 1

2
+ σ̃zi τ̃

x
i+ 1

2
σ̃zi+1 + τ̃ z

i− 1
2
σ̃xi σ̃

z
i+ 1

2

)
.

(2.9)
The decoupled system has enlarged global symmetry (ZA2 ×ZG2 )× (Z̃A2 × Z̃G2 ), whose generators
are

UA =
L∏
i=1

τx
i+ 1

2
, UG =

L∏
i=1

σxi , ŨA =
L∏
i=1

τ̃x
i+ 1

2
, ŨG =

L∏
i=1

σ̃xi . (2.10)

There exists a symmetric local unitary transformation11

Udiag =
L∏
i=1

exp(
iπ

4
(1− σzi σ̃zi+1)(1− τ z

i+ 1
2
τ̃ z
i+ 1

2
)) exp(

iπ

4
(1− σzi+1σ̃

z
i+1)(1− τ z

i+ 1
2
τ̃ z
i+ 3

2
)) (2.11)

which (locally) preserves the diagonal Z2×Z2, where two Z2’s are generated by UAŨA and UGŨG
respectively. It is straightforward to check that

Udiag(HgSPT +HSPT)U †diag = −
L∑
i=1

(
τx
i+ 1

2
+ σzi σ

z
i+1 + σxi + τ̃x

i+ 1
2

+ σ̃xi

)
(2.12)

which is simply the Hamiltonian of the Ising CFT, a.k.a. the ZG2 Landau transition, stacked with
some trivially gapped degrees of freedom. In summary, we have shown that upon stacking a
ZA2 ×ZG2 gapped SPT, the ZA2 ×ZG2 gSPT (2.7) is related to an ordinary ZG2 Landau transition by a
symmetric local unitary transformation. The above equivalence can be schematically represented
as

ZA2 × ZG2 gSPT ⊕ ZA2 × ZG2 gapped SPT ←→ ZG2 Landau Transition. (2.13) {equivalence1}

This implies that the nontrivial topological properties of the gSPT in the bulk (such as nontrivial
charge of the ground state under the twisted boundary condition, see section 2.3.2) are basically
inherited from the gapped SPT sector. However, we will find in section 2.3.3 that the boundary
properties of the gSPT differ from those of the gapped SPT.

2.3 Symmetry Features of ZA2 × ZG2 gSPT
{sec.Z2Z2prop}

We discuss the symmetry features of the ZA2 × ZG2 gSPT (2.7) that allow one to distinguish trivial
vs nontrivial gSPTs. As motivated in the introduction (see section 1.4), we will consider the
ground state degeneracy under open boundary condition (OBC), as well as the symmetry charge
of the ground state under twisted boundary condition (TBC). We summarize the main properties
in table 2.

11Without multiplying over i, each exponent in Udiag commutes with the diagonal symmetries UAŨA as well as
UGŨG. As discussed in section 2.1.3, this implies that Udiag is a symmetric local unitary transformation, which
establishes the equivalence between different systems.
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ZA2 × ZG2 ZA2 × ZG2 ZA2 × ZG2
gSPT Landau Transition Gapped SPT

PBC:
GSD

ZA2 × ZG2 Charge
1

(0, 0)

1

(0, 0)

1

(0, 0)

ZA2 -TBC:
GSD

ZA2 × ZG2 Charge
1

(0, 1)

1

(0, 0)

1

(0, 1)

ZG2 -TBC:
GSD

ZA2 × ZG2 Charge
1

(1, 0)

1

(0, 0)

1

(1, 0)

OBC: GSD 4→ 2 1 4

Table 2: Ground state degeneracy and symmetry charges of the ground state under PBC, TBC and
OBC. ZA2 (or ZG2 )-TBC means the boundary condition is twisted by ZA2 (or ZG2 ). We compare these
properties between gSPT, Landau transition and gapped SPT, all with the same global symmetry
ZA2 × ZG2 . The 4 → 2 means that HgSPT has four ground states under OBC, but two of them are
lifted under a symmetric perturbation localized on the boundary. {tab:Z2Z2signature}

2.3.1 Periodic Boundary Condition

On a finite chain with periodic boundary condition (PBC), the ground state of the ZA2 × ZG2 gSPT
is non-degenerate. To see this, we first consider the Ising CFT described by the Hamiltonian
H0 −

∑L
i=1 σ

x
i . It is well-known that the critical Ising model has only one ground state on a finite

chain, and the first excited state is separated from the ground state by a finite size gap decaying
polynomially with respect to the system size. The non-degenerate ground state preserves the
ZA2 × ZG2 global symmetry. Moreover, as noted in section 2.1.2, HgSPT and the Ising CFT have
exactly the same energy eigenvalues because they are related via a unitary transformation UDW ,
which implies that HgSPT also has a non-degenerate ground state on a finite closed chain, with a
finite size gap, and is ZG2 × ZA2 symmetric under PBC.

2.3.2 Twisted Boundary Condition
{sec.Z2Z2TBC}

We show that on a closed chain with boundary condition twisted by ZA2 (or ZG2 ), the ground state
of the ZA2 × ZG2 gSPT carries nontrivial symmetry charges under ZG2 (or ZA2 ) respectively. The
same idea has been widely used to characterize nontrivial gapped SPT order [41, 42, 51–57], and
here we use it to characterize the gSPT (and also igSPT in section 3).

Twist By ZA2 : We first twist the boundary condition using the ZA2 symmetry (labeled by ZA2 -
TBC), and measure the ZG2 charge of the ground state. Twisting the boundary condition by ZA2
means imposing a ZA2 domain wall between sites L − 1

2
and L + 1

2
by changing the sign of the
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term τ z
L− 1

2

σxLτ
z
L+ 1

2

. The gSPT Hamiltonian (2.7) becomes

H
ZA2
gSPT = −

L−1∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1 + τ z

i− 1
2
σxi τ

z
i+ 1

2

)
− σzLτxL+ 1

2
σz1 − σzLσz1 + τ z

L− 1
2
σxLτ

z
L+ 1

2
.

(2.14) {Z2Z2SPTCtwistA}{Z2Z2SPTCtwistA}

It is useful to note that the twisted and untwisted gSPT Hamiltonian are related by a unitary
transformation H

ZA2
gSPT = σzLHgSPTσ

z
L, hence the ground state of HZA2

gSPT is also non-degenerate.

Denote the ground state under PBC as |GS〉, and that under ZA2 -TBC as |GS〉Z
A
2

tw . We have

|GS〉Z
A
2

tw = σzL |GS〉 . (2.15)

It follows that

UG |GS〉Z
A
2

tw = UGσ
z
LU
†
GUG |GS〉 = −σzL |GS〉 = − |GS〉Z

A
2

tw (2.16) {Z2Z2charge}

which shows that |GS〉Z
G
2

tw has ZG2 charge 1. 12

Twist By ZG2 : We can alternatively twist the boundary condition using ZG2 symmetry (labeled
by ZG2 -TBC), and measure the ZA2 charge of the ground state. Twisting the boundary condition
by ZG2 means imposing a ZG2 domain wall on the link between L-th and 1st sites, by changing the
sign of the terms σzLσ

z
1 and σzLτ

x
L+ 1

2

σz1 . The gSPT Hamiltonian (2.7) becomes

H
ZG2
gSPT = −

L−1∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1 + τ z

i− 1
2
σxi τ

z
i+ 1

2

)
+ σzLτ

x
L+ 1

2
σz1 + σzLσ

z
1 − τ zL− 1

2
σxLτ

z
L+ 1

2
.

(2.17) {Z2Z2SPTCtwG}{Z2Z2SPTCtwG}

Note that σzi τ
x
i+ 1

2

σzi+1 commutes with every term in HZG2
gSPT, the ground state |GS〉Z

G
2

tw should be its
eigen-vector

σzi τ
x
i+ 1

2
σzi+1 |GS〉Z

G
2

tw = U †DW τ
x
i+ 1

2
UDW |GS〉Z

G
2

tw =

{
|GS〉Z

G
2

tw , i = 1, ..., L− 1

− |GS〉Z
G
2

tw , i = L.
(2.18)

Consequently, the ground state has ZA2 charge 1:

UA |GS〉Z
G
2

tw =
L∏
i=1

τx
i+ 1

2
|GS〉Z

G
2

tw = −
L∏
i=1

(σzi σ
z
i+1) |GS〉Z

G
2

tw = − |GS〉Z
G
2

tw . (2.19)

12We used the fact that the ground state under PBC is neutral under ZG
2 . More precisely, (2.16) only shows the

relative charge, i.e. the ZG
2 charge of the ground state under TBC minus that under PBC, is one. The relative charge

will be useful in section 3.
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In summary, we find that when we use ZA,G2 to twist the boundary condition on a closed chain,
the ground state of the twisted Hamiltonian has nontrivial ZG,A2 charge. This is the property distin-
guished from the ZA2 × ZG2 Landau transition, where its ground state under the twisted boundary
conditions does not carry any nontrivial symmetry charge. This tells us that we can use the sym-
metry charge of the ground state in the twisted sector as a topological invariant to distinguish the
nontrivial gSPT from trivial gSPT (e.g. second order Landau transition). On the other hand, the
symmetry charges under TBC coincide with those of the gapped SPT. We summarize the results
in table 2.

2.3.3 Open Boundary Condition
{sec.Z2Z2OBC}

As the nontrivial boundary modes protected by the global symmetry is a signature of gapped SPT,
we will find that same is true for the gSPT. We use the symmetry to analytically show that the
ground states of HgSPT have to be exactly degenerate under OBC, but the number of degeneracy
differs from the gapped SPT. This phenomenon was discussed in [14, 15].

We place the spin system on an open chain. The left most spin is the σ spin, and the right most
spin is the τ spin. The σ spins are supported on i = 1, ..., L, and the τ spins are supported on
i+ 1

2
= 3

2
, ..., L+ 1

2
. We first choose the OBC such that only the interactions completely supported

on the chain are kept. The Hamiltonian is

HOBC
gSPT = −

L−1∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1

)
−

L∑
i=2

τ z
i− 1

2
σxi τ

z
i+ 1

2
(2.20) {Z2Z2hamst}

and the symmetry operators are

UA =
L∏
i=1

τx
i+ 1

2
, UG =

L∏
i=1

σxi . (2.21) {Z2Z2symst}

We find that the set of operators {σz1, τ zL+ 1
2

, σzLτ
x
L+ 1

2

, UA, UG} all commute with the Hamiltonian,
hence the ground state degeneracy must be at least the dimension of its irreducible representation.
To find the representation, we choose the maximally commuting subset of operators as {σz1, τ zL+ 1

2

},
and denote their eigenvalue of a particular ground state |ψ〉 by (a, b), where a, b = ±1. It is then
possible to generate other ground states with different quantum numbers as follows:

σz1 τ z
L+ 1

2

|ψ〉 a b

UA |ψ〉 a −b
UG |ψ〉 −a b

UAUG |ψ〉 −a −b

(2.22)

This shows that there must be at least four exactly degenerate ground states of HOBC
gSPT of four

different sets of quantum numbers. Numerical exact diagonalization confirms that the ground
state degeneracy is exactly four.
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However, symmetry does not forbid us to perturb (2.20) by adding symmetric boundary terms.
We can add a boundary interaction

∆HOBC
gSPT = −τx

L+ 1
2

(2.23) {Z2Z2bdypert}

which changes the original OBC to a new OBC. This interaction does not commute with τ z
L+ 1

2

, so

the set of operators commuting with the HamiltonianHOBC
gSPT+∆HOBC

gSPT reduces to {σz1, σzLτxL+ 1
2

, UA, UG}.
As a consequence, the dimension of irreducible representation reduces from four to two. Indeed,
numerical exact diagonalization confirms that there are only two exactly degenerate ground states
under the new OBC. This degeneracy splitting was already noted in [14, 15]. Here, we provide a
simple analytical argument of this splitting by finding the representation. In appendix A, we show
that arbitrary finite range perturbation does not lift the 4-fold exact degeneracy of the ZA2 × ZG2
gapped SPT.

2.4 Instability of gSPT
{sec.Z2Z2perturbation}

As noted in table 2, the symmetry properties of the ground states under the twisted boundary
condition are the same for the gSPT and gapped SPT. Is there a symmetric perturbation of the
gSPT which derives gSPT to the gapped SPT? In this subsection, we confirm this by noting that
such a ZA2 × ZG2 symmetric perturbation exists, which is

V = −h
L∑
i=1

τ z
i− 1

2
σxi τ

z
i+ 1

2
, h > 0. (2.24)

In other words, adding V to HgSPT simply modifies the coefficient of the last term of (2.7) by −h.
After undoing the domain wall decoration by conjugating the HgSPT + V by UDW , we get

UDW (HgSPT + V )U †DW = −
L∑
i=1

(
τx
i+ 1

2
+ σzi σ

z
i+1 + (1 + h)σxi

)
(2.25)

which is just a critical Ising model perturbed by −h
∑

i σ
x
i . It is well-known that under fermion-

ization, this term is the mass term of the Majorana fermion, which is a relevant perturbation. This
shows that adding a perturbation with infinitesimal h drives the gSPT to gapped SPT phase, which
shows that gSPT is unstable under symmetric perturbation towards gapped SPT phases.

3 igSPT: (1 + 1)d Spin Chain With Z4 Symmetry
{sec.Z4example}

In this section, we study a concrete lattice model of igSPT: (1 + 1)d spin chain with Z4 global
symmetry. We let A = Z2, G = Z2, and the symmetry extension (1.1) is now nontrivial. We still
use superscripts A and G to label the two Z2’s, and use superscript Γ to label Z4.

The igSPT was first studied in [16]. Although essentially all the features of igSPT have been
discussed in that work, the model discussed in our present work has the advantage of being sim-
pler, where many symmetry properties can be extracted exactly without numerical computation.
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Moreover, the characterization of topological features in [16] heavily uses the string order pa-
rameter, while in our work we provide some alternative perspectives of characterization using the
twisted boundary conditions. Although the charge of the string order parameter and the charge
of ground states under the TBC are known to be related in the continuum limit [15], it is never-
theless beneficial to discuss the TBC on the lattice and compare with the string order parameter
discussion on the lattice in [16].

3.1 Spin Chain Construction

3.1.1 Domain Wall Decoration and Induced Anomaly
{sec.extensionanomaly}

Domain Wall Decoration: We construct the (1 + 1)d spin chain with ZΓ
4 global symmetry, by

applying the decorated defect construction reviewed in section 1.3.2. Concretely, we start with
a ZG2 symmetry spontaneously broken phase with a nontrivial anomaly of ZG2 , and then decorate
the ZG2 domain wall by ZA2 SPT. We will show below that the domain wall decoration induces a
nontrivial ZG2 anomaly due to the nontrivial extension (1.1), and two ZG2 anomalies are designed
to cancel against each other. Thus the entire ZΓ

4 symmetry is anomaly free. We further proliferate
the decorated ZG2 domain wall, and fine tune the system to the critical point. The resulting critical
point is the ZΓ

4 igSPT.

Induced Anomaly: We explain why the domain wall decoration induces nontrivial ZG2 anomaly.
Let us denote the background fields of ZG2 and ZA2 as g and a respectively, both of which are 1-
cochains. The ZΓ

4 background field is 2a − g̃, where g̃ is a lift of g to a ZΓ
4 valued cochain, i.e.

g = g̃ mod 2. By requiring the ZΓ
4 background to be flat, we find

δ(2a− g̃) = 2δa− δg̃ = 0 mod 4 (3.1)

which implies

δa = Bock(g) :=
1

2
δg̃ mod 2, δg = 0 mod 2. (3.2) {Z4bundle}

Bock(g) is the Bockstein of g, which is defined as in (3.2). As (2.4), decorating the ZG2 domain
wall by a 1d ZA2 SPT means stacking a ZA2 Wilson line to the worldline of ZG2 domain wall.
However, due to the nontrivial bundle constraint (3.2), the domain wall decoration is not gauge
invariant, and equivalently it induces a nontrivial dependence on the extension to the 3d bulk M3,

exp

(
iπ

∫
[g]

a

)
= exp

(
iπ

∫
M2

a ∪ g
)

= exp

(
iπ

∫
M3

g ∪ Bock(g)

)
. (3.3) {Z4SPT}

In the second equality, we applied total derivative to promote the 2d integral to the 3d integral
and used (3.2). A physical interpretation of (3.3) is that domain wall decoration induces a ZG2
anomaly. We will denote this anomaly as the induced anomaly.
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However, the igSPT by definition should be free of ZΓ
4 anomaly, and the system should be

independent of the extension to M3. This demands that the ZG2 spontaneously broken system
before domain wall decoration should already exhibit an opposite anomaly of ZG2 , which is given
by the same inflow action

exp

(
iπ

∫
M3

g ∪ Bock(g)

)
. (3.4) {lowenergyanom}

After domain wall decoration, the anomaly (3.4) from the low energy cancels against the induced
anomaly (3.3) from the domain wall decoration, and the total system is anomaly free.

As commented at the end of section 2.1.2, one can simplify the discussion by directly starting
with a critical system with a non-degenerate ground state and a ZG2 anomaly (3.4). A standard
candidate is the critical boundary theory of (2 + 1)d ZG2 SPT, known as the Levin-Gu model [42].
We then decorate the ZG2 domain walls (via conjugating by the unitary operator UDW in (2.5)).
We will take this simplified strategy of domain wall decoration below.

3.1.2 The Model
{sec.Z4model}

We still let the σ spins live on integer sites and τ spins live on half integer sites. Let us start from
the Levin-Gu model [42]

HLG = −
L∑
i=1

(
σxi − σzi−1σ

x
i σ

z
i+1

)
, (3.5) {LGHam}

with an anomalous ZG2 symmetry transformation:

UG =
L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− σzi σzi+1)

)
. (3.6) {Z2anomalous}

The ZG2 symmetry operator is realized in a non-on-site way, which is demanded by the ZG2
anomaly.

In the next step, we consider the following Hamiltonian which couples the τ and σ spins and
serves as the pre-decorated Hamiltonian:

Hpre = −
L∑
i=1

(
σxi − σzi−1τ

x
i− 1

2
σxi τ

x
i+ 1

2
σzi+1 + τx

i− 1
2

)
. (3.7) {Z4Hamreduced}

This Hamiltonian is invariant under the Z4 symmetry transformation:

U pre
Γ =

L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− σzi τxi+ 1

2
σzi+1)

)
. (3.8) {Z4Symreduced}

The normal subgroup ZA2 is generated by an on-site operator

UA = (U pre
Γ )2 =

L∏
i=1

τx
i+ 1

2
. (3.9) {Z4center}

19



Indeed, the two Hamiltonians (3.7) and (3.5) enjoy the same low energy theory. As the last term
in (3.7) commutes with the rest of the terms, the ground state should be the eigenstate of τx

i− 1
2

with

eigenvalue 1. See appendix C for a more detailed discussion on this point.13 In the low energy
sector, we simply substitute τx

i− 1
2

= 1 in (3.7), and obtain that the low energy effective Hamiltonian

(3.7) is precisely the Levin-Gu Hamiltonian (3.5). Moreover, the ZA2 normal subgroup decouples
from the low energy. Only ZG2 acts nontrivially on the low energy degrees of freedom, in the same
way as (3.6):

U pre
Γ |low =

L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− σzi σzi+1)

)
. (3.10)

The additional τ operators as in (3.7) and (3.8) are motivated by the group extension. We
would like to introduce τ operators such that UA =

∏
i τ

x
i+ 1

2

generates an anomaly free ZA2 , ex-

tending the ZG2 to ZΓ
4 . In other words, we demand a modification of UG in (3.6) such that it squares

to UA. This is precisely achieved by replacing σzi σ
z
i+1 by σzi τ

x
i+ 1

2

σzi+1. This further induces how
the Levin-Gu Hamiltonian (3.5) should be mapped to (3.7).

Then, the Hamiltonian for the ZΓ
4 igSPT is obtained by conjugating (3.7) using the unitary

operator UDW . The Hamiltonian is

HigSPT = UDWHpreU
†
DW = −

L∑
i=1

(
τ z
i− 1

2
σxi τ

z
i+ 1

2
+ τ y

i− 1
2

σxi τ
y

i+ 1
2

+ σzi−1τ
x
i− 1

2
σzi

)
. (3.11) {Z4Ham}

The pre-decorated ZΓ
4 symmetry operator becomes

UΓ = UDWU
pre
Γ U †DW =

L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− τx

i+ 1
2
)

)
. (3.12) {Z4Sym}

under which σxi → σxi , σ
y,z
i → −σy,zi , τx

i+ 1
2

→ τx
i+ 1

2

, τ y
i+ 1

2

→ τ z
i+ 1

2

, τ z
i+ 1

2

→ −τ y
i+ 1

2

. Since UΓ is

on-site, ZΓ
4 now is anomaly free, which justifies that ZG2 anomaly in pre-decorated Hamiltonian is

canceled by the induced anomaly of decorated defect construction. The normal subgroup ZA2 is
also generated by an on-site operator Eq. (3.9).

3.2 Symmetry Features of ZΓ
4 igSPT

We discuss the symmetry features of the ZΓ
4 igSPT (3.11). An immediate fact to realize is that

there is no ZΓ
4 gapped SPT in (1 + 1)d.14 Thus it is not possible to stack a gapped SPT to unitarily

connect it to another possibly more trivial igSPT. For this reason, the origin of the nontrivial SPT
order at the critical point here is less obvious, in contrast to the ZA2 ×ZG2 gSPT. In this subsection,
we discuss its properties under various boundary conditions. We summarize the main results in
table 3.

13In fact, all the low energy states with energy E − EGS � 1 satisfy τx
i− 1

2

= 1.
14The (1 + 1)d bosonic SPT with a discrete symmetry G is classified by H2(G,U(1)). In our case, G = Z4, and

it is well-known [36] that H2(Z4, U(1)) = 0 is trivial, hence there is no nontrivial Z4 SPT phase in (1 + 1)d.

20



ZΓ
4 ZΓ

4

igSPT Landau Transition
PBC: GSD 1 1

ZA2 -TBC:
GSD

Relative ZA2 Charge
Relative ZΓ

4 Charge

1

0

2

1

0

0

ZΓ
4 -TBC:

GSD
Relative ZA2 Charge
Relative ZΓ

4 Charge

L = odd : 2; L = even : 4

1

1 or 3

1

0

0

OBC: GSD ≥ 2 1

Table 3: Ground state degeneracy and symmetry charges of the ground state under PBC, TBC
and OBC. We focus on the system size L = 0, 1, 3, 4, 5, 7 mod 8 to ensure trivial ground state
degeneracy. Relative ZA2 (or ZΓ

4 ) charge means the difference between the corresponding charge
under the TBC and that under the PBC. We compare these properties between the igSPT and
Landau transition, both with the same global symmetry ZΓ

4 . {tab:Z4signature}

3.2.1 Periodic Boundary Condition

We have motivated in section 1.2 that any igSPT should have one non-degenerate ground state,
with a finite size splitting with the first excited state. Thus we would like to check the ground state
degeneracy of (3.11) under PBC to be one.

As we find in section 3.1.2, the number of ground states of the ZΓ
4 igSPT is identical to that of

the Levin-Gu model (3.5). In appendix B.1, we show, by Jordan-Wigner transformation, that the
number of ground states of the Levin-Gu model depends on L mod 4 and is given as

GSDL =

{
2, L = 2 mod 4

1, otherwise.
(3.13) {Z4GSD}

Thus the number of ground states of the ZΓ
4 igSPT under periodic boundary condition is also given

by (3.13).
Let us further discuss the Z4 charge of the ground state. Denote the ground states of (3.5),

(3.7) and the (3.11) as |GS〉LG, |GS〉pre and |GS〉 respectively. Suppose the ZG2 charge of |GS〉LG

in the Levin-Gu model (3.5) is qLG, then by definition we have

UDWUΓU
†
DW |low |GS〉LG = (−1)qLG |GS〉LG . (3.14)

As ZA2 decouples from the low energy, we also have UDWUΓU
†
DW |GS〉pre = (−1)qLG |GS〉pre.

Since |GS〉pre = UDW |GS〉, we can then compute the ZΓ
4 charge of |GS〉 via,

UΓ |GS〉 = U †DW (UDWUΓU
†
DW ) |GS〉pre = (−1)qLGU †DW |GS〉pre = ei

π
2
·2qLG |GS〉 . (3.15) {Z4chargePBC}

So the ZΓ
4 charge q of the ground state |GS〉 is related to the ZG2 charge of |GS〉LG via q = 2qLG

mod 4.
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We are left to determine the symmetry charge of the Levin-Gu model, qLG. While the ground-
state degeneracy was obtained exactly in Eq. (3.13) by the Jordan-Wigner transformation as dis-
cussed in Appendix B.1, we could not find qLG from the Jordan-Wigner transformation. Never-
theless, we can utilize an alternative mapping to the XX chain as discussed in Appendix B.2, to
determine qLG for even L’s. The analytical result for even L’s was confirmed by exact numerical
diagonalization for small L’s, which also gives qLG for odd L’s. As a result, extending the L
mod 4 dependence of the ground-state degeneracy (3.13), we find that the symmetry charge of
the Levin-Gu model qLG depends on α = L mod 8: qLG = 0 for α = 0, 1, 7, while qLG = 1 for
α = 3, 4, 5. As presented in Eq. (3.13), for α = 2, 6, the ground states are two fold degenerate.
We find that, each of the two degenerate ground states has qLG = 0 and qLG = 1.

We conclude that the ZΓ
4 charge q of ground state of (3.11) is

UΓ |GS〉 = eiπq/2 |GS〉 , q = 2qLG =


0, α = 0, 1, 7

2, α = 3, 4, 5

0&2, α = 2, 6.

(3.16) {Z4chargeq}

From the above result, it appears that the ground state degeneracy is not well defined in the
limit L → ∞. While we do not completely understand the physical mechanism behind the peri-
odic dependence of the ground-state degeneracy on the system size, the ground-state degeneracy
for α = 2, 6 might be interpreted as a consequence of an effective twist [58]. The effective twist
can be seen by mapping the Levin-Gu model to an XX chain. In appendix B, we showed that
under a unitary transformation, the Levin-Gu model with PBC can be mapped to an XX chain
with PBC and one ground state when L ∈ 4Z, and XX chain with the twisted boundary condition
and two degenerate ground states when L ∈ 4Z + 2. This is analogous to the phenomenon that
an antiferromagnetic chain of odd length is effectively subject to a twisted boundary condition.
Here we simply consider the sequence of systems only with α ∈ {0, 1, 3, 4, 5, 7}. This would be
reasonable if the ground-state degeneracy for α = 2, 6 is indeed due to an effective twist; we just
consider the sequence of effectively untwisted systems.15 Then the ground state degeneracy in the
thermodynamic limit is regarded as one, consistent with our definition of igSPT.

There still remains the periodic dependence of the ZΓ
4 charge in the ground state on the system

size: for α = 0, 1, 7, the ground state is neutral under ZΓ
4 , while α = 3, 4, 5, the ground state gets

a minus sign under the ZΓ
4 transformation. However, this minus sign can always be absorbed by

suitably modifying the definition of UΓ in (3.12). In fact, in the following sections, we will only
be interested in the relative charge of the ground state between the periodic and twisted boundary
conditions, which turns out to be system-size independent.

3.2.2 Twisted Boundary Condition

We further discuss the charge of the ground state under the TBC. We can either twist by ZΓ
4 , or its

normal subgroup ZA2 .

15See also [59] for the system size dependent ground state degeneracy in the (1 + 1)d Luttinger liquids.
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Twist by ZA2 : We twist the boundary condition by ZA2 (labeled by ZA2 TBC). The Hamiltonian is

H
ZA2
igSPT = −

L−1∑
i=1

(
τ z
i− 1

2
σxi τ

z
i+ 1

2
+ τ y

i− 1
2

σxi τ
y

i+ 1
2

+ σzi τ
x
i+ 1

2
σzi+1

)
+ τ z

L− 1
2
σxLτ

z
1
2

+ τ y
L− 1

2

σxLτ
y
1
2

− σzLτx1
2
σz1

= σzLHigSPTσ
z
L

(3.17) {Z4 twsitA}{Z4 twsitA}

where HigSPT is (3.11). We have already encountered the same algebra below (2.14). Denote the
ground state of HigSPT and HZA2

igSPT as |GS〉 and |GS〉Z
A
2

tw , respectively. Then we have |GS〉Z
A
2

tw =

σzL |GS〉. As UΓσ
z
LU
†
Γ = −σzL, we find

UΓ |GS〉Z
A
2

tw = −eiπq/2 |GS〉Z
A
2

tw = eiπ(q+2)/2 |GS〉Z
A
2

tw (3.18) {Z4charge}

where q is the Z4 charge of |GS〉 under PBC, given by (3.16). (3.18) means that the ZΓ
4 charge

of the ground state with the ZA2 twisted boundary condition differs from that with the periodic
boundary condition by two. We thus define the difference between the ZΓ

4 charge under ZA2 -
TBC and that under PBC to be the relative ZΓ

4 charge, which is two. Relative charge is more
physical since there are ambiguities in defining the absolute charge as we noticed in the previous
subsection. The nontrivial relative ZA2 charge shows that the igSPT we constructed in (3.11) is
topologically nontrivial. We also note that the proof applies to all the states.

Twist by ZΓ
4 : We further use the ZΓ

4 symmetry to twist the boundary condition (labeled by ZΓ
4

TBC). The Hamiltonian is

H
ZΓ

4
igSPT = −

L−1∑
i=1

(
τ z
i− 1

2
σxi τ

z
i+ 1

2
+ τ y

i− 1
2

σxi τ
y

i+ 1
2

+ σzi τ
x
i+ 1

2
σzi+1

)
− τ z

L− 1
2
σxLτ

y
1
2

+ τ y
L− 1

2

σxLτ
z
1
2

+ σzLτ
x
1
2
σz1.

(3.19) {Z4twist}{Z4twist}

The ground state |GS〉Z
Γ
4

tw satisfies

τx
i+ 1

2
|GS〉Z

Γ
4

tw = σzi σ
z
i+1 |GS〉Z

Γ
4

tw (1 ≤ i ≤ L− 1), τx1
2
|GS〉Z

Γ
4

tw = −σzLσz1 |GS〉Z
Γ
4

tw . (3.20) {Z4lowenergyprop}

We then measure the ZA2 charge using UA in (3.9),

UA |GS〉Z
Γ
4

tw = −
L−1∏
i=1

(
σzi σ

z
i+1

)
σzLσ

z
1 |GS〉Z

Γ
4

tw = − |GS〉Z
Γ
4

tw (3.21) {Z4GammaTBC}

which means that the ground state carries ZA2 charge 1. This also implies that if |GS〉Z
Γ
4

tw is an
eigenstate of UΓ, then it should carry ZΓ

4 charge 1 mod 4 or 3 mod 4.
In fact, by exact numerical diagonalization, we find that there are two degenerate ground states

if L is odd and four if L is even. If we organize them into eigenstates of ZΓ
4 , half of them have
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charge 1 mod 4 and the other half have charge 3 mod 4. Since there are different charges, an
arbitrary linear combination of them is generically not an ZΓ

4 eigenstate. However, as all of the
ground states have ZA2 charge 1, an arbitrary linear combination of them also has ZA2 charge 1.

From (3.16), the ZA2 charge of the ground state under PBC is always trivial, independent of the
system size. Moreover, as we find in (3.21) the ZA2 charge of the ground state under ZΓ

4 TBC is
one, independent of the system size. We thus found that the relative ZA2 charge is size-independent,
and it shows that the igSPT we constructed in (3.11) is topologically nontrivial. Since (3.20) also
holds for all low energy states with energy E−EGS � 1, the above proof of nontrivial ZA2 charge
of the ground state also applies to low energy states.

In summary, we have checked that using either ZA2 -TBC or ZΓ
4 -TBC one can probe the topo-

logical nontriviality of the ZΓ
4 igSPT.

3.2.3 Open Boundary Condition
{sec.Z4OBC}

We proceed to discuss the ground state degeneracy under the OBC. When placing the Z4 igSPT
on an open chain, as in section 2.3.3, we let the left most spin be σ spin, and right most spin be τ
spin. The Hamiltonian is

HOBC
igSPT = −

L∑
i=2

(
τ z
i− 1

2
σxi τ

z
i+ 1

2
+ τ y

i− 1
2

σxi τ
y

i+ 1
2

)
−

L−1∑
i=1

σzi τ
x
i+ 1

2
σzi+1 (3.22) {Z4SPTCOBC}

and the symmetry operator is

UΓ =
L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− τx

i+ 1
2
)

)
. (3.23)

We find that the set of operators {σz1, σzLτxL+ 1
2

, UΓ} commute with the Hamiltonian (3.22). The
irreducible representation of the above algebra is two, hence the ground states of (3.22) are at
least two fold degenerate. In appendix D.2, we show that the ground state degeneracy is four for
L ∈ 2Z + 1, and two for L ∈ 2Z.

3.3 Stability of igSPT
{sec.stability_SSPTC}

As discussed in section 2, the ZA2 × ZG2 gSPT is unstable upon perturbation towards the gapped
SPT phase. It immediately enters the ZA2 × ZG2 gapped SPT phase when transverse field λ passes
the critical value λc = 1. How about the stability of the ZΓ

4 igSPT against perturbation into a
gapped phase with a unique ground state?

First of all, since ZΓ
4 is non-anomalous, in principle, there is no obstruction to deform the

system to Z4 symmetric gapped phase with a unique ground state [60]. Secondly, since there is no
ZΓ

4 gapped SPT, the only gapped phase with a non-degenerate ground state is the trivially gapped
phase. In this subsection, we will examine the most obvious ZΓ

4 symmetric perturbation that can
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Figure 4: ZΓ
4 charge of the ground state under PBC, relative ZΓ

4 charge of the ground state
under ZA2 TBC, relative ZA2 charges of the ground state under ZΓ

4 TBC, and the gap between
the ground state and first excited state under PBC and two TBC’s. The horizontal axis is the
perturbation strength (3.24). The system size is L = 11. {fig:Z4plot}

drive the igSPT into a trivially gapped phase,

−h
L∑
i=1

(
σxi + τx

i+ 1
2

)
(3.24) {Z4perturbation}

where h > 0. When h� 1, as τx
i+ 1

2

anticommutes with the first and second term of the Hamilto-
nian (3.11), and σxi anticommutes with the third term, only (3.24) survives and it is in the trivially
gapped phase. This means that there must be at least one phase transition as h increases from zero
where either the ZΓ

4 charge under PBC, or the relative ZA2 charge under ZΓ
4 -TBC or relative ZΓ

4

charge under ZA2 -TBC jumps. We perform the exact diagonalization numerically, and record the
lowest h where the charges jump in table 4. We also plot the charges and the gaps under various
boundary conditions for L = 11 in figure 4.

From the plots in figure 4, we find that the ZΓ
4 charge under PBC and both relative charges

under TBC’s are unchanged until h reaches the first critical value hc ' 0.28. This first transition
is probed by the charge jump under PBC, where the finite size gap closes simultaneously. When h
further passes hc, the system goes through a sequence of transitions, some are probed by the ZA2 -
TBC, some are probed by the ZΓ

4 -TBC and the others are probed by PBC. When h is sufficiently
large (h > 2), the system enters into a trivially gapped phase, and all charges become trivial.

For different system sizes, for instance L = 5 as shown in table 4, the first transition can
be probed by the relative charge under TBC instead. Hence it is important to examine all the
boundary conditions and find the minimal hc where the charge jumps. We plot the minimal hc for
each L in figure 5.
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L ZΓ
4 Charge under PBC ZΓ

4 Charge under ZA2 -TBC ZA2 Charge under ZΓ
4 -TBC

4 1.01 1.01 1.01
5 1.30 1.30 0.50
7 0.44 1.32 0.98
8 0.70 0.70 0.70
9 0.86 0.86 0.86

11 0.28 1.12 1.01

Table 4: Lowest hwhere the symmetry charge of the ground state under three boundary conditions
jumps, for L = 4, 5, 7, 8, 9, 11. {tab.Z4chargetransition}

{4, 1.01}

{5, 0.5}
{7, 0.44}

{8, 0.7}

{9, 0.86}

{11, 0.28}

4 6 8 10 12
L0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

hc

Figure 5: System size L dependence of the first transition out of the ZΓ
4 igSPT. {fig:Z4chargetransition}

The above discussion seems to suggest that igSPT is more stable than the gSPT. Let us however
make a cautionary remark. As observed in figure 5, the critical perturbation strength hc depends
on the system size L. Logically, there are two possibilities:

1. hc → 0 when L → ∞: This would suggest that in the thermodynamic limit, igSPT is
unstable upon infinitesimal perturbation (3.24). However, it still requires a phase transition
to go from the igSPT and trivially gapped phase, since the symmetry quantum numbers of
the ground state under TBC don’t match between the two.

2. hc converges to a finite value when L → ∞: This would suggest that igSPT is stable
against small enough perturbation (3.24).

From figure 5, hc does not monotonically decrease as the system size increases, and the data does
not rule out either possibility. It should be interesting to study the asymptotic behavior of hc either
numerically or analytically (by understanding the CFT of the ZΓ

4 igSPT) in the future.16 It would
16Since the system without perturbation (3.11) is decorating the Levin-Gu model (whose CFT description is a free
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also be interesting to study more sophisticated perturbation than (3.24) which can drive the system
to the trivially gapped phase, and discuss the transition for small perturbation strength.

In an upcoming work [33], we use the modern understanding of the duality transformation (i.e.
the Kennedy-Tasaki transformation) to give an analytic understanding of why the perturbation is
irrelevant, and hence the ZΓ

4 igSPT is stable. This is consistent with the intuition that the anomaly
for the gapless sector obstructs the system from driving the igSPT to a trivially gapped phase
under symmetric perturbations [16].

4 gSPT and IgSPT in the Spin-1 System
{sec.spin1}

In this section, we briefly introduce a more realistic spin-1 model which hosts the igSPT and gSPT
simultaneously. This model is studied in detail in [61] by one of the authors in this work (L.L.)
together with Yang, Okunishi and Katsura. We briefly review the results there, and fit them into
our framework.

4.1 The Model and Phase Diagram

The Hamiltonian is given by

H(θ, λ) = (1− λ)HBLBQ + (1 + λ)UKTHBLBQU
†
KT − π

4
< θ < arctan

1

2
, (4.1) {KTHam}

where

HBLBQ = cos θ(~Si · ~Si+1) + sin θ(~Si · ~Si+1)2, (4.2)

UKT =
∏
µ<ν

exp(iπSzµS
x
ν ). (4.3)

~S is spin-1 operator. UKT is a non-local unitary operator implementing the Kennedy-Tasaki (KT)
transformation [48–50]. Under the KT transformation, λ↔ −λ, and λ = 0 is the self-dual point.
For each θ and λ, the Hamiltonian (4.1) preserves three global symmetries:

1. Zz2: π rotation in z direction, generated by
∏

j e
iπSzj

2. Zy4: π/2 rotation in y direction, generated by
∏

j e
iπ

2
Syj

fermion) by an anomalous SPT (which are gapped degrees of freedom), one may attempt to propose that the CFT of
(3.11) in the low energy is simply the free fermion, and identify the perturbation in (3.24) as one of the free fermion
operators. However, this is not entirely correct – the perturbation (3.24) can not be fully described by the free fermion
operators. As the perturbation strength h increases, the gap between the two sets of degrees of freedom decreases.
Further increasing h above a certain threshold reopens a gap and thus drives the system to a trivially gapped phase.
This process involves the dynamics of the gapped sector, and hence can not be fully described merely by the free
fermion operators. An analytical understanding of hc should require a CFT description including the gapped sector
from the domain wall decoration, which we leave to the future study.
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λλ = −λ1 λ = 0 λ = λ1

Haldane
Phase

Zz2 SSB Zy
′

2 SSB Zz2 n Zy4 SSB

gSPT igSPT
Landau

Transition

Figure 6: The phase diagram of (4.1) when θ=0. {phase of spin-1}

3. ZT: translation symmetry.

The phase diagram of θ = 0 is obtained in [61], as shown in figure 6. See [61] for the full 2d
phase diagram in the (λ, θ) plane.

4.2 Zz2 n Zy4 × ZT igSPT
{sec.Z2Z4ZTigSPT}

Let us start by discussing the self-dual point λ = 0 which we argue to be a igSPT. Taking the
low energy limit around this point, some degrees of freedom decouple, and the 3-dimensional
Hilbert space per site in the spin-1 model reduces to 2-dimensional Hilbert space per site, hence
effectively becomes a spin-1

2
model. The spin-1

2
Hamiltonian turns out to be the XXZ model [61]:

H(λ� 1) = −(1 + λ)
L∑
j=1

σxj σ
x
j+1 + (1− λ)

L∑
j=1

σyjσ
y
j+1. (4.4) {XXZtransition}

This model also has three global symmetries:

1. Zz′2 : generated by
∏

i σ
z
i

2. Zy
′

2 : generated by
∏

i iσ
y
i

3. ZT: translation symmetry.

We use the primes to distinguish the symmetries of the spin-1/2 model from those of the spin-1
model. Denote their background fields as A′z, A

′
y and AT . The symmetries Zz′2 , Zy

′

2 and ZT
2 ⊂ ZT

have a mixed anomaly [58, 62, 63] whose inflow action is

ω3d = e
iπ

∫
M3

A′yA
′
zAT . (4.5) {yzT}

However, in the entire Hibert space of spin-1 system, the Zz′2 ×Z
y′

2 is realized as Zz2nZy4 symmetry
with the following extension:

Y ′Z ′ = Ry
πZ
′Y ′, (4.6) {spin1extension}
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where Ry
π =

∏L
j=1 exp(iπSyj ), Y ′ =

∏L
j=1 exp(iπSyj /2) and Z ′ =

∏L
j=1 exp(iπSzj ). exp(iπSyj )

has eigenvalues {−1,−1, 1}. In the low energy limit, the spin-1
2

model only acts nontrivially on
the first two components of the spin-1 Hilbert space under the eigenbasis of exp(iπSyj ), hence
exp(iπSyj ) = −1 in the spin-1

2
model, Y ′, Z ′ in (4.6) reduces to the standard spin-1

2
operators

σzj = exp(iπSzj ) and iσyj = exp(iπSyj /2). In terms of the background fields, (4.6) gives us the
restriction

dAY = A′yA
′
z mod 2 (4.7) {Yyz}

where AY is 1-cochain for ZY2 normal subgroup of Zy4 symmetry. In summary, we can identify
Zz′2 and Zy

′

2 in the spin-1
2

theory with the Zz2 and Zy4/ZY2 in the spin-1 theory respectively.
Besides, since exp(iπSyj ) = −1 for each site in the low energy sector, the ground state is

stacked by a weak gapped SPT phase protected by translation and Zy2 symmetry [64]. This is
represented by the topological action eiπ

∫
M2

AY AT and by (4.7), it depends on the extension to a
3d bulk M3,

e
iπ

∫
M2

AY AT = e
iπ

∫
M3

A′yA
′
zAT . (4.8)

This induced anomaly from stacking a weak gapped SPT phase cancels against the mixed anomaly
(4.5) in the low energy. Thus the total spin-1 system is anomaly free. This shows that the spin-1
system is a igSPT, protected by the total symmetry Zz2 n Zy4 × ZT.

The total symmetry can be decomposed into two extensions,

1→ Zz2 × ZY2 × ZT
2 → Zz2 n Zy4 × ZT

2 → Zy
′

2 → 1, (4.9) {eq:409}

and

1→ Zy4 → Zz2 n Zy4 × ZT
2 → Zz2 × ZT

2 → 1. (4.10) {secondext}

Note that (4.10) is still a nontrivial extension.17 Comparing with (1.1), we see that the Zz2nZy4×ZT

igSPT can be constructed either by starting with G = Zy
′

2 SSB phase or G = Zz2 SSB phase,
which exactly correspond to the regimes λ > 0 and λ < 0 in figure 6. Moreover, from (4.5), the
anomalous symmetries in the low energy are Γ̂ = Zy

′

2 × Zz′2 × ZT
2 . This provides an example

where the SSB symmetry G is strictly smaller than the anomalous symmetry Γ̂, which generalizes
the construction in [16].

4.3 Zz2 n Zy4 × ZT gSPT
{sec.Z2Z4ZTgSPT}

Let us further consider the critical point at λ = −λ1. The two phases around this critical point are
Zz2 SSB phase and a nontrivial gapped SPT protected by Zz2 × ZY2 , a.k.a. the Haldane phase. This
fits into the phase diagram of gSPT in the left panel of figure 1.

17Both (4.9) and (4.10) are not central extensions, since both Zz
2×ZY

2 and Zy
4 are not center subgroup of Zz

2 nZy
4 .
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Moreover, at λ = −λ1, the Hamiltonian (4.1) has a unique ground state under periodic bound-
ary condition for a finite system size but has two ground states under the open boundary condition
(up to exponential splitting). There are also three string order parameters with nonzero expec-
tation value in the Haldane phase Oµ = 〈Sµm

∏
m<j<n exp(iπSµj )Sµn〉 (µ = x, y, z). When the

system is turned into this critical point, only Oy remains nonzero but the other two decay to zero
algebraically quickly. All these evidence suggest that the critical point at λ = −λ1 is a nontrivial
gSPT. As the system has total symmetry Zz2nZy4×ZT, we name the critical point as Zz2nZy4×ZT

gSPT, although only a subgroup Zz2 × ZY2 protects the gapped SPT in the nearby phase.

Acknowledgements
L.L. sincerely thanks Jian-da Wu’s group for helpful discussions on the Jordan-Winger trans-
formation of the Levin-Gu model; Hong Yang for discussions on the gSPT and igSPT in the
Spin-1 system; Yutan Zhang for kind help on the Julia code. Y.Z. sincerely thanks Jie Wang for
discussions on stability of gapless systems, Qing-Rui Wang for discussions on decorated defect
constructions, and Nick Jones, Ryan Thorngren and Ruben Verresen for helpful comments and
discussions. We also thank Atsushi Ueda, Yuan Yao, Kantaro Ohmori for useful discussions.
Y.Z. is partially supported by WPI Initiative, MEXT, Japan at IPMU, the University of Tokyo.
This work was supported in part by MEXT/JSPS KAKENHI Grants No. JP17H06462 and No.
JP19H01808, and by JST CREST Grant No. JPMJCR19T2.

30



A Stability of Boundary Degeneracy of ZA2 × ZG2 Gapped SPT
{app.gappedSPT}

We find in section 2.3.3 that if we suitably change OBC by adding boundary interactions, the
ground state degeneracy can be lifted from four to two. In this appendix, we would like to argue
that exactly degenerate ground states of the ZA2 × ZG2 gapped SPT, which is always four, does not
lift under arbitrary symmetric perturbations localized at the boundary.

Let us truncate the system in the same way as section 2.3.3. The σ spins are supported on
i = 1, ..., L, and the τ spins are supported on i + 1

2
= 3

2
, ..., L + 1

2
. Let us begin by choosing one

particular OBC such that the Hamiltonian is

HOBC
SPT = −

L−1∑
i=1

σzi τ
x
i+ 1

2
σzi+1 −

L∑
i=2

τ z
i− 1

2
σxi τ

z
i+ 1

2
. (A.1) {Z2Z2gappedss}

Suppose the boundary perturbation at the left end is supported on 2 sites, 1, 3
2
. A generic symmet-

ric perturbation takes the form

∆HOBC
SPT = (σx1 )β1(τx3

2
)
β 3

2 (A.2) {Z2Z2gappedssint}

where β1, 3
2
∈ {0, 1}. 18 Let us find the local operators that commute with both HOBC

SPT and ∆HOBC
SPT .

Any interaction commuting with HOBC
SPT are composed of the building blocks σz1 , σx1τ

z
3
2

, τx
L+ 1

2

σzL,
τ z
L+ 1

2

and all the terms that already exist in (A.1). Using these building blocks, a generic term that
might anticommute with the boundary perturbation takes the form

Ou1u2u3u4 = (σz1)u1(σx1τ
z
3
2
)u2(σz1τ

x
3
2
σz2)u3(τ z3

2
σx2τ

z
i+ 5

2
)u4 (A.3)

where u1,2,3,4 ∈ {0, 1}. Requiring [O,∆HOBC
SPT ] = 0, we find that the coefficients need to satisfy

the linear equations

β1(u1 + u3) + β 3
2
(u2 + u4) = 0 mod 2. (A.4) {betauu}

Note that β1, 3
2

are given, while u’s are variables to be determined. There are 4 variables, and
one equation, hence one is free to choose arbitrary value of u1, u2, such that ui’s for i = 3, 4 are
constrained by the equation. One solution would be u3 = β 3

2
− u1, u4 = β1 − u2. On the other

hand, the algebra between the operators {Ou1u2u3u4 , UA, UB} are

Ou1u2u3u4Ou′1u′2u′3u′4 = (−1)u1u′2+u′1u2Ou′1u′2u′3u′4Ou1u2u3u4 ,

UAOu1u2u3u4 = (−1)u2Ou1u2u3u4UA,

UGOu1u2u3u4 = (−1)u1Ou1u2u3u4UG.

(A.5)

The commutation relations only depends on u1, u2! Hence we are free to choose two commuting
independent operators O10u3u4 and O01u′3u

′
4 whose common eigenvalues (a, b) label the ground

18For perturbations supported on 3 sites, one also allows σz
1σ

z
2 . But for 2 site perturbation, Pauli Z operators are

forbidden by the symmetries.

31



states |(a, b)〉, where u3,4 and u′3,4 are arbitrary solutions of (A.4). The four orthogonal ground
states are thus given by

|(a, b)〉 , |(−a, b)〉 = UG |(a, b)〉 , |(a,−b)〉 = UA |(a, b)〉 , |(−a,−b)〉 = UAUG |(a, b)〉 .
(A.6)

The above discussion can easily be generalized to perturbation supported on arbitrary number
sites. We thus conclude that, for the ZA2 × ZG2 gapped SPT, the exact four fold ground state
degeneracy on an open chain is stable under boundary perturbation.

B Spectrum of Levin-Gu Model under Different Boundary Con-
ditions

{spectrum LG}

In this appendix, we show the energy spectrum of Levin-Gu model [42] under different boundary
conditions analytically. The analytic results are confirmed by the numerical calculation.

B.1 Exact Solutions under PBC by Jordan-Wigner Transformation
{app.Z4PBCGSD}

The Hamiltonian of Levin-Gu model is

HLG = −
L∑
i=1

(
σxi − σzi−1σ

x
i σ

z
i+1

)
(B.1) {LevinGuHam}

which respects the Z2 symmetry generated by

UG =
L∏
i=1

σxi

L∏
i=1

exp

(
iπ

4
(1− σzi σzi+1)

)
. (B.2) {Z2sym}

We apply the Jordan-Wigner (JW) transformation which maps spin operator to fermion oeprator

σxi = (−1)ni = 1− 2f †i fi, σzi =
i−1∏
j=1

(−1)nj(f †i + fi) (B.3)

where ni := f †i fi is fermion density operator. Note that when i = 1, we simply have σz1 = f †1 +f1.
We also assume PBC of the spins, i.e. σai = σai+L.

Applying the JW transformation to the Levin-Gu model, we can rewrite (B.1) in terms of the
fermions,

HLG = −L+
L∑
i=1

(
2f †i fi + (f †i − fi)(f

†
i+2 + fi+2)

)
(B.4)

with boundary condition

fi+L = −(−1)Ffi, F =
L∑
j=1

nj. (B.5)
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After Fourier transformation and Bogoliubov transformation, this Hamiltonian is diagonal

HLG =
∑
k

ωk

(
c†kck −

1

2

)
, (−1)

∑
k c
†
kck = (−1)F (B.6)

where ωk = 4| cos k|. There are zero modes if k can be either π
2

or 3π
2

, and whether they are
realizable depends on the boundary condition. It turns out that depending on L ∈ 4Z, 4Z + 2 or
2Z + 1, the boundary condition behaves differently. We discuss them separately.

Case 1: L ∈ 4Z

If (−1)F = −1, the fermion chain has PBC. This means k = 2πj
L

where j = 0, · · · , L − 1.
Therefore, when j = L

4
and j = 3L

4
, we have two zero modes at k = π

2
and k = 3π

2
. Since

(−1)F = −1, the ground states are: c†π
2
|VAC〉PBC and c†3π

2

|VAC〉PBC. The ground state energy is

EPBC
GS = −2

L−1∑
j=0

| cos(
2πj

L
)| = −4 cot(

π

L
). (B.7)

If (−1)F = 1, the fermion chain has anti-periodic boundary condition (ABC) where k = (2j+1)π
L

.
Since L ∈ 4Z, there is no zero mode. the ground state is |VAC〉ABC with ground state energy:

EABC
GS = −2

L−1∑
j=0

| cos(
(2j + 1)π

L
)| = − 4

sin( π
L

)
. (B.8)

As EABC
GS < EPBC

GS , the Levin-Gu model has an unique true ground state which is vacuum of ABC
after Jordan-Wigner transformation.

Case 2: L ∈ 4Z + 2

If (−1)F = −1, the fermion chain has PBC where k = 2πj
L

, j = 0, · · · , L − 1. Since L =

4m+2 ∈ 4Z+2, there is no zero mode. The ground states are c†2mπ
4m+2

|VAC〉PBC, c†2π(m+1)
4m+2

|VAC〉PBC,

c†2π(3m+1)
4m+2

|VAC〉PBC and c†2π(3m+2)
4m+2

|VAC〉PBC. The ground state energy is

EPBC
GS = −2

L−1∑
j=0

| cos(
2πj

L
)|+ 4 cos(

mπ

2m+ 1
) = − 4

sin( π
L

)
+ 4 sin(

π

L
). (B.9)

If (−1)F = 1, the fermion chain has ABC where k = (2j+1)π
L

. Since L = 4m+ 2 ∈ 4Z + 2, there
are two zero modes at j = m and j = 3m+1. The ground states are double degenerate |VAC〉ABC

and c†π
2
c†3π

2

|VAC〉ABC with energy

EABC
GS = −2

L−1∑
j=0

| cos(
(2j + 1)π

L
)| = −4 cot(

π

L
). (B.10)
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Since

EABC
GS − EPBC

GS = −4 cot(
π

L
) +

4

sin( π
L

)
− 4 sin(

π

L
) = −4 cot(

π

L
)
(

1− cos(
π

L
)
)
< 0 (B.11)

the Levin-Gu model has double degenerate ground states which is vacuum of ABC.

Case 3: L ∈ 2Z + 1

If (−1)F = 1, the fermion chains has ABC where k = (2j+1)π
L

and where j = 0, · · · , L− 1. Now
since L = 2m+ 1 ∈ 2Z + 1, there is no zero mode. The ground states is |VAC〉ABC with energy

EABC
GS = −2

2m∑
j=0

| cos(
(2j + 1)π

2m+ 1
)| = −4

m−1∑
j=0

| cos(
(2j + 1)π

2m+ 1
)− 2. (B.12) {gsenergy ABC}

If (−1)F = −1, the fermion chain has PBC where k = 2πj
L

where j = 0, · · · , L. Now since
L = 2m + 1 ∈ 2Z + 1, there is also no zero mode. Here we note that the energy of |VAC〉PBC is
the same as (B.12)

EPBC
VAC = −2

2m∑
j=0

| cos(
2πj

2m+ 1
)| = −4

m∑
j=1

| cos(
2πj

2m+ 1
)| − 2

= −4
m∑
j=1

| cos(
(2m− 2j + 1)π

2m+ 1
)| − 2 = −4

m−1∑
j=0

| cos(
(2j + 1)π

2m+ 1
)| − 2. (B.13)

Since there is no zero mode, the ground state energy in (−1)F = −1 sector must be higher than
EPBC

VAC which coincides with the ground state energy (B.12) under the ABC and the unique true
ground state is |VAC〉ABC.

In summary, the ground state degeneracy of the Levin-Gu model under PBC is two if L ∈
4Z + 2, and one otherwise. This proves (3.13).

B.2 Mapping to XX Chain and Charge of Ground State
{app.XXcharge}

When the system size is even (L = 2m), there is a unitary transformation [65]

U =
m∏
j=1

exp(
πi

2
σy2j)

m∏
j=1

i
σz2j + σx2j√

2

m∏
j=1

exp(
πi(1− σz2j−1)(1− σz2j)

4
) (B.14) {U trans}

which maps the Levin-Gu model to a XX chain with imaginary hopping constant.

UHLGU
† = −

m∑
j=1

(σz2j−1σ
x
2j − σx2jσx2j+1 − σx2j−1σ

z
2j + σz2jσ

x
2j+1)

= −
L∑
j=1

iσ+
j σ
−
j+1 + h.c. (B.15) {XX ima}
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where σ+
j = σzj + iσxj . The imaginary hopping XX chain can be further mapped to a standard XX

chain by a unitary transformation

U1 =
L∏
j=1

exp(
πi

2
jσyj ). (B.16) {U1 trans}

The resulting Hamiltonian is

U1UHLGU
†U †1 = −

L∑
j=1

(σzjσ
z
j+1 + σxj σ

x
j+1) (B.17) {LGXX}

with boundary condition

σzL+j = iLσzj , σxL+j = iLσxj . (B.18) {XXbdy}

After taking the continuum limit [66, 67]

(σz + iσx) ∝ eiθ, σy ∝ a

2π
∂xφ, (B.19) {bosonization}

the low energy theory of standard XX chain is the free boson theory and the energy of eigenstate
|m,n〉 is19

(Em,n − E0,0) ∝ π

2L
(4m2 + n2) (B.20) {XXenergy}

where the integer pairs (m,n) are determined by the boundary conditions θ(x+L) = θ(x)+2πm

and φ(x+ L) = φ(x) + 2πn. By combining (B.17), (B.18) and (B.20), we conclude as follows.

1. When L ∈ 4Z, the Levin-Gu model is equivalent to the XX chain with PBC where m ∈ Z
and n ∈ Z. Its energy minimizes at a unique value (m,n) = (0, 0), and the unique ground
state is |0, 0〉.

2. When L ∈ 4Z + 2, the Levin-Gu model is equivalent to the XX chain with ABC where
m ∈ Z+ 1/2 and n ∈ Z. Its energy minimizes at two distinct values (m,n) = (±1

2
, 0), and

there are two degenerate ground states |±1
2
, 0〉.

This is consistent with the results from JW transformation in (B.1).
Moreover we can obtain the Z2 symmetry (B.2) after transformation

U ′G = U1UUGU
†U †1 =

L∏
j=1

σyj

L
2∏
j=1

exp

(
πi

4
(2 + σx2j−1σ

z
2j − σz2jσx2j+1)

)
. (B.21)

After taking the continuum limit (B.19), the Z2 symmetry operator in the low energy is given by

U ′G = i
L
2 exp

(
i

2

∫
∂xφdx−

i

2

∫
∂xθdx

)
. (B.22) {low symmetry}

19Since we are only interested in ground state degeneracy, we don’t consider excitations of the oscillator modes.
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The charge of the state can be found by acting U ′G on |m,n〉,

U ′G |m,n〉 = i
L
2 eiπ(n−m) |m,n〉 . (B.23)

Therefore when L ∈ 4Z, the charge of ground state |0, 0〉 is (−1)L/4. When L ∈ 4Z + 2 the
charges of ground states |±1

2
, 0〉 are ±(−1)

L−2
4 . This proves (3.15) for even L.

B.3 Spectrum under Open Boundary Condition

In this section, we use the transformations (B.14) and (B.16) to discuss spectrum of Levin-Gu
model under OBC

HOBC
LG = −

L−1∑
i=2

(
σxi − σzi−1σ

x
i σ

z
i+1

)
. (B.24) {levin-gu obc}

There are two boundary operators σz1 and σzL commuting with Hamiltonian.
When L ∈ 2Z, the Hamiltonian (B.24) and the boundary operators σz1,L after the transforma-

tion are given by

U1UH
OBC
LG U †U †1 = −

L
2
−1∑

j=1

(
σx2j−1σ

x
2j + σz2j+1σ

z
2j+2 + σx2jσ

x
2j+1 + σz2jσ

z
2j+1

)
, (B.25)

U1Uσ
z
1U
†U †1 = −σx1 , U1Uσ

z
LU
†U †1 = (−1)

L
2

+1σzL. (B.26)

After taking the continuum limit, the boundary operators are− sin θ(x = 0) and (−1)
L
2

+1 cos θ(x =

L). As the ground state should be the eigenstate of the boundary operators −σx1 , (−1)
L
2

+1σzL,
− sin θ(x = 0) = ±1, (−1)

L
2

+1 cos θ(x = L) = ±1. They determine the boundary conditions
θ(x = 0) = ±π

2
and θ(x = L) = 0 or π. The ground state energy under these four boundary

conditions are exactly the same.
When L ∈ 2Z + 1, we only do the transformation (B.14) for even number of sites, say,

i = 1, ..., L− 1. We still do π/2 rotation along y direction, i.e. U1 in (B.16), on the L-th site. The
Hamiltonian (B.24) and the boundary operators after the transformation are given by

U1UH
OBC
LG U †U †1 = −

L−1
2∑
j=1

(
σx2j−1σ

x
2j + σx2jσ

x
2j+1

)
+

L−3
2∑
j=1

(
σz2j+1σ

z
2j+2 + σz2jσ

z
2j+1

)
,(B.27)

U1Uσ
z
1U
†U †1 = −σx1 , U1Uσ

z
LU
†U †1 = σxL. (B.28)

After taking the continuum limit, the boundary operators are − sin θ(x = 0) and sin θ(x = L)

which implies boundary conditions are θ(x = 0) = ±π
2

and θ(x = L) = ±π
2
, and the signs

are uncorrelated. Unlike even size, the states with different boundary conditions have different
energies,

E(∓π
2
,±π

2
) − E(±π

2
,±π

2
) ∝

1

L
(B.29)

where the signs are correlated. Therefore the true ground states are double degenerate and are in
the sector with boundary conditions θ(x = 0) = θ(x = L) = ±π

2
.
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C Equivalence Between Ground sector of Z4 igSPT and Levin-
Gu model

{app.Z4SPTCLG}

In this section, we show the ground state of the pre-decorated model (3.7) of ZΓ
4 igSPT is the same

as the Levin-Gu model (3.5) with τxi = 1.
Let us begin with the pre-decorated model (3.7) with PBC, which we reproduce here

UDWHigSPTU
†
DW = −

L∑
i=1

(
σxi − σzi−1τ

x
i− 1

2
σxi τ

x
i+ 1

2
σzi+1 + τx

i− 1
2

)
. (C.1) {pre}

Since the last term commutes with all other terms, the Hibert space can be divided into sectors
with different τx configurations. In different sectors, the sign of term σzi−1σ

x
i σ

z
i+1 is decided by

τx
i− 1

2

τx
i+ 1

2

. It is easy to see that the number of terms with τx
i− 1

2

τx
i+ 1

2

= −1 must be even, since∏L
i=1 τ

x
i− 1

2

τx
i+ 1

2

= 1. We prove the splitting of ground state energy of first two terms in (C.1) with
different τ configuration is order of 1/L or exactly zero. Therefore, when L is large enough, the
state in the ground state sector of (C.1) satisfies τx

i+ 1
2

= 1 for each i.
When L ∈ 2Z + 1, we can prove the first two terms in (C.1) with any τ configuration can be

mapped to the standard Levin-Gu model by a unitary transformation.
This implies the ground state energy of any τ configuration is same as that of the standard

Levin-Gu model. To see the unitary transformation, let us assume that the sign of two terms
σzi−1σ

x
i σ

z
i+1 and σzj−1σ

x
j σ

z
j+1 are both −1 where 1 ≤ i < j ≤ L.20 There is always a uni-

tary transformation which can cancel these two −1 and preserve sign of other terms: If i,j are
both odd (even), the unitary transformation is

∏
i<2k<j σ

x
2k (
∏

i<2k+1<j σ
x
2k+1). If i is odd (even)

and j is even (odd), the unitary transformation is
∏

i<2k<L σ
x
2k

∏
1≤2k+1<j σ

x
2k+1 (

∏
j<2k<L σ

x
2k∏

1≤2k+1<i σ
x
2k+1) which can do the job only when L ∈ 2Z + 1. Since the number of terms with

−1 sign is even, we can cancel these −1s step by step and obtain the standard Levin-Gu model at
last.

When L ∈ 2Z, we apply the unitary transformation (B.14) and (B.16) on the first two terms
and then obtain XX chain with several minus coupling constants :

Hµ1,µ2 = −
L∑
j=1

(µ1
j,j+1σ

z
jσ

z
j+1 + µ2

j,j+1σ
x
j σ

x
j+1) (C.2) {levin-gu twist}

where µ1 and µ2 can be ±1. They are decided by the configuration of τx but we don’t need to
know the exact relationship. We only use the fact that l+ l′ ∈ 2Z where l and l′ are number of −1

in µ1 and µ2.21

We note that the spectrum of Hamiltonian (C.2) only depends on l, l′ mod 2, and is indepen-
dent of the configuration of µ1 and µ2. The reason is as follows. The sites of −1 in µ1 can be

20We only focus on the “fundamental domain" where 1 ≤ i < j ≤ L and do not use periodicity i ∼ i+ L here.
21l + l′ ∈ 2Z can be seen from the transformation (B.14) and (B.16), which maps σx

2j−1 → σz
2j−1σ

z
2j , σx

2j →
σx
2j−1σ

x
2j , −σz

2j−1σ
x
2jσ

z
2j+1 → σx

2jσ
x
2j+1 and −σz

2jσ
x
2j+1σ

z
2j+2 → σz

2jσ
z
2j+1.
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labeled as µ1
j1,j1+1, µ1

j2,j2+1, · · · µ1
jl,jl+1 where j1 < j2 < · · · < jl. After the unitary transformation∏ji+1

k=ji+1 σ
x
k , µji,ji+1 , µji+1,ji+1+1 will become 1 without changing spectrum. Similar for µ2.

As l + l′ are even, there are only two equivalence classes for spectrum: l = l′ = 0 and l =

l′ = 1. The first case is XX chain with PBC. In the second case, we can choose µ1
L,1 = µ2

L,1 = −1

without loss of generality. This is XX chain with the ABC. The splitting between ground state
energy of these two boundary conditions is order of 1/L which completes our proof.

Besides, one can apply this argument to the Z4 igSPT with TBC and OBC as well. Gener-
ally, the ground state sector is Hilbert subspace which has eigenvalue 1 of the third term in the
Hamiltonian (3.17), (3.19) and (3.22).

D Edge Degeneracy of gSPT and igSPT
{app.edge}

In section 2.3.3 and 3.2.3, we discussed the degeneracy of gSPT and igSPT under OBC by study-
ing the dimension of irreducible representation of operators commuting with the Hamiltonian. In
this appendix, we rederive the degeneracy under OBC in an alternative way. We first undecorate
the domain wall which maps the gSPT and igSPT to the Ising and Levin-Gu models under OBC
respectively, and then use the results in appendix B to rederive the degeneracy.

D.1 Edge Degeneracy of Z2 × Z2 gSPT

In section 2.3.3, we studied the Z2 × Z2 gSPT under OBC, with the Hamiltonian (2.20),

HOBC
gSPT = −

L−1∑
i=1

(
σzi τ

x
i+ 1

2
σzi+1 + σzi σ

z
i+1

)
−

L∑
i=2

τ z
i− 1

2
σxi τ

z
i+ 1

2
. (D.1)

After UDW transformation, the Hamiltonian is given by

UDWH
OBC
gSPTU

†
DW = −

L−1∑
i=1

(
τx
i+ 1

2
+ σzi σ

z
i+1

)
−

L∑
i=2

σxi (D.2)

τL+ 1
2

decouples from the Hamiltonian which gives two ground state degeneracy. The σz1 commutes
with Hamiltonian which gives two fixed boundary conditions on the left end and the right end is
free boundary condition. Therefore we have four exact ground states. But this is unstable under
symmetric perturbations as noted in section 2.3.3. We can add the boundary term (2.23) which
becomes

−σzLτxL+ 1
2

(D.3)

after conjugated by UDW , i.e. domain wall undecoration. Now τx
L+ 1

2

no longer decouples, which
lifts degeneracy due to free boundary condition on the right, and ground state degeneracy reduces
to two.
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D.2 Edge Degeneracy of Z4 igSPT
{app.Z4OBCGSD}

In section 3.2.3, we studied the Z4 igSPT under OBC, with the Hamiltonian (3.22)

HOBC
igSPT = −

L∑
i=2

(
τ z
i− 1

2
σxi τ

z
i+ 1

2
+ τ y

i− 1
2

σxi τ
y

i+ 1
2

)
−

L−1∑
i=1

σzi τ
x
i+ 1

2
σzi+1. (D.4) {Z4 sigmatau}

After undecorating the domain wall, we obtain the Levin-Gu model under OBC

UDWH
OBC
igSPTU

†
DW = −

L−1∑
i=1

τx
i+ 1

2
−

L−1∑
i=2

(σxi − σzi−1τ
x
i− 1

2
σxi τ

x
i+ 1

2
σzi+1)− (σxL − σzL−1τ

x
L− 1

2
σxLτ

x
L+ 1

2
).

(D.5)

The ground state should be the eigenstate of τx
i− 1

2

(i < L + 1) with eigenvalue 1. The low energy
effective Hamiltonian is :

UDWH
OBC
igSPTU

†
DW |low = −

L−1∑
i=2

(σxi − σzi−1σ
x
i σ

z
i+1)− (σxL − σzL−1σ

x
Lτ

x
L+ 1

2
). (D.6) {Z4 low obc}

Since τx
L+ 1

2

commute with effective Hamiltonian, we can redefine τx
L+ 1

2

as σzL+1 and (D.6) becomes
(B.24) with system sizeL+1. We thus conclude that whenL ∈ 2Z+1, the ground state degeneracy
is four and when L ∈ 2Z the ground state degeneracy is two.

E ZT
4 × Z2 igSPT

{app.Z4TZ2}
In this section we discuss another example of igSPT which respects the ZT

4 × Z2 symmetries. We
will also discuss the PBC, TBC and OBC.

E.1 Lattice Hamiltonian

Let us assign three spin-1
2
s τ, σ and µ per unit cell and the Hamiltonian is:

HZT
4×Z2

=
∑
j

(
µzjτ

x
j+ 1

2
µzj+1 + σzjµ

z
jτ

x
j+ 1

2
µzj+1σ

z
j+1 + σxj µ

x
j + σxj

)
−
∑
j

τ z
j− 1

2
µxj τ

z
j+ 1

2
. (E.1) {Z4TZ2SPTC}

This Hamiltonian respects the following symmetry:

ZT
4 : UT ≡

∏
j

(
1 + µxj

2
σxj +

1− µxj
2

iσyj )K, U2
T =

∏
j

µxj (E.2) {sym1}

Zτ2 : Uτ ≡
∏
j

τxj . (E.3) {sym2}

where T stands for time reversal, and K is the complex conjugation.
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To see that (E.1) is a Z2×ZT
4 igSPT, we show that it can be obtained by starting with a Zτ2×ZT

2

anomalous critical theory, and decorating the Zτ2 domain wall by 1d Zµ2 gapped SPT, where Zµ2 is
generated by U2

T. Let us apply UDW of τ and µ on both the Hamiltonian (E.1) and the symmetry
operators (E.2) and (E.3).

UDWUTU
†
DW =

∏
j

(
1 + µxj τ

z
j− 1

2

τ z
j+ 1

2

2
σxj +

1− µxj τ zj− 1
2

τ z
j+ 1

2

2
iσyj )K, (E.4)

UDWUτU
†
DW = Uτ , (E.5)

UDWHZT
4×Z2

U †DW =
∑
j

(τx
j+ 1

2
+ σzj τ

x
j+ 1

2
σzj+1 + σxj + τ z

j− 1
2
σxj µ

x
j τ

z
j+ 1

2
)−

∑
j

µxj . (E.6) {HamT}

In (E.6), since the last term commutes with all other terms, the energy eigenstates are eigenstates
of µxj . Similar to the proof in the Z4 igSPT, we can consider the spectrum of first four terms in the
Hamiltonian (E.6) with different configurations of µx. These four terms can be mapped to an XX
chain by applying the unitary transformations (B.14):

H({µxj }) =
L∑
j=1

σzj τ
z
j+ 1

2
+ τ z

j+ 1
2
σzj+1 + σxj τ

x
j+ 1

2
+ τx

j− 1
2
σxj µ

x
j . (E.7) {XX chain1}

According to the proof in appendix C, we know the spectrum of the (E.7) is invariant if we flip
even number of µx. Thus, the spectrum of first four terms in (E.6) is that of XX chain with
boundary condition: σxL+j = ±σxj and σzL+j = σzj , where we take ± sign if there are even or odd
number of µx = −1 respectively. After taking the continuum limit (B.19), these two boundary
conditions are PBC and ABC for θ respectively. The splitting between the corresponding ground
state energy is also of order 1/L. Thus in the low energy state sector, one can find that µxj = 1. The
effective Hamiltonian and symmetry are those of the boundary model of 2+1d ZT

2 ×Z2 SPT [65]:

UDWUTU
†
DW |low =

∏
j

(
1 + τ z

j− 1
2

τ z
j+ 1

2

2
σxj +

1− τ z
j− 1

2

τ z
j+ 1

2

2
iσyj )K, (E.8)

UDWHZT
4×Z2

U †DW |low =
∑
j

(τx
j+ 1

2
+ σzj τ

x
j+ 1

2
σzj+1 + σxj + τ z

j− 1
2
σxj τ

z
j+ 1

2
). (E.9)

Moreover the proof on the equivalence between ground state sector and XX chain can be general-
ized to twisted boundary conditions and open boundary conditions. We conclude that the ground
state sector of different boundary conditions is always Hibert subspace which has eigenvalue 1 of
the last term in the Hamiltonian (E.10) and (E.14).

E.2 Charge of Twisted Boundary Condition

We show that the charge of the ground state under TBC is nontrivial, implying that (E.1) is a
nontrivial igSPT. Let us start by twisting the boundary condition using the Zτ2 symmetry, which
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we denote as Zτ2-TBC. The Hamiltonian (E.1) becomes

H
Zτ2
ZT

4×Z2
=

L∑
j=1

(µzjτ
x
j+ 1

2
µzj+1 + σzjµ

z
jτ

x
j+ 1

2
µzj+1σ

z
j+1 + σxj µ

x
j + σxj )− (

L−1∑
j=1

τ z
j− 1

2
µxj τ

z
j+ 1

2
− τ z

L− 1
2
µxj τ

z
1
2
).

The ground state satisfies

τ z
j− 1

2
µxj τ

z
j 1

2
= 1 (0 < j < L); τ z

L− 1
2
µxj τ

z
1
2

= −1. (E.10)

which implies that the ground state has a nontrivial Zµ2 charge

L∏
j=1

µxj |GS〉Z
τ
2

tw = − |GS〉Z
τ
2

tw . (E.11)

On the other hand, if we twist by Zµ2 symmetry, the SPT criticality Hamiltonian becomes

H
Zµ2
ZT

4×Z2
=

L−1∑
j=1

(µzjτ
x
j+ 1

2
µzj+1 + σzjµ

z
jτ

x
j+ 1

2
µzj+1σ

z
j+1) +

L∑
j=1

(σxj µ
x
j + σxj − τ zj− 1

2
µxj τ

z
j+ 1

2
)

−µzLτx1
2
µz1 − σzLµzLτx1

2
µz1σ

z
1

= τ z1
2
HZT

4×Z2
τ z1

2
. (E.12)

It is straightforward to check that |GS〉Z
µ
2

tw has Zτ2 charge 1:

Uτ |GS〉Z
µ
2

tw = Uττ
z
1
2
U †τUτ |GS〉 = −τ z1

2
|GS〉 = − |GS〉Z

µ
2

tw . (E.13)

E.3 Open Boundary Condition

To consider OBC, we truncate the spin chain so that σ-spins and µ-spins live on i = 1, ..., L, and
τ -spins live on i = 3

2
, ..., L + 1

2
. We only keep the terms in (E.1) that are fully supported on the

spin chain. The Hamiltonian is

HOBC
ZT

4×Z2
=

L−1∑
j=1

µzjτ
x
j+ 1

2
µzj+1 + σzjµ

z
jτ

x
j+ 1

2
µzj+1σ

z
j+1 +

L∑
j=1

σxj µ
x
j + σxj −

L∑
j=2

τ z
j− 1

2
µxj τ

z
j+ 1

2
. (E.14) {HamTobc}{HamTobc}

There are two boundary operators µx1τ
z
3
2

and τ z
L+ 1

2

commuting with Hamiltonian. Since both of
them anticommute with Uτ , there must be at least two exactly degenerate ground states of (E.14).

The exact ground state degeneracy can be determined by undecorating the domain wall, by
applying UDW on (E.14):

UDWH
OBC
ZT

4×Z2
U †DW =

L−1∑
j=1

τx
j+ 1

2
+ σzj τ

x
j+ 1

2
σzj+1 +

L∑
j=1

σxj +
L∑
j=2

τ z
j− 1

2
σxj µ

x
j τ

z
j+ 1

2
+ σx1µ

x
1τ

z
3
2
−

L∑
j=2

µxj
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and the two boundary operators becomes µx1 and τ z
L+ 1

2

. In the ground state sector µxj = 1 for
2 ≤ j ≤ L. The Hamiltonian in the low energy then simplifies to

UDWH
OBC
ZT

4×Z2
U †DW |low =

L−1∑
j=1

(τx
j+ 1

2
+ σzj τ

x
j+ 1

2
σzj+1) +

L∑
j=1

σxj +
L∑
j=2

τ z
j− 1

2
σxj τ

z
j+ 1

2
+ σx1µ

x
1τ

z
3
2
. (E.15)

Under the unitary transformation (B.14), this Hamiltonian is mapped to

U
(
UDWH

OBC
ZT

4×Z2
U †DW |low

)
U † =

L−1∑
j=1

σzj τ
z
j+ 1

2
+ τ z

j+ 1
2
σzj+1 +

L∑
j=1

σxj τ
x
j+ 1

2
+

L∑
j=2

τx
j− 1

2
σxj + σx1µ

x
1

(E.16) {tausigma}{tausigma}

and the two boundary operators become µx1 and τx
L+ 1

2

. The Hamiltonian (E.16) can be understood

as an XX chain on an open chain with size 2L and one spin-1
2

per unit cell.
Similar to the Z4 igSPT, we can redefine µx1 as τx1

2

. After taking the continuum limit (B.19), σx

and τx are mapped to sin θ. Thus µx1 = ±1 and τx
L+ 1

2

= ±1 correspond to the boundary conditions
sin θ(x = 0/L) = ±1 which implies θ(x = 0/L) = ±π

2
. There is an energy splitting between the

ground states of two boundary conditions

E(π
2
,−π

2
)/(−π

2
,π
2

) − E(π
2
,π
2

)/(−π
2
,−π

2
) ∝

1

L
. (E.17)

In summary, the ground state degeneracy under OBC is two.
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