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The thermodynamic properties of quantum heat engines are stochastic owing to the presence of
thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilib-
rium entropy production statistics of a spin-1/2 quantum Otto cycle in a nuclear magnetic resonance
setup. We first study the correlations between work and heat within a cycle by extracting their joint
distribution for different driving times. We show that near perfect correlation, corresponding to the
tight-coupling condition between work and heat, can be achieved. In this limit, the reconstructed
efficiency distribution is peaked at the deterministic thermodynamic efficiency, and fluctuations are
strongly suppressed. We further successfully test the second law in the form of a joint fluctuation
relation for work and heat in the quantum cycle. Our results characterize the statistical features of
a small-scale thermal machine in the quantum domain, and provide means to control them.

1 Introduction

Heat engines have played a prominent role in our society since the industrial revolution. They are commonly used to
generate motion by converting thermal energy into mechanical work [1]. An important figure of merit of heat engines is
their efficiency, defined as the ratio of work output and heat input. According to the second law of thermodynamics,
the maximum efficiency of any thermal motor operating between two heat baths is given by the Carnot formula,
ηca = 1 − T1/T2, where T1,2 denote the respective temperatures of the cold and hot reservoirs [1]. Standard heat
engines, such as car engines, usually operate in a regime where energy fluctuations are much smaller than mean
energies. As a consequence, heat, work and, hence, efficiency are deterministic quantities.

In the past decade, successful miniaturization has led to the experimental downscaling of thermal machines to
microscopic [2–4] and nanoscopic [6–10] levels. Quantum heat engine operation has furthermore been reported re-
cently in a variety of systems [11–15]. Such devices are typically subjected to thermal [16, 17] and, at low enough
temperatures, to additional quantum [18, 19] fluctuations. These are associated with random transitions between
discrete energy levels, and thus introduce nonclassical features. As a result, heat, work, efficiency, and other relevant
thermodynamic quantities such as the nonequilibrium entropy production, are stochastic variables. These fluctua-
tions strongly impact the performance of microscopic and nanoscopic machines [20–23]. Understanding their random
properties is therefore essential. The efficiency statistics of classical Brownian heat engines has been studied experi-
mentally with optically trapped colloidal particles in Ref. [4]. Remarkably, efficiency fluctuations above the Carnot
efficiency, which originate from negative entropy production events, have been observed [4]. Meanwhile, the random
entropy production for arbitrary heat engines has been theoretically predicted to satisfy a fluctuation relation [24–27],
a fundamental nonequilibrium generalization of the second law of thermodynamics for small systems [17–19]. Such a
fluctuation theorem has recently been experimentally simulated with a quantum computer for a quantum swap engine
[28]. However, the efficiency and nonequilibrium entropy production statistics of a general quantum heat engine have
not been explored experimentally so far.

We here report the study of the fluctuating properties of a proof-of-principle quantum Otto engine [29] based
on a driven nuclear spin-1/2 in a liquid state nuclear magnetic resonance (NMR) setup [30]. We extend existing
interferometric methods [31–34] to experimentally extract the joint distribution of work and heat for different cycle
times. This joint distribution is crucial for the detailed analysis of energy fluctuations in cyclic processes, including
the stochastic efficiency and the joint fluctuation relation for work and heat. We first exploit the multipoint statistics
to investigate the correlations between work and heat during an engine cycle, from the adiabatic to the nonadiabatic
regime. We find near perfect correlation, corresponding to the tight-coupling condition between the possible values
of work and heat [35–38], in the quasiadiabatic limit. We additionally determine the distribution of the quantum
stochastic efficiency and analyze the impact of the work-heat correlations on its features. We show, in particular, that,
as the tight-coupling regime is approached, the random efficiency is peaked around the deterministic (thermodynamic)
efficiency, and its fluctuations are strongly suppressed. We finally verify both a detailed and an integral bivariate
quantum fluctuation relation for cyclic heat engine operation [24–27] and examine irreversible losses associated with
quantum friction [39–41].
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FIG. 1. Quantum heat engine. (a) Four steps (cooling, unitary expansion, heating, unitary compression) of the quantum Otto
cycle realized in the experiment. (b) Multi-point-measurement scheme used to determine the joint distribution P (W,Q) of
work and heat: projective energy measurements are performed at the beginning (Πj) and at the end (Πk) of the expansion
stroke, as well as at the beginning (Πl) and at the end (Πm) of the compression phase. Each pair of measurements is realized
via a Ramsey-like interferometric method. The operator Uτ describes unitary driving and εhot characterizes the completely
positive trace preserving (CPTP) map that fully thermalizes the system to the hot temperature.

2 Experimental system

In our experiment, we use a 13C-labeled CHCl3 liquid sample diluted in Acetone-D6 and a 500 MHz Varian NMR
spectrometer. We employ the spin 1/2 of the 13C nucleus as the working medium of the quantum engine and the
1H nuclei as a heat bus to deliver heat to the machine. Work is performed by driving the engine with a resonant
radio-frequency (rf) field. The low rf modes near to carbon resonance frequency will effectively play the role of the
cold bath, while high rf modes near the hydrogen Larmor frequency that of the hot reservoir.

We realize a quantum Otto cycle that consists of four different steps [29] (Fig. 1a). 1) Cooling: the 13C nuclear
spin is initially cooled, using spatial average techniques [30], to a pseudo-thermal state ρeq

1 = exp(−β1H
C
1 )/Z1 at

cold inverse spin temperature β1, where HC
1 = −(hν1/2)σx is the initial Hamiltonian and Z1 is the partition func-

tion. 2) Expansion: the machine is then driven by a time-modulated rf field on resonance with the 13C nuclear
spin. In a rotating frame at the 13C Larmor frequency (≈ 125 MHz), the driving is described by the following
effective Hamiltonian, HC

exp(t) = −(hν(t)/2)
[
cos (πt/2τ)σC

x + sin (πt/2τ)σC
y

]
, where the nuclear spin energy gap,

hν(t) = hν1 (1− t/τ) +hν2t/τ is varied linearly from ν1 = 2.0 kHz at time t = 0 to ν2 = 3.6 kHz at time t = τ , where
σC
x,y,z are the Pauli spin operators of the 13C nuclear spin. Implemented driving times (≈ 10−4 s) are much shorter

than the typical decoherence times in our setup (few seconds). The system is hence isolated from its surroundings to
an excellent approximation and the corresponding evolution Uτ is unitary [33]. 3) Heating: heat exchange between the
13C and the 1H nuclear spins, which was prepared at the hot inverse temperature β2 [43], is achieved by a sequence
of free evolutions under the natural scalar interaction HJ = (π/2)hJσH

z σ
C
z (with J ≈ 215.1 Hz) between both nuclei

and rf pulses [14] (Appendix A). The resulting fully thermalized state is ρeq
2 = exp(−β2H

C
2 )/Z2, with HC

2 = HC
exp(τ).

4) Compression: we finally decrease the nuclear spin energy gap back to its initial value ν1 in time τ according to
HC

com(t) = −HC
exp(τ − t). In both cases, βi = (kBTi)

−1, (i = 1, 2), where Ti is the effective spin temperature defined
via the ratio of the populations of excited and ground states (Appendix A), and kB is the Boltzmann constant. From
the point of view of the working medium, the effective cooling and heating in the experiment are indistinguishable
from the thermalization with a heat bath (Appendix A).

3 Work-heat correlations

Work and heat fluctuations of the quantum heat engine are characterized by a joint distribution P (W,Q), which can
be fully determined in the present experiment by a multipoint measurement scheme along the quantum Otto cycle for
different driving times τ (Fig. 1b), since each stroke involves only work or heat. The protocol consists of two projective
energy measurements at the beginning (Πj) and at the end (Πk) of the expansion stroke, as well as two additional
projective energy measurements at the beginning (Πl) and at the end (Πm) of the compression phase. The statistical
analysis of the outcomes of each of the three consecutive pairs of measurements yields a set of transition probabilities
among the instantaneous energy eigenstates, which we determine experimentally via a Ramsey-like interferometric
method described in detail in Refs. [31–34]. The corresponding joint distribution of the total extracted work W and
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FIG. 2. Joint distribution of work and heat. Distribution P (W,Q), Eq. (1), for three driving times, τ = 200, 260, and 320
µs in the unitary driving strokes. Experimental data is well fitted by nine Lorentz distributions at the corresponding pair of
stochastic values for the extracted work (W/h = 0,±1.6,±2.0± 3.6,±5.6 kHz) and heat absorbed from the hot source (Q/h =
0,±3.6 kHz). Diagonal peaks grow at the expense of off-diagonal ones as the quasiadiabatic regime is approached at τ = 320µs.

the absorbed heat Q reads (work is considered positive when extracted from the engine) (Appendix B),

P (W,Q) =
∑
j,k,l,m

∆(W, j, k, l,m, τ, γ)∆(Q, j, k, l,m, τ, γ)

×p0
j p

exp
jk phea

kl pcom
lm , (1)

where p0
j = exp(−β1E

0
j )/Z0 is the occupation of the cold equilibrium state, with E0

j the eigenenergies of HC
1 .

The transition probabilities during expansion, heating and compression are respectively pexp
jk , phea

kl and pcom
ml . Since

the heating stroke leads to a hot equilibrium state, we simply have phea
kl = pτl = exp(−β2E

τ
l )/Zτ , independent

of k, with Eτj the eigenenergies of HC
2 . Occupation probabilities describe the effects of thermal fluctuations, while

transition probabilities those of quantum fluctuations and quantum dynamics [44]. For ideal projective measurements,
each spectral peak is infinitely sharp (γ = 0), and energy changes during single strokes are given by differences
of energy eigenvalues [45]. In this case, the two functions ∆ associated with work and heat, X = (W,Q), are
∆(X, j, k, l,m, τ, 0) = δ (X − xjklm), with wjklm = E0

j − Eτk + Eτm − E0
l and qjklm = Eτl − Eτm. However, the

experimental Ramsey-like interferometric scheme leads to spectral peaks with a finite width γ, which are well fitted
by a Lorentzian distribution, ∆(X, j, k, l,m, τ, γ) = 1/{πγ[1 + (X − xjklm)2/γ2]} [33, 34]. Taking the marginals of
Eq. (1) over either heat or work, we recover the single distributions, P (W ) and P (Q), analyzed in Ref. [14].

Examples of experimentally reconstructed bivariate distributions for work and heat are shown in Fig. 2 for three
different driving times, for kBT1/h = 1.60± 0.02 kHz and kBT2/h = 12.21± 0.89 kHz (results for additional driving
times are presented in Appendix C). We observe up to nine discrete Lorentzian peaks, each with a width of about
0.15 kHz. As the driving time increases from τ = 200µs to τ = 320µs, diagonal peaks grow at the expense of
off-diagonal ones. This suggests that work-heat correlations are enhanced as the process becomes more and more
adiabatic.

Work-heat correlations within the heat engine cycle are conveniently studied quantitatively with the help of the
Pearson coefficient, % = cov(W,Q)/σWσQ, defined as the ratio of the covariance and the respective standard de-
viations [46]. Extracted work and heat are in general (strongly) correlated (% > 0) for the quantum Otto engine
(Fig. 3a) and correlations oscillate as a function of time, owing to the periodic nature of the driving during expansion
and compression steps; dots represent experimental data and the dashed line a numerical simulation (Appendix G).
Maximum correlation (% ' 1) is achieved for quasiadiabatic driving for τ = 320µs (Appendix D for a theoretical
justification). In this limit, the quantum heat engine satisfies the tight-coupling condition [35–38], which implies that
work and heat are proportional. The tight-coupling condition plays a special role in the investigation of the universal
properties of heat engines [35–38]. For quantum swap engines, work-heat correlations are controlled by the goodness
of the swap operation, irrespective of the degree of adiabaticity [27].

4 Efficiency and nonequilibrium entropy production fluctuations

We next move to the analysis of the quantum stochastic efficiency defined as η = W/Q for each single realization
[47]. This random quantity should not be confused with the deterministic (thermodynamic) efficiency, ηth = 〈W 〉/〈Q〉,
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FIG. 3. Work-heat correlations and efficiency distribution. (a) Pearson correlation coefficient % for work and heat as a function
of the driving time τ . (b) Efficiency distribution P (η), Eq. (2), for three different driving times, displaying two large peaks at
1 and η1 = ηth ≈ 0.44, and two small peaks at 0 and η2 = 2− ηth ≈ 1.56. (c) Mean efficiency 〈η〉 and corresponding standard
deviation ση as a function of the driving time τ . Work and heat are maximally correlated as the tight-coupling condition is
approached for τ = 320µs. As a result, the stochastic efficiency is sharply peaked around the thermodynamic efficiency ηth and
the standard deviation, which quantifies fluctuations, strongly decreases. By contrast, the mean random efficiency decreases.
Symbols are the experimental data and lines show theoretical predictions.

which is given in terms of averages [1]. The stochastic efficiency η corresponds to the efficiency of a single engine along
one cycle, whereas the deterministic efficiency ηth that of an ensemble of identical engines. In the case of adiabatic
driving, the latter reduces to the standard Otto efficiency, ηOtto = 1 − ν1/ν2 [29]. The efficiency distribution P (η)
follows from the joint distribution (1) via integration over all work and heat values,

P (η) =

¨
dWdQ δ

(
η − W

Q

)
P (W,Q). (2)

The corresponding experimental distribution is displayed in Fig. 3b for three different driving times. We identify
four Lorentzian-like peaks (Appendix E): two (large) peaks found at 1 and η1 = ηth, and two (small) peaks located
at 0 and η2 = 2 − ηth. The stochastic efficiency is further seen to take values above 1 and below 0. In the former
case, the produced random work is larger than the absorbed stochastic heat, while in the latter case work is added
to the machine or heat is given to the hot bath. These results indicate that all values of the stochastic efficiency are
possible in a small-scale quantum engine running in finite time, including those forbidden by the macroscopic second
law. As the driving time approaches the adiabatic regime (τ = 320µs), we observe that the thermodynamic efficiency
ηth becomes increasingly more likely. In order to examine the properties of the stochastic efficiency η, we evaluate its
mean 〈η〉 and standard deviation ση in the interval [−5, 5] (Fig. 3c). The behavior of the mean efficiency and of its
standard deviation as a function of τ is exactly opposite to that the Pearson coefficient (Fig. 3a): they decrease when
the correlations increase, and vice versa, revealing the strong relationship existing between the work-heat correlations
and the features of the stochastic efficiency. Surprisingly, the dependence of the mean random efficiency 〈η〉 on
τ is at variance with that of the deterministic efficiency ηth (Appendix E). The stochastic efficiency is thus larger
for nonadiabatic than for adiabatic driving; this is due to the peaks above ηth and, hence, to events violating the
macroscopic second law which are more likely for nonadiabatic driving. We also note that the stochastic efficiency
tends to the deterministic efficiency ηth as the tight-coupling limit is approached. The effects of fluctuations are here
significantly suppressed due to the strong work-heat correlation, even though these fluctuations do not vanish [47].

Energy fluctuations in a heat engine cycle are predicted to obey a detailed fluctuation relation of the form [24–27],

P (W,Q)

P (−W,−Q)
= e∆βQ−β1W , (3)

where ∆β = β1 − β2 and P (−W,−Q) is the joint distribution of measuring (−W,−Q) in the reverse operation of the
engine. An integral fluctuation theorem, 〈exp(−Σ)〉 =

˜
dWdQ P (W,Q) exp(−Σ) = 1, for the entropy production

Σ = ∆βQ − β1W follows after integration over one cycle [24–27]. The latter expression may be regarded as a
nonequilibrium generalization of the Carnot formula, 〈W 〉/〈Q〉 ≤ 1−T1/T2, which can be derived from it by applying
Jensen’s inequality [24–27]. Figure 4a displays a verification of the quantum detailed fluctuation relation (3) for
τ = 200 µs (Appendix F for other driving times). We witness very good agreement between the experimental values
of ln [P (W,Q)/P (−W,−Q)] (red dots) and the predictions of Eq. (3) indicated by the (blue) plane z = Σ, the z-axis
being vertical. The excellent agreement is further confirmed by the projections onto the work/heat planes, as seen in
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FIG. 4. Nonequilibrium quantum fluctuation relation. (a) Experimental verification of the detailed fluctuation relation (3)
for the quantum Otto cycle: the values of ln [P (W,Q)/P (−W,−Q)] (red dots) should lie within the (blue) plane defined by
the total entropy production z = Σ = ∆βQ − β1W ; the dashed blue lines show the respective projections of the plane on
the work and heat axes. (b) Confirmation of the joint fluctuation relation in the work domain: the experimental values of
ln[P (W,Q)/P (−W,−Q)] (red dots) should intercept the three (blue) lines corresponding to the projection of the plane defined
by z = Σ, for each possible value of heat from the hot source, Q/h = −3.6, 0.0, 3.6 kHz, associated to the curves identified
as 1, 2, 3, respectively. (c) Confirmation of the joint fluctuation relation in the heat domain: the experimental values of
ln[P (W,Q)/P (−W,−Q)] (red dots) should intercept the nine (blue) lines corresponding to the projection of the plane defined
by z = Σ, for each possible value of work, W/h = −5.6, −3.6, −2.0, −1.6, 0.0, 1.6, 2.0, 3.6, 5.6 kHz, associated to the curves
1, · · · , 9, respectively. The data corresponds to the driving time τ = 200 µs.

FIG. 5. Quantum integral fluctuation theorem. Experimental confirmation of the integral fluctuation theorem, 〈exp(−Σ)〉 = 1,
(red dots) and average entropy production 〈Σ〉 (blue dots) for the thermal cycle as a function of the driving time τ . Irreversible
losses are minimal when the tight-coupling condition is approached for τ = 320µs.

Figs. 4b and 4c. A verification of the integral fluctuation theorem, 〈exp(−Σ)〉 = 1, is moreover shown in Fig. 5 as a
function of the driving time, together with the average entropy production 〈Σ〉, which characterizes irreversible losses
within the cycle. Since the two driving Hamiltonians, HC

exp(t) and HC
com(t), do not commute at different times, the

heat engine exhibits internal friction associated with nonadiabatic transitions between the instantaneous eigenstates
of the 13C nuclear spin [39–41]. This purely quantum friction mechanism is the source of irreversibility in the quantum
Otto cycle, depending on the driving speed: the mean entropy production 〈Σ〉 decreases as the adiabatic regime is
approached (Fig. 4b), and vice versa. We also note a marked connection between quantum friction (Fig. 5) and
work-heat correlations (Fig. 3a), which has not been acknowledged before.

5 Conclusions

In conclusion, we have performed an experimental study of the work-heat correlations and their strong impact on
both efficiency and entropy production statistics of a quantum heat engine. We have shown that the tight-coupling
condition, corresponding to maximum work-heat correlation, can be reached for finite-time quasiadiabatic driving.
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In this regime, the stochastic efficiency reduces to the deterministic efficiency, and both thermal and quantum
fluctuations are notably suppressed. We have additionally observed that deterministic and stochastic efficiencies
display opposite behavior, due to random events violating the macroscopic second law. We have finally confirmed
nonequilibrium generalizations of the Carnot formula in the form of bivariate (detailed and integral) fluctuation
relations for work and heat, and analyzed the effect of quantum friction on the total entropy production. Our findings
provide unique insight into the nonequilibrium fluctuating properties of small quantum thermal machines, and offer
possibilities to directly control them.
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Appendices

A Experimental Protocols

A1 Thermal states initialization

Spatial average techniques [30, 33, 34, 43] were used to initialize the engine states, which are local pseudo-thermal
states encoded in the 1H and 13C nuclei. We present in Table I the populations and the respective local spin
temperatures in the eigenbasis of Hamiltonians HH

0 and HC
0 .

The effective spin temperatures Ti are determined via the ratio of the (Boltzmann distributed) populations of

excited (p
H(C)
1 ) and ground (p

H(C)
0 ) states of the respective spin-1/2 systems [30, 33, 34]:

kBT2(1) = hν2(1)[ln(p
H(C)
0 /p

H(C)
1 )]−1, (4)

where νi are the corresponding frequencies.

1H nucleus pH0 pH1 kBT2 (peV)
0.67 ± 0.01 0.33 ± 0.01 21.5 ± 0.4

13C nucleus pC0 pC1 kBT1 (peV)
0.78 ± 0.01 0.22 ± 0.01 6.6 ± 0.1

TABLE I. Populations and spin temperatures of the initial states of the 1H and 13C nuclei. The corresponding off-diagonal
elements are zero within the measurement errors.

A2 Compression and expansion protocols

The energy gap compression and expansion protocols are implemented with a time-modulated amplitude and phase
transverse rf-pulse on resonance with the 13C nuclear spin in order to produce effectively the time-dependent driving
Hamiltonian HC(τ) described in the main text. The intensities of the transverse field at the beginning and end of
the driving protocol were properly calibrated in order to have the associated frequencies given in the main text.
The duration of the modulated traverse pulse was varied from 100 µs to 700 µs in different implementations of the
quantum heat engine cycle.

A3 Heating protocol

The thermalization process used to heat the 13C nuclear spin of the quantum Otto engine during the second stroke
has the local effect of a linear non-unitary map ε(ρj) = Trk 6=j

[
Uτ
(
ρ0
H ⊗ ρ0

C

)
U†τ
]
, with (j, k) = (H,C). It is represented
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FIG. 6. NMR pulse sequence used in the heat exchange protocol. The outcome of this sequence (which takes about 7 ms) is
an effective full thermalization described by a completely positive trace preserving (CPTP) map on reduced density operator

of the carbon nucleus, εhot : ρnoneq1 → e−β2H
C
2 /Z2, leading it to an equilibrium state at the hot inverse temperature β2. Orange

connections represent free evolutions under the scalar interaction during the time displayed above the symbol. Blue (red) circles
stand for x (y) rotations by the displayed angle implemented by transverse rf pulses.

by the following set of maps [43]

ε(ρj) =

4∑
`=1

K`ρ
0
jK
†
` , (5)

with the Kraus operators

K1 =
√

1− p
(

1 0
0 0

)
,K2 =

√
p

(
0 0
0 1

)
(6)

K3 =
√

1− p
(

0 1
0 0

)
,K4 =

√
p

(
0 0
−1 0

)
. (7)

The parameter p denotes the population of the excited state in the Hydrogen nucleus. The above Kraus operators
correspond to the generalized amplitude damping of a spin-1/2 system. From a local point of view, the map thus
implements complete thermalization. The NMR pulse sequence used in the heat exchange protocol in the experiment
is shown in Fig. 6, were the Hydrogen nucleus is used as a heat bus.

B Joint distribution for work and heat - theory

The joint distribution for the total work W and the absorbed heat Q may be determined by performing energy
measurements on the engine at the beginning and at the end of the expansion, heating and compression strokes
[47, 48], as depicted in Fig. 1 of the main text. We first consider the case of ideal projective measurements. By
performing projective energy measurements at the beginning and at the end of the expansion step, the distribution
of the expansion work W2 reads [45],

P (W2) =
∑
j,k

δ
[
W2 − (Eτk − E0

j )
]
pexp
jk p

0
j , (8)

where E0
j and Eτk are the respective initial and final energy eigenvalues, p0

j = exp(−β1E
0
j )/Z0 is the initial thermal

occupation probability with partition function Z0 and pexp
jk = | 〈j|Uexp(τ) |k〉 |2 denotes the transition probability

between the instantaneous eigenstates |j〉 and |k〉 in time τ with the corresponding unitary Uexp.
Similarly, the probability density of the heat Q = Q3 during the following heating step, given the expansion work

W2, is equal to the conditional distribution [49],

P (Q|W2) =
∑
i,l

δ [Q− (Eτl − Eτi )] phea
il pτi , (9)

where the occupation probability at time τ is pτi = δki when the system is in eigenstate |k〉 after the second projective
energy measurement.
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History stroke stroke stroke stroke W/h ± 0.15 Q/h ± 0.15
1 2 3 4 (kHz) (kHz)

1 |Ψ1
−〉 |Ψ2

−〉 |Ψ2
−〉 |Ψ1

−〉 0 0
2 |Ψ1

−〉 |Ψ2
−〉 |Ψ2

−〉 |Ψ1
+〉 -2.0 0

3 |Ψ1
−〉 |Ψ2

−〉 |Ψ2
+〉 |Ψ1

−〉 3.6 3.6
4 |Ψ1

−〉 |Ψ2
−〉 |Ψ2

+〉 |Ψ1
+〉 1.6 3.6

5 |Ψ1
−〉 |Ψ2

+〉 |Ψ2
−〉 |Ψ1

−〉 -3.6 -3.6
6 |Ψ1

−〉 |Ψ2
+〉 |Ψ2

−〉 |Ψ1
+〉 -5.6 -3.6

7 |Ψ1
−〉 |Ψ2

+〉 |Ψ2
+〉 |Ψ1

−〉 0 0
8 |Ψ1

−〉 |Ψ2
+〉 |Ψ2

+〉 |Ψ1
+〉 -2.0 0

9 |Ψ1
+〉 |Ψ2

−〉 |Ψ2
−〉 |Ψ1

−〉 2.0 0
10 |Ψ1

+〉 |Ψ2
−〉 |Ψ2

−〉 |Ψ1
+〉 0 0

11 |Ψ1
+〉 |Ψ2

−〉 |Ψ2
+〉 |Ψ1

−〉 5.6 3.6
12 |Ψ1

+〉 |Ψ2
−〉 |Ψ2

+〉 |Ψ1
+〉 3.6 3.6

13 |Ψ1
+〉 |Ψ2

+〉 |Ψ2
−〉 |Ψ1

−〉 -1.6 -3.6
14 |Ψ1

+〉 |Ψ2
+〉 |Ψ2

−〉 |Ψ1
+〉 -3.6 -3.6

15 |Ψ1
+〉 |Ψ2

+〉 |Ψ2
+〉 |Ψ1

−〉 2.0 0
16 |Ψ1

+〉 |Ψ2
+〉 |Ψ2

+〉 |Ψ1
+〉 0 0

TABLE II. All transition histories between the instantaneous eigenstates |Ψi
±〉 (i = 1, 2) for each stroke of the heat engine,

together with the corresponding values of work and heat.

The quantum work distribution for compression, given the expansion work W2 and the heat Q, is additionally,

P (W4|Q,W2) =
∑
r,m

δ
[
W4 − (E0

m − Eτr )
]
pcom
rm pτr , (10)

with the occupation probability pτr = δrl when the system is in eigenstate |l〉 after the third projective energy
measurement. The transition probability pcom

rm = | 〈r|Ucom(τ) |m〉 |2 is fully specified by the unitary time evolution
operator for compression Ucom.

The joint probability of having certain values of W4, Q and W2 during a cycle of the quantum engine now follows
from the chain rule for conditional probabilities, P (W4, Q,W2) = P (W4|Q,W2)P (Q|W2)P (W2) [50]. Using Eqs. (8),
(9) and (10), we find,

P (W2, Q,W4) =
∑
j,k,l,m

δ
[
W2 − (Eτk − E0

j )
]

× δ [Q− (Eτl − Eτm)] δ
[
W4 − (E0

m − Eτl )
]

× p0
j p

exp
jk phea

kl pcom
lm . (11)

Introducing the total extracted work W = −(W2 + W4) work and integrating over all work values W2 and W4, the
joint distribution for work and heat is given by,

P (W,Q) =

ˆ
dW2dW4 δ[W + (W2 +W4)]P (W2, Q,W4). (12)

Using the explicit expression (11), we finally obtain,

P (W,Q) =
∑
j,k,l,m

∆(W, j, k, l,m, τ, γ)∆(Q, j, k, l,m, τ, γ)

×p0
j p

exp
jk phea

kl pcom
lm . (13)

For ideal projective measurements, each spectral peak is infinitely sharp (γ = 0) and the two functions ∆ associated
with work and heat, X = (W,Q), are simply Dirac peaks, ∆(X, j, k, l,m, τ, 0) = δ (X − xjklm), with wjklm =
E0
j − Eτk + Eτm − E0

l and qjklm = Eτl − Eτm.
In the experiment, each pair of energy measurements is effectively implemented using a Ramsey-like interferometric

scheme [31–34]. In this case, spectral peaks have a finite width γ and are well fitted by a Lorentzian distribution,
∆(X, j, k, l,m, τ, γ) = 1/{πγ[1 + (X − xjklm)2/γ2]} [33, 34]. This is the form we consider in the present experiment.
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FIG. 7. Reconstructed joint probability distribution for work and heat P (W,Q), Eq. (13), for the following values of the driving
times, τ = 200, 260, 320, 260, 420, 500, and 700µs (left), together with the corresponding density plots (right).



10

C Joint distribution for work and heat - experiment

We denote the instantaneous energy eigenstates of the two-level system with energy gap hνi (i = 1, 2) as |Ψi
±〉. The

corresponding transition probabilities during expansion and compression strokes are accordingly given by

| 〈Ψ1
−|U |Ψ2

−〉 |2 = | 〈Ψ1
+|U |Ψ2

+〉 |2 = 1− ξ, (14)

when there is no transition between states, and by

| 〈Ψ1
−|U |Ψ2

+〉 |2 = | 〈Ψ1
+|U |Ψ2

−〉 |2 = ξ. (15)

when there is a change of state. The operator U stands for the expansion or compression unitary. Adiabatic driving
corresponds to ξ = 0.

Table II presents all the sixteen possible combinations for energy transitions of the quantum Otto heat engine
during one cycle, together with the respective values of the extracted random values of work and heat.

The reconstructed joint distributions P (W,Q) are displayed in Fig. 7 for the following values of the driving time,
τ = 200, 260, 320, 260, 420, 500, and 700µs.

D Maximum correlations for adiabatic driving

We next show that work and heat are maximally correlated in the adiabatic regime. To that end, we compute
the Pearson correlation coefficient for generic adiabatic scale invariant quantum Otto heat engines with Hamiltonian
Ht = p2/2m + U(x, ετ ), where U(x, ετ ) = U0(x/ετ )/ε2

τ with scaling parameter ετ . These Hamiltonians describe
a wide class of single-particle, many-body and nonlinear systems with scale-invariant spectra, Eτj = E0

j /ε
2
τ [52].

Two-level systems (as well as harmonic oscillators) satisfy this property. For simplicity, we consider the case of ideal
projective measurements (γ = 0). In the adiabatic regime, we have | 〈j|Uexp |k〉 |2 = δjk and | 〈l|Ucom |m〉 |2 = δlm.
The joint distribution (13) for work and heat then reduces to,

Pad(W,Q) =
∑
j,l

δ
[
W − (1− ε−2

τ )
(
E0
l − E0

j

)]
×δ
[
Q−

(
E0
l − E0

j

)
ε−2
τ

]
× e−βcE

0
j−βhE

0
l /ε

2
τ

Z0Zτ
. (16)

The Pearson correlation coefficient follows accordingly as,

ρ =
cov(W,Q)

σWσQ
=

〈WQ〉 − 〈W 〉〈Q〉
(〈W 2〉 − 〈W 〉2) (〈Q2〉 − 〈Q〉2)

=

(
1− ε−2

τ

)
|
(
1− ε−2

τ

)
|

= ±1. (17)

Work-heat correlations are therefore always maximal in the adiabatic regime. Quantum heat engine conditions further
imply that

〈Q〉 = ε−2
τ

∑
j 6=l

e−βcE
0
j−βhE

0
l /ε

2
τ

Z0Zτ

(
E0
l − E0

j

)
≥ 0 (18)

〈W 〉 =
(
1− ε−2

τ

)∑
j 6=l

e−βcE
0
j−βhE

0
l /ε

2
τ

Z0Zτ

(
E0
l − E0

j

)
≥ 0.

As a result,
(
1− ε−2

τ

)
≥ 0, and work output and heat input are perfectly correlated for adiabatic driving, ρ = 1.

Adiabatic scale invariant quantum Otto engines therefore obey the tight-coupling condition.

E Efficiency distribution

The stochastic efficiency is defined as η = W/Q. Its distribution may be obtained from the joint distribution
P (W,Q), Eq. (13), by integrating over W and Q, as

P (η) =

ˆ
dQdW δ

(
η − W

Q

)
P (W,Q)

=
∑
j,k,l,m

p0
j p

exp
jk phea

kl pcom
lm L(w, q, γ, η) (19)
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FIG. 8. Comparison of the microscopic mean efficiency 〈η〉 = 〈W/Q〉 (experimental red dots) and the macroscopic efficiency
ηth = 〈W 〉/〈Q〉 (simulated blue line) as a function of the driving τ . The macroscopic efficiency increases as the adiabatic regime
is approached, while the microscopic average efficiency decreases.

with Lorentz-like peaks,

L(w, q, γ, η) =
γ

π2 (γ2(η − 1)2 + η2q2 + 2ηqw + w2) (γ2(η + 1)2 + η2q2 + 2ηqw + w2)

×
{
γ
(
−γ2 + η2

(
γ2 + q2

)
− w2

) (
log
(
η2
)

+ log
(
γ2 + q2

)
− log

(
γ2 + w2

))
+ 2 tan−1

(
q

γ

)(
η2q

(
γ2 + q2

)
+ 2ηw

(
γ2 + q2

)
+ q

(
γ2 + w2

))
+ 2 tan−1

(
w

γ

)(
η2w

(
γ2 + q2

)
+ 2ηq

(
γ2 + w2

)
+ w

(
γ2 + w2

))}
(20)

where we have dropped the indices of w and q for better readability.

A comparison of the microscopic mean efficiency 〈η〉 = 〈W/Q〉 and the macroscopic efficiency ηth = 〈W 〉/〈Q〉 is
displayed in Fig. 8 as a function of the driving time τ . The macroscopic efficiency ηth (simulated blue line) increases
as the adiabatic regime is approached and irreversible losses induced by quantum friction are reduced. By contrast,
the microscopic mean efficiency 〈η〉 (experimental red dots) decreases near the adiabatic regime. It is hence larger for
nonadiabatic driving. This counterintuitive behavior is due to the presence of peaks above ηth and, thus, to random
events that violate the macroscopic second law law of thermodynamics.

F Detailed fluctuation relation

A test of the detailed quantum fluctuation relation,

P (W,Q)

P (−W,−Q)
= e−∆βQ−β1W . (21)

was presented in the main text for the driving time τ = 200µs. Figure 9 exhibits similar tests for τ = 200, 260,
260, 320, 420, 500, and 700µs, showing that the fluctuation theorem for work and heat is obeyed for all the driving
times realized in the experiment. Projections onto the respective work and heat planes are shown in Fig. 10 for τ = 260.

G Numerical simulations
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FIG. 9. Experimental verification of the detailed quantum fluctuation relation for work and heat for the following values of the
driving time, τ = 200, 260, 320, 260, 420, 500, and 700µs.

The numerical simulation of the experiment was implemented using a python-based code (in-house developed)
and QuTiP (the Quantum Toolbox in Python) package [53]. We effectively simulated the finite-time quantum Otto
cycle described in the main text with the thermalization strokes being solved using the theoretical thermalization
of a qubit with a Markovian thermal reservoir in terms of the Bloch vector components [54]. The time-dependent
unitary dynamics of the energy gap expansion and compression strokes were solved numerically. In order to obtain
the theoretical transition probability, we ran the simulation from τ = 100µs to τ = 700µs considering 50 time steps,
which was sufficient to generate smooth curves for the theoretical quantities and for the confirmation of the quantum
fluctuation relations.



13

[1] Y. A. Cengel and M. A. Boles, Thermodynamics. An Engineering Approach, (McGraw-Hill, New York, 2001).
[2] P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, and J. T. M. van

Beek, Piezoresistive heat engine and refrigerator, Nature Phys. 7, 354 (2011).
[3] V. Blickle and C. Bechinger, Realization of a micrometre-sized stochastic heat engine, Nature Phys. 8, 143 (2012).
[4] I. A. Martinez, E. Roldan, L. Dinis, D. Petrov, J. M. R. Parrondo and R. A. Rica, Brownian Carnot engine, Nature Phys.

12, 67 (2015).
[5] K. Proesmans, Y. Dreher, M. Gavrilov, J. Bechhoefer, and C. Van den Broeck, Brownian Duet: A Novel Tale of Thermo-

dynamic Efficiency, Phys. Rev. X 6, 041010 (2016).
[6] T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, H. E. Gaub, Single-Molecule Optomechanical Cycle, Science

296, 1103 (2002).
[7] J. Rossnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine,

Science 352, 325 (2016).
[8] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine

beyond the Carnot Limit, Phys. Rev. X 7, 031044 (2017).
[9] D. von Lindenfels, O. Grab, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler and

U. G. Poschinger, Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel, Phys. Rev. Lett. 123, 080602 (2019).
[10] N. Van Horne, D. Yum, T. Dutta, P. Hänggi, J. Gong, D. Poletti, and M. Mukherjee, Single-atom energy- conversion

device with a quantum load, npj Quantum Information 6, 37 (2020).
[11] Y. Zou, Y. Jiang, Y. Mei, X. Guo, and S. Du, Quantum Heat Engine Using Electromagnetically Induced Transparency,

Phys. Rev. Lett. 119, 050602 (2017).
[12] J. Klatzow, J. Becker, P. Ledingham, C. Weinzetl, K. Kaczmarek, D. Saunders, J. Nunn, I. Walmsley, R. Uzdin, E. Poem,

Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines, Phys. Rev. Lett. 122,
110601 (2019).

[13] R. J. de Assis, T. M. de Mendonca, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira and N. G. de Almeida,
Efficiency of a Quantum Otto Heat Engine Operating Under a Reservoir at Effective Negative Temperatures, Phys. Rev.
Lett. 122, 240602 (2019).

[14] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira and R. M. Serra, Experimental
Characterization of a Spin Quantum Heat Engine, Phys. Rev. Lett. 123, 240601 (2019).

[15] Q. Bouton, J. Nettersheim, S. Burgardt, D. Adam, E. Lutz, and A. Widera, A quantum heat engine driven by atomic
collisions, Nature Comm. 12, 2063 (2021).

[16] C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Annu.
Rev. Condens. Matter Phys. 2, 329 (2011).

[17] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
[18] M. Esposito, U. Harbola and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in

quantum systems, Rev. Mod. Phys. 81, 1665 (2009).
[19] M. Campisi, P. Hänggi, and P. Talkner, Quantum Fluctuation Relations: Foundations and Applications, Rev. Mod. Phys.,

83 771 (2011).
[20] G. Verley, M. Esposito, T. Willaert, and C. Van den Broeck, The unlikely Carnot efficiency, Nature Commun. 5, 4721

(2014).
[21] M. Polettini, G. Verley, and M. Esposito, Efficiency Statistics at All Times: Carnot Limit at Finite Power, Phys. Rev.

Lett. 114, 050601 (2015).
[22] J. Jiang, B. K. Agarwalla and D. Segal, Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry,

Phys. Rev. Lett. 115, 040601 (2015).
[23] S. K. Manikandan, L. Dabelow, R. Eichhorn and S. Krishnamurthy, Efficiency Fluctuations in Microscopic Machines, Phys.

Rev. Lett. 122, 140601 (2019).
[24] N. A. Sinitsyn, Fluctuation relation for heat engines, J. Phys. A: Math. Theor. 44, 405001 (2011).
[25] S. Lahiri, S. Rana, A. M. Jayannavar, Fluctuation relations for heat engines in time-periodic steady states, J. Phys. A 45,

465001 (2012).
[26] M. Campisi, Fluctuation relation for quantum heat engines and refrigerators, J. Phys. A 47, 245001 (2014).
[27] M. Campisi, J. Pekola, and R. Fazio, Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible

solid state experiments, New J. Phys. 17, 035012 (2015).
[28] A. Solfanelli, A. Santini, and M. Campisi, Experimental Verification of Fluctuation Relations with a Quantum Computer,

PRX Quantum 2, 030353 (2021).
[29] R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19, 136 (2017).
[30] I. S. Oliveira, T. J. Bonagamba, R. S. Sarthour, J. C. C. Freitas, and E. R. deAzevedo, NMR Quantum Information

Processing, (Elsevier, Amsterdam, 2007).
[31] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral, Extracting Quantum Work Statistics and Fluctuation

Theorems by Single-Qubit Interferometry, Phys. Rev. Lett. 110, 230601 (2013).
[32] L. Mazzola, G. De Chiara, and M. Paternostro, Measuring the Characteristic Function of the Work Distribution, Phys.

Rev. Lett. 110, 230602 (2013).
[33] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro,



14

and R. M. Serra, Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed
Quantum System, Phys. Rev. Lett. 113, 140601 (2014).

[34] T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, R. M. Serra, Irreversibility and the
Arrow of Time in a Quenched Quantum System. Phys. Rev. Lett. 115, 190601 (2015).

[35] C. Van den Broeck, Thermodynamic Efficiency at Maximum Power, Phys. Rev. Lett. 95, 190602 (2005).
[36] M. Esposito, K. Lindenberg, and C. Van den Broeck, Universality of Efficiency at Maximum Power, Phys. Rev. Lett. 102,

130602 (2009).
[37] B. Cleuren, B. Rutten, and C. Van den Broeck, Universality of efficiency at maximum power, Eur. Phys. J. Special Topics

224, 879 (2015).
[38] M. Sune and A. Imparato, Efficiency fluctuations in steady-state machines, J. Phys. A 52, 045003 (2019).
[39] R. Kosloff and T. Feldmann, Discrete four-stroke quantum heat engine exploring the origin of friction, Phys. Rev. E 65,

055102(R) (2002).
[40] T. Feldmann and R. Kosloff, Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic

friction, Phys. Rev. E 68, 016101 (2003).
[41] F. Plastina, A. Alecce, T. J. G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, and R. Zambrini, Irreversible

Work and Inner Friction in Quantum Thermodynamic Processes, Phys. Rev. Lett. 113, 260601 (2014).
[42] K. Micadei, J. Peterson, A. Souza, R. Sarthour, I. Oliveira, G. Landi, T. Batalhõ, R. Serra, and E. Lutz, Reversing the
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FIG. 10. Verification of the joint quantum fluctuation relation on the work and heat domain. (a) Confirmation of the joint
fluctuation relation in the work domain: the experimental values of ln[P (W,Q)/P (−W,−Q)] (red dots) should intercept the
three (blue) lines corresponding to the projection of the plane defined by z = Σ = ∆βQ− β1W , for each possible value of heat
from the hot source, Q/h = −3.6, 0.0, 3.6 kHz, associated to the curves identified as 1, 2, 3, respectively. (b) Confirmation of the
joint fluctuation relation in the heat domain: the experimental values of ln[P (W,Q)/P (−W,−Q)] (red dots) should intercept
the eight (blue) lines corresponding to the projection of the plane defined by z = Σ, for the values of work, W/h = −3.6,
−2.0, −1.6, 0.0, 1.6, 2.0, 3.6, 5.6 kHz, associated to the curves 1, · · · , 8, respectively. The data corresponds to the driving time
τ = 260 µs. For such driving time, the point corresponding to the pair W/h = −5.6 kHz and W/h = −3.6 kHz was suppressed
from the figure, due to the large error bar associated with the small values of the distributions P (W,Q) and P (−W,−Q).


