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Abstract

We propose a general exact method of calculating dynamical correlation func-
tions in dual symplectic brick-wall circuits in one dimension. These are deter-
ministic classical many-body dynamical systems which can be interpreted in
terms of symplectic dynamics in two orthogonal (time and space) directions.
In close analogy with quantum dual-unitary circuits, we prove that two-point
dynamical correlation functions are non-vanishing only along the edges of the
light cones. The dynamical correlations are exactly computable in terms of a
one-site Markov transfer operator, which is generally of infinite dimensionality.
We test our theory in a specific family of dual-symplectic circuits, describing
the dynamics of a classical Floquet spin chain. Remarkably, for these models,
the rotational symmetry leads to a transfer operator with a block diagonal
form in the basis of spherical harmonics. This allows us to obtain analyti-
cal prediction for simple local observables. We demonstrate the validity of
our theory by comparison with Montecarlo simulations, displaying excellent
agreement for different choices of observables.
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1 Introduction

Symplectic dynamics is a powerful framework for understanding the behaviour of classical
systems in a wide range of physical phenomena, from celestial mechanics to fluid dynamics.
At its core, symplectic dynamics is concerned with the study of the evolution of systems
that conserve phase space volume under Hamiltonian motion. This property is intimately
related to the presence of a geometric structure known as a symplectic form, which encodes
the essential dynamical information of the system. An example of this type of dynamics
that has attracted a lot of interest is the classical spin chains. In particular, integrability
has been studied for classical Heisenberg Spin Chain (CHSC) [1,2] in the SU(2) symmetric
case as well as in generalizations [3, 4] of it. Moreover, ergodicity has been studied for
various types of 1D classical spin chain models [5–7] and the way it breaks [8] depending
on the range of the interactions. Recently, the framework of fluctuating hydrodynamics [9],
originally introduced in classical anharmonic chains, has been proven fruitful in the study
of correlations [10–13] in classical ferromagnetic spin chains: in a suitable intermediate
temperature regime, the system shows Kardar-Parisi-Zhang (KPZ) scaling. Quantum
correspondence with spin chains [14] has demonstrated that there is good agreement in
the high-temperature limit even when we are far away from the large spin S →∞ limit.

Dual symplectic dynamics is a quite novel idea according to which symplecticity charac-
terizes both time and space propagation. It has been observed in SO(3) invariant dynamics
of classical spins [15], where the correlation function precisely follows KPZ class [10,16–18]
and thus demonstrates spin transport with a dynamical exponent of 3/2. More research
has been done on the quantum analogue of dual symplecticity, which is dual unitarity in
brickwall-type circuits. For this type of dynamics, the space and time propagators are
both unitary. Interestingly, dual unitary quantum circuits can exhibit strongly chaotic
quantum dynamics, whose classical simulation is in general expected to be exponentially
hard in system size. Nonetheless, dual unitarity provides mathematical tools which lead to
the exact calculation of certain dynamical quantities, such as spatiotemporal correlation
functions [19–21], spectral Form Factor [22,23], operator entanglement and entanglement
growth [24,25].

In this paper, we propose a general exact method of calculating dynamical correlations
in dual symplectic brick-wall type 1D circuits. We show that similarly to what happens for
dual-unitary quantum circuits, correlation functions in space and time over the equilibrium
uniform measure of single-site observables 〈O(x, t)O(0, 0)〉 is such that: i) they are non-
vanishing only along light rays x = ±t (see below for details); ii) their behaviour on the
light ray can be expressed as the matrix elements of a transfer operator. We demonstrate
that our theory is in excellent agreement by comparison with a specific family of dual-
symplectic spin chains, where local gates are composed of an Ising SWAP gate and one-site
rotations. For this model, we prove that, despite the infinite dimensionality of the local
phase space, the transfer operator involved in the calculation of the correlation function
splits into finite-dimensional blocks, associated with the conservation of total angular
momentum. Thanks to this decomposition, we obtain even analytic expressions for some
observables and a simple and efficient numerical procedure for general ones. The paper is
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organised as follows: in Section 2, we set up the general formalism for a symplectic system
in a finite measure phase space; in Section 3, we focus on the dual symplectic case and by
using a graphical representation, we obtain exact correlations for any local observables. In
Section 4, we test our theory for the Ising SWAP model on a spin chain and explain the
block-diagonal representation of the transfer operator using the conservation of the total
angular momentum.

2 The model

We consider a classical dynamical system of N variables { ~Xi}, with the site index i =
0, . . . , N−1. For simplicity, we take N even. Also, we assume that each dynamical variable
lives on the finite measure space M and the phase space of the whole system is obtained as
the product ofN copies, i.e. MN = M×. . .×M . The time is discrete t ∈ Z and interactions
are local. In particular, we express the dynamics in terms of a local symplectic map acting
on two sites only – the so-called (classical) gate, Φ : M×M →M×M . The dynamics of the
whole system are then obtained acting with Φ on all pairs of neighbouring sites according
to the brickwall circuit protocol and periodic boundary conditions ~Xi+N ≡ ~Xi (see Fig. 1).
More specifically, let’s denote the local gate as Φij : MN → MN which acts as the map

Φ on the variables ~Xi, ~Xj and trivially with respect to all other variables. We can then
introduce Teven = Φ0,1Φ2,3 . . .ΦN−1,N and similarly Todd = Σ−1 ◦Teven ◦Σ, with the single-

site translation Σ : MN → MN , defined as Σ( ~X0, ~X1, . . . ~XN−1) = ( ~X1, . . . , ~XN−1, ~X0).
From these two layers, we construct the Floquet Operator T that generate one period of
the dynamics and takes the form:

T = Todd ◦ Teven (1)

By definition, it is true that Σ−2T Σ2 = T , meaning that there is a two-site translational
invariance of the dynamics. We should also mention that for practical reasons we choose
to represent a point of MN with capital bold letters e.g X ≡ ( ~X0, ~X1, . . . ~XN−1) whereas,
a point of the single site space M is represented with a vector e.g ~X.

It is useful to introduce a practical graphical notation. Specifically, we represent the
local gate as a blue rectangle with two incoming and two outgoing legs

Φ = (2)

Each leg represents a copy of M and an operator has as many legs as the number of sites
it acts on. With this in mind, the single-time step operator T is graphically depicted in
Fig. 1.

The map Φ belongs to a specific group of transformations called the symplectic group.
Symplecticity is a property appearing in Hamiltonian systems because they preserve the
loop action [26]. In general, symplectic maps always involve d-pairs of conjugate variables,
the configuration q and the momentum p, which can be seen as the coordinates of a 2d
dimensional manifold M (phase space) endowed with the symplectic form ω [26] on M.
Then, a symplectic map g :M→M, must satisfy DgTωDg = ω for the Jacobian matrix
Dg of the map g. Symplecticity automatically implies a unit determinant of the Jacobian
det(Dg) = 1 and thus conservation of the phase space volume. However, symplecticity is
more restrictive than that and it actually, suggests that, the spectrum σ(Dg) = {gi}2di=1

of the Jacobian of the map includes only pairs of eigenvalues in the form gi, 1/gi. A
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Figure 1: A graphical representation of the time evolution of a symplectic brick-
wall circuit for a single period.

very important consequence of this property of σ(Dg), is that the Lyapunov exponents
λi i = 1, . . . , 2d of the dynamics appear in pairs of ±λi.

3 Dynamical correlations

3.1 Symplectic gate

In this section, we will consider 2-point correlation functions, and how the symplecticity of
the dynamics can be used to simplify their calculation and draw some conclusions about
their value. Before proceeding, we should establish some definitions. Firstly, we introduce
the space of real functions over the phase space MN

D(MN ) = {ρ|ρ : MN → R} (3)

An important role is played by phase-space distributions in D(MN ) satisfying

ρ(X) ∈ R+ ,

∫
dXρ(X) = 1 . (4)

For technical reasons, it is however useful to consider the L2 norm

‖ρ‖2 =

[∫
dX|ρ(X)|2

]1/2

(5)

and introduce the Hermitian product

〈ρ1|ρ2〉 =

∫
dX ρ∗1(X)ρ2(X) , ρ1, ρ2 ∈ L2(MN ) (6)

with the braket notation 〈X|ρ〉 = ρ(X). In general, any dynamical system with a map
h : MN →MN on the phase space induces a dynamical transfer operator Ph : D(MN )→
D(MN ). The map Ph is a linear operator known as Perron-Frobenius operator [27] with
a Dirac delta kernel

Ph(X,Y ) = δ
(
X − h(Y )

)
, X,Y ∈MN (7)

and it performs the dynamics of a given density of initial conditions. In the case of the
symplectic gate, which is invertible, the dynamical operator acts explicitly on a phase-
space distribution ρ as :

(PΦ ◦ ρ)(X) =

∫
M2

dY δ
(
X − Φ(Y )

)
ρ(Y ) = ρ

(
Φ−1(X)

)
, X ∈M2 (8)
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where we used the Jacobian of Φ being 1 since the map is invertible and volume preserving.
The additional structure of the Hilbert space can be exploited to represent PΦ as an infinite
dimensional unitary matrix. The unitarity 〈ρ1|P†ΦPΦ|ρ2〉 = 〈ρ1|ρ2〉 follows from the volume
preservation in phase space.

An important consequence of symplecticity, or in fact just volume conservation, is the
invariance of the uniform (flat) measure on L2(M ×M) under the action of PΦ. If we
denote one site uniform measure as u = 1/|M | → |u〉 with |M | being the volume of the
one site phase space M , then we can construct the 2-site uniform measure as |u〉 ⊗ |u〉.
Then, symplecticity implies, based on (8), that any constant scalar is invariant under PΦ

and thus the uniform density too, resulting in the following equations

PΦ|u〉 ⊗ |u〉 = |u〉 ⊗ |u〉 , 〈u| ⊗ 〈u|PΦ = 〈u| ⊗ 〈u| (9)

where we use the fact that PΦ is a unitary operation in L2(M ×M) and thus the left
and right eigenvectors are the same. It is convenient to work with the normalised state

|◦〉 = ‖u‖−1
2 |u〉 and choosing the graphical representation |◦〉 = so Eq. (9) is graphically

depicted as

= =, (10)

It is easy to check that this property implies that the stationary density of the Floquet
transfer operator T is the uniform measure onMN which is denoted as |uN 〉 = |u〉⊗. . .⊗|u〉.
We also introduce the L2–normalised version |◦N 〉 = ||uN ||−1

2 |uN 〉. Given any function on
the phase space a ∈ D(MN ), representing physical observable, we can express its average
over the phase-space density ρ as∫

dX a(X)ρ(X) = 〈1N |â|ρ〉 (11)

where the action of â is defined via 〈X|â|ρ〉 = a(X)ρ(X) and we make use of the unit
scalar |1N 〉 → 1N (X) = 1,∀X ∈ MN . Note that we have |1〉 =

√
|M ||◦〉 . In general, for

an ergodic symplectic system |◦N 〉 is the unique invariant measure and thus at long times,
any initial state will always converge to that. In our setting, we consider correlations
of observables at large times and thus we focus on the invariant uniform measure. The
connected dynamical correlation functions of one-site observables are defined as

Ca,b(i, j, t) ≡ 〈1N |b̂jT tâi|uN 〉 − 〈bj〉〈ai〉 = 〈◦N |b̂jT tâi|◦N 〉 − 〈◦N |b̂j |◦N 〉〈◦N |âi|◦N 〉 (12)

with i, j = 0, . . . , N − 1 . In this expression, the local operators âi act non-trivially only

on the respective i-site meaning that they can be expressed as âi =
site i

1⊗ · · · ⊗ â⊗ · · · ⊗ 1.
The second term is just the product of the averages over the uniform measure which for
a local observable is defined as 〈ai〉 = 〈1N |âi|uN 〉 = 〈◦|â|◦〉.

In the following, we focus mainly on the nontrivial first term 〈1N |b̂jT tâi|uN 〉 of the
correlations, which can be graphically represented in Fig.2, where operations on one site
such as â|◦〉 or b̂|◦〉 are indicated with a bullet •. Moreover, using the two-shift invariance
of the circuit one can always map the correlations from point i to 0 or 1 depending on the
parity of i. This implies that the correlations split into two different types:

Ca,b(i, j, t) =

{
C+
a,b(j − i, t) i = even

C−a,b(j − i, t) i = odd
(13)
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a

b

〈◦N |b̂j T t âi|◦N 〉 =

Figure 2: Graphical representations of the 2-point function. The shaded grey
areas and the black arrows indicate the causal cones attached to each local ob-
servable. The symplecticity of Φ reduces this circuit to the cross-section (double-
shaded area of the grid) of the causal cones.

As we can see in Fig. 2, by applying Eq. (10), we can erase all gates outside a light-
cone spreading with velocity vc = 2, from the position i of the operator â at the bottom.
Similarly, we can argue from the top and the position j of the operator b̂. This suggests that
the only remaining gates must lie in the intersection between the forward and backward
lightcones (see Fig. 2). In particular, when |i − j| > 2t then these light cones are not
overlapping with each other and the two observables are trivially uncorrelated. When
|i−j| ≤ 2t the causal cones do overlap and can lead to non-trivially vanishing correlations.
Additionally, for times t > N/4 the light cones reach the boundary: this introduces
finite size effects to the correlations which makes the analytical calculations much more
complicated. Here, we choose to focus on times t ≤ N/4 where the correlation functions
equal those computed in the thermodynamic limit N → ∞. As explained above, we can
make use of symplecticity of the gate PΦ as expressed by Eq. (10), to cancel all gates
outside the intersection of the two lightcones. This leads to the following representation

〈◦N |b̂j T t âi|◦N 〉 =

a

b

(14)

where the diagram is rotated by 45◦ and the local observables are not considered in general
on the same edge of the light cone. The rectangle can be decomposed into rows or columns
which, are represented as two different types of contracting transfer operators. This idea
appears in the same manner in the folded picture of unitary circuits [19] and although
it represents an important simplification, the calculation of 2-point correlation functions
still remains challenging, in particular when |i − j| does not scale with t, as the size of
the involved transfer operators grows with time. We will see in the following section how
for dual symplectic gates additional simplifications are possible leading to the explicit
calculation of correlation functions.
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~Xm
~Xm+1

~X ′m ~X ′m+1

Φ

Φ̃

Figure 3: The local map Φ acting on two neighbouring spins and performing the
temporal dynamics. By exchanging the diagonal legs we get its dual map Φ̃ which
performs the spatial dynamics. The diagonal exchange of the legs, exchanges the
time and space axis leading to a map that propagates the temporal change in
space.

3.2 Dual-symplectic gate

Here we add one more restriction to our dynamics. We demand that the local gate Φ is
dual-symplectic meaning that the evolution of the system remains symplectic when one
exchanges the roles of space and time. Specifically, the map performing the propagation in
space is called dual map Φ̃ and as in the dual-unitary case [24] it comes from the reshuffling
of the diagonal legs as indicated in Fig. 3. This type of permutation of the legs leads to
the exchange of time and space axis. In particular one can see from Fig.3 that in the
dual picture, the two adjacent time moments of one site define the same time moments
of its neighbouring site on the right. One can also say that for a dual symplectic system
knowing the time evolution of one site, one can uniquely determine the time evolution
of the whole system. In general, an arbitrary symplectic map typically has a dual-space
propagator which is not unique (non-deterministic) or not even defined for all points in
M ×M . Here we focus on a local gate Φ with a uniquely defined and symplectic Φ̃. There
has already been some research on dual symplectic integrable circuits and in particular in
integrable circuits with non-abelian symmetries it has been demonstrated [15] that 2-point
dynamical correlations follow Kardar–Parisi–Zhang (KPZ) universality.

With the additional property of dual symplecticity, the set of graphical contraction
rules (10) are extended as:

=

=

=

=

,

,

(15)

where the dual-symplectic gates are now being indicated with green colour. Dual sym-
plecticity assures the invariance of the uniform measure in the space direction too. Its
analogue in quantum systems is called dual unitarity and has been used to obtain exact
results for a number of different systems [22, 28, 29]. There are similar expectations for
dual- symplectic dynamics and indeed in the following, we show that one can find exactly
the dynamic correlations and that they are non-vanishing only along the edges of the
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causal cones with (13) becoming

Ca,b(i, j, t) =

{
δj−i,2t C

+
a,b(2t, t) i = even

δj−i,−2t C
−
a,b(−2t, t) i = odd

(16)

We are going to prove this using the diagrammatic representation established above.
Specifically, one can simplify the correlations depicted in (14) by starting applying (15) at
the edge of the rectangular area with neighbouring |◦〉 states.

a

b
b

a

a

b

Repeating, this process we ultimately observe that the diagram trivialises to the second
term of (12) and thus the connected correlations vanish. As long as this type of edge
exists, the correlations will vanish except when the surface area of the cross-section is zero
and the parities of the sites of the local observables are the same. This would practically
imply that either of the sides of the cross-section has length zero and the rectangle reduces
to just a line segment of length 2t with the local observables at the edges. From Fig. 2
one can see that depending on the parity of the site i there are two different types of line
segments

a b

b a

i = even

i = odd

C+
a,b(vct, t) =

C−a,b(−vct, t) =

(17)

When i is even the correlation survives along the right-moving light edge and when i is odd
it is the same for the left-moving one. Actually, one needs to study only one chirality of
the correlations since the other can be obtained through a reflection of our circuit. As can
be seen in Fig. 2, a reflection along the axis passing in between the points (N/2− 1, N/2)
(which implies that every site i = 0, . . . , N − 1 is mapped to N − 1 − i), exchange the
two edges of the causal-cone. Furthermore, this reflection does not change only the parity
of the sites but also the order of the input and output states and thus the local gate is
transformed as PΦ → P ◦ PΦ ◦ P where P is the swap operation.

The correlations in (17) can be expressed in terms of two different one-site transfer
operators. In particular, we define the linear maps F± : L2(M)→ L2(M) where ± corre-
sponds to even, odd parity respectively. Graphically the transfer operators are represented
in Fig. 4

Here one can also observe the reflection property mentioned above, which maps the
transfer operator of one chirality to the other. For this reason, from now on we are going to
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F+ F−

Figure 4: The graphical representation of the two different types of transfer
operators F±. On the left (right) is the transfer operator appearing on the right
(left) moving light edge on (17).

omit the label ± and focus only on the right moving light-edge with F+ ≡ F . Afterwards,
according to (17), the correlations along the edges of the light cone take the form:

Ca,b(2t, t) = 〈◦|b̂ F2t â|◦〉 − 〈◦|b̂|◦〉〈◦|â|◦〉 (18)

This is an important exact result since it indicates that in dual-symplectic circuits the
correlations are determined explicitly by transfer operators acting on a single site. The
operator F is in general not Hermitian but, as proven in Appendix C, it is positive and
weak contraction. Assuming that it has a pure point spectrum, as will be the case in the
spin chain examples studied later, its spectral decomposition reads

F =

∞∑
i=0

µi |µRi 〉 〈µLi | (19)

where we indicated the left and right eigenvectors as |µRi 〉, 〈µLi | and we ordered the eigen-
values as |µ0| ≥ |µ1| ≥ . . .. As it is a weak contraction, its spectrum is on the unit disk,
i.e. |µi| ≤ 1. We should also mention that as proved in [30] the eigenvalues lying with
|µi| = 1 have equal algebraic and geometric multiplicity, and thus their Jordan blocks
are trivial. A direct consequence of the dual symplectic nature of PΦ is that the uniform
measure is invariant under the action of F . Therefore, the transfer operator always has
the trivial eigenvalue µ0 = 1 with |µR0 〉 = |◦〉 and 〈µL0 | = 〈◦|. Plugging the spectral
decomposition (19) in Eq. (18),

Ca,b(vct, t) =

∞∑
i=1

〈◦|b̂|µRi 〉 〈µLi |â|◦〉µ2t
i (20)

where the i = 0 term in the sum is cancelled by the second term in Eq. (18). Note that
the spectrum of F is related to the different levels of ergodicity of single-site observables.
Depending on how many non-trivial eigenvalues are equal to 1 or have a unit modulus,
dual symplectic circuits can demonstrate different levels of ergodicity. In particular, in
the non-interacting case, all eigenvalues are unimodular with |µi| = 1 and all correlations
can either remain constant or oscillate around zero and in the non-ergodic case where
more than one but not all eigenvalues are 1 correlations will decay to a non-thermal value.
When the system is ergodic and non-mixing, all non-trivial µi are not 1 and at least one
of them has unit modulus leading to correlations that oscillate around zero and thus their
time averages vanish at large times. Finally, for an ergodic and mixing system, all µi
are within the unit disk and all correlations decay to zero. A general example for the
non-interacting case is the dual-symplectic local gate PΦ = P ◦ (Pφ1 ⊗Pφ2) with P being
the SWAP gate and φ1, φ2 being single site symplectic maps.
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4 The Ising Swap model

Previously, we were studying an abstract dual-symplectic circuit. In order to test the
previous analytical results, we choose to focus on a 1D classical spin chain where the
local phase space is the unit sphere M ≡ S2. For this case, we choose to denote the
coordinates ~Xi ≡ ~Si with the constraint |~Si| = 1. We introduce the 3-parameter family of
dual-symplectic local gates:

Φ(α,β,γ) :=
(
Rx(β)⊗Rx(γ)

)
◦ Iα ◦

(
Rx(γ)⊗Rx(β)

)
(21)

where the operation Rα(θ), θ ∈ [0, 2π) denotes a single spin rotation – SO(3) rotation
matrix – around axis α ∈ {x, y, z} by the angle θ. We denote with Iα the SWAP Ising
gate, whose action on a pair of sites reads

Iα(~S1, ~S2) =
(
Rz(αS

z
1)~S2, Rz(αS

z
2)~S1

)
(22)

with α being the coupling constant of the interaction, Rz(θ) being a rotation around the
z-axis and Szi being the z-component of ~Si. Assuming the standard Poisson bracket on
the unit sphere

{Sai , Sbj} = δijεabcS
c
i (23)

it is easy to recognize Eq. (22) as the symplectic evolution of two sites under the Hamilto-
nian H12 = αSz1S

z
2 for a time δt = 1, followed by a SWAP operation (Sa1 , S

a
2 )→ (Sa2 , S

a
1 ).

It is easy to verify that the space-time dual of the gate (21), as defined in Fig. 3, has
a similar form

Φ̃(α,β,γ) ≡ (1⊗ (−1)) ◦ Φ(α,−β,γ) ◦ ((−1)⊗ 1) (24)

where we indicated by 1 the identity map and by −1 the change of sign to all components
Sai → −Sai . Thus, the dual dynamics differ from the temporal ones by a simple sign-
gauge transformation. As described in [15] our map Φ(α,β,γ) is called space-time self-dual
since a flipping of the spins in a checker-board pattern leads to the recovery of the spatial
dynamics from the temporal ones. Dual-symplectic circuits with local gates (21) enclose
both ergodic and integrable cases depending on the choice of the parameters. For example,
when α = 0 the model becomes a trivial non-interacting one and thus integrability is
expected. Another integrable case is when both β, γ take either of the values 0, π where
the dynamics preserve the z-components of the spins along their respective light rays,
leading to conserved extensive quantities along the parity’s bipartition of the lattice. This
type of local conserved quantities are called gliders and have already been studied in dual-
unitary quantum circuits [31]. Having chosen our family of local gates, we proceed with
the exact calculation of the correlations. As explained in the general formalism of Sec. 3.2,
this requires the calculation of the transfer operators F acting on the single-site functions.
In Appendix B we analytically find the transfer operator in both the phase space and the
density space:

f = Rx(γ)Q(α)Rx(γ) , F ≡ Pf (25)

with Q(α) = 1
2

∫ 1
−1 dz

′Rz(αz
′) and f : M → M . The transfer operator is just the Per-

ron–Frobenius of f and its kernel is given in the same way as in (7) for a single site
phase space. It is interesting to note that (25) is completely independent of β. The
other chirality of the correlation is simply recovered from the middle point reflection
P ◦ PΦα,β,γ ◦ P = PΦα,γ,β which is equivalent with just changing β, γ → γ, β. The fact
that (25) is expressed in terms of rotations suggests the use of spherical harmonics as a
convenient basis for the L2 density space. We choose the coordinates z, ϕ being respec-
tively the z cartesian component and the azimuthal angle. Then, the spherical harmonics
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|`,m〉 → Y`,m(z, ϕ) for ` = 0, 1, . . . and |m| ≤ ` form a suitable orthonormal basis for L2

functions. Our approach is based on finding the representation of the transfer operator
in this basis. As we rigorously prove in Appendix B, the transfer operator F preserves
the total angular momentum and thus has a block diagonal form in `, with each block
having dimension 2`+ 1. It follows that the eigenvectors and eigenvalues in Eq. (19) can
be indexed by a block index ` and an index m̃ within each block. Thus, Eq. (20) takes
the form

Ca,b(2t, t) =

∞∑
`=1

∑̀
m̃=−`

〈◦|b̂|µR`,m̃〉 〈µL`,m̃|â|◦〉µ2t
`,m̃ (26)

From this expression, it follows that if the local observables |ax〉, |by〉 expand only over
a finite number of total angular momentum subspaces, then the sum in Eq. (26) only
contains a finite number of terms; in particular only the common values of ` between the
two observables will matter. For example, the observable a(z, φ) = z2 has non-vanishing
overlaps only for ` = 0, 2. Similarly, any polynomial in the variable z only involves a
finite number of blocks. This is an important property of our system, proved in Appendix
D, since it suggests that a finite set of exponentials (in t) fully capture the behaviour of
the 2-point correlations whenever one of the two observables a, b involves only a finite
number of ` blocks. In practice, one can calculate the exact dynamical correlations just
by diagonalizing the relevant finite-dimensional blocks of F . Moreover, observables which
have no overlapping such subspaces lead to vanishing correlations for every t.

At this point, we provide some analytic results for the choice of a(z, φ) = zn , b(z, φ) =
z with n ∈ Z+. In this case a has non vanishing overlaps for ` = 0, 2, . . . n if n even and
` = 1, 3, . . . n if n odd and b for ` = 1. We can see that for the case of n even there are
no common overlapping subspaces between the two observables and thus the correlations
vanish for all t. However, when n is odd, the correlations depend only on the ` = 1 block
of F and by using (25) one can explicitly find that the eigenvalues of this block are :

µ1,0 =
sin(α)

α

µ1,−1 =
(α+ sin(α)) cos(2γ)−∆(α, γ)

2α

µ1,1 =
(α+ sin(α)) cos(2γ) + ∆(α, γ)

2α

(27)

where ∆(α, γ) =
√

(α+ sinα)2 cos2(2γ)− 4α sin(α). Since only the ` = 1 subspace con-
tributes, we only need the overlaps of the observables with this subspace :

〈1m|zn〉 =
2
√

3π

n+ 2
δm,0 (28)

The observable zn does not depend on the azimuthal angle and thus it depends only on the
spherical harmonics |`m〉 with m = 0. By diagonalizing the block of F that corresponds
to ` = 1 and using (27),(28) one can recover the exact expression for the correlations:

Ca,b (2t, t) =
1

22t+1(n+ 2)

(
E+(t) + E−(t)

)
E±(t) =

(
1± α− sinα

∆
)

(
(α+ sinα) cos(2γ)±∆

α

)2t (29)

where the other chirality is recovered with just γ → β. In the special integrable cases, one
finds:

lim
α→0

Ca,b (2t, t) =
cos(4γt)

2 + n
, lim

γ→0
Ca,b (2t, t) =

1

2 + n
(30)

11
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In Fig. 5 we demonstrate numerically that the correlations survive only along the edges
of the causal cone and verify (29) in the case of n = 1. Here it is important to mention
that we consider the symmetries of our circuit for the estimation of the correlations. In
particular, except the 2-site translation invariance there is also a 1 time step translation
invariance because the correlations are evaluated over the invariant measure and both of
these symmetries allow us to perform averaging over a larger sample size and obtain more
accuracy for the numerical data.
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Figure 5: Auto-correlations for the Sz spin component, normalized by the maxi-
mum value Ca,b(0, 0) for system of sizes N = 128, 1024 spins with the parameters

being α = 0.3 and β =
√

2
4 π, γ =

√
2

2 π and with a sampling size of Nsample = 50000
for the initial conditions. (a): The spatiotemporal correlator |Ca,b(x, t)/Ca,b(0, 0)|
in the case of N = 128 where we can observe that it vanishes off the edge (x = vct)
of the causal cone. (b): The comparison of |Ca,b(x, t)/Ca,b(0, 0)| on the right edge
of the causal cone with the theoretical result obtained through (29) with exact
diagonalization of F at ` = 1 subspace. The numerical results are obtained for
two different sizes N = 128, 1024 and plotted with a time step of 5 in a log scale.
The dashed line represents the time moment t = N/4 for the system N = 128
when it stops being in the effective thermodynamic limit and our theory is in-
valid. The system N = 128 stops agreeing with the exact result after this time
moment, but the larger system N = 1024 still demonstrates excellent agreement
with the theory. (c): The comparison of Ca,b(x, t)/Ca,b(0, 0) on the right edge of
the causal cone but with a linear scale for the vertical axis.

5 Conclusion

We have provided an exact way of calculating dynamic correlations in dual-symplectic
classical circuits, where we also proved that the correlations are non-vanishing only along
the edges of the light cones and completely specified in terms of a weakly contracting,
positive one-site transfer operator. It is important to mention that our method is valid
not only for dual-symplectic systems. Specifically, it is easy to check that any local gate
Φ which is volume preserving that also has a volume-preserving dual map Φ̃, satisfy (15)
and thus exhibit the same diagrammatic behaviour. Every symplectic map is volume
and orientation-preserving, but the group of symplectic diffeomorphisms is significantly
smaller than that of the volume-preserving ones (Non-squeezing theorem [32]). Conse-
quently, there is a larger set of dynamical ergodic systems that exhibit our diagrammatic
representation with correlations that vanish everywhere except on the edges of the light
cone. In addition, we prove that for the relevant case of the Ising SWAP model, the trans-
fer operator exhibits a block-diagonal form which leads to an expansion involving only the
common ` subspaces of the observables. This property has the great advantage of no need
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for truncation and recovery of analytical results through exact diagonalization with each
(finite) block.

We close with some naturally arising questions. Is it possible to find a more general
characterization or complete parametrization of the dual symplectic circuits which may
help in also finding a parametrization of dual unitary gates [30] to larger than qubits
local spaces? Could one find exact results for other initial densities as has already been
demonstrated in the dual unitary case [29]? Our formalism can be a stepping stone to
studying these types of questions for the novel class of dual-symplectic systems.

Acknowledgements

T.P acknowledges financial support from Program P1-0402, and Grants N1-0219 and
N1-0233 of the Slovenian Research and Innovation Agency (ARIS). D.K acknowledges
partial support from Labex MME-DII (Modèles Mathématiques et Economiques de la
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A Representation of PΦ(α,β,γ)
in spherical harmonics

Here we analytically find the matrix elements of the Perron-Frobenius operator PΦ(α,β,γ)

of the local gate in the basis of spherical harmonics. We denote this basis as |`,m〉 →
Y`,m ` = 0, . . . ,∞ , |m| ≤ ` and is clearly orthonormal with respect to the inner product
(6):

〈`1m1|`2m2〉 =

∫
S2
d ~X Y ∗`1m1

( ~X)Y`2m2( ~X) = δ`1,`2δm1,m2 (A.1)

As follows from (21) the local gate is composed of local one site rotations Rx(θ) θ ∈ [0, 2π)
and the Ising SWAP gate Iα. The rotations around the x-axis are trivially known in
the basis of spherical harmonics as PRx(θ) = D(−π/2, θ, π/2) where D is the Wigner-D
matrix [33] and is block diagonal in ` (〈`1m1|D|`2m2〉 = 0 when `1 6= `2) with the right
choice of Euler angles. Thus, we need only to find the representation of Iα. Our approach
is based on firstly finding the kernel of the Ising gate on S2×S2 and then using that result
to finally obtain its representation on |`,m〉.

We already know from (22) how Iα acts on two spins and this leads to the following
Kernel:

PIα( ~X1, ~X2, ~X3, ~X4) = δ
(
~X1 −Rz(αz3) ~X4

)
δ
(
~X2 −Rz(αz4) ~X3

)
(A.2)

we should mention here that we choose the polar coordinates ~Xi = (zi, ϕi) i = 1, . . . , 4
for the parametrization of the unit sphere. This operation couples two spins and thus by
using (6) in the basis of two-spherical harmonics we obtain:

〈`1m1, `2m2|PIα |`3m3, `4m4〉 = δm1,m4δm2,m3∫
S2
d ~X3d ~X4 Y

∗
`1m1

(Rz(αz3) ~X4)Y`4m4( ~X4) Y ∗`2m2
(Rz(αz4) ~X3)Y`3m3( ~X3) (A.3)

The Kronecker deltas come from performing the integration over ϕ3, ϕ4 and in the expres-
sion above we can see the coupling of the rotations with the z-component of each other’s
vector. To continue our calculation we have to mention that a rotation around the z-axis is
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just a translation over the azimuthal angle and due to that the spherical harmonics satisfy
Y`,m(Rz(θ) ~X) = Y`,m(~x)eimθ. Based on this property one can decouple the z-components
as:

〈`1m1, `2m2|PIα |`3m3, `4m4〉 =∫
S2
d ~X3d ~X4 Y

∗
`1m1

(Rz(α
m2

m1
z4) ~X4)Y`4m4( ~X4) Y ∗`2m2

(Rz(α
m1

m2
z3) ~X3)Y`3m3( ~X3) (A.4)

At this point, we manage to couple the rotations Rz of one spin with its own z- component.
This type of nonlinear rotation is called ’torsion’ T (a) ~X = Rz(az) ~X (where a is the
coupling constant with T (0) = 1) and its representation in spherical harmonics has been
calculated in [34]. In particular, it was found that:

〈`m|T (a)|`′m′〉 = δm,m′(−1)m
√

(2`+ 1) (2`′ + 1)

`+`′∑
p=|`−`′|

(−i)pjp(−ma)C``
′p

000 C
``′p
−mm0.

(A.5)

where jp is the spherical Bessel function and C`1,`2,`3m1,m2,m3 are the Clebsch-Gordan coefficients.
Finally, we recover the representation of the Ising SWAP gate:

〈`1m1, `2m2|PIα |`3m3, `4m4〉 = 〈`1m1|T (α
m2

m1
)|`4m1〉 〈`2m2|T (α

m1

m2
)|`3m3〉 δm1,m4δm2,m3

(A.6)
This expression is valid even when m1,m2 = 0 since as we can observe from (A.5) that
the denominators cancel out in the argument of jp. Now, we only need to combine all the
above and find out that the representation of the local gate of the dynamics is:

〈`1m1, `2m2|Φα,β,γ |`3m3, `4m4〉 =

`1,`2∑
q1,q2=−`1,−`2

〈`1m1|PRx(β)|`1q1〉〈`4q1|PRx(β)|`4m4〉〈`2m2|PRx(γ)|`2q2〉〈`3q2|PRx(γ)|`3m3〉×

× 〈`1q1|T (α
q2

q1
)|`4q1〉 〈`2q2|T (α

q1

q2
)|`3q2〉 (A.7)

B Block Diagonal form of F±

In this appendix, we analytically calculate the matrix of the one-site transfer operator
in the spherical harmonics representation and prove that it has a block diagonal form in
`. Our calculation is based on the direct interpretation of Fig. 4. In particular, for a
general local gate, one can interpret F± either in the time direction where the dynamics
are performed by Φ, or in the space one where we can use the dual picture with Φ̃. Both of
these pictures are equivalent but here we choose the former one. Like in the main text we
choose to focus on the right-moving chirality F+ ≡ F and omit the ± label. According to
this choice, one can see from Fig. 4 that the transition amplitudes of F for two arbitrary
densities (functions) ρ1, ρ2 from L2(M) are:

〈ρ1|F|ρ2〉 = (〈◦| ⊗ 〈ρ1|) PΦ (|ρ2〉 ⊗ |◦〉) (B.1)

This is true for any dual-symplectic gate. We focus on the Ising swap model where since
|◦〉 = |00〉 in the basis spherical harmonics one can directly use (B.1),(A.6),(A.7) to obtain:
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〈`m|F|`′m′〉 = 〈00, `m|PΦα,β,γ |`
′m′, 00〉 = δ`,`′

∑̀
q2=−`

〈`m|PRx(γ)|`q2〉
sin(αq2)

aq2
〈`q2|PRx(γ)|`m′〉

(B.2)
where we used that T (0) = 1, C0,0,0

0,0,0 = 1 and j0(x) = sin(x)/x. Moreover, we used that a
constant scalar is invariant under rotations and thus 〈00|PRx(β)|00〉 = 1. This expression
can be compactified even more by defining the map Q(α) : M →M

Q(α) =
1

2

∫ 1

−1
dz′Rz(αz

′) (B.3)

The spherical harmonics are the eigenbasis of the Perron-Frobenius operator of rotations
around the z−axis and in particular 〈`1m1|PRz(θ)|`2m2〉 = e−im1θδ`1,`2δm1,m2 for a rotation
of an angle θ ∈ [0, 2π). Then, using this in (B.3) and performing the integration one
recovers the representation of PQ(α) : D(M)→ D(M).

〈`1m1|PQ(α)|`2m2〉 =
sin(αm1)

αm1
δ`1,`2δm1,m2 (B.4)

we finally recover the exact form of the transfer operator:

F = PRx(γ)PQ(α)PRx(γ) (B.5)

and this automatically implies that the latter is just the Perron-Frobenius operator of the
local phase-space map f : M →M :

f = Rx(γ)Q(α)Rx(γ) , F ≡ Pf (B.6)

We managed to find the exact form of the transfer operator in both the density space and
pointwise map in phase space and as we can see in (B.2), it is block diagonal in the total
angular momentum ` and thus preserves it. This is not surprising, since as we can see
from (B.3),(B.6) the transfer operator is just a composition of rotations, which preserve
the total angular momentum. The results for F− can be recovered from the above with
the use of the middle point reflection β, γ → γ, β.

C Weak contractivity and positivity of F±

In this appendix, we are proving explicitly that the single-site transfer operator F (≡ F+)
is a weak contraction as well as a positive operator. Firstly, as mentioned in the main
text, the map PΦ is unitary in L2(M×M) since it preserves the L2-norm. Then according
to this from (B.1) we can obtain for every ρ1, ρ2 ∈ L2(M):

|〈ρ1|F|ρ2〉| = |(〈◦| ⊗ 〈ρ1|) PΦ (|ρ2〉 ⊗ |◦〉)| ≤ ‖ |◦〉 ⊗ |ρ1〉‖2 ‖PΦ (|ρ2〉 ⊗ |◦〉)‖2
= ‖ |◦〉 ⊗ |ρ1〉||2 ‖ |ρ2〉 ⊗ |◦〉‖2 = ‖ρ1‖2 ‖ρ2‖2 (C.1)

where we used the Cauchy–Schwarz inequality and the fact that the state |◦〉 is normalised.
Now by setting |ρ1〉 = F|ρ2〉 one recovers:

‖F|ρ2〉‖2 ≤ ‖ρ2‖2 (C.2)

for every ρ2 ∈ L2(M). This suggests that the single-site transfer operator is a weak
contraction.
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The positivity is a direct consequence of the properties of the Perron-Frobenius opera-
tor. In particular, let us assume that ρ ∈ L2(M) and ~X ∈M then we are interested in the
value of the scalar 〈 ~X|F|ρ〉. It is sufficient to prove that this is always positive if ρ ≥ 0.
The calculation is based on using (B.1) from which we get:

〈 ~X|F|ρ〉 = (〈◦| ⊗ 〈 ~X|) PΦ (|ρ〉 ⊗ |◦〉) (C.3)

The scalar |◦〉 → u◦( ~X) = 1/
√
|M | is positive, thus if we assume ρ ≥ 0 then |ρ〉 ⊗ |◦〉 →

(ρu◦)( ~X1, ~X2) = ρ( ~X1)u◦( ~X2) is a non-negative scalar too. Now, as the last step we need
to mention that, the local operation PΦ is a Frobenius-Perron operator, which by definition
is positive and thus implies that PΦ (|ρ〉⊗ |◦〉 ≥ 0. Then, as a consequence the value (C.3)
is non negative for every ~X ∈M meaning that:

F|ρ〉 ≥ 0 for any ρ ≥ 0 ∈ L2(M)

In the same way, one can prove these properties for F− too.

D Contributing modes to the correlations

In this section we prove that the only contributing `-subspaces to the correlations are
the common ones of the expansions of the observables over the spherical harmonics. We
denote these subspaces as V ` = span({|`,m〉}`m=−`). The proof is a consequence of the
block diagonal form of F (≡ F+). Specifically, the transfer operator is block diagonal

in ` meaning that it is just the direct sum F =
∞
⊕
`=0
F `, where F ` are the blocks of each

total angular momentum subspace. It is thus, convenient to work in the picture where the

Hilbert space L2(S2) =
∞
⊕
`=0

V ` is a direct sum of the total angular momentum subspaces.

Now according to this picture, the two local observables mentioned in the main text would

also be decomposed as |a〉 =
∞
⊕
`=0
|a`〉 , |b〉 =

∞
⊕
`=0
|b`〉. Assume that their expansions over

the spherical harmonics overlap only with a finite number of V ` spaces which we denote
as `ai i = 1, . . . , na and `bj , j = 1, . . . , nb respectively. The integers na, nb are the total

number of overlapping V ` of the observables. This would imply that the components
|a`〉, |b`〉 vanish trivially at the rest of the total angular momentum subspaces:

|a`〉 = ~0` for ` 6= `ai

|b`〉 = ~0` for ` 6= `bj
(D.1)

where ~0` is the zero vector in V `. Moreover, in this picture, the Hermitian product breaks
into a sum of Hermitian products over V ` and by using |◦〉 = |1〉/2

√
π we obtain from

(18)

Ca,b(t, t) =
1

4π

( ∞∑
`=0

〈a`|(F `)2t|b`〉 − 1

4π
〈1|b〉〈1|a〉

)
=

1

4π

∑
`c 6=0

〈a`c |(F `c)2t|b`c〉 (D.2)

where we applied (D.1) and now one can observe that the only non-vanishing terms are
the ones of the common subspaces `c between `ai and `bj . The space V 0 of the constant

on S2 scalars do not contribute to the correlations since it is being cancelled out from
the second term in (D.2). In addition, our result automatically implies that only the
eigenvalues of F `c contribute and thus the exact 2-point function is defined by a finite set
of exponentials. One can obtain the results for the other chirality of correlations by using
the middle point reflection β, γ → γ, β.
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