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We study quantum transport in a quasiperiodic Aubry-André-Harper (AAH) model induced by
the coupling of the system to a Markovian heat bath. We find that coupling the heat bath locally
does not affect transport in the delocalized and critical phases, while it induces logarithmic trans-
port in the localized phase. Increasing the number of coupled sites at the central region introduces a
transient diffusive regime, which crosses over to logarithmic transport in the localized phase and in
the delocalized regime to ballistic transport. On the other hand, when the heat bath is coupled to
equally spaced sites of the system, we observe a crossover from ballistic and logarithmic transport
to diffusion in the delocalized and localized regimes, respectively. We propose a classical master
equation, which in the localized phase, captures our numerical observations for both coupling con-
figurations on a qualitative level and for some parameters, even on a quantitative level. Using the
classical picture, we show that the crossover to diffusion occurs at a time that increases exponen-
tially with the spacing between the coupled sites, and the resulting diffusion constant decreases
exponentially with the spacing.

I. INTRODUCTION

Non-equilibrium dynamics of quantum systems has
been a topic of great interest in condensed matter and
statistical physics, particularly concerning the study of
quantum transport [1–8]. While transport in generic
many-body systems is typically diffusive, diffusion of a
quantum particle can be suppressed by a random disor-
dered potential due to localization of the single-particle
states. This phenomenon, dubbed Anderson localization
[9], occurs for any non-zero random disorder in one and
two dimensions. At higher dimensions, all states are lo-
calized only for sufficiently high disorder. For disorder
values smaller than a critical value, only eigenstates be-
low a specific energy, called the mobility edge, are local-
ized [10–12].

Localization also occurs for systems with non-random,
quasi-periodic potentials. Such potentials can exhibit
localization to delocalization transitions and mobility
edges, even in one dimension [13–20], and are experi-
mentally feasible [21–24]. In the quasi-periodic Aubry-
André-Harper (AAH) potential, for example, all states
are localized above a critical potential strength and de-
localized otherwise, whereas the transition point features
fractal states [13, 14]. Transport is absent in the localized
phase, ballistic in the delocalized phase, and anomalous
at the critical point due to the fractal structure of the
eigenstates [25–28]. Localization is primarily restricted
to isolated set-ups. Realistic physical systems are in-
evitably coupled to an environment, such as, phonons,
which destroy localization and induce finite DC conduc-
tivity [29]. Therefore, it is crucial to understand the im-
pact of the environment on quantum transport.

Anderson localization is known to be stable to local
and global periodic driving [8], as well as local and quasi-
periodic in time drives [8, 30]. However, for a random,
uncorrelated time-dependent drive coupled to all lattice
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Figure 1. Schematic of the coupling of the heat bath to the
system. (a) central region of l sites is coupled (b) sites at λ
distance apart are coupled.

sites, Anderson localization is destroyed, and diffusive
transport is recovered [31–33]. For correlated noise, a
transient sub-diffusive regime can emerge [34]. On the
other hand, randomly driving a single-site of the system
induces logarithmic transport [35]. A natural question,
that we consider in this work, is how transport is affected
when only part of the sites of the lattice are coupled to
a random drive.

For a finite density of coupled sites, randomly dis-
tributed in the system, a transition from a super-diffusive
to diffusive stationary current as a function of the den-
sity of the coupled sites was established in Refs. [36, 37].
These works did not consider temporal dependence of
spreading excitations, which may have distinct behavior
from the behavior of the stationary current [25, 26]. It
is, therefore, an open question if the spreading of density
excitations exhibits a single or several regimes of trans-
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port as a function of time.

Sparse coupling to a heat bath serve as useful phe-
nomenological models to understand the effect of the rare
ergodic bubbles [35–42] in many-body localized systems.
These bubbles act as a bath, and serve as a destabiliz-
ing mechanism of many-body localization [39, 40, 43–47].
While for disordered many-body localized models the er-
godic bubbles are randomly distributed, this is not true
in quasi-periodic systems. Consequently, exploring how
different coupling configurations affect quantum trans-
port in such scenarios is essential. Some of these con-
figurations have been previously studied in experiments
and theory but without a direct connection to quantum
transport [39, 47].

In this work, we answer the questions above by study-
ing the temporal spreading of density excitations at in-
finite temperatures for different couplings of the system
to a Markovian bath.

The paper is organized as follows. We describe the
model Hamiltonian and the methods in Section II. In
Section III we present our results for different couplings of
the model to a Markovian heat bath. Finally, we discuss
our findings in the Section IV.

II. MODEL AND METHODS

We consider a system of N spinless fermions in a chain
of length L, which is described by the Hamiltonian,

Ĥ =− J

L−1∑
m=1

(
â†m+1âm + â†mâm+1

)
(1)

+W

L∑
m=1

cos (2πβm+ ϕ) n̂m,

where n̂m = â†mâm, and âm, â
†
m are annihilation and cre-

ation operators of a fermion on site m, J is the hop-
ping strength, W is strength of the potential and β =(√

5− 1
)
/2 is the Golden mean. The phases are taken

uniformly from ϕ ∈ [−π, π] . In contrast to the Anderson
model, where all the single-particle eigenstates are local-
ized for any non-zero value ofW , the AAHmodel exhibits
a delocalization-localization transition. For W < 2J, all
the single-particle eigenstates are extended and transport
is ballistic [26], while forW > 2J , all the states are local-
ized. At the critical point, W = 2J , the states are multi-
fractal and transport is diffusive if characterized by the
mean squared displacement [26], while a characterization
based on the stationary current suggests a sub-diffusive
transport [25, 26].

We couple the system to a Markovian heat bath which
does not affect the number of fermions in the system.
Specifically, we assume that the density matrix of the

system evolves via the Lindblad master equation [48],

∂ρ̂ (t)

∂t
=− i

[
Ĥ, ρ̂ (t)

]
+

∑
i

(
L̂iρ̂ (t) L̂

†
i −

1

2

{
L̂†
i L̂i, ρ̂ (t)

})
,

(2)

where {.} is the anti-commutator, the first term repre-
sents the unitary evolution and the second term gives the
non-unitary dynamics. The operators L̂i are Lindblad
jump operators, which we take to be

L̂i =
√
γin̂i, (3)

where γi represents the strength of the dissipation on site
i. The dimensions of the density matrix areN×N , where
N is the Hilbert space dimension. This unfavorable scal-
ing with the system size makes the numerical solution
of the Lindblad equation computationally expensive. A
more efficient approach is to unravel the evolution into
a unitary evolution of wavefunctions in the presence of
white noise and then to average over the realizations of
the noise to obtain the quantities of interest [35, 49–53].
For unitary unraveling, the time evolution operator is

given by,

Û(t+ dt, t) =e−iĤdt−i
√
γ dt

∑
i ηi(t)n̂i , (4)

where ηi (t) are independent Gaussian random variables
with mean zero and unit variance. The density matrix
can be obtained by averaging over the realizations of the
noise,

ρ̂(t+ dt) =|ψ(t+ dt)⟩⟨ψ(t+ dt)|, (5)

where |ψ(t + dt)⟩ = Û(t + dt, t)|ψ(t)⟩ and the over-bar
represents averaging over the noise realizations. In this
work, we set the noise strength to γ = 1 and the time-
step to, dt = 0.1. We have corroborated that our results
do not change if dt is further reduced. We average over
10 noise trajectories and over 10 phase realizations (ϕ in
Eq. (1), see Ref. [35] for further numerical details). We
have found this averaging sufficient to reduce the sta-
tistical uncertainty of the data. To study the transport
properties, we consider the following observables:
Particle transport at infinite temperature. It is easy to

check that irrespective of Ĥ the RHS of Eq. (2) vanishes
for Hermitian Lindblad jump operators and ρ̂ ∝ I, such
that any initial state will reach an infinite temperature
state. Therefore, to avoid transient effects we directly
characterize particle transport at infinite temperature.
For this purpose we look at the two-point density-density
correlation function,

Ci (t) = Tr

[
ρ̂∞

(
n̂i (t)−

1

2

)(
n̂L/2 −

1

2

)]
, (6)



3

where ρ̂∞ = I/N is the infinite-temperature density ma-
trix, and n̂L/2 corresponds to an initial density excita-
tion at the center of the lattice.From the Lindlbad master
equation, the dynamics of such a correlation function can
be obtained using a quantum regression theorem, which
holds for any initial density matrix and allows the calcu-
lation of the correlation function in the stationary state
of the Lindblad master equation [54]. A more efficient
approach, that we employ here, is to evaluate the corre-
lation function within the unitary unraveling dynamics.
For non-interacting systems, Eq. (6) can be written as

Ci (t) =
∣∣∣Tr [ρ̂∞â†i (t) âL/2

]∣∣∣2 =
1

4

∣∣∣Us
i,L/2 (t, 0)

∣∣∣2 ,
where Us

i,L/2 (t, 0) is the single-particle propagator. The
second equality follows, since for unitary unraveling
â†i (t) can be written as: â†i (t) =

∑
k U

s
ik (t, 0) â

†
k and

Tr
[
ρ̂∞â

†
i âj

]
= 1

2δij . Since Us
i,L/2 (t, 0) has dimensions

L × L, this allows us to efficiently study the system for
large L.

We characterize the nature of transport using the root
mean squared displacement (RMSD) [4, 6, 55, 56],

R̃ (t) =

√√√√ L∑
i=1

(
i− L

2

)2

Ci (t). (7)

Typically, the RMSD grows as a power law in time,
R̃ (t) ∼ tα, where the dynamical exponent α = 1/2 cor-
responds to diffusive transport and α = 1 to systems
with ballistic transport. Regimes characterized by sub-
diffusive and super-diffusive transport involve exponents
ranging between 0 ≤ α < 0.5 and 0.5 < α < 1, respec-
tively. For localized systems α = 0.

III. RESULTS

In this Section, we discuss our results for local coupling
the heat bath to one site of the system and to a finite
fraction of system sites. In finite fraction coupling we
either couple the heat bath to a central region of the
chain or to equally separated lattice sites through the
entire chain (Fig.1). All the results below are obtained
for a chain length of L = 1000.

A. Local coupling

In the left panels of Figure 2 we plot the dynamics of
the root mean squared displacement for the delocalized,
critical, and localized phases of the AAH model. In the
absence of coupling to the heat bath, particle transport
in these phases is ballistic, anomalous and absent, re-
spectively [25, 26]. As can be seen from Fig. 2(a), local
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Figure 2. Root mean-squared displacement R̃ (t) as a function
of time; for system size L = 1000. The noise strength is set to
γ = 1. The top panels, which are plotted on a log-log scale,
correspond to the delocalized phase and the critical point.
The bottom panels, which are plotted on a semi-log scale,
correspond to the localized phase. The black dashed and dot-
ted lines provide a guide to ballistic and diffusive transport,
respectively. The statistical error is of the order of the line
width.

heat bath does not affect the nature of transport in the
delocalized and critical regimes. On the other hand, it
induces logarithmic transport in the localized phase, sim-
ilar to the case of the disordered Anderson model [35].
Within the time range considered, there is no sign of a
crossover to diffusion, as opposed to the case where the
noise is coupled to all the sites [34, 57–60].

B. Coupling to a finite part of the chain

We have seen that local coupling to the heat bath is
not affecting transport in the delocalized phases and is
inducing logarithmic transport in the localized phase. In
this section we study how transport is affected when the
heat bath is coupled to a finite fraction of system sites.
Moreover, we will show that the spatial configuration of
the coupled sites is important. Specifically we consider
two different configurations: coupling l < L sites at the
central region of the chain, or coupling sites which are
separated a distance λ apart, such that their density is
1/λ.

The left panels of Fig. 3 show the dynamics of R̃ (t)
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Figure 3. Root mean-squared displacement R̃ (t), as a func-
tion of time for L = 1000. Left panels correspond to coupling
of the heat bath to a central region of length l. Right panels
to coupling the heat bath to system sites which are λ distance
apart. Top panel correspond to W = 1 and bottom panels
to W = 4. Dashed and dotted lines are guides to the eye for
diffusive and ballistic transport, respectively. More intense
colors stand for larger λ or l. The statistical error is of the
order of the line width.
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Figure 4. Root mean-squared displacement R̃(t), as a function
of time; for a number of coupled central region widths l (top
panel) or the distance between the coupled sites, λ (bottom
panel). Solid lines correspond to the the numerical solution
of the Lindblad equation (2), and dashed lines to the solution
of the classical master equation (8), with time rescaled by a
factor of 20 to have the best fit with the solid lines. The
parameters used are L = 1000 and W = 4. The error-bars
are of the order of the line width.
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Figure 5. Same as Fig. 4 but with the time axis rescaled by
the crossover times tl or td (see main text).

in the delocalized phase (top panel) and the localized
phase (bottom panel) for different widths l of the coupled
central region. In both delocalized and localized phases
R̃ (t) initially grows diffusively. After this initial diffusive
growth it crosses over to ballistic transport (Fig. 3(a)) in
the delocalized phase, or to logarithmic transport in the
localized phase (Fig. 3(c)). In both cases the crossover
time, which we will designate by tl, grows with the width
of the coupled region, l.

The right panels of Fig. 3 show R̃ (t) for coupling sites
which are a distance λ apart from each other. In the de-
localized and localized phases, we observe a crossover to
diffusion. At the critical phase, transport remains prac-
tically unaffected by the heat bath (not shown). In the
delocalized phase, the initial transport is ballistic (see
Fig. 3(b)) and in the localized phase, the initial transport
is logarithmic (see Fig. 3(d)). In all cases the crossover
time, which we denote by td increases with λ. In the
next section we introduce a classical master equation,
which provides an explanation to the dependence of the
crossover times on the parameters of the system.
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Figure 6. Extraction of the diffusion coefficient for various
λ by fitting Dt1/2 to R̃ (t) obtained from the solution of the
Lindblad equation (dashed lines, top panel). The bottom
panel shows the diffusion coefficient as a function of λ for
W = 4 and L = 1000. The dashed blue line corresponds to
the theoretical prediction, with no fitting parameters.

C. Classical picture

The dephasing mechanism of the heat bath, diminishes
the importance of interference effects, and gives hope
that classical treatment might be sufficient to understand
the underlying phenomenology. We therefore follow the
variable-range hopping approach of Mott [29], and as-
sume that coupling the system to the heat bath induces
transitions between localized single-particle eigenstates.
The probability to find a particle in a single-particle state
α, which we denote by pα, evolves according to a classical
master equation [57, 61, 62],

∂tpα =
∑
β

(Γαβpβ − Γβαpα) . (8)

where the transition rates Γαβ between the eigenstates
α and β can be calculated from first-order perturbation
theory (see Appendix A),

Γαβ = Γβα = γ
∑

k∈coupled sites

∣∣ϕ∗β (k)ϕα (k)
∣∣2 , (9)

where γ is the strength of the coupling, ϕα (i) are the sin-
gle particles states in the position basis, and the sum k
runs over the sites coupled to the heat bath. In the local-
ized phase, by definition, ϕα (i) decays exponentially. We
order the single-particle eigenfunctions such that ϕα (i)
has it center of mass around a site α, which allows us to
approximate the transition rates as,

Γαβ =γ
∑

k∈coupled sites

e−|α−k|/ξe−|β−k|/ξ, (10)

where ξ is the localization, which for the AAH model is
ξ = 1/ ln W

2 [63]. The coupled site is, therefore, initi-
ating transitions, or scattering, between localized states
within its neighborhood. Transitions to far-lying states
are exponentially suppressed with the distance from the
coupled site. For local coupling, this leads to logarith-
mic transport, R̃ (t) ∼ ξ ln (Jt) [35]. We note in passing
that in the delocalized side, all the eigenstates ϕα (k) are
extended and therefore cannot be ordered by their cen-
ter of mass, such that the spatial structure of the rates
is lost. Moreover, the rates Γαβ are of the same order
of magnitude which means that transport is expected to
transition to diffusion on a time-scale γ−1. In what fol-
lows, we only focus on the localized phase.

When the heat bath is coupled to a region of final
width l, the transitions rates Γαβ are approximately con-
stant in this region, and therefore a particle initiated in
the coupled region is expected to diffuse. It takes the
particle time, tl ∼ l2, to leave this region. After leav-
ing the coupled region, transitions rates exponentially
decay with the distance from the region, and transport
in the system is expected to be equivalent to the situ-
ation of local coupling. When the coupled sites are at
equal distances λ apart, on a time-scale of moving be-
tween two nearby coupled sites, transport is logarithmic,
but at larger time-scales the expected motion is diffusive.
The crossover time can be obtained from λ = ξ ln (Jtd),
yielding td ∼ J−1 exp (λ/ξ), and the diffusion constant
as D ∼ λ2/td = λ2 exp (−λ/ξ).
In Fig. 4 we compare the numerical solution of the

classical master equation (8) to the numerical solution
of the Lindblad equation (2). Since the classical rates
(10) are obtained phenomenologically, the overall prefac-
tor of the rates cannot be determined from microscopic
considerations. We determine it by rescaling the time
axis of the classical master equation such that the corre-
spondence with the solution of the Lindblad equation is
optimal (2). Apart from this trivial rescaling of the units
of time, there are no fitting parameters. Remarkably, the
agreement between the classical master equation and the
Lindblad equation goes beyond the qualitative level for
the central coupled region (top panel). For equal spac-
ing coupling, there is still qualitative agreement, but the
quantitative agreement is reasonable only for small λ/ξ.
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In Fig. 5 we test the predictions of the classical theory
for the crossover times, by rescaling of the time axis by td
or tl, respectively. We see that such a rescaling correctly
identifies the crossover time for both couplings to the heat
bath when either l or λ are varied. The prediction for the
diffusion constant is verified in Fig. 6. The agreement is
not quantitative, however the exponential decrease of the
diffusion constant with λ is nicely captured.

IV. DISCUSSION

Using the unitary unraveling of the Lindblad master
equation, we study the dynamical properties of the AAH
model coupled to a dephasing heat bath. We consider
local coupling and coupling to a finite part of the chain.
This setup is partly motivated by dynamics in MBL sys-
tems in the presence of finite density of ergodic bubbles
[7, 39, 40, 64], with the crucial difference that it is dissi-
pative.

For local coupling of the heat bath in the delocalized
and critical phases of the AAH model, we didn’t observe
any qualitative effects of the heat bath on the dynamics
of the particle. On the other hand, in the localized phase,
the root mean square displacement, entanglement en-
tropy, and average energy (not shown) show asymptotic
logarithmic growth, as it occurs for the one-dimensional
Anderson insulator in the presence of a local noise [35].
Suppose the region of the coupling to the bath is of finite
width. In that case, we find a regime of transient diffu-
sion, which crosses over to ballistic transport in the delo-
calized phase and logarithmic transport in the localized
phase. We have shown that this crossover time increases
as the square of the width of the region, as typical for
diffusion. When the heat bath is coupled to the system
on equally spaced sites, initial transport in the system is
similar to the transport with local coupling. Eventually,
it crosses over to diffusion in all phases. Specifically, in
the localized phase, the crossover time increases expo-
nentially with the distance between the coupled sites.

We have shown that in the localized phase, a classical
master equation with transition rates that exponentially
decay from the location of the coupled sites captures all
the observed phenomenology. Moreover, it provides ac-
curate predictions of crossover times for all studied cou-
plings of the heat bath. This time scale is set by the time
it takes for a particle to traverse the distance λ between
two nearby coupled sites. In the delocalized phase, this
time is proportional to λ (if the transport is ballistic)
or λ2 (if it is diffusive). On the other hand, it scales as
td ∝ exp (λ/ξ) in the localized phase. Within the clas-
sical model, the motion of the particle between the cou-
pled sites can be viewed as a random walk with a spatial
step of λ and a mean-free time of td, which means that
the motion is diffusive, with diffusion constant given by
D ∼ λ2/td = λ2 exp (−λ/ξ).

In this work, we have focused only on fixed λ, such
that D is also fixed. If λ is allowed to vary randomly,
such that its distribution is unbounded, then the average
time to transition between coupled sites, td, can diverge.
In this case, the average diffusion coefficient will vanish,
and transport will be subdiffusive (see Refs. [36, 37] and
Appendix B). Furthermore, this finite number of dephas-
ing sites in the non-interacting localized system mimics
the presence of ergodic bubbles in the many-body local-
ized system that acts as a finite thermal bath and induces
quantum transport. However, unlike the ergodic bubbles,
which cool off during the dynamics, and therefore can
stop being ergodic, the system here does not affect the
heat bath. As such, our model provides a non-rigorous
upper bound on ergodic bubbles-induced transport in a
many-body localized system [7, 39, 40, 64].

Here, we focus on a quasi-periodic model without mo-
bility edges. In the presence of mobility edges, at least in
principle, the coupling to the heat bath can create tran-
sitions between the localized and delocalized states. Sev-
eral interesting questions arise for these models: would
the coupling eliminate the intermittent logarithmic trans-
port regime? How will the dynamics depend on the initial
conditions? We leave these questions to future studies.
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the Aubry-André-Harper model in isolated and open sys-
tems,” Phys. Rev. B 97, 174206 (2018).

[27] Gim Seng Ng and Tsampikos Kottos, “Wavepacket dy-
namics of the nonlinear Harper model,” Phys. Rev. B 75,
205120 (2007).

[28] R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel,
“What Determines the Spreading of a Wave Packet?”
Phys. Rev. Lett. 79, 1959–1963 (1997).

[29] N. F. Mott, “Conduction in non-crystalline materials,”
Philos. Mag. 19, 835–852 (1969).

[30] Jean Bourgain and Wei-Min Wang, “Anderson Localiza-
tion for Time Quasi-Periodic Random Schrödinger and
Wave Equations,” Commun. Math. Phys. 248, 429–466
(2004).

[31] A. Madhukar and W. Post, “Exact Solution for the Dif-
fusion of a Particle in a Medium with Site Diagonal and
Off-Diagonal Dynamic Disorder,” Phys. Rev. Lett. 39,
1424–1427 (1977).

[32] A. M. Jayannavar and N. Kumar, “Nondiffusive Quan-
tum Transport in a Dynamically Disordered Medium,”
Phys. Rev. Lett. 48, 553–556 (1982).

[33] A A Ovchinnikov and N S Erikhman, N S, “Calculation of
particle mobility at high temperature,” JETP 48, 1118–
1122 (1978).

[34] Sarang Gopalakrishnan, K. Ranjibul Islam, and Michael
Knap, “Noise-Induced Subdiffusion in Strongly Localized
Quantum Systems,” Phys. Rev. Lett. 119, 046601 (2017).
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[77] Marko Žnidarič, “Entanglement in a dephasing model
and many-body localization,” Phys. Rev. B 97, 214202
(2018).

[78] Maximilian Kiefer-Emmanouilidis, Razmik Unanyan,
Michael Fleischhauer, and Jesko Sirker, “Evidence for
unbounded growth of the number entropy in many-body
localized phases,” Phys. Rev. Lett. 124, 243601 (2020).

[79] David J. Luitz and Yevgeny Bar Lev, “Absence of slow
particle transport in the many-body localized phase,”
Phys. Rev. B 102, 100202 (2020).

[80] Maximilian Kiefer-Emmanouilidis, Razmik Unanyan,

http://dx.doi.org/10.1103/PhysRevB.106.064203
http://dx.doi.org/10.1103/PhysRevB.106.064203
http://dx.doi.org/ 10.1103/PhysRevB.93.014203
http://dx.doi.org/10.1103/PhysRevLett.121.140601
http://dx.doi.org/10.1103/PhysRevLett.121.140601
http://dx.doi.org/10.1103/PhysRevResearch.2.033262
http://dx.doi.org/ 10.1103/PhysRevB.105.174205
http://dx.doi.org/10.1038/s41567-022-01887-3
http://dx.doi.org/ cmp/1103899849
http://dx.doi.org/ cmp/1103899849
http://dx.doi.org/10.1103/PhysRevA.61.042107
http://dx.doi.org/10.1103/PhysRevA.61.042107
http://dx.doi.org/ https://doi.org/10.1016/S0301-0104(01)00296-8
http://dx.doi.org/ https://doi.org/10.1016/S0301-0104(01)00296-8
http://dx.doi.org/10.1088/1464-4266/4/4/339
http://dx.doi.org/10.1088/1464-4266/4/4/339
http://dx.doi.org/ 10.1103/PhysRevLett.118.140403
http://dx.doi.org/ 10.1103/PhysRevLett.118.140403
http://dx.doi.org/10.1209/0295-5075/88/10004
http://dx.doi.org/ 10.1103/PhysRevB.95.035155
http://dx.doi.org/ 10.1103/PhysRevB.95.035155
http://dx.doi.org/ 10.1103/PhysRevE.79.050105
http://dx.doi.org/10.1088/1367-2630/12/4/043001
http://dx.doi.org/10.1088/1367-2630/12/4/043001
http://dx.doi.org/10.1140/epjb/e2012-30730-9
http://dx.doi.org/10.1140/epjb/e2012-30730-9
http://dx.doi.org/ https://doi.org/10.1002/andp.201600298
http://dx.doi.org/10.1103/PhysRevLett.105.070601
http://dx.doi.org/10.1103/PhysRevLett.105.070601
http://dx.doi.org/ 10.1103/PhysRevLett.116.160401
http://dx.doi.org/10.1103/PhysRevB.90.184202
http://dx.doi.org/10.1103/PhysRevB.90.184202
http://dx.doi.org/ 10.1103/PhysRevX.7.021013
http://dx.doi.org/10.1142/S0219749903000371
http://dx.doi.org/ 10.21468/SciPostPhys.7.2.024
http://dx.doi.org/ 10.1088/0305-4470/36/14/101
http://dx.doi.org/ 10.1088/0305-4470/36/14/101
http://dx.doi.org/ 10.1088/1751-8113/42/50/504003
http://dx.doi.org/ 10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevB.93.060201
http://dx.doi.org/10.1103/PhysRevB.93.060201
http://dx.doi.org/10.1103/PhysRevResearch.1.033067
http://dx.doi.org/10.1103/PhysRevResearch.1.033067
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://dx.doi.org/ 10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevB.90.064201
http://dx.doi.org/10.1103/PhysRevB.97.214202
http://dx.doi.org/10.1103/PhysRevB.97.214202
http://dx.doi.org/ 10.1103/PhysRevLett.124.243601
http://dx.doi.org/10.1103/PhysRevB.102.100202


9

Michael Fleischhauer, and Jesko Sirker, “Particle fluctu-
ations and the failure of simple effective models for many-
body localized phases,” SciPost Phys. 12, 034 (2022).

http://dx.doi.org/ 10.21468/SciPostPhys.12.1.034


10

Appendix A: Transition rates for white noise

In this section, we calculate the transition rates using the first order perturbation theory. Withing the unitary
unraveling of the Lindblad equation the dynamics of the system is described by a the time-dependent Hamiltonian,

Ĥ (t) =Ĥ0 + V̂ (t) ,

where, V̂ (t) =
√
γ
∑
i

ηi (t) |i⟩⟨i| with ηi (t) being a Gaussian random variable with zero mean and unit variance. The

noise is characterized by the correlation function, ⟨ηi (t) ηj (t′)⟩ = δijδ (t− t′). The time evolution of the state |ψ(t)⟩
in the eigenbasis |α⟩ of Ĥ0 can be written as,

∂tcα = −i
∑
γ

〈
α
∣∣∣V̂ (t)

∣∣∣ γ〉 cγ (t) e−i(ϵγ−ϵα)t, (A1)

where ϵα is the eigenvalue of Ĥ0 which corresponds to |α⟩. In the integral form, this corresponds to,

cα (t) = cα (0)− i

∫ t

0

∑
γ

dt′
〈
α
∣∣∣V̂ (t)

∣∣∣ γ〉 cγ (t) e−i(ϵγ−ϵα)t′ . (A2)

Back substitution of the LHS into the RHS and ignoring terms of order, O
(
V 2

)
gives,

cα (t) = cα (0)− i

∫ t

0

∑
γ

dt′
〈
α
∣∣∣V̂ (t)

∣∣∣ γ〉 cγ (0) e−i(ϵγ−ϵα)t′ . (A3)

We assume that the system is initialized in state β, such that cγ (0) = δγβ , which yields,

cα (t) = δαβ − i

∫ t

0

dt′
〈
α
∣∣∣V̂ (t)

∣∣∣β〉 e−i(ϵβ−ϵα)t′ . (A4)

The transition probability rate between state |α⟩ and |β⟩ is given by

Γαβ = |cα (t)|2 /t,= 1

t

∫ t

0

dt′
∫ t

0

dt′′
〈
α
∣∣∣V̂ (t′)

∣∣∣β〉〈
β
∣∣∣V̂ (t′′)

∣∣∣α〉 e−i(ϵβ−ϵα)(t′−t′′). (A5)

Now since averaging over the noise gives,〈
α
∣∣∣V̂ (t′)

∣∣∣β〉〈
β
∣∣∣V̂ (t′′)

∣∣∣α〉 = γ
∑
i,j

ηi (t′) ηj (t′′) ⟨α|i⟩⟨i|β⟩ ⟨α|j⟩⟨j|β⟩ = γ
∑
i

|⟨α|i⟩|2 |⟨β|i⟩|2 δ (t′ − t′′) , (A6)

we obtain

Γαβ =
γ

t

∑
i

|⟨α|i⟩|2 |⟨β|i⟩|2
∫ t

0

dt′
∫ t

0

dt′′δ (t′ − t′′) e−i(ϵβ−ϵα)(t′−t′′)

=γ
∑
i

|⟨α|i⟩|2 |⟨β|i⟩|2 ,

where ⟨β|i⟩ = ϕ∗β (i) and ⟨k|α⟩ = ϕα (k).

Appendix B: Coupling at random sites

In this section, we consider the case where a given site is coupled with probability p, which means that the distance
between two coupled sites is distributed according to the Poisson distribution. In Fig. 7 we shows the dynamics of
R̃ (t) calculated using the classical master equation for W = 4.0 and and number of p. We average the data over 50
realizations of the couplings to the heat bath. As opposed to the case where the coupled sites are placed at an equal
distance from each other leading to eventual diffusion, here we find sub-diffusive transport with a dynamical exponent
which depends on p. Our results are consistent with Refs. [36, 37] where the stationary state current is calculated in
a similar system.
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Figure 7. Dynamics of R̃ (t) for for W = 4.0, and the case where each site of the system can be coupled with probability p.

Appendix C: Dynamics of entanglement entropy

In this section we study the dynamics of entanglement entropy for a single site coupling to the bath. While the
entanglement entropy is not a good measure of quantum information for mixed states [65], for the unitary unraveling,
it is well defined for each of the trajectories. Therefore, in situations when one can physically justify the specific form
of the unraveling [66], the entanglement averaged over the various trajectories is a sensible quantity [35, 67]. Another
advantage of the unitary unraveling is that the wavefunction |ψ (t)⟩, is Gaussian through the entire evolution, which
allows an efficient computation of the entanglement entropy, using the relation,

S (t) = −
∑
α

[cα (t) ln cα (t) + (1− cα (t)) ln (1− cα (t))] . (C1)

Here, cα (t) are eigenvalues of the correlation function ⟨ψ (t)
∣∣∣â†i âj∣∣∣ψ (t)⟩, restricted to the subsystem of interest [68, 69].

For ballistic transport, the entanglement entropy grows linearly with time, while anomalous transport is characterized
by a sub-linear growth [70–73].

In the right panels of Fig. 8 we present the growth of the entanglement entropy starting from a random product
state. We use a random product state so that initially the entanglement entropy is zero, which provides us with
a finite regime of entanglement entropy growth. In particular, we initiate the system at a random product state,
namely, ρsij(t = 0) = njδij , with random nj ∈ 0, 1. In the delocalized regime, the growth of the entanglement entropy
is unaffected by the presence of the local heat bath and is consistent with a power-law dependence on time, observed in
closed systems [63]. In the localized case, the heat bath induces logarithmic growth of entanglement entropy which is
reminiscent of the entanglement entropy growth in the MBL phase [74–77]. However, here this growth is accompanied
with logarithmic particle transport, while the presence of logarithmic particle transport in the MBL phase is under
debate [78–80].
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Figure 8. Entanglement entropy S (t) as a function of time; for system size L = 1000. The noise strength to γ = 1. The top
panels, which are plotted on a log-log scale, correspond to the delocalized phase and the critical point. The bottom panels,
which are plotted on a semi-log scale, correspond to the localized phase. The statistical error is of the order of the line width.
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