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Abstract

A large class of gapped phases of matter can be described by topological finite group gauge theories. In
this paper we show how such gauge theories possess a higher-group global symmetry, which we study in detail.
We derive the d-group global symmetry and its ’t Hooft anomaly for topological finite group gauge theories in
(d+1) space-time dimensions, including non-Abelian gauge groups and Dijkgraaf-Witten twists. We focus on the
1-form symmetry generated by invertible (Abelian) magnetic defects and the higher-form symmetries generated
by invertible topological defects decorated with lower dimensional gauged symmetry-protected topological (SPT)
phases. We show that due to a generalization of the Witten effect and charge-flux attachment, the 1-form
symmetry generated by the magnetic defects mixes with other symmetries into a higher group. We describe
such higher-group symmetry in various lattice model examples. We discuss several applications, including the
classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups, where we also derive a
simpler formula for the [O5] ∈ H5(BG,U(1)) obstruction that has appeared in prior work. We also show how the
d-group symmetry is related to fault-tolerant non-Pauli logical gates and a refined Clifford hierarchy in stabilizer
codes. We discover new logical gates in stabilizer codes using the d-group symmetry, such as a Controlled-Z gate
in (3+1)D Z2 toric code.
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1 Introduction

Topologically ordered phases of matter can be characterized in general by intricate patterns of fusion and braiding of
topologically non-trivial defects (excitations). In two spatial dimensions, topologically non-trivial quasi-particles can
be thought of as point-like, codimension-2 topological defects, and their universal properties are characterized by a
unitary modular tensor category [1, 2, 3, 4, 5, 6, 7, 8, 9]. Over the past decade, it was understood that codimension-1
topological defects in (2+1)D also can possess non-trivial topological properties [10, 11, 12, 13, 14, 15, 16, 17, 18,
19]; a full account of the universal properties of (2+1)D topological phases of matter must therefore include both
codimension-1 and codimension-2 defects. The fusion and braiding properties of codimension-1 and codimension-2
defects together form a more complicated mathematical structure – a unitary fusion 2-category [20, 11, 21]. This
fusion 2-category plays a critical role in the modern understanding of symmetry-enriched topological orders in terms
of G-crossed braided tensor categories [22, 23, 24, 25, 26].

In general, (d+1) space-time dimensions, much less is known about the general algebraic structure of topological
defects, aside from a general expectation that they should be characterized by a unitary fusion d-category. A complete
understanding of topological defects is a difficult question, in part because the problem of classifying topological
defects contains within it the problem of classifying all topological phases of matter. The more tractable problem
is to focus on the structure of invertible topological defects, as the classification of invertible topological phases is a
discrete Abelian group in each dimension [27, 28, 29, 30, 31, 32, 33, 34, 35, 26].

Over the past several years, the relationship between topological defects of varying codimension and symmetry
in quantum field theory has come into increasingly sharp focus. Invertible topological defects of codimension-
k define a (k − 1)-form symmetry of the field theory [36, 37, 38]. The interplay between invertible topological
defects of varying codimension form the structure of a d-group symmetry [22, 39, 23, 40, 41] in (d + 1) space-
time dimensions. Higher-group symmetries are present in many quantum systems, and they have applications
to topological phases, dynamics and vacuum structure in quantum chromodynamics, spin liquids, hydrodynamics,
holography, higher-dimensional critical systems, Higgs and axion physics, and conjectures in quantum gravity, see e.g.
Refs. [39, 23, 42, 43, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. The non-invertible topological defects
(simple examples being non-Abelian anyons in (2+1)D) define higher categorical (non-invertible) symmetries, as
studied in e.g. Refs. [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], which are even more exotic. Therefore understanding
the higher group structure of invertible topological defects amounts to understanding the higher-group symmetry of
the field theory.

One large class of gapped phases of matter can be described by topological finite gauge theory, that is, gauge
theory with a finite, discrete gauge group. Such theories can be studied using exactly solvable lattice models
[70, 71, 72, 73, 74, 75]. In (3+1)D, it has been argued that all topologically ordered phases of matter with fully
mobile excitations can be described by finite gauge theory coupled to either bosonic or fermionic point charges
[76, 77, 78]. While the electric and magnetic defects in finite gauge theories are well known and have been studied
in some depth [79, 80, 81, 82], the full higher-group structure of invertible topological defects in finite gauge theories
has not been developed.

Recently some progress was made in understanding part of the 3-group symmetry in (3+1)D gauge theories
with finite gauge group [44, 83]. In this paper, we continue this line of work and develop a more comprehensive
understanding of the d-group symmetry in (d + 1)D finite gauge theory with gauge group G, together with its ’t
Hooft anomaly. In addition to including both Abelian and non-Abelian G, we include the possibility of a Dijkgraaf-
Witten twist for the gauge theory [82], characterized by a cohomology class [ω(D)] ∈ HD(BG,U(1)).

The d-group symmetry arises essentially from the following phenomena. In theories with bosonic charges, the
higher form symmetries are generated by decorating submanifolds with symmetry-protected topological (SPT) phases
and then gauging the G symmetry of the full theory. The magnetic codimension-2 defects, when intersecting the
gauged SPT defects, will source lower dimensional gauged SPT defects. An example of this was described in detail
recently in Refs. [44, 83]: in (3+1)D, the intersection point between magnetic strings and (1+1)D gauged SPT
defects sources an electric charge. The generalization to magnetic defects crossing generic gauged SPT defects and
sourcing lower-dimensional gauged SPT defects can be viewed as a generalization of this charge-flux attachment and
the Witten effect [84] on submanifolds. See Ref. [85] for a generalization to defects in nonlinear sigma models.

Moreover, in the presence of a Dijkgraaf-Witten twist ω(D), there are several non-trivial changes to the properties
of the magnetic defects, which we discuss in this paper. First, the magnetic defects become dressed with gauged
SPT defects of one higher dimension, which is another analog of charge-flux attachment. This dressing implies
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that some of the magnetic defects can become non-Abelian, even when associated with Abelian magnetic flux,
and become endowed with exotic non-Abelian braiding transformations. This implies that the invertible magnetic
defects correspond to a subgroup Zω(G) ⊂ Z(G) of the center Z(G). Second, the fusion rules of the magnetic defects
themselves get modified such that they can fuse to gauged SPT defects.

On the lattice, the higher-group symmetry manifests as commutation relations that do not produce a number,
but a non-trivial operator: if the generators of symmetries are the operators O1,O2,O3 acting on the Hilbert space,
an example of a higher group structure is

[O1,O2] ≡ O1O2O−1
1 O−1

2 = O3 . (1)

This implies that O3 is created from the configuration of generators on the left. We can also generalize the relation
to a nest of commutators of the form [O1, [O2, [O3, · · · ]]] = O′ . This is to be contrasted with the case where the
commutation relation produces a number (different from unity), which is the same in any state, and represents an ’t
Hooft anomaly of the symmetry that remains the same across different states (and thus the same for states of different
energies); here, the expectation value of the commutation relation is different on states with different eigenvalues
of O3. Such “operator-valued anomaly” means the symmetry algebra is modified to be a higher group, and is by
definition not an ’t Hooft anomaly, as emphasized in Refs. [40, 41]. Examples of lattice gauge theory models with
higher-group symmetry are discussed in Ref. [83].

In general, the symmetry generators of finite Abelian gauge theory are realized as the logical gates on the codespace
in a stabilizer code, which is the ground state subspace of some stabilizer lattice Hamiltonian [86, 87, 88, 89, 90, 91, 92].
When the symmetry generators correspond to the logical gates, the higher-group symmetry that mixes the symmetry
generators endows a non-trivial relation between the logical gates. For instance, we will encounter examples where
[O2,O3] = 1, and together with [O1,O2] = O3 they imply that at least one of O1,O2,O3 must realize a logical
gate that cannot be described by the Pauli operator. In other words, the higher-group symmetry of the stabilizer
Hamiltonian model implies that the corresponding stabilizer code has a non-Pauli logical gate. As concrete examples,
we find that the generator of 0-form symmetry in (3+1)D Z2 and Z2

2 toric code, in general, realizes the non-Pauli
Clifford gate, which is enabled by the non-trivial 3-group structure among 0-form, 1-form and 2-form symmetries. In
particular, we construct control-Z gate in (3+1)D Z2 toric code. We also derive a new upper bound on the possible
logical gates implemented by the gauged SPT defects of untwisted ZN

2 gauge theory in generic dimensions, which
refines the known result given in Ref. [93].

An important property of global symmetry is its ’t Hooft anomaly, i.e. obstruction to gauging the symmetry.
The ’t Hooft anomaly constrains the boundary properties and phase transitions between different gapped phases,
and it is also useful in constraining the low energy dynamics of the microscopic model, such as ruling out symmetric
gapped phases in quantum systems with an anomaly that cannot be matched by the proposed low energy dynamics,
see e.g. Refs. [44, 94, 57]. In particular, it has been understood that ’t Hooft anomalies are intimately related
to Lieb-Schulz-Mattis constraints [95, 96, 97] in many-body quantum systems [98, 99, 100, 101]. There is also a
conjecture that two quantum systems with the same anomaly for all symmetries should be dual to each other, or
can be connected by a symmetry preserving continuous deformation.

One important application of understanding the d-group symmetry and its ’t Hooft anomaly is in classifying SPT
states and also symmetry-enriched topological orders. For example, consider the problem of classifying fermion SPT
states with fermionic symmetry group Gf , which is a central extension of a bosonic symmetry group Gb by fermion

parity Zf
2 . Gauging the Zf

2 fermion parity gives a “bosonic shadow” theory, which involves a dynamical Zf
2 gauge field

coupled to fermionic matter, with a global Gb symmetry [102, 103, 104, 105, 106]. Understanding how to characterize

and classify such Zf
2 gauge theories with Gb symmetry is intimately related to the problem of characterizing and

classifying fermion SPT states with Gf symmetry. Furthermore, the former requires an understanding of the d-group

symmetry and its ’t Hooft anomaly in Zf
2 gauge theory. In this paper, we will follow this program and develop a

classification of (3+1)D fermion SPTs with general Gf symmetry. Our results give an alternative perspective on the
classification derived previously in Refs. [33, 34]. Using our methods, we also are able to give a significantly simpler
formula for the [O5] ∈ H5(BG,U(1)) obstruction appearing in the classification of (3+1)D fermionic SPTs.

This paper is organized as follows. In Section 2, we discuss the generalized Witten effect, that dresses magnetic
defect with the generalization of the “electric charge” in the presence of topological interaction. In Section 3, we
investigate the higher-group symmetry in examples such as Abelian gauge theory, using the generalized Witten effect
and also exactly solvable lattice Hamiltonian models. In Section 4, we investigate the anomaly of the higher-group
symmetry in these examples. In Section 5, we discuss the application of higher-group symmetry in lattice models
and the relationship to fault-tolerant logical gates that are not Pauli operators. In Section 6 and 7, we investigate
higher-group symmetry and its ’t Hooft anomaly in general finite group gauge theories with bosonic electric charges.
In Section 8, we investigate the 3-group symmetry in Z2 gauge theory with fermion particles in (3+1)D, and discuss a
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new construction of fermionic symmetry-protected topological (SPT) phases in (3+1)D and their classification using
the 3-group symmetry.

There are several appendices. In Appendix A we summarize some mathematical properties of an n-group.
In Appendix B we discuss higher-group symmetry in Abelian gauge theories by embedding the gauge fields into
continuous U(1) gauge fields. In Appendix C we give some details of the data classifying the fermionic SPT phases
in (3+1)D.

2 Generalized Witten effect and charge-flux attachment

In this section, we consider G gauge theory in D space-time dimensions with topological action S[a] =
∫
MD

a∗ω(D)

for the G gauge field, and we will take G to be a finite group, which can be Abelian or non-Abelian. The partition
function on space-time manifold MD takes the form

Z(MD) =
1

|G|
∑
[a]

e
i
∫
MD

a∗ω(D)

. (2)

Here [ω(D)] ∈ HD(BG,U(1)), ω(D) is a representative D-cocycle, a is the dynamical 1-form G gauge field, a∗ω(D)

is the pullback to a representative cocycle for HD(MD, U(1)), and the sum is over all flat principal G bundles over
spacetime MD. On D-dimensional sphere, the bundles are trivial, and the partition function is 1/|G|.

The theory has codimension-2 magnetic defects, around which there is a non-trivial holonomy of the G gauge field
that takes value in conjugacy class [g], see e.g. Ref. [107]. For finite group G, these magnetic defects are topological.

One can also consider gauge theories with continuous gauge groups and topological terms. For continuous gauge
groups, there are also codimension-3 ’t Hooft-Polyakov monopole operators that carry fluxes of the gauge field on
the surrounding 2-sphere; they are absent in the finite group gauge theory considered here.

In this section, we will explain how the topological action changes the magnetic defects and their fusion rules and
their statistics. Some previously known examples of such phenomena are as follows.

• In (3+1)D, gauge theories with continuous gauge groups can have theta terms [108, 109] (and possibly discrete
theta terms [110, 111]). These topological actions change the spectrum of line operators: while the spectrum of
Wilson lines is not affected, the spectrum of ’t Hooft lines becomes modified with additional “fractional” electric
charges that are the projective representation of the gauge group, which is the Witten effect [84]. As a result,
the ’t Hooft lines become dyons, and their fusion rule is modified. In the absence of topological action, the
fusion of ’t Hooft lines always produces ’t Hooft lines, while in the presence of topological action, they become
dyons, and their fusion can produce Wilson lines. In addition, the correlation function of the line operator is
also modified: the statistics of the particles also depend on the topological action. For instance, a theta term
in SO(N) gauge theory with θ = 2π does not change the spectrum of line operators, but the self-statistics of
the basic monopole changes from boson to fermion or vice versa (see e.g. Refs. [112, 113, 114, 53]).

• Similar phenomena occur in (2+1)D Chern-Simons theory, where the topological Chern-Simons interaction
modifies the ’t Hooft lines with the magnetic charge to carry electric charges, which is the flux attachment.
The fusion rules and statistics of the ’t Hooft lines also depend on the Chern-Simons topological action. For
instance, the spin of the monopole operator attached to the Wilson line depends on the topological Chern-
Simons term [115, 116, 117, 118, 119, 120, 103].

• It also occurs in higher-form gauge theory. For finite group n-form gauge theory, the magnetic defect that
carries holonomy of the gauge field has codimension n+ 1, and in the presence of a topological action for the
n-form gauge field, it is attached with a codimension-n topological defect that supports a topological action for
the n-form gauge field. For instance, in 2-form ZN gauge theory in (3+1)D, where the magnetic defect is a line
operator, the topological action Np

4π

∫
bb for 2-form gauge field b implies that the magnetic line defect attaches

to the Wilson surface p
∫
b (see e.g. [36, 53]).

We will see that similar phenomena occur in finite group gauge theories for magnetic defects.

2.1 Gauged SPT defects

The main players in the discussion are defects described by topological finite group G gauge theory on the submanifold
that support the defect. The insertion of such a defect on an n-dimensional submanifold Mn ⊂MD is equivalent to
modifying the path integral with an additional weight that depends on the G gauge field a

ei
∫
Mn

L[a] , (3)
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where
∫
Mn

L[a] is a topological action of the gauge field supported on n-dimensional submanifoldMn, and the defect is
invariant under small deformations ofMn for finite group gauge field a, which is flat, and thus the insertion represents
a topological defect supported on Mn.

1 These defects can be obtained from the following construction; one starts
with a D-dimensional G-SPT phase, characterized by a cocycle [ω(D)] ∈ HD(BG,U(1)), and then decorates an n-
dimensional submanifold with a lower dimensional G-SPT phase, characterized by a cocycle [η(n)] ∈ Hn(BG,U(1)).
Finally, one gauges the G symmetry by summing over all flat G-gauge field configurations. These defects generate
an Abelian (D − n − 1)-form symmetry, with the group multiplication law given by stacking the SPT phases. We
will refer to such defects as the gauged SPT defects. For instance, when the submanifold is one-dimensional, (0+1)D
SPT phases are vacuum electric charges. Such defects are the Wilson lines in the one-dimensional representations of
the gauge group G,

∫
Mn

L[a] =
∮
M1

a∗η(1), with η(1) ∈ H1(BG,U(1)) = Hom(G,U(1)) labeling the one-dimensional

representations of G, where a∗η(1) is the pullback of η(1) by a. For other instances of gauged SPT defects, see e.g.
Refs. [123, 44, 124, 65, 83].

We believe that all invertible defects of codimension greater than two in Dijkgraaf-Witten theories in spacetime
dimension D > 3 come from such gauged SPT defects obtained by gauging lower-dimensional G-SPT phases sup-
ported on submanifolds. For codimension-2, we expect invertible defects come from either Abelian magnetic defects
or from (D− 2)-dimensional gauged G-SPT phases; some evidence for this was given in Ref. [83] by comparing with
layer constructions. For codimension-1 and D > 3, invertible defects can arise from gauging codimension-1 SPT
phases or from elements of Aut(G); in D = 3 there are more exotic examples of invertible codimension-1 defects
since electric and magnetic excitations can be permuted [70, 83].

For n = 1, the magnetic defects transform linearly under the (D − 2)-form symmetry, with eigenvalue given by
evaluating the character of the Wilson line with respect to the holonomy carried by the magnetic defect, which is
a conjugacy class of G. On the other hand, for n > 1, there are no objects transformed as linear representations
of these higher-form symmetries, but the generators of these higher-form symmetries are nonetheless non-trivial. In
particular, these gauged SPT defects participate in non-trivial correlation functions with multiple magnetic defects,
as we will discuss in later sections.

2.2 Magnetic defects are attached to gauged SPT phases

We will show that the pure magnetic defect in the presence of the topological action carries an anomalousG symmetry.
The anomalous G symmetry can be described by a G gauge theory living on a codimension-1 defect whose boundary
supports the magnetic defect. Let us consider the codimension-2 magnetic defect supported at the origin of R2,
extending in the remaining (D− 2)-directions, and we elongate R2 into a semi-infinite cigar with holonomy given by
the conjugacy class [g] of g ∈ G supported on the circumference, which is a circle fibration over the radial direction
[0,∞). See Figure 1 for illustration. We then reduce the theory onto the magnetic defect. The presence of the
topological action for the G gauge field implies that the magnetic defect is dressed with a gauged SPT phase, given

by integrating the topological action along the circle fiber. Denote the partition function by Z ∝
∑

[a] e
i
∫
R2×ΣD−2

L[a]

for some (D − 2) dimensional submanifold ΣD−2, and let us take g ∈ Z(G) to be in the center of the gauge group,

Z[R2 × ΣD−2, da|x→0∈R2 ∼ gδ2(x)] =
1

|G|
∑

[a]:
∮
S1(0)

a=g

e
i
∫
R2×ΣD−2

L[a]
=

1

|G|
∑

[a]:
∮
S1(0)

a=g

e
i
∫
[0,∞)×ΣD−2

L[a,g]
, (4)

where L[a, g] =
∮
S1(0)

L[a] with S1(0) being a small circle surrounding the origin 0 ∈ R2 where the magnetic defect is

inserted. The additional weight in the above path integral indicates the presence of the gauged SPT defect inserted
at [0,∞) × ΣD−2 whose boundary is the magnetic defect. Examples of such methods of deriving the gauged SPT
defect attached to the magnetic defect in a higher-form gauge theory with topological action are discussed in e.g.
Ref. [53].

In the following, we will focus on the magnetic defects that carry the holonomy of G gauge field that takes value
in the center Z(G).

Consider the topological action of G gauge field given by a Dijkgraaf-Witten term [ω(D)] ∈ HD(BG,U(1)) with
cocycle representative ω(D). In general, for finite group G, the element has finite order k, and we can fix a cocycle
representative such that it takes value 2π

k Z on any n group elements:

ω(D) =
2π

k
(ω(D))k mod 2πZ , (5)

1If the gauge group is continuous instead of finite, for the defect to be topological, one also needs to require the displacement operators
to vanish, which are the components of the energy-momentum tensor in the directions normal to the defect [121] (see e.g. Refs. [60, 62, 122]
for examples of topological defects in (3+1)D Maxwell theory).
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holonomy gMagnetic defect Gauged SPT defect

Figure 1: The magnetic defect is attached to a gauged G SPT defect (that supports G gauge theory with a topological
action) in the presence of topological action, with the gauged SPT defect given by integrating the topological action
over the circle fiber with given holonomy of the magnetic defect. The magnetic and gauged SPT defects both extend
in the remaining transverse (D − 2) dimensions, which we suppress in the figure.

where the subscript k in (ω(D))k means that it is a cocycle with coefficient in Zk.
For the topological action S[a] = a∗ω(D), the circle reduction with holonomy g ∈ Z(G) is described by the

degree-(D − 1) cocycle given by the slant product of ω(D) with respect to g [82], S[a, g] =
∫
S1 ω

(D) = igω
(D). Thus

the gauged SPT phase attached to the magnetic defect of conjugacy class g in the center Z(G) is2

(igω
(D))(g1, · · · , gD−1) ≡

∑
m

(−1)mω(D)(g1, · · · , gm−1, g, gm, · · · , gD−1), gi ∈ G . (7)

For finite group G, the cocycle igω
(D) evaluated on any (D − 1) group elements is a kth root of unity. It can be

expressed as the map of a Zk-valued cocycle using the inclusion ι : Zk → U(1),

igω
(D) =

2π

k

(
igω

(D)
)
k
mod 2πZ , (8)

for Zk valued cocycle
(
igω

(D)
)
k
. If the element [(igω

(D))] in HD−1(BG,U(1)) has order k′ (which must be a divisor
of k), it can be represented by a Zk′ cocycle

2π

k′

(
igω

(D)
)′
k′
, [

2π

k′

(
igω

(D)
)′
k′
] = [(igω

(D))] ∈ HD−1(BG,U(1)) . (9)

Then we can decompose (
igω

(D)
)
k
=

k

k′

(
igω

(D)
)′
k′
+ d(i′gω

(D))k′′/k′′ , , (10)

for some (D − 2) cocycle denoted by (i′gω
(D))k′′ that takes value in Zk′′ for some integer k′′.

Let us denote the above decomposition of igω
(D) by

igω
(D) = iAg ω

(D) +
1

|ω(D)|
d(iBg ω

(D)) , (11)

where |ω(D)| = k is the order of [ω(D)] in HD(BG,U(1)), and iBg ω
(D) ∈ 2π

k′′Z.3

The reason that we distinguish these two is that while the first part (igω
(D))k′ describes non-trivial defects

that support SPT phase with dynamical G gauge field in (D − 1) dimension, the second part (i′gω
(D))k′′ does not.

Intuitively, it is a fraction 1/k′′ of a defect that supports the SPT phase with dynamical G gauge field in (D − 2)
dimension. Nevertheless, the second part also plays an important role in the correlation functions of the magnetic
defects. The second part can be detected by the trivalent junction of fusing magnetic defects, as in Figure 2. Fusing
two magnetic defects that carry holonomies g, g′ ∈ Z(G) produces a magnetic defect of holonomy g+ g′ ∈ Z(G), and
the junction emits a (D − 2)-dimensional defect that carries an SPT phase with dynamical gauge field G, given by

Ω(g, g′) =
1

|ω(D)|

(
iBg ω

(D) + iBg′ω(D) − iBg+g′ω(D)
)
. (12)

To summarize, the effect of topological interaction ω(D) of the G gauge fields have two effects on the magnetic
defect:

2One can verify the result of the slant product on a cocycle is also closed,

(digω
(D))(g1, · · · , gD) =

∑
m′

(−1)m
′
(igω

(D))(g1, · · · , gm′−1, gm′+1, · · · ) = −dω(D)(g1, g, · · · , gD) = 0 . (6)

Properties of slant product and its generalization can be found in e.g. [125].
3In general, the inclusion map Zk → U(1) induces a map for the cocycles Z∗(BG,Zk) → Z∗(BG,U(1)), where some Zk-valued

cocycles become exact U(1)-valued cocycles under the inclusion map.
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Magnetic defect Magnetic defect

Magnetic defect

Emits gauged SPT defect

Figure 2: Junction of magnetic defects can emit a gauged SPT defect of dimension (D − 2).

(1) The magnetic defect lives on the boundary of a gauged SPT defect in one dimension higher as in Figure 1,
which is decorated with G gauge theory with topological action [iAg ω

(D)] = [igω
(D)] ∈ HD−1(BG,U(1)) for a

magnetic defect with holonomy g ∈ Z(G).

(2) The trivalent junction of the magnetic defects lives on the boundary of a gauged SPT defect in the same
dimension as the magnetic defect as in Figure 2, given by Ω(g, g′) in (12) for the junction of three magnetic
defects with holonomies g, g′, g + g′ ∈ Z(G).

2.2.1 Generalization to continuous gauge groups

Let us reproduce the known results on the Witten effect in gauge theory in (3+1)D, and the flux attachment in
Chern-Simons theory in (2+1)D, using the above method.

We note that for a continuous gauge group such as U(1), one can also consider a magnetic monopole (a magnetic
defect of codimension 3 in spacetime). Take the spacetime to be locally R3 × RD−3, then the monopole sits at a
point x ∈ R3 and spans the entire RD−3. The monopole can be surrounded by a sphere S2×{point y} ⊂ R3×RD−3,
where S2 ⊂ R3 encloses the point x ∈ R3; we note that shrinking the size of S2 until the sphere becomes a point
intersects the monopole once at a point (x, y) ∈ R3 × RD−3. The sphere carries magnetic flux {mi} of the Cartan
subgroup U(1)r of the gauge group of rank r [126, 127, 128].

We consider the setup of elongating R3 to be the cigar geometry of S2 fibers over the radial direction, with flux
{mi} supported on S2,

∮
S2 F

i = 2πmi, where F
i with i = 1, · · · , r are the field strengths for the Cartan subgroup

U(1)r of the gauge group. By integrating the topological action of the gauge field over the S2 fiber with the prescribed
magnetic fluxes, we can deduce the gauged SPT defect attaching to the magnetic monopole sitting at a point in R3

(and span the remaining (D − 3) dimensions).

The Witten effect In (3+1)D spacetime, consider the topological θ term for U(1) gauge theory,

θ

2(2π)2
FF, F = da . (13)

Integrating the theta term over the fiber S2 implies that the monopole is attached to

mθ

2π

∫
F , (14)

which is the analogue of the total derivative contribution iBg . Using F = da, we find that the monopole with magnetic
charge m carries fractional electric charge mθ/2π. This is the Witten effect [84].

Flux attachment Similarly, consider U(1)k Chern-Simons theory in (2+1)D,

k

4π

∫
ada . (15)

Integration over S2 fiber with flux
∮
da = 2π can be carried out by decomposing a = a+ 2πτ , where τ is the Berry

connection on S2 whose field strength has unit flux. This produces

k

∫
a , (16)

and thus the basic monopole operator is attached to charge k Wilson line that ends on the point where the monopole
operator is located.
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2.3 Magnetic defects of center-holonomy can have non-Abelian fusion

Let us explain how the topological action modifies the fusion rule of the magnetic defects. The modification of
the fusion rule originates from the anomalous G symmetry on the defect that is present due to the topological
action of the G gauge field. In other words, the anomalous G symmetry on the magnetic defect arises because the
magnetic defect is at the boundary of a gauged SPT phase of one dimension higher. To incorporate such anomalous
G symmetry, the magnetic defect that couples to the bulk gauge theory must have extra degrees of freedom, and
this changes the fusion rule.

In the following, we will show that even when the holonomy carried by the magnetic defect is in the center of the
gauge group, the fusion rule of the magnetic defects can become non-Abelian in the presence of non-trivial topological
action of the G gauge field. We will focus on the magnetic defects with holonomies in the center of the gauge group.

2.3.1 Fusion of magnetic defect with codimension-2 gauged SPT defect

Due to the anomalous G symmetry on the magnetic defect, under a G gauge transformation by λ that takes value
in G, the magnetic defect changes by an amount given by the anomaly inflow mechanism, which we will call the
anomaly descendant.

Denote the anomaly descendant for an n cocycle η(n) ∈ Zn(BG,U(1)) for group G by jλ(η
(n)) ∈ Cn−1(BG,U(1)),

for a gauge transformation by a 0-cochain λ. In a simplicial formulation, we transform the gauge element on link
(01) connecting vertices 0,1 by g(01) → λ−1

0 g(01)λ1. jλ is defined by the equations:

djλ(η
(n))(g1, · · · , gn) = η(n)(λ−1

1 g1λ2, · · · , λ−1
n gnλn+1)− η(n)(g1, · · · , gn), jλ|λ=0 = 0 . (17)

The solution jλ(η
(n)) in the above equation can be interpreted as the anomalous transformation of the partition

function, Zboundary → Zboundarye
i
∫
jλ(η

(n)), on the boundary of the bulk SPT phase with effective action η(n), under
the background gauge transformation λ. We would like to obtain the anomalous transformation when the gauge
transformation on the boundary is global, λi = λ. In such cases, the boundary partition function is multiplied with
the partition function of an (n− 1)-dimensional SPT phase with symmetry given by the centralizer subgroup of λ in
G. For the centralizer subgroup to be the entire G, let us take λi = λ ∈ Z(G) the center of G. The corresponding
(n− 1)-dimensional SPT phase with G symmetry can be obtained as follows. Let us consider the bulk geometry to
be [0, 1]x ×M for closed M and an interval 0 ≤ x ≤ 1, and we perform gauge transformation by λ ∈ Z(G) on one
end x = 1 relative to the other end x = 0, which can be viewed in the following two equivalent ways:

• This is a global transformation on the boundary {x = 1} ×M by parameter λ, and it produces extra (n− 1)
dimensional SPT phase with effective action jλη

(n)|λi=λ.

• This gives the same phase from reducing the effective action η(n) for the n-dimensional SPT phase on a circle
with holonomy λ, where the circle is obtained by gluing the two ends of the interval 0 ≤ x ≤ 1.

By comparing the two descriptions, we have

jλ(η
(n))|λi=λ = iλη

(n), λ ∈ Z(G) . (18)

We thus have the following fusion rule. Denote the magnetic defect by Ug(MD−2), and the gauged SPT defect
of dimension n by Wα(n)(Mn) for cocycle α(n) ∈ Zn(BG,U(1)). Then by taking the transformation with constant
λ ∈ Z(G), we find the fusion rule

Ug ×Wiλigω(D) = Ug , ∀λ ∈ Z(G) . (19)

The fusion rule is the statement that in the presence of G gauge field, under a G global transformation on the
magnetic defect there is an anomalous shift depending on the anomaly of G symmetry. Thus the magnetic defect is
non-Abelian if and only if [igω

(D)] is a non-trivial class in HD−1(BG,U(1)).

2.3.2 Fusion among magnetic defects

Similarly, we can consider fusing two magnetic defects. Then the fusion of two magnetic defects is:

Ug × Ug′ = Ug+g′
1

N

 ∑
λ∈Z(G)

Wiλigω(D)

 ∑
λ′∈Z(G)

Wiλ′ ig′ω
(D)

/{Wiλ′′ ig+g′ (ω
(D)) : λ

′′ ∈ Z(G)} , (20)

where the quotient simplifies the result of the fusion outcome using (19), and the normalization factor N is included
such that the trivial fusion channel only appears once, i.e. Ug × Ug′ = Ug+g′ + · · · with · · · containing gauged SPT
defects.
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2.3.3 Non-Abelian braiding of magnetic defects

We remark that in addition to the above non-Abelian fusion, for the magnetic defects that are attached to non-trivial
gauged SPT defect in one dimension higher, i.e. the magnetic defects with holonomy g such that [iAg ω

(D)] ̸= 0, the
braiding of the magnetic defects becomes non-Abelian (when the spacetime dimension allows such braiding).

Denote the support of the magnetic defect by a (D−2)-dimensional submanifoldMD−2, which is on the boundary
of VD−1 that supports the gauged SPT defect attached to the magnetic defect, given by [iAg ω

(D)] ∈ HD−1(BG,U(1)).
When two magnetic defects supported on (D − 2)-dimensional submanifolds MD−2,M

′
D−2 have non-trivial linking,

MD−2 intersects with V ′
D−1 whose boundary is MD−2, and similarly M ′

D−2 intersects with VD−1 whose boundary is
MD−2. Since VD−1, V

′
D−1 support non-trivial gauged SPT defects, and the intersection of the magnetic defect with

the gauged SPT defect produces lower-dimensional gauged SPT defects, the linking of two magnetic defects with
holonomies g, g′ produces extra gauged SPT defects, given by Wigig′ω

(D) and Wig′ igω
(D) . In other words, the braiding

of two magnetic excitations does not return to the original configuration, and the braiding becomes non-Abelian.4

2.3.4 Example of magnetic defect with center holonomy obey non-Abelian fusion

Consider twisted Z3
2 gauge theory in (2+1)D, with Z2 gauge fields a, b, c, and the action

π

∫
(a ∪ du+ b ∪ dv + c ∪ dw + a ∪ b ∪ c) , (21)

where u, v, w are Z2 cochains that act as Lagrangian multipliers enforcing a, b, c to be cocycles. Integrating out v, w
and a gives

du = b ∪ c , (22)

which describes the gauge field of the Dihedral group of order 8. Thus the theory is equivalent to untwisted gauge the-
ory with gauge group given by the Dihedral group of order 8. The Wilson line in the two-dimensional representation
of the Dihedral group corresponds to

W2 = (−1)
∮
γ
u+

∫
Σ
b∪c , (23)

where γ = ∂Σ, and it does not depend on the surface Σ: suppose we choose a different surface Σ′ with ∂Σ′ = γ, then
Σ ∪ Σ′ ≡ Σ′′ is a closed surface, and the operator changes by

(−1)
∮
Σ′′ (du+b∪c) = 1 , (24)

where we used the equation of motion, and thus the operator W2 does not depend on the bounding surface.5 This is
an example of a magnetic defect, associated with Z2 flux of a, being attached to a higher dimensional gauged SPT,
described by b ∪ c, and thus being endowed with non-Abelian fusion rules.

There are three Wilson lines in one-dimension representations:

W1e
= (−1)

∮
γ
b, W1m

= (−1)
∮
γ
c, W1f

= (−1)
∮
γ
(b+c) . (25)

We can compute their fusion rule as above: [129]

W 2
1e

=W 2
1m

=W 2
1f

= 1,

W2 ×W1e
=W2, W2 ×W1m

=W2, W2 ×W1f
=W2,

W2 ×W2 = 1 +W1e
+W1m

+W1f
. (26)

This agrees with the tensor product decomposition of the representations of Dihedral group of order 8.
Similarly, one can show that other magnetic lines all carry non-trivial projective representation and become

non-invertible. Thus the center of gauge group does not give non-trivial invertible 1-form symmetry.

4Here we are using the terminology “non-Abelian braiding” loosely: the topological defects do not return to their original topological
classes after the braid operation, which is reminiscent of G-crossed braiding of symmetry defects in (2+1)D [23]. This is not quite the
same as the case where braiding induces a unitary transformation on a topologically degenerate subspace.

5We note that one cannot set
∫
(du+b∪c) = 0 on open surfaces, since we need to specify additional boundary condition. Alternatively,

the equation of motion is violated when the open surface intersects the line defect
∮
a; for closed surfaces, such violations sum to zero.
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2.3.5 Total invertible 1-form symmetry is a central extension

Consider the subset of magnetic defects that are invertible: these are the magnetic defects with holonomy g ∈ Zω(G)
for the subgroup Zω(G) ⊂ Z(G) given by

Zω(G) ≡ {g ∈ Z(G) : [igω
(D)] = 0 ∈ HD−1(BG,U(1))} . (27)

Since the trivalent juction of magnetic defects that describe their fusion can emit extra gauged SPT defects in
HD−2(BG,U(1)), the 1-form symmetry G(1) generated by the codimension-2 invertible magnetic defects and the
gauged SPT defect of dimension (D − 2) form a group extension

1 → HD−2(BG,U(1)) → G(1) → Zω(G) → 1 . (28)

The extension is specified by a 2-cocycle Ω that depends on two elements of Zω(G) and takes value in the Abelian
group HD−2(BG,U(1)). For g, g′ ∈ Zω(G), it is given by

[Ω(g, g′)] =
[
(iBg ω

(D) + iBg′ω(D) − iBg+g′ω(D))/|ω(D)|
]
∈ HD−2(BG,U(1)) . (29)

We will refer the background gauge field for the 1-form center symmetry generated by the magnetic defect as B2.
Let us denote the background for the 1-form symmetry generated by the gauged SPT defects in HD−2(BG,U(1))
as C2. (Similarly, we will denote the background for the n-form symmetry HD−n−1(BG,U(1)) generated by the
gauged SPT defects by Cn+1.) Then in the absence of other background gauge fields, the background gauge fields
for the 1-form symmetry obey the relation

dC2 = Bock(B2) , (30)

where Bock is the Bockstein homomorphism for (28).

2.4 Correlation function of magnetic defects

2.4.1 Self-statistics

The magnetic defects have non-trivial correlation function due to the attached gauged SPT defect. Let us compute
the correlation function, which gives the self-statistics of the magnetic defect.

Denote the support of the magnetic defect by MD−2, which is on the boundary of VD−1. If the magnetic defect
carries a holonomy g, it has the effect of sourcing a background contribution to the gauge field6

a = ag, ag ≡ gδ(VD−1)
⊥ , (31)

where δ(VD−1)
⊥ is the delta function 1-form that restricts to VD−1, and it is the Poincaré dual 1-form of VD−1. The

correlation function of the magnetic defect itself is

⟨Ug(MD−2)⟩ = exp

(
i

∫
VD−1

(ag)
∗(igω

(D))

)
, (32)

where (ag)
∗(igω

(D)) is the pullback of the cocycle to spacetime by the gauge field configuration a = ag. The
correlation function will in general depend on the framing of MD−2.

Example: semion in twisted Z2 gauge theory in (2+1)D Consider Z2 with topological action given by the
non-trivial element ω in H3(BZ2, U(1)) = Z2. Then for the non-trivial element g = 1 ∈ {0, 1} = Z2, the pullback of
i1(ω) by the Z2 gauge field a is πda/2. Then the self-statistics of the magnetic defect is described by the correlation
function

⟨Ug(M1)⟩ = exp

(
πi

2

∫
V2

dδ(V2)
⊥
)

= exp

(
πi

2

∫
δ(V2)

⊥dδ(V2)
⊥
)

= i#(M1,V2) , (33)

where #(M1, V2) is the self linking number of M1. This reproduces the semion self-statistics i for the magnetic
defect.

6In other words, we set a = ag + a′ with fluctuating a′ of zero flux. The correlation can be evaluated locally near the defects and thus
we can take the spacetime to be a D-dimensional sphere, then a′ is trivial.
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Figure 3: Junction of 0-form symmetry defects indicated by black and dashed lines (with red arrows indicating their
orientations to specify the action of the symmetry). On the right, we include a magnetic flux loop encircling the
junction, and there are semion and anti-semion particles at the intersection of the flux loop with the non-trivial
domain walls, indicated by the green and orange points. To compensate for their difference, there is an electric
charge at the junction, indicated by the red dot.

2.4.2 Correlation function of magnetic defects and gauged SPT defects

Similarly, the correlation function in the presence of other gauged SPT defect Wη(n)(Mn) is given by

⟨Ug(MD−2)Wη(n)(Mn)⟩ = exp

(
i

∫
VD−1

(ag)
∗(igω

(D))

)
exp

(
i

∫
Mn

(ag)
∗(η(n))

)
. (34)

3 Higher-group symmetry in gauge theory with bosons

In this section, we will use examples to illustrate that the symmetry generated by the magnetic defects Ug of
codimension-2 mixes with other symmetries generated by gauged SPT defect Wη(n) to form a higher-group symmetry.
On the other hand, the symmetries generated only by the gauged SPT defects do not mix with each other.

We will demonstrate such a mixing between symmetries by examining the configuration of magnetic defects
that intersect with the gauged SPT defect, which creates a magnetic source on the gauged SPT defect. Then the
generalized Witten effect implies an additional gauged SPT defect emitted from the intersection. We will demonstrate
such a phenomenon using the background gauge fields and the property of gauged SPT phases, and using operator
commutation relation in the lattice model.

3.1 Example: Z2 gauge theory in (3+1)D

Let us consider the following symmetries: the 0-form symmetry generated by a domain wall that is decorated
with a Dijkgraaf-Witten Z2 gauge theory, the 1-form symmetry generated by the magnetic surface defect, the 2-form
symmetry generated by the Wilson line. These symmetries mix into a 3-group, as discussed in Ref. [44]. In Appendix
B we provide another derivation of such 3-group symmetry by embedding the discrete gauge fields into continuous
U(1) gauge fields. The 3-group symmetry can be summarized using the following relation between the background
gauge fields C1, B2, C3 for the Z2 0-form, 1-form, and 2-form symmetries:

dC1 = 0, dB2 = 0, dC3 = B2 ∪
dC̃1

2
, (35)

where the above equations hold modulo 2. C̃1 is a lift of C1 to Z4 coefficients that satisfies C̃1 mod 2 = C1. Physically,
C1 determines whether a domain wall exists, and the lift C̃1 determines an orientation on the domain wall.7

7The cocycle dC̃1/2 is the image of the Bockstein homomorphism on C1 [130]. Changing the Z4 lift by C̃1 → C̃1 + 2c with Z2-valued
1-cochain c amounts to redefinition of background gauge field C3 → C3 + B2 ∪ c. Such a redefinition of the background gauge field is
commented on in Section 6.
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Figure 4: The operator U on the cubic in grey shade is given by the product of the control-S gates on the pairs of
edges indicated in the figure, where the control-S on edge 1, 2 with variables a = a1, a2 of Z eigenvalues in {0, 1} ⊂ Z4

is given by ia1a2 .

The last equation can be understood as follows. To create the Z2 domain wall requires a choice of orientation
(see lattice description below). The physical implication of the choice of orientation is that it determines whether a
magnetic flux piercing the domain wall induces a semion or an anti-semion.

Now we can consider the junction between two Z2 domain walls created with opposite orientations. A magnetic
flux loop circling the junction induces a semion in one of the domain walls and an anti-semion in the other domain
wall, which leaves the boson, which is the Z2 charge, at the junction (see Figure 3). In other words, the junction
emits an extra electric charge in the presence of magnetic loop excitation piercing the domain walls.

The equation dC3 = B2 ∪ dC̃1/2 describes 3-group symmetry, with Postnikov class

f4(C1, B2) = B2 ∪ dC̃1/2 . (36)

The equation also implies that under a transformation B2 → B2 + dλ, C3 → C3 + λdC̃1/2. In other words, if we
insert a magnetic defect by performing a 1-form transformation with parameter λ, then it produces an extra Wilson
line. Such mixing of the background gauge transformation is the defining signature of a higher-group symmetry8,
see e.g. Refs. [39, 40, 41].

We remark that such mixing (35) has implications for the symmetry fractionalization when the theory is enriched
with a unitary Z2 symmetry [132], as discussed in [44].

In the following, we will provide a description of the structure (35) using the toric code lattice model.

3.1.1 Lattice description of 3-group

We can describe Z2 gauge theory using the (3+1)D toric code model [70]. Let us consider a Euclidean cubic lattice
in three spatial dimensions, with a qubit on each edge acted on by the Pauli operators X,Y, Z. The Hamiltonian is

H = −
∑
v

∏
e⊃v

Xe −
∑
f

∏
e⊂f

Ze , (37)

where the product of X is over the six edges that meet at the vertex v, and the product of Z is over the four edges
that surround the face f . The Z2 gauge field is represented by the operator-valued 1-form a = (1 − Z)/2 that acts
on the qubit on each edge e by Ze = (−1)a(e).

The symmetries that participate in the 3-group as described in Eq. (35) are generated by the following operators:

• The Z2 0-form symmetry is emergent because it keeps the ground state subspace invariant, but does not
commute with the full Hamiltonian. It is generated by an operator supported on a three-dimensional region R:

U(R, σ) =
∏
c∈R

U(c)σ(c), U(c) |{a}⟩ = (−1)
∫
c
a∪ dã

2 |{a}⟩ =
∏

CSσ |{a}⟩ . (38)

Here ã denotes the Z4 lift of a where the non-trivial element of Z2 is lifted to the generator 1 ∈ Z4. S =
√
Z =

diag(1, i) in the eigenbasis of Z. Here σ(c) = ±1 is an arbitrary choice of orientation for each cube c. The
orientation-reversing domain walls where σ(c) changes sign determines a 2d surface in space, which will play
an important role below. |{a}⟩ is the state of the Hilbert space specified by the Z2 gauge field configuration
{a} on edges, and CS is the control-S operator with the product over all pairs of edges that have non-trivial
contributions to a ∪ dã/2 on a cube c, see Figure 4 for an illustration.

8When the background fields are dynamical, such a transformation is the analog of the Green-Schwarz mechanism in String theory
[131].
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The operator supported on the entire space commutes with the Hamiltonian on the low energy subspace with
zero flux (while there can be electric charges). Indeed, the commutation relation between U on the entire
space and the vertex term of the Hamiltonian on a vertex v in the low energy subspace where da = 0 can be
computed as 9

(∏
v⊂e

Xe

)−1

U

(∏
v⊂e

Xe

)
|{a}⟩ = (−1)

∫
(a+dv̂)

d(ã+dv̂)
2 |{a}⟩ = (−1)

∫
a∪ dã

2 +coboundary |{a}⟩

= U |{a}⟩

(39)

where the integral is over the whole space, and v̂ is a Z2 0-cochain which is nonzero only on the vertex v.

We note that in the low energy subspace without the magnetic flux, the operator U is topological, even in the
presence of electric charges

If the region R has a non-zero boundary ∂R, the operator U(R, σ) creates a Z2 domain wall on ∂R, associated
with the orientation σ restricted to ∂R.

• Z2 1-form symmetry generated by the membrane operator that is supported on a surface on the dual lattice,
given by

V (Σ) =
∏

e∩Σ̸=0

Xe , (40)

where the product is over the edges that intersect the membrane on the dual lattice. This operator V (Σ)
supported on closed membrane commutes with the Hamiltonian in the whole Hilbert space, so it is an exact
symmetry rather than an emergent symmetry. Note that V (Σ) becomes fully topological and generates Z2

1-form symmetry only in the subspace where electric particles are absent.

• Z2 2-form symmetry generated by the line operator that is supported on a curve on the lattice,

W (γ) =
∏
e∈γ

Ze , (41)

where the product is over the edges on the curve γ. The line operator W (γ) is also an exact symmetry of the
Hamiltonian, though it is not fully topological in the presence of magnetic flux excitations. In the low energy
subspace where the magnetic excitations are absent, W (γ) becomes topological and regarded as a generator of
Z2 2-form symmetry.

3-group symmetry as commutation relation In the following, we will show that these operators obey the
following commutation relation on the low energy subspace with zero flux

3-group commutation relation [U(R, σ), V (Σ)] ≡ U(R, σ)V (Σ)U(R, σ)−1V (Σ)−1 =W (γ) . (42)

Here γ is the 1d curve along which the orientation-reversing domain walls defined by σ intersect the surface Σ.
Figure 5 shows an example where there is a single orientation-reversing domain wall separating two half-spaces.

Let us first show that such a commutation relation is equivalent to the spacetime description of the symmetry
defects that we discussed earlier. The orientation-reversing domain wall defined by σ in U can be regarded as a
trivalent junction of 0-form symmetry generators in spacetime described in Figure 3, where the junction emits a
trivial codimension-1 defect. The commutation relation Eq. (42) can then be understood as a result of crossing the
magnetic surface operator V (Σ) through the junction of 0-form symmetry generators. That is, the commutation
relation is regarded as a sequence of operators U, V, U−1, V −1 inserted in spacetime at distinct spatial slices, and it
can be evaluated by passing the magnetic surface operator V (Σ) through U(R, σ) which amounts to changing the
order of operators. This process involves crossing the worldsheet of the magnetic flux loop through the junction of
0-form symmetries, and leaves the worldline W (γ) of the electric charge at the intersection between the junction and
the surface Σ, due to the crossing effect described in Figure 3.

9In the computation, we use the property ã+ dv̂ = ã+ d̃v̂ + 2a ∪1 dv̂ mod 4, and

(a+ dv̂)
d(ã+ dv̂)

2
= (a+ dv̂)(

dã

2
+ d(a ∪1 dv̂)) = a

dã

2
+ d(a(a ∪1 dv̂) + v̂

dã

2
+ v̂d(a ∪1 dv̂)).

13



Figure 5: The configurations of the operators U(R), V (Σ),W (γ) that appear in the commutation relation Eq. (42).

We note that the commutation produces a non-trivial operator that acts on the Hilbert space, instead of a number.
Such a commutation relation by definition cannot be viewed as an ’t Hooft anomaly and implies that the symmetry
forms a higher group structure [40, 41].

We proceed to prove the commutation relation (42). Let us illustrate this commutation relation in a simple
setting where we take σ = −1 on the half-space x ≤ 0 and σ = +1 on the half-space x ≥ 0. The orientation-reversing
domain wall is at x = 0, and it intersects the membrane operator V placed at z = 0, at the line x = 0, z = 0 along the
y direction. See Figure 5. The membrane operator acts on the collection of edges in the z direction that intersects
the entire membrane on the xy plane. Let us denote λ to be a Z2-valued 1-cocycle that takes the nonzero value on
edges intersecting the membrane operator V , otherwise zero. λ is closed dλ = 0, and it satisfies λ ∪ λ = 0. Using
XZX = −Z, we have

V UV −1U−1 = (−1)
∫
(a+λ)

d(ã+λ)
2 −a dã

2 = (−1)
∫
a∪d(a∪1λ)+λ dã

2 , (43)

where we used ã+ λ = ã+ λ̃+2a∪1 λ as a Z4-valued cochain, and also dλ̃/2 = λ∪ λ = 0 mod 2. On the low energy
subspace of zero flux |a⟩ : da = 0, the term a∪ d(a∪1 λ) becomes a coboundary and can be ignored. We thus obtain

V UV −1U−1 = (−1)
∫
λ dã

2 = (−1)
1
2

∫
d(ã∪λ̃) = (−1)

∫
x=0

a∪λ = (−1)
∫
x,z=0

a =
∏

e∈y-axis

Ze , (44)

where we used the fact that the first integral is a total derivative since (dλ̃)/2 = λ ∪ λ = 0 mod 2, and it can be
written as the boundary contribution from the half-space x ≥ 0 and x ≤ 0. If there is no reversal of orientation, the
two contributions would have been canceled, since the normal direction is opposite on the interface with respect to
the two half-spaces. However, since the orientation is reversed on x ≥ 0, the two contributions add up to

∫
x=0

a∪ λ,
and from the definition of λ we find the commutation relation givesW supported on the intersection of the membrane
and the domain wall, which is the y axis.

From a similar manipulation, one can show the commutation relation holds for the operators supported on general
geometry, where λ is some 1-cocycle which becomes nonzero for all edges intersecting the membrane, otherwise zero.
For membranes that do not self-intersect, λ ∪ λ = 0, the commutation relation gives

V UV −1U−1 = (−1)
∫
domain wall

a∪λ = (−1)
∫
γ
a , (45)

where the curve γ is the intersection of the domain wall with the Poincaré dual of λ, i.e. the membrane that supports
V .

When the membrane self-intersects, λ∪λ = dλ̃/2 ̸= 0, and the commutation relation instead has sign (−1)
∫

1
2d(ã∪λ)+λ dλ̃

2

on the low energy subspace with zero flux da = 0. The additional sign (−1)
∫
λ dλ̃

2 can be interpreted as a triple in-

tersection number of the membrane inside the space (−1)
∫
λ dλ̃

2 = (−1)#(Σ,Σ,Σ). 10 This extra sign represents an ’t
Hooft anomaly of the 3-group symmetry, which we will discuss in more detail in later sections.

10The triple self-intersection number can be computed by pushing Σ off itself using a choice of framing to obtain Σ′, and then obtaining
the intersecting loop l. Then we push Σ′ off itself to get Σ′′ and compute the intersection number of Σ′′ with l.
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We remark that since the cup product can be defined for any triangulated manifolds, we can also generalize
the discussion to the toric code model on any 3d triangulated manifold M3, with a qubit on each edge, and in the
Hamiltonian, the vertex term is the product of X on the edges that meet at the given vertex, while the plaquette
term is the product of Z on the edges on the boundary of each triangular face. The ground state degeneracy is given
by 2|H

1(M3,Z2)|. We note that M3 does not have to be orientable. The operators U, V,W can be defined in a similar
way, and on the low energy subspace with zero flux da = 0 they obey the same commutation relation.

3.1.2 Breaking the 3-group symmetry

In the toric code Hamiltonian, we can include a transverse field with coupling J :11

Htransverse = −
∑
v

∏
Xe − κ

∑
f

∏
Ze − J

∑
e

Xe . (46)

Such a term breaks the 2-form symmetry generated by closed Wilson loop W and also breaks the 0-form symmetry
generated by U . This is consistent with the property that these symmetries mix into a 3-group, which implies that
we cannot break the 2-form symmetry while preserving the 0-form and 1-form symmetry. Note that as long as J
is small so that we do not pass through a phase transition, the 2-form and 0-form symmetries will both become
emergent symmetries.

Instead of
∑

eXe, one can also modify the Hamiltonian with
∑

e Ze, then this breaks the 1-form symmetry
generated by the magnetic defect V , while preserving the other symmetries, again compatible with the 3-group
symmetry structure.

3.2 Example: Z2
2 gauge theory in (3+1)D

Another example is G = Z2 × Z2 gauge theory in (3+1)D with trivial topological action for the G gauge field. The
theory has 0-form symmetry G(0) = H3(BG,U(1)) = Z3

2,
12 1-form symmetry H2(BG,U(1))× Z(G) = Z3

2 generated
by a gauged SPT defect and the magnetic defects, and 2-form symmetry H1(BG,U(1)) = Z2

2. Denote the Z2 × Z2

gauge field by a, a′, then the generators can be written as:

0-form symmetry: U(R) = (−1)
∫
R

dã
2 ∪a′

, U ′(R) = (−1)
∫
R

dã
2 ∪a , U ′′(R) = (−1)

∫
R

dã′
2 ∪a′

,

1-form symmetry: T (Σ) = (−1)
∫
Σ
a∪a′

, magnetic defects V, V ′,

2-form symmetry: W (γ) = (−1)
∫
γ
a, W ′(γ′) = (−1)

∫
γ′ a

′
. (47)

As discussed in [44], the above gauged SPT defects together with 1-form, 2-form symmetry generated by magnetic
surfaces and electric Wilson lines form a non-trivial 3-group. In Appendix B we provide another derivation of such
3-group symmetry by embedding the discrete gauge fields into continuous U(1) gauge fields. Such 3-group symmetry
can be expressed in terms of their Z2 background gauge fields. Let us write the background gauge fields of the above
gauged SPT defects as C1, C

′
1, C

′′
1 , C2, and the background gauge fields for 1-form and 2-form symmetry generated

by magnetic and electric operators as B2, B
′
2, C3, C

′
3, respectively. Following the argument of Appendix B and (3.21)

of [44], we find that these background fields satisfy

dC1 = 0, dC ′
1 = 0, dC ′′

1 = 0, dC2 = 0, dB2 = 0, dB′
2 = 0,

dC3 = B′
2 ∪ C2 +B′

2 ∪
dC̃1

2
+
dB̃′

2

2
∪ C1 +B2 ∪

dC̃ ′
1

2
,

dC ′
3 = B2 ∪ C2 +

dB̃2

2
∪ C1 +B′

2 ∪
dC̃ ′′

1

2
,

(48)

where the above equations hold modulo two, and C̃1, C̃
′
1, C̃

′′
1 , B̃2, B̃

′
2 denote some lifts of the Z2 background gauge

fields to Z4 such that their mod 2 reductions equal C1, C
′
1, C

′′
2 , B2, B

′
2, respectively. The background gauge fields

with the above relation describe a 3-group symmetry.
We note that we can set to zero any of the backgrounds in C2, C1, C

′
1, C

′′
1 in the above equation, and they

describe different subgroups of the 3-group. Let us focus on C2 = 0, and C ′
1, C

′′
1 = 0. The non-trivial 3-group

11The theory at coupling J = κ in fact has a non-invertible symmetry generated by the Kramers-Wannier duality defect, which
constrains the low energy dynamics to be non-trivial, as discussed in [60].

12There is also a Aut(Z2 × Z2) = GL(2,Z2) = S3 0-form symmetry that permutes the three non-trivial elements in the gauge group
Z2 × Z2, which we do not consider here.
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Figure 6: When the magnetic surface has a non-trivial trivalent junction, it is regarded as a fusion of two magnetic
flux loops. The magnetic flux at the domain wall is dressed with electric charge 1/2, which is represented by an
orange dot. When the junction crosses through the codimension-1 defect, it leaves an electric charge on the defect
due to the Z4 fusion rule of the magnetic flux on the defect. A similar figure can also be found in [44].

structure involving C1, C3, B2, B
′
2 are consequences of the following property of the magnetic particles on the domain

wall arising from the intersection of the magnetic flux loop with the domain wall:13

• The charge-flux attachment implies that the magnetic particle on the domain wall for the gauge field a is
attached to electric charge 1/2 for gauge field a′, and the magnetic particle on the domain wall for the gauge
field a′ is attached to electric charge 1/2 for the gauge field a. This implies that the magnetic particles on the
domain wall obey the Z4 fusion rule, where the fusion of two magnetic particles for the gauge field a (resp. a′)
gives an electric particle for the gauge field a′ (resp. a), see Figure 6. This reflects that the (2+1)D Z2 × Z2

gauge theory with topological action dã
2 ∪ a′ is described by untwisted Z4 gauge theory, and the magnetic

particles behave as the distinct anyons of the untwisted Z4 gauge theory generating a Z4 group under fusion.

• In addition, under the orientation reversal of the domain wall, the magnetic particle for a′ is dressed with an
additional electric particle of a, while the magnetic particle for a is left invariant under the orientation reversal.
This effect can be understood from the fact that the mutual braiding phases must be complex conjugated under
orientation reversal. If we denote the electric and magnetic particles of the (2+1)D Z4 gauge theory as E and
M , then the magnetic particles for a and a′ can be associated with E and M respectively, while the charge
under a and a′ is M2 and E2 respectively. Under orientation reversal, we must have M → M = M ×M2,
E → E (or vice versa), which shows that the magnetic particle for a must get attached to a charge of a′ (or
vice versa). This leads to the asymmetric action of the orientation reversal on the magnetic particles of a and
a′ as described above.

The attachment of electric charge 1/2 implies that when the magnetic surface has a non-trivial trivalent junction on
the domain wall, it is regarded as a fusion of two magnetic particles on the domain wall, and there is an additional

electric charge emitted from the intersection point (see Figure 6). This is the contribution of dB̃2

2 ∪ C1 to dC ′
3, and

the similar contribution of
dB̃′

2

2 ∪ C1 to dC3. In addition, at the junction of fusing two domain walls into the trivial
domain wall, the non-trivial domain walls can meet at the junction with the opposite orientation, and the magnetic
defect for the second Z2 gauge group intersects the junction at a point that emits extra electric charge of the first

Z2 gauge group (this is analogous to the configuration described in Figure 3). This is the contribution of B′
2 ∪ dC̃1

2
to dC3.

In the following, we will provide a description of such a 3-group symmetry using the toric code lattice model.

3.2.1 Lattice description of 3-group

We consider a three-dimensional euclidean lattice, with two types of qubits on each edge, acted on by the Pauli
operators X,Y, Z and X ′, Y ′, Z ′, respectively. The two Z2 gauge fields are a = (1− Z)/2 and a′ = (1− Z ′)/2. The

13Another way to see these properties is as follows: we can describe the domain wall theory using U(1) 1-form gauge fields a, b, a′, b′.
The domain wall theory is

1

2π
a′da+

2

2π
adb+

2

2π
a′db′ . (49)

Then under orientation reversal, b → −b, b′ → −b′ − a.
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Hamiltonian is two copies of the Z2 toric codes

Htotal = H +H ′ =

−
∑
v

∏
e⊃v

Xe −
∑
f

∏
e⊂f

Ze

+

−
∑
v

∏
e⊃v

X ′
e −

∑
f

∏
e⊂f

Z ′
e

 , (50)

where H,H ′ are given in the previous example, and in H ′ the Pauli operators are replaced by the operators with a
prime, indicating that they act on the other type of qubit.

We will consider the following symmetry generators:

• 0-form symmetry, generated by

U(R) = (−1)
∫
R

dã
2 ∪a′

. (51)

The operator supported on the entire space commutes with the Hamiltonian on the low energy subspace with
zero flux. The commutation relation between U on the entire space and the vertex term of the Hamiltonian on
a vertex v in the low energy subspace where da = 0, da′ = 0 can be computed as(∏

v⊂e

Xe

)−1

U

(∏
v⊂e

Xe

)
|{a}⟩ = (−1)

∫ d(ã+dv̂)
2 a′

|{a}⟩ = (−1)
∫

dã
2 a′+coboundary |{a}⟩

= U |{a}⟩

(52)

where the integral is over the whole space, and v̂ is a Z2 0-cochain which is nonzero only on the vertex v. The
same relation also holds for the vertex term of the Hamiltonian involving X ′ operators.

• The 1-form symmetry generated by the membrane operator V =
∏

eXe, V
′ =

∏
eX

′
e, where the two products

are over the edges that intersect the membranes on the dual lattice that support the operators V, V ′, respectively.

• The 1-form symmetry generated by the membrane operator defined on a closed surface Σ

T (Σ) = (−1)
∫
Σ
a∪a′

. (53)

The excitation created by this operator is referred to as the twist string in [83].

• The 2-form symmetry generated by the line operators W =
∏

e Ze,W
′ =

∏
e Z

′
e, where the two products are

over the edges on the curves that support the operator W,W ′, respectively.

We will show that the operator U satisfies the following commutation relation on the low energy subspace of zero
flux da = 0, da′ = 0:

3-group commutation relations: [V,U ] ≡ V UV −1U−1 =W ′, [V ′, U ] =W,

[V, T ] =W ′, [V ′, T ] =W , (54)

where the operators are supported on the following geometry:

• In the commutator [V,U ], the operator U is supported on the half-space x ≤ 0, and its orientation-reversal
is supported on the other half space x ≥ 0. The domain wall that separates the two half-spaces intersect the
membrane that supports the operator V ′ by a curve, and the commutation relation implies that this curve
supports the Wilson line W . In addition, there is Wilson line W on the curve at the self-intersection of the
membrane that supports V ′ in the region that supports U . Similarly, there is Wilson line W ′ on the curve at
the self-intersection of the membrane that supports V in the region that supports U .

• In the commutator [V, T ], the Wilson line W ′ is supported at the curve on the intersection between the
membranes that support V and T . Similarly,W is supported on the curve on the intersection of the membranes
that support V and T ′.

The derivation of the commutation relation (54) follows from a similar derivation in the Z2 gauge theory example.
Let us denote λ (resp. λ′) to be a Z2-valued 1-cocycle that takes the nonzero value on edges intersecting the membrane
operator V (resp. V ′), otherwise zero. The first commutation relation gives

[V,U ] = (−1)
∫
( dλ̃

2 +d(a∪1λ))∪a′
, (55)
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which in the low energy subspace da = 0, da′ = 0 equals

[V,U ] = (−1)
∫
λ∪λ∪a′

=W ′(γ) , (56)

where γ is the curve given by the self-intersection of the membrane in the region that supports the operator U .
The second commutation relation can be derived similarly:

[V ′, U ] = (−1)
∫

dã
2 ∪λ′

= (−1)
1
2

∫
d(a∪λ′)+

∫
a∪λ′∪λ′

. (57)

Let us first consider the case that the membranes do not self intersect, λ′∪λ′ = 0, then at the low energy subspace
with da = 0, da′ = 0, the integral is

[V ′, U ] = (−1)
∫
x=0

a∪λ′
=W (γ′) , (58)

where γ′ is the intersection of the membrane that supports V ′ with the domain wall across which the orientation of
U is reversed.

In addition, if the membrane self intersect λ′∪λ′ = dλ̃′/2 ̸= 0, there is additional Wilson lineW (γ′′) = (−1)
∫
a∪ dλ̃′

2 ,
where γ′′ is at the self intersection of the membrane that supports V ′ in the region that supports U .

4 Anomaly and correlation functions in gauge theory with bosons

In this section, we will use examples to illustrate that the symmetry generated by the magnetic defects Ug of
codimension-2 has a mixed anomaly with other symmetries generated by gauged SPT defect Wη(n) . In other words,
the higher-group symmetry has an ’t Hooft anomaly. The ’t Hooft anomalies are completely described by non-trivial
correlation functions of the symmetry generators that take non-trivial numerical values. We note that since the
correlation functions involving the gauged SPT defect are all trivial, the symmetries generated only by the gauged
SPT defects do not have an ’t Hooft anomaly.

4.1 Example: Z2 gauge theory in (3+1)D

The anomaly of the 3-group symmetry discussed in the previous section is computed in Ref. [44], and the anomaly
can be derived from the correlation function of the generators of the 0-form symmetry, 1-form symmetry and 2-form
symmetry in the 3-group symmetry. Denote the support of the magnetic defect by Σ, which is on the boundary of
V3. Then the magnetic defect sources the gauge field

a = δ(V3)
⊥ , (59)

where δ(V3)
⊥ is the delta function 1-form that is Poincaré dual to V3. The correlation function of the magnetic

defect and another gauged SPT defect is given by substituting the above value of the gauge field into the topological
action on the manifolds that support the gauged SPT defect. Following the notation in Section 3.1.1, let us denote
the generator of the center 1-form symmetry by V that is supported on a surface Σ, the generator for the 2-form
symmetry by the Wilson line W that is supported on a curve γ, and the generator of the 0-form symmetry that
supports a gauged Levin-Gu Z2 SPT phase by U , which is supported on a three-dimensional region R. The correlation
function of the generators is given by

⟨V (Σ)W (γ)U(R)⟩ = (−1)
∫
γ
δ(V3)

⊥
(−1)

∫
R

δ(V3)
⊥∪δ(Σ)⊥/2 , (60)

where the first sign is the braiding of γ and Σ, and the second phase is given by the self-braiding of the intersection of
the membrane Σ on the domain wall. The correlation function can also be explained by the charge-flux attachment:
the non-trivial self-braiding of the magnetic particle appears because there is non-trivial topological action on the
domain wall, and the magnetic particles (which are the intersection point of the flux loop with the domain wall)
carry electric charges, and thus the full braiding of the magnetic excitation on the domain wall produces a sign from
the braiding of the electric charge and the flux loop.

’t Hooft anomaly as correlation function The ’t Hooft anomaly of 3-group symmetry G(3) in (3+1)D can be
described by an SPT phase in (4+1)D bulk with the 3-group symmetry, as classified by H5(BG(3), U(1)) [41]. Such
bulk SPT phases can be described in terms of an effective action in the bulk that depends on the background gauge
fields of the 3-group symmetry. In the following, we will express this effective action using the correlation function
of the symmetry generators.

18



We can describe the correlation function on a coordinate patch using the background gauge fields that describe
the geometries supporting the defects, using the Poincaré duality. The backgrounds are

C3 = δ(γ)⊥, B2 = δ(Σ)⊥ = dλ, λ ≡ δ(V3)
⊥, C1 = δ(R)⊥ . (61)

The correlation function in terms of the backgrounds is:

exp

(
πi

∫
λ ∪ C3 +

πi

2

∫
λ ∪ dλ ∪ C1

)
= exp

(
πi

∫
bulk

(
dλ ∪ C3 + λ ∪ dC3 +

1

2
dλ ∪ dλ ∪ C1 +

1

2
λ ∪ dλ ∪ dC1

))
,

(62)
where we rewrite the integral on the left-hand side in terms of a (D+1)-dimensional bulk manifold that bounds the
spacetime. Using the 3-group relation for the background fields dC3 = B2 ∪ Bock(C1) = B2 ∪ dC̃1/2, we find the
correlation function (60) is given by eiSbulk with

Sbulk = π

∫
bulk

B2 ∪ C3 +
π

2

∫
bulk

P(B2) ∪ C1 , (63)

where P(B2) = B̃2∪B̃2−B2∪1 dB2 is the Pontryagin square operation that takes Z2 valued 2-cocycle and maps it to
a Z4 valued 4-cocycle. On a coordinate patch, B2 = dλ, and the bulk term can be written as a boundary term. The
complete bulk action is given by evaluating the action and gluing B2 = dλ with a suitable transition function across
the coordinate patches to obtain non-trivial B2 by the analogue of the clutching construction for vector bundles.
The bulk action describes an SPT phase with 3-group symmetry G(3), which is classified by H5(BG(3), U(1)).

As discussed above, the correlation function (60) of the magnetic defect V , the Wilson line W and the domain
wall U is given by eiSbulk . In particular, the first term in (63),

∫
δ(V3)

⊥δ(γ)⊥ = Link(Σ, γ) with Link for the linking
number, represents the mutual braiding between the electric particle and the magnetic flux loop. The second term
represents the framing anomaly of the magnetic particle on the codimension-1 defect due to its semion self-statistics.

4.1.1 Lattice description of the anomaly in Z2 gauge theory

The anomaly can be described by the following commutation relations

[V,W ] = −1, [V, [V,U ]] = −1 . (64)

The first equation is valid in the whole Hilbert space of the lattice model. The second equation is valid only within
the low energy subspace with the zero flux, and thus should be regarded as an anomaly of emergent symmetries on
the low energy subspace. This reflects that while the operators V,W commute with the Hamiltonian and generate
global symmetries in the whole Hilbert space, U only works as an emergent symmetry of low-energy subspace with
zero flux.

The first commutator represents the braiding of the Wilson line and the magnetic defect, with the membrane
that supports V having an odd number of intersections with the Wilson line W . The second commutator follows
from [V,U ] =W , and the first commutator, and it represents the braiding between the extra electric charge created
by W carried by the magnetic excitation, and the magnetic excitation (where the magnetic excitations are separated
also in time due to the ordering in the commutation relation). In other words, the full mutual braiding between
magnetic excitations on the domain wall produces a sign.

The anomaly precludes the presence of a symmetry-preserving gapped ground state, which is consistent with the
fact that the ground state subspace spontaneously breaks the emergent 3-group symmetry on topologically non-trivial
manifolds.

4.2 Example: untwisted Z2 × Z2 gauge theory in (3+1)D

We can repeat the discussion for Z2 × Z2 gauge theory. For simplicity, let us focus on the “subgroup” 3-group
symmetry that only involves the center 1-form symmetry, generated by the magnetic defects V, V ′, the 2-form
symmetry generated by the Wilson lines W,W ′, and the 0-form symmetry generated by the domain wall U that
hosts a gauged SPT phase with Z2 × Z2 symmetry: in terms of the Z2 × Z2 gauge fields a, a′, the symmetry
generators are

W (γ) = (−1)
∮
γ
a, W ′(γ′) = (−1)

∮
γ′ a

′
, U(R) = (−1)

∮
R

a∪dã′/2 , (65)

in addition to the magnetic defects V, V ′ supported on surfaces Σ,Σ′, which are on the boundary of V3, V
′
3 , respec-

tively. The magnetic defects source the gauge field

a = δ(V3)
⊥, a′ = δ(V ′

3)
⊥ . (66)
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The correlation function on a coordinate patch can be computed by substituting (66) in the topological actions on
the gauged SPT defects: using (65), we find

⟨U(R)V (Σ)V ′(Σ′)W (γ)W ′(γ′)⟩ = (−1)
∫
γ
δ(V3)

⊥
(−1)

∫
γ′ δ(V

′
3 )

⊥
(−1)

∫
R

δ(V3)
⊥∪δ(Σ′)⊥/2 . (67)

The first two terms describe the braiding of the magnetic defects with the Wilson lines, while the last term describes
the mutual braiding of the magnetic defects V, V ′ on the domain wall R, where the magnetic defects intersect the
domain wall by 1-dimensional loops.

Anomaly from correlation function In terms of the background fields,

C3 = δ(γ)⊥, C ′
3 = δ(γ′)⊥, B2 = dλ, B′

2 = dλ′, λ ≡ δ(V3)
⊥, λ′ = δ(V ′

3)
⊥, C1 = δ(R)⊥ , (68)

the correlation function is eiSbulk with

Sbulk = π

∫
bulk

(
(dλ ∪ C3 + dλ′ ∪ C ′

3 + λ ∪ dC3 + λ′ ∪ dC ′
3) +

1

2
dλ ∪ dλ′ ∪ C1 +

1

2
λ ∪ dλ′ ∪ dC1

)
= π

∫
bulk

(B2 ∪ C3 +B′
2 ∪ C ′

3) +
π

2

∫
bulk

(B̃2 ∪ B̃′
2 − dB2 ∪1 B

′
2) ∪ C1 . (69)

where we used dC3 = B′
2 ∪ dC̃1

2 +
dB̃′

2

2 ∪ C1, dC
′
3 = dB̃2

2 ∪ C1, with tilde denotes a lift of the gauge field to Z4 value.
As discussed above, the correlation function (67) of the magnetic defects V, V ′, the Wilson lines W,W ′, and

the domain wall U is given by eiSbulk . In particular, the first term in Sbulk,
∫
δ(V3)

⊥δ(γ)⊥ = Link(Σ, γ) and∫
δ(V ′

3)
⊥δ(γ′)⊥ = Link(M ′

2, γ
′), represents the mutual braiding of electric particles and magnetic flux loops for the

two Z2 gauge fields. The second term in Sbulk describes the braiding between magnetic particles (which acquire
fractional statistics) induced on the domain wall due to intersection of the domain wall with magnetic flux loops.

5 Application: higher-group symmetry and Clifford hierarchy of logical
gates

In this section, we will explain that the higher-group symmetry of Hamiltonian models gives non-trivial constraints
on the logical gates realized by the symmetry generators on the ground state subspace.

We will illustrate this with the stabilizer Hamiltonian, where the Hilbert space is given by N types of qubits on
each edge of the lattice. The ZN

2 gauge theory is realized as the low energy subspace of the topological stabilizer
model, where the ground state subspace is referred to as the codespace and encodes logical qubits. A unitary
operator acting within the codespace is referred to as a logical gate. The symmetry generators preserve the low
energy subspace, and they are logical gates on the codespace.

We will show that higher-group symmetry commutation relation gives rise to new logical gates in ZN
2 toric code

model, such as control-Z (CZ) gate in (3+1)D Z2 toric code. In Ref. [93], it is stated that the symmetry generators
of (d + 1)-dimensional ZN

2 gauge theory is bounded by d-th level of the Clifford hierarchy denoted as Pd. We will
show that the such bound can in fact be improved by considering the gauged SPT defects and their higher-group
commutation relations.

5.1 Control-Z gate in (3+1)D Z2 toric code from Klein bottle

In the lattice Hamiltonian models for the Z2 gauge theory in (3+1)D discussed in Section 3, we have seen that the
3-group symmetry leads to the following commutation relation between symmetry generators of the form

[U, V (Σ)] =W (γ), (70)

together with [U,W (γ)] = 1, where V (Σ) represent the magnetic defects that generate the Z2 1-form symmetry,
and W (γ) is the electric Wilson line operator generating the Z2 2-form symmetry. Note that the above commutator
gives a non-trivial logical gate if and only if U supports an orientation-reversing defect on it, and Σ intersects the
orientation-reversing defect along a topologically non-trivial 1-cycle γ.

This can happen when we have a non-orientable 3d space such as Klein bottle× S1. Under these conditions, the
magnetic defect V (Σ) is then identified as the Pauli X gate acting on the codespace, while W (γ) is regarded as the
Pauli Z gate. The above commutation relation then implies that the SPT defect U encodes CZ logical gate acting
on the codespace. There are 3 logical qubits, and depending on where we put the orientation reversal the CZ gate
acts on two of them.
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5.2 Review of Clifford hierarchy

More generally, in lattice models that realize ZN
2 gauge theories for general N , the sets {Pj} of logical gates labeled

by positive integer j that describe the symmetry generators are organized inductively by a structure called Clifford
hierarchy [93, 133]:

• P1 is the group generated by all Pauli X,Z gates acting on the codespace

• Pj for higher j is defined as the set of unitary operators U satisfying UP1U
† ⊆ Pj−1 for j ≥ 2

The set Pj forms a group for j = 1, 2, where P1 is called Pauli group and P2 is called Clifford group. Pj for j ≥ 3
does not have a group structure and constitutes the j-th level of Clifford hierarchy.

5.3 Relation between Clifford hierarchy and higher-group symmetry in (3+1)D

Let us discuss the relation between 3-group symmetry in ZN
2 gauge theories in (3+1)D, and the Clifford hierarchy

in the corresponding lattice Hamiltonian model.
First, we will show that the action of 1-form symmetry of (3+1)D ZN

2 gauge theory given by (1+1)D SPT phase
is contained in a certain subgroup P ′

2 of the Clifford group P2, where P ′
2 is generated by S,CZ gates and overall

U(1) phase eiϕ ∈ U(1) acting on the codespace.
This can be established by computing the commutation relation between the 1-form symmetry generator U1(Σ)

and logical X,Z operators realized by V (Σ),W (γ) with γ,Σ the non-trivial 1, 2-cycles of the manifolds respectively.
The symmetry generator U1(Σ) given by SPT phase commutes withW (γ), so [U1(Σ), Z] = 1 for all Pauli Z operators.
Also, the commutation relation between U1(Σ) and V (Σ′) is in general given by the 2-form symmetry generator
supported on the intersection of two surfaces Σ and Σ′, so it implies that [U1(Σ), X] has the form of

[U1(Σ), X] = ±Z or ± 1, (71)

since a non-trivial generator of 2-form symmetry is generally given by the electric line operatorW (γ) that corresponds
to a Z gate. The above commutation relations involving X,Z are satisfied if and only if U1(Σ) is the element of P ′

2.
In particular, the non-trivial commutation relation [U1(Σ), X] = ±Z implies that the 1-form and 2-form symmetry

forms a 3-group. Therefore, in order for U(Σ) to realize the non-Pauli Clifford gate in P ′
2 \ P1, it is necessary that

the 1-form symmetry U1, V and 2-form symmetry W mix into 3-group.
Let us then look at the generator U0 of the 0-form symmetry given by (2+1)D SPT phase, which fills the entire

3d space. The commutation relations involving Z,X are in general given in the form of

[U0, X] ⊆ P ′
2, [U0, Z] = 1 (72)

The set of unitary operators satisfying the above commutation relation defines a subset P ′
3 of P3. The possible action

of 1-form symmetry in ZN
2 gauge theory is bounded by the set P ′

3. When the commutation relation is given in the
form of [U0, X] = ±Z, it implies that the 0-form, 1-form and 2-form symmetries together form a 3-group, as we have
seen in previous sections. Meanwhile, when [U0, X] is given by a non-trivial Clifford gate in P ′

2 \ P1, it implies that
the 0-form symmetry induces the permutation of 1-form symmetry defects. In that case, the 0-form symmetry U0

encodes the non-Clifford gate in P ′
3 \ P ′

2.
14

5.4 Constraints on logical gates in general dimensions from higher-group symmetry

5.4.1 Higher-group symmetry in untwisted ZN
2 gauge theory on the lattice in general dimension

Let us consider the lattice Hamiltonian model for untwisted G = ZN
2 gauge theory on d-dimensional hypercubic

Euclidean lattice Zd. On each edge we place N qubits, acted on by the Pauli matrices X(I), Y (I), Z(I) with I =
1, · · · , N . We can obtain a non-trivial logical code subspace by picking appropriate boundary conditions, although
the precise details are not important for our discussion below.

The theory has higher-group symmetry that mixes the symmetries generated by the gauged SPT defects and
the 1-form symmetry generated by the magnetic defects, and such higher-group symmetry leads to the non-trivial
algebra on the logical gates described by the symmetry generators on the ground state subspace. The symmetry
generators are

14An example of the logical gate in P ′
3 \ P ′

2 is found in (3+1)D Z3
2 toric code, where the 0-form symmetry is generated by the type-III

cocycle in H3(BZ3
2, U(1)) [90].
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• 1-form symmetry generated by the magnetic defect, represented by the operator that is the product of Pauli
X gates. For the magnetic defect that carries holonomy g = (g1, g2, · · · , gN ) ∈ ZN

2 ,

Vg(Σ) =

N∏
I=1

∏
e

(X(I)
e )gI , (73)

where the product is over the edges that cut the codimension-one subspace Σ on the dual lattice. The superscript
I labels the Pauli operators that act on different qubits, and it is included in the product if and only if the Ith
component of g ∈ ZN

2 is the non-trivial Z2 flux.

• n-form symmetry generated by gauged SPT defect. For the symmetry group element [η(d−n)] ∈ Hd−n(BG,U(1)),
the corresponding operator is

Uη(R, σ) = ei
∫
a∗η(d−n)

, (74)

where a = (a(1), a(2), · · · a(N)) is the gauge field for G = ZN
2 , with a(I)(e) = (1 − Z

(I)
e )/2, and σ assigns

orientation to all simplices in the (d−n)-dimensional subspace R on the lattice. The operator can be described
in the Z(I)-eigenbasis for all I = 1, · · · , N . The integral

∫
a∗η(d−n) is given by summing over the contributions

from (d− n)-dimensional simplices, where on each (d− n)-simplex it is given by the value of a∗η(d−n) for the
field specified by the eigenvalue of a(e) on each edge e in the simplex.

These symmetries mix into a higher group, which can be shown from the commutation relation (where we omit
an overall phase):

[Uη(R, σ), Vg(Σ)] = UiAg η(RA, σ) · UiBg η(RB , σ) , (75)

where Uη(R, σ) generates an n-form symmetry, UiAg η(RA, σ) generates an (n + 1)-form symmetry, and UiBg η(RB , σ)

generates an (n + 2)-form symmetry. We take Σ to be a codimension-1 hyperplane without self-intersection on the
dual lattice. On the right-hand side of the commutation relation,

• UiAg η(RA, σ)is supported on region RA, where RA is the intersection between Σ and R. This contribution is

discussed in Ref. [90]. Examples of such commutation relation are the commutator [V, T ] =W ′ and [V ′, T ] =W
in Eq. (54) in (3+1)D Z2

2 toric code model in Section 3.1.

The commutation relation implies that the intersection of the symmetry generators V,Uη for the 1-form and
n-form symmetries produces the generator UiAg η of (n + 1)-form symmetry. Such higher-group symmetry can
be described in terms of the background gauge fields B2, Cn+1, Cn+2 of the symmetries by the relation of the
form dCn+2 ⊃ B2 ∪ Cn+1, such as the first term on the right-hand side of the last two lines in Eq. (48) in
(3+1)D Z2

2 toric code model in Section 3.1.

• The (d − n)-dimensional subspace R has a (d − n − 1)-dimensional orientation-reversing defect on it, across
which the orientation σ changes. UiBg η(RB , σ) is supported on the region RB given by the intersection between

Σ and the orientation-reversing defect in R. Examples of such commutation relation are Eq. (42) and the first
line in Eq. (54) in the (3+1)D Z2 and Z2

2 toric code models in Section 3.1.

The commutation relation implies that the intersection of the symmetry generators V,Uη for the 1-form and
n-form symmetries produces the generator UiBg η of (n+2)-form symmetry. Such higher-group symmetry can be

described by the relation for background gauge fields of the form dCn+3 ⊃ B2 ∪ Bock(Cn+1), such as Eq. (35)
and Eq. (48) in the (3+1)D untwisted Z2 and Z2

2 gauge theories in Section 3.1.

5.4.2 Consequences for Clifford hierarchy and comparison with the literature

The above commutation relation implies that the (d − n)-dimensional gauged SPT defect Uη gives an element of
P ′
d−n, where P ′

k for k ≥ 3 is defined inductively as the set of unitary operators U satisfying [U,X] ⊆ P ′
k−1 and

[U,Z] = 1, with P ′
2 defined earlier by the subset generated by the S,CZ gates and overall U(1) phase eiϕ ∈ U(1).

This bound on the possible action of SPT logical gates Uη ⊆ P ′
d−n for 0 ≤ n ≤ d − 1 refines the bound given in

Ref. [93], where it states that symmetry defect of (d+ 1)-dimensional ZN
2 gauge theory is bounded by Pd.
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6 d-group symmetry in (d + 1)D Dijkgraaf-Witten gauge theory with
bosonic charges

6.1 d-group symmetry from 1-form transformations and generalized Witten effect

In the general bosonic gauge theory with boson particles, let us consider the symmetry generated by the defect with
gauged SPT phase supported on n-dimensional submanifold, and the symmetry generated by the magnetic defect:

G(n) = HD−n−1(BG,U(1)), for n ̸= 0, 1

G(0) = HD−1(BG,U(1))⋊ S,

G(1) = extension of Zω(G) by H
D−2(BG,U(1)) , (76)

where the extension is defined by a 2-cocycle [Ω] ∈ H2(BZω(G), H
D−2(BG,U(1))), given by

Ω(g, g′) =
(
iBg ω

(D) + iBg′ω(D) − iBg+g′ω(D)
)
/|ω(D)|. (77)

S ⊂ Aut(G) leaves the topological action ω(D) invariant.
In general, the 0-form symmetry G(0) can permute the generators of other symmetries G(k) using the automor-

phisms in S, and also dress the magnetic defects in G(1) with gauged SPT defects. We thus have a set of group
homomorphisms:

ρn : G(0) → Aut(G(n)), n ≥ 1, (78)

such that for n > 1, the permutation action arises entirely from the automorphisms in S. For n = 1, the group
homomorphism describes how a codimension-2 magnetic defect is permuted into a combination of a magnetic defect
and a codimension-2 gauged SPT defect as it crosses a codimension-1 gauged SPT domain wall, as can be determined
by dimensional reduction and the slant product. In the discussion below we will omit S for simplicity.

When the magnetic defect intersects the gauged SPT defect, it creates a magnetic source on the submanifold of
some dimension n that supports the gauged SPT defect. Due to the charge-flux attachment or generalized Witten
effect, this magnetic source is attached to a new gauged SPT defect of dimension (n − 1). In other words, a new
gauged SPT defect of lower dimension is emitted from such a junction. The property that the intersection of the
magnetic defect and the original gauged SPT defect that generate 1-form and (D − n − 1)-form symmetry creates
another gauged SPT defect of lower dimension that generates higher-form symmetry is the hallmark of higher-group
symmetry (see e.g. [40, 41]): the higher-form symmetry mixes with the lower form symmetries. If we wish to study
the fractionalization [23, 134, 41, 57] of only the lower form symmetry part of the higher group, this represents an
obstruction to symmetry localization: we cannot only consider defects of the lower form symmetries, since some
configuration of defect intersection necessarily produces the defects that generate the higher-form symmetry. All of
these follow from the generalized Witten effect or the charge-flux attachment. Thus higher-group symmetry is very
generic in gauge theory in (3+1)D and higher spacetime dimensions. It also applies to higher-form gauge theories,
which also have the generalized Witten effect from fiber integration.15

Let us phrase the above description using background gauge fields of the symmetries. The emission of the gauged
SPT defect at various junctions in the presence of the magnetic defect indicates that performing the corresponding 1-
form transformation for the 1-form symmetry generated by the magnetic defect produces an extra background gauge
field for the symmetry generated by the gauged SPT defects, and such mixing of transformation is the hallmark of
a higher-group symmetry [40, 41]. Let us turn on the background gauge fields Cn for the symmetries generated by
the gauged SPT defects. Denoting the dynamical G gauge field by a, the action is

S[a, {Cn}] =
∫ (

Cn ∪ a∗η(D−n) + a∗ω(D)
)
, η(n) ∈ Hn(BG,U(1)), ω(D) ∈ HD(BG,U(1)) , (79)

where a∗η(n) is the pullback of the group cocycle η(n) by the gauge field a. For the (n − 1)-form symmetry
HD−n(BG,U(1)) =

∏
i ZNi

with basis η(D−n) = (η(D−n))i that generates the ZNi
subgroup, we turn on back-

ground gauge field Cn = (Cn)
i where (Cn)

i is the background gauge field for the ZNi
subgroup symmetry generated

15In n-form gauge theory with topological action, the magnetic defect is attached to gauged SPT defect by considering Sn fibration over
[0,∞) with the magnetic defect placed at the origin surrounded by Sn (that carry holonomy of the n-form gauge field) and extending in
the remaining spacetime directions. Then performing fiber integration of the topological action produces the gauged SPT defect attached
to the magnetic defect.
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by (η(D−n))i. For simplicity, we will take the spacetime to be a D-dimensional torus. The higher-group symme-
try involves the 1-form symmetry generated by the magnetic defect, which is a shift symmetry of the gauge field.
Consider

a→ a+ λ , (80)

where λ is a Zω(G)-valued 1-form, and let us expand it as

λ =
∑

g∈Zω(G)

gλg , (81)

for some basis integer 1-forms λg that takes value 0, 1 on basis 1-cycles. Let us take dλg = 0. In fact, on spacetime
that is a D-dimensional torus, we can take dλg = 0 in real coefficient. In such case, there is no background for the
center 1-form symmetry, B2 = 0. We note that B2 = gdλg is equivalent to inserting a magnetic defect that carries
holonomy g at MD−2 = ∂VD−1 with λg = δ(VD−1)

⊥. Thus for B2 = 0, we take VD−1 to have no boundary. In other
words, we first insert magnetic defect on the boundary of some open submanifold V ′

D−1, then remove the magnetic
defect by closing up the boundary of V ′

D−1 to change V ′
D−1 into a closed submanifold VD−1. For the action to be

invariant up to terms that depend on the classical fields λ and Ck but independent of the dynamical field a (such
terms describe the ’t Hooft anomaly), the backgrounds in general must transform in a non-linear way. To see this,
we note that the cocycle changes by

(a+ λ)∗η(n) − a∗η(n) = λ∗η(n) +
∑
g

λg ∪ a∗(igη(n)) +
∑
g1,g2

λg1 ∪ λg2 ∪ a∗(ig2ig1η(n))

+ · · ·
∑
{gi}

λg1 ∪ λg2 ∪ · · ·λgn−1 ∪ a∗(ign−1ign−2 · · · ig1η(n)) . (82)

We can verify the relation by integrating the cocycle over arbitrary n-dimensional torus, where λ changes the
holonomy of the gauge field (which is flat for finite gauge group) on the circles inside the torus. Concretely, for
each 1-cycle γj of the torus, one can rewrite the integral on a torus with holonomy aj + λj in the direction of γj as
the integral on the disconnected sum of two tori with holonomy aj and λj respectively. By performing this process
for each 1-cycle of the torus, one can decompose

∫
Tn(a + λ)∗η(n) into the right-hand side of (82) in addition to∫

Tn a
∗η(n), which verifies (82).

Thus the term Cn ∪ a∗η(n) produces terms with lower degree group cocycles, and to compensate for the change,
the backgrounds of higher degree that couple to these lower cocycles must be shifted. Such mixing of transformation
is the hallmark of higher-group symmetry, or the symmetry extension involving symmetry of different form degrees.
The correction can be obtained by iteration, starting from correcting the transformation of C2, C3, · · · , CD−1 by
non-trivial shift. To compute the shift, we also recall that igη

(n) can be decomposed into two parts

igη
(n) = iAg η

(n) +
1

|η(n)|
d(iBg η

(n)) , (83)

where |η(n)| is the order of the class [η(n)] in Hn(BG,U(1)). We will see that the second term, iBg η
(n), does not

contribute to the shift of the background gauge fields Ck when the transformation parameter satisfies dλg = 0 in
real coefficients.

Let us denote the shifted backgrounds by Cλ
n , which differ from Cn by a shift induced from the λ transformation.

We note that C1 does not need to be shifted, Cλ
1 = C1.

The first case of correction on the transformation starts from C2 that couples to the gauged SPT defect of
dimension (D − 2). The background C2 needs to be shifted as

C2 → Cλ
2 = C2 − C1 ∪

∑
g

λgM (D−2)(iAg η
(D−1)) , (84)

where we expand the backgrounds Cn under some basis in HD−n+1(BG,U(1)), and M (n)(x) for x ∈ Hn(BG,U(1))
is the expansion of x under the basis of Hn(BG,U(1)).16

The physical meaning of the above transformation of C2 is the following. The fact that the transformation shifts
the background C2 means that different ways of adding the magnetic defect can produce a gauged SPT defect that

16We note that if we consider g ∈ Z(G) but not in Zω(G), then there will be extra term iAg iA
g′ω

(D) that arises from the property that

the magnetic defect is attached to a gauged SPT defect as in Figure 1, which vanishes for g, g′ ∈ Zω(G). Also, if dλg/|ω(D)| ̸= 0, there is
extra term −

∑
g

1
|ω(D)|

dλgM(D−2)(iBg ω(D)) that arises from the property that the junction of the magnetic defect emits a gauged SPT

defect as in Figure 2.
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couples to the background C2. From the first term with C1, if we intersect the magnetic excitation with the domain
wall for C1, then there is additional excitation created by the gauged SPT defect of dimension (D − 2). This is the
statement about the 0-form symmetry acts on the 1-form symmetry: when a magnetic defect of holonomy g crosses
the domain wall, it is stacked with additional gauged SPT defect of dimension (D − 2).

Let us continue to the correction for the transformation of C3:

C3 → Cλ
3 = C3 − Cλ

2 ∪
∑
g

λg ∪M (D−3)(iAg η
(D−2))− C1 ∪

∑
g1,g2

λg1 ∪ λg2M (D−3)(iAg2i
A
g1η

(D−1))

−
∑

g1,g2,g3

λg1 ∪ λg2 ∪ λg3M (D−3)(iAg3i
A
g2i

A
g1ω

(D)) . (85)

Continuing the induction process, if we already computed the shifted backgrounds Cλ
2 , C

λ
3 , · · · , Cλ

n−1, then the
correction to Cn is

Cn → Cλ
n = Cn − Cλ

n−1 ∪
∑
g

λgM (D−n)(iAg η
(D−n+1))− Cλ

n−2 ∪
∑
g1,g2

λg1 ∪ λg2M (D−n)(iAg2i
A
g1η

(D−n+2))− · · ·

· · · −
∑

g1,···gn

λg1 ∪ · · ·λgnM (D−n)(iAgni
A
gn−1

· · · iAg1ω
(D)) . (86)

Such mixture of transformation for background gauge fields describe a (D− 1)-group symmetry (if Cλ
D−1 ̸= CD−1 is

corrected). The physical meaning of each term in the shift of Cn is different way of producing an extra gauged SPT
defect that couples to Cn by adding a magnetic defect.

6.2 Description of Postnikov classes

We can describe the modification of the background gauge transformations as modified cocycle condition

dCn = fn+1(B2, {Ck}n−1
k=1) , (87)

where the right hand side is the Postnikov class of the higher group. Denote the background for the 1-form symmetry
generated by the magnetic defects by B2. Under the 1-form transformation B2 → B2+dλ, a→ a+λ, the background
gauge field Cn is shifted by the anomaly descendant αn of fn+1, i.e. dαn = fn+1|B2+dλ − fn+1|B2

.17 Then αn with
dλ = 0 is the shift transformation of the background Cn in (86). From a similar discussion as in Section 2, αn|dλ=0

is obtained from the reduction of fn+1 on a circle with B2 = λdϑ/2π, where ϑ ∼ ϑ+2π is the angular coordinate on
the compactified circle.

To obtain fn+1 from αn, let us start with B2 = 0, then since fn+1|B2=0 = 0, we have fn+1|Bn=dλ = dαn. This
is the expression of fn+1 on coordinate patches, where B2 = dλ. Then we can obtain fn+1 for general B2 by the
analogue of the clutching construction of vector bundles.18

Alternatively, we can infer the Postnikov classes from the junction of symmetry defects using the charge-flux
attachment: when a magnetic defect intersects a gauged SPT defect, there is a lower-dimensional gauged SPT
defect emitted at the intersection as specified by the slant product. The Postnikov class is an element of [fn+1] ∈
Hn+1(BG(n−1),G(n−1)). For (n− 1)-group G(n−1), which in general involves k-form symmetries for 0 ≤ k ≤ n− 2,
each element in Hn+1(BG(n−1),G(n−1)) is the symmetry defect of G(n−1) that emits from a codimension-(n + 1)
junction of these k -form symmetry defects (where 0 ≤ k ≤ n− 2).

The Postnikov class for the d-group symmetry in Dijkgraaf-Witten theory is the element ofHn+1(BG(n−1),G(n−1)),
such that the emission of the symmetry defect at the junction is specified by the charge-flux attachment. By scan-
ning the possible defect configurations that can produce the gauged SPT defects for the (n − 1)-form symmetry,
inductively starting from n = 1, we obtain the Postnikov classes fn+1 for the d-group symmetry.

17We note that fn+1 can be regarded as the effective action of an SPT phase in (n+1) dimension, and under the 1-form transformation
by λ, Cn → Cn + αn is the anomalous transformation on the boundary.

18For a general transformation by λ that might not be closed,

αn = (αn)|dλ=0 + dλ ∪ βn−2 . (88)

The last term β contributes to fn+1 by a total derivative, using dB2 = 0:

B2 ∪ dβn−2 = d(B2 ∪ βn−2) , (89)

which can be absorbed into the definition of Cn, and such redefinition has the effect of changing the fractionalization class [23, 134, 41, 57].
This gives the fn+1 from (αn)|dλ=0 in (86) up to redefinitions of the background fields. As such, we set βn−2 = 0 in our computation.
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For instance, fn+1 for several lower values of n are described as follows. For n = 1, there is no shift in the
background C1, C

λ
1 = C1. Similarly, there is no configuration of symmetry defect that can emit a domain wall

decorated with gauged SPT phases. Thus

dC1 = f2 = 0 . (90)

6.2.1 n = 2, extension of 1-form symmetry

We have
f3 = −d(iBB2

ω(D))/|ω(D)| − iAB2
(C1) , (91)

where on a 3-simplex, the first term is dx/|ω(D)| with 2-cocycle x whose value on face f is as follows: denote the
value of B2 on face f by g = B2(f), then x(f) = iBg (ω

(D)), which gives an element in HD−2(BG,U(1)). The
second term computes the cup product of face f , which has g = B2(f), with edge e in the 3-simplex, which has
C1(e) ∈ HD−1(BG,U(1)), with the cup product coefficient given by iAg (C1(e)) ∈ HD−2(BG,U(1)).

The second term on the rhs above describes the codimension-2 defect that arises from dimensionally reducing
the codimension-1 gauged SPT defect, described by C1, on the magnetic defect described by B2. By introducing a
coboundary operation δρ twisted by ρ, we can rewrite the above equation as

dρC2 = −d(iBB2
ω(D))/|ω(D)| (92)

The equation is the twisted version of (28) in the presence of the background gauge field C1, and it describes the
action of the 0-form symmetry acting on the total 1-form symmetry given by the extension of the center 1-form
symmetry Zω(G) by H

D−2(BG,U(1)).
In this case, the 0-form and 1-form symmetry groups G(0) and G(1) describe a 2-group symmetry with a trivial

H3(BG(0),G(1)) Postnikov class. It is possible to get a non-trivial H3 Postnikov class by considering the permutation
action arising from S ⊂ G(0). Some examples of such non-trivial classes were studied in (2+1)D finite gauge theories
based on dihedral groups [23, 43].

6.2.2 n = 3, 3-group symmetry, and H4 Postnikov class

We have
f4 = −iAB2

(C2)− iAB2
iAB2

(C1)− iBBock(B2)
(C1)− iBB2

(Bock(C1))− iAB2
d(iBB2

ω(D))/|ω(D)| . (93)

On a 4-simplex, the first term receives contributions from cup product of surfaces f, f ′, where B2(f) = g ∈ Zω(G),
and C2(f

′) ∈ HD−2(BG,U(1)), and the coefficient of the cup product is given by iAg C2(f
′), which is an element in

HD−3(BG,U(1)). The second term receives contribution from faces f, f ′ and edge e where (f̃ ∪1 f̃
′) ∪ ẽ ̸= 0 where

f̃ , f̃ ′, ẽ denote the cochains that takes value 1 on f, f ′, e and 0 otherwise. We have B2(f) = g,B2(f
′) = g′ ∈ Zω(G),

and C1(e) ∈ HD−1(BG,U(1)). The coefficient of (f̃ ∪1 f̃
′) ∪ ẽ is given by iAg i

A
g′C1(e) ∈ HD−3(BG,U(1)). The

remaining terms receive contribution from 3-simplex c and edge e such that c̃ ∪ ẽ ̸= 0, from faces f, f ′ such that
f̃ ∪ f̃ ′ ̸= 0, and from face f and 3-simplex c such that f̃ ∪1 c̃ ̸= 0.

Each term on the right hand side above can be understood physically as follows. The first term, −iAB2
(C2),

describes a codimension-3 gauged SPT defect (described by C3) that is sourced by the codimension-3 crossing
between the codimension-2 magnetic defect (described by B2) and the codimension-2 gauged SPT defect (described
by C2). In the case D = 4, this corresponds to an electric charge that is sourced at the crossing point between the
codimension-2 magnetic and gauged SPT defects, and was analyzed in [83]. Using f3, we find that the first term and
the last term combine into a term of the form

B2 ∪ C2 +B2 ∪1 dC2 . (94)

The second term can be rewritten as the following form:19

−iAB2
iAB2

(C1) = −(B2 ∪1 B2) ∪ C1. (95)

The physical meaning of this term was analyzed in [83] in the context of (3+1)D untwisted Z3
2 gauge theory. It

describes a source for a codimension-3 gauged SPT defect arising from the intersection of two magnetic defects on
the codimension-1 gauged SPT domain wall described by C1. In the case D = 4, this corresponds to a source of
electric charge at the (non-generic) crossing point between the magnetic defects and the codimension-1 gauged SPT
domain wall.

19We note that such term produces the shift in C3 by λ ∪ λ ∪ C1 using (dλ ∪1 dλ) ∪ C1 = d ((λ ∪ λ− λ ∪1 dλ) ∪ C1).
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The third term, −iBBock(B2)
(C1), arose in our example in Section 3.2 on (3+1)D untwisted Z2

2 gauge theory. It
describes how a junction of magnetic defects, intersecting with a codimension-1 gauged SPT domain wall, sources a
codimension-3 gauged SPT defect. In the case of D = 4, this corresponds to a source for an electric charge, as seen
in Figure 6.

The fourth term, −iBB2
(Bock(C1)), arose in our example in Section 3.1 on (3+1)D untwisted Z2 gauge theory.

The intersection of the magnetic defect with the codimension-2 junction of codimension-1 domain walls, sources a
codimension-3 gauged SPT defect. In the case D = 4, this corresponds to a source of electric charge, as shown in
Figure 3.

Finally, the fifth term, −iAB2
iB
dB2/|ω(D)|ω

(D), can be understood as a combination of effects described previously.

First, the codimension-3 junction of magnetic defects can ‘emit’ a codimension-2 gauged SPT defect, as described in
Section 2.3. Next, the codimension-3 intersection between the codimension-2 magnetic defect described by B2 and
the codimension-2 emitted SPT, described by iB

dB2/|ω(D)|ω
(D), sources a codimension-3 gauged SPT defect. In the

case D = 4, this corresponds to yet another possible source of electric charge.
The combined terms in f4 can all be understood as a Postnikov class [f4] ∈ H4(BG(2),G(2)). The background

gauge fields {C1, C2, B2} define a flat background gauge field for the 2-group G(2). Altogether, {G(2),G(2), [f4]} define
the 3-group symmetry G(3).

6.3 Example: untwisted Z3
2 gauge theory in (3+1)D

Let us illustrate the previous discussion using twisted Z3
2 gauge theory in (3+1)D, which has 3-group symmetry as

discussed in [83]. In Appendix B we give another derivation of the 3-group symmetry by embedding the discrete
gauge fields into continuous U(1) gauge fields.

Denote the Z2 gauge fields by a1, a2, a3, and the shifts by λ1, λ2, λ3. Let us consider the 0-form symmetry
generated by (−1)

∫
a1∪a2∪a3 , and the 1-form symmetry generated by the gauged SPT phase (−1)

∫
ai∪aj for i < j,

and the 2-form symmetry generated by the Wilson lines. Denote their backgrounds by C1, C
ij
2 = Cji

2 , C
i
3. Let us

consider the action∫ (
C1 ∪ a1 ∪ a2 ∪ a3 + C12

2 ∪ a1 ∪ a2 + C13
2 ∪ a1 ∪ a3 + C23

2 ∪ a2 ∪ a3 +
∑
i

Ci
3 ∪ ai .

)
(96)

Under the shift ai → ai + λi with dλi = 0, for the action to be invariant up to classical terms, the backgrounds are
shifted as

Cij
2 → Cij

2 + ϵijkC1 ∪ λk,

Ci
3 → Ci

3 + (Cil
2 + ϵilmC1 ∪ λm) ∪ λl + C1 ∪ (

1

2
ϵijkλj ∪ λk) = Ci

3 + Cil
2 ∪ λl . (97)

This is consistent with the relations derived in [83],

dCij
2 = ϵijkC1 ∪Bk

2 , dCi
3 = Cij

2 ∪Bj
2 + C1ϵ

ijk ∪ (Bj
2 ∪1 B

k
2 ) , (98)

where Bi
2 is the background for the center 1-form symmetry that transforms ai. In the above relation between

background gauge fields, Bk
2 → Bk

2 + dλk reproduces (97) in the case of trivial backgrounds Bk
2 and closed λk.

7 Anomaly of d-group symmetry in Dijkgraaf-Witten gauge theory

The anomaly of d-group symmetry G(d) in spacetime dimension D can be described by an SPT phase in a (D + 1)-
dimensional bulk with the d-group symmetry. Such SPT phases are characterized by an element inHD+1(BG(d), U(1))
[41] (recall D = d + 1), and can be described in terms of a bulk effective action that depends on the background
gauge field for the d-group symmetry, extended into the (D + 1)-dimensional space-time. In the following, we will
derive the anomaly by studying the correlation functions of the symmetry generators.

The correlation function is non-trivial only when the magnetic defect is present. For magnetic defect carrying
holonomy g in the center of gauge group, and supported on Mg

D−2, which is on the boundary of V g
D−1, the defect

sources the gauge field

a =
∑

g∈Zω(G)

ag, ag ≡ gδ(V g
D−1)

⊥ . (99)
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Then the correlation function of magnetic defect Ug and gauged SPT defect Wη(n) = ei
∫
a∗η(n)

is given by20〈 ∏
g∈Zω(G)

Ug(M
g
D−2)

∏
n

Wη(n)(Mn)

〉
=

∏
g∈Zω(G)

e
i
∫
V

g
D−1

a∗
g(igω

(D))∏
n

ei
∫
Mn

a∗
g(η

(n)) . (100)

For instance, consider ω(D) = 0, and the 0-cocycle ig1ig2 · · · ignη(n) ̸= 0 is a nonzero constant, and take Mn to be
an n-dimensional torus. The correlation function of the gauged SPT defect Wη(n)(Mn) and the magnetic defects of
holonomies g1, · · · , gn−1, gn is given by (n+ 1)-linking number:〈

Ug1(M
g1
D−2) · · ·Ugn(M

gn
D−2)Wη(n)(Mn)

〉
= ei(ig1 ig2 ···ignη(n))Link({Mgi

D−2}
n
i=1,Mn) ,

Link
(
{Mgi

D−2}
n
i=1,Mn

)
≡
∫
δ(V g1

D−1)
⊥ ∪ δ(V g2

D−1)
⊥ · · · ∪ δ(V gn

D−1)
⊥ ∪ δ(Mn)

⊥ , (101)

where the integral in Link
(
{Mgi

D−2}ni=1,Mn

)
is over the D-dimensional spacetime. Examples with 3-loop braiding

in (3+1)D [135] described by the above correlation functions are discussed in [136, 44].

’t Hooft anomaly of d-group symmetry In terms of background gauge fields

n ̸= 2 : CD−n = δ(Mn)
⊥, B2 = dλ, λ ≡

∑
g

gδ(V g
D−1)

⊥, C2 = δ(M ′
D−2)

⊥ , (102)

the correlation function is given by eiSbulk , where on a coordinate patch we have

Sbulk =

∫
bulk

∑
g

(
d(a∗g(igω

(D)) ∪ δ(V g
D−1)

⊥) +
∑
n

(
da∗g(η

(D−n)) ∪ Cn + (−1)D−na∗g(η
(D−n)) ∪ dCn

))
. (103)

This is the bulk term contributed from a coordinate patch, where B2 = dλ is exact. The bulk integral is given
by summing over the contribution from all coordinate patches, with transition function that changes λ to produce
non-trivial B2 background gauge field by the analogue of the clutching construction for vector bundles.

8 3-group symmetry in Z2 gauge theory with fermion particles in (3+1)D

In this section we discuss the 3-group symmetry in bosonic Z2 gauge theory in (3+1)D where the electric particles
are emergent fermions. Such theory in the absence of magnetic defects can be described by a Z2 gauge field a that
satisfies da = w2(TM), where w2(TM) is the second Stiefel-Whitney class of the spacetime manifold [137]. We do
not include additional topological action for a in the path integral.

As an application and consistency check, we use the 3-group symmetry to enrich the theory with ordinary
symmetry Gb (in this section, Gb will be a global symmetry instead of the gauge group of dynamical gauge field),
by embedding the Gb bundle into the 3-group bundle, following the discussion in [41]. The resulting theory is the

‘bosonic shadow’ of a fermionic SPT phase with Gb and Zf
2 symmetries, related by gauging the fermion parity

symmetry Zf
2 . We show that the 3-group symmetry in the Z2 gauge theory with fermionic electric charge provides

a compact and explicit way to characterize and classify interacting fermionic SPT phases in (3+1)D based on field
theory. This gives a simpler approach as compared with the results of [34], which is based on explicit microscopic
constructions of fixed point wave functions. In particular, we obtain a simple expression for the O5 obstruction, and
we show that it agrees with [34]. Ref. [138] followed a similar approach, but considered a subclass of fermion SPT
phases (those described by group supercohomology [139]) and restricted to the case where the fermionic symmetry

group splits as Gf = Gb × Zf
2 ; our approach applies to general fermionic SPT phases with general unitary internal

Gf symmetry.

8.1 3-group symmetry

Since the gauge theory has fermionic particles, the invertible topological defects are obtained by gauging the fermion
parity symmetry on submanifolds decorated with invertible topological phases. The theory has the following sym-
metries:

20The pullback of η(n) by ag can be computed on any n-simplex, where each edge has the group element given by the field configuration
ag , such that the gauge field has the prescribed flux specified by the magnetic defects.
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• 2-form symmetry generated by the Wilson line

W (γ) = (−1)
∮
γ
a (104)

• 1-form symmetry generated by the magnetic surface defect V (Σ).

• 1-form symmetry generated by the gauged invertible fermionic phases in (1+1)D: on surface Σ, the defect is
[31, 53]

U(Σ) = exp

(
πi

2

∫
Σ

qρ(a
′)

)
, (105)

where ρ is the spin structure on the defect, qρ is the quadratic function on Σ that takes Z2 valued 1-form and
produces a Z4 valued 2-form [140, 141], and a′ is a dynamical Z2 gauge field related to the (3+1)D gauge field
by

a|Σ = a′ + ρ , (106)

where a|Σ is the restriction of a to the defect. In particular, in the absence of the magnetic defects, da′ = 0. We
note that the topological action π

2

∫
qρ(a

′) describes the Kitaev chain [142, 143] as discussed in [31, 144, 53].

To investigate the 3-group symmetry, let us couple U to a background 2-form gauge field C2, and we turn
on background gauge field B2 that couples to the center 1-form symmetry generated by the magnetic defect, and
background C3 for the 2-form symmetry generated by the Wilson line:

S =
π

2

∫
qρ(a

′) ∪ C2 + π

∫
a ∪ C3, da = w2(TM) +B2 , (107)

where the Wilson line of a describes bulk emergent fermion particle, and the first term can be written as an integral
over the Poincaré dual of C2, where the spin structure ρ and the gauge field a′ is well-defined.

To see the 3-group symmetry, let us follow the procedure in Section 6. Let us perform a transformation of the
1-form center symmetry (whose background is B2)

a→ a+ λ, B2 → B2 + dλ . (108)

We will take 1-form λ to satisfy dλ = 0, and thus we can turn off B2. Using the property of quadratic function
q(x+y) = q(x)+q(y)+2x∪y for Z2 gauge fields x, y, we find that for the action to be invariant up to classical terms
that only depend on the backgrounds C2, C3, λ but not the dynamical fields, the backgrounds need to be shifted as

C3 → C3 + λ ∪ C2 . (109)

This implies that if we insert a magnetic defect that intersects with the surface supporting the defect U , there is
additional electric charge. This is consistent with [83].

Moreover, if we perform transformation C2 → C2 + dλ′ (and keep B2 = 0), the first term in (107) changes by

π

2

∫
qρ(a

′) ∪ dλ′ = π

∫
a′ ∪ w2(TM) ∪ λ′ , (110)

where the equality follows from integration by parts and the dependence of the quadratic function on the spin
structure [140, 141, 53]. Thus to compensate for the change under the transformation λ′, the background C3 is
shifted as

C3 → C3 + w2(TM) ∪ λ′ . (111)

We note that the surface defect U that couples to the background C2 squares to the Wilson line operator W that
couples to the background C3, when the surface that supports the defect has self-intersections:

(U (2)(Σ))2 = (−1)
∮
Σ
a′∪a′

= (−1)
∮
Σ
a′∪w1(TΣ) = (−1)

∮
γ
a′

=W (γ) , (112)

where we used the Wu formula on Σ, a′ ∪ a′ = w1(TΣ) ∪ a′ [137], and w1(TΣ) = δΣ(γ)
⊥ where the subscript in δΣ

restricts the perpendicular direction with respect to embedding the curve γ inside Σ to be zero.21 The property that
the surface defect squares to the line defect implies that the 1-form symmetry combines with the 2-form symmetry
into a 3-group.

21Alternatively, we can write the exponent as an integral over the spacetime
∫
a′ ∪ a′ ∪ δ(Σ)⊥ =

∫
Sq1(a′) ∪ δ(Σ)⊥ =

∫
a′ ∪ δ(Σ)⊥,

and thus
∫
Σ a′ ∪ a′ is equivalent to the Wilson line

∫
a′ inserted at the Poincaré dual of Sq1δ(Σ)⊥.
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We can summarize the transformations of C3 in (109) and (111) into the following relation between the background
gauge fields

dC3 = w2(TM) ∪ C2 +B2 ∪ C2 = Sq2(C2) +B2 ∪ C2 , (113)

and the Postnikov class of the 3-group symmetry is

f4(B2, C2) = Sq2(C2) +B2 ∪ C2 . (114)

This is consistent with [83].

’t Hooft anomaly Let us compute the ’t Hooft anomaly using the correlation function of the symmetry generators.
If we insert the magnetic defect V (M2) at surface M2, which is on the boundary of V3, it activates the gauge field

a = ag, ag = δ(V3)
⊥ . (115)

The correlation function is given by substituting the above gauge flield into the expression for the gauged SPT
defects:

⟨U(Σ)V (M2)W (γ)⟩ = eπi
∫
γ
δ(V3)

⊥+πi
2

∫
Σ
qρ(δ(V3)

⊥+ρ) . (116)

The configuration of the above symmetry generators is equivalent to the background gauge fields

C2 = δ(M2)
⊥, C3 = δ(γ)⊥, B2 = w2(TM) + δ(M2)

⊥ = w2(TM) + dδ(V3)
⊥ , (117)

where there is a shift in B2 = w2(TM) + δ(M2)
⊥ by w2(TM), since the Wilson line is a fermion.

The correlation function can be written in terms of the background gauge fields as eiSbulk , where

Sbulk = π

∫
Y

C3 ∪ (B2 − w2(TM)) +
π

2

∫
Y

(
dqρ(δ(V3)

⊥ + ρ)C2 + qρ(δ(V3)
⊥ + ρ)dC2

)
, (118)

where Y is a (4+1)D manifold that bounds the spacetime. This is the expression of the effective action on a
coordinate patch for the bulk invertible phase with 3-group symmetry that describes the anomaly, where B2 = dλ
with λ = δ(V3)

⊥. The effective action on general bulk manifold can then be obtained by the analogue of clutching
construction for vector bundles. In particular, the first term in the bulk effective action is

Sbulk ⊃ π

∫
C3 ∪ (B2 − w2(TM)) = π

∫ (
C3 ∪B2 + Sq2(C3)

)
, (119)

where the equality uses the Wu formula [137].

8.2 Application: explicit description for fermionic SPT phases in (3+1)D

8.2.1 Review of fermionic SPT phases in (3+1)D

Let us consider fermionic SPT phases in (3+1)D with an internal 0-form fermionic symmetry group Gf . Gf is in

general a central extension of the bosonic symmetry group Gb by Zf
2 , specified by extension class [ω2] ∈ H2(BGb,Z2).

Such fermionic SPTs are known to be classified by the following data: [34] n1 ∈ C1(BGb,ZT ), n2 ∈ C2(BGb,Z2), n3 ∈
C3(BGb,Z2), ν4 ∈ C4(BGb, U(1)), satisfying

dn1 = 0 ,

dn2 = ω2 ∪ n1 + s1 ∪ n1 ∪ n1 ,
dn3 = (n2 + ω2) ∪ n2 + s1 ∪ (n2 ∪1 n2) .

dν4 = O5

(120)

Here s1 ∈ Z1(BGb,Z2) and s1(g) ̸= 0 means that g is an anti-unitary symmetry. ZT in C1(BGb,ZT ) means that
Gb acts on Z through the map s1. We note that n1 modifies the cocycle conditions in the above equations only
for non-trivial s1. The formula of O5 is given in [34]. The physical meaning of n1 is the decoration of the p+ip
topological superconductor on the domain wall that generated the time-reversal symmetry.

We will focus on the case of unitary symmetry Gb. In such a case, n1 = 0, s1 = 0, and we have

dn1 = 0 , dn2 = 0 , dn3 = (n2 + ω2) ∪ n2 , dν4 = O5 , (121)

where O5 is given in Eq. (220) of Ref. [34].
In the following, we will reproduce (121) using the 3-group symmetry in the bosonic shadow theory of the fermionic

SPT phases, which are Z2 gauge theories with fermionic particles enriched by 0-form symmetry Gb.
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8.2.2 Fermionic SPT phases from bosonic shadow with 3-group symmetry

Following the approach in [35], we study the fermionic SPT phases using their bosonic shadow obtained by gauging
the fermion parity symmetry. Such bosonic shadow theory is the Z2 gauge theory with fermion electric charge in
(3+1)D, and it can be described by (3+1)D fermionic Z2 Toric code model. Let us discuss the meaning of the
classifying data n1, n2, n3, ν4 for fermionic SPT phases in this Z2 gauge theory.

In the (3+1)D fermionic toric code, n2 corresponds to the decoration of codimension-two defect (gauged Kitaev
chain), ω2 corresponds to the m-loop, and n3 corresponds to the fermion ψ. In other words, denote the background
Gb gauge field by A, this corresponds to

C3 = A∗n3, C2 = A∗n2, B2 = A∗ω2 . (122)

Then the 3-group relation (113) reproduces the constraint on the classification data n3, n2, ω2 in (121). The obstruc-
tion O5 is given by the anomaly (118) of the 3-group symmetry. In particular, the first term (119) in the anomaly
gives

dν4 = O5, O5 =
1

2
(n3 ∪1 n3 + n3 ∪2 dn3 + ω2 ∪ n3) + · · · . (123)

We can then complete the rest by demanding the anomaly to be closed, and we summarize the computation details
in Appendix C. We obtain

O5 ≡ 1

2
(n3 ∪1 n3 + n3 ∪2 dn3 + ω2 ∪ n3 + dn3 ∪1 n2 + ζ5(n2 + ω2, n2)) +

1

4
[n2 + ω2]2 ∪ (n2 ∪1 n2) . (124)

In Appendix C we show that this expression of O5 agrees with Eq. (220) of Ref. [34], but is significantly simpler.
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A Properties of n-group symmetry

An n-group symmetry G(n) is an extension of q-form symmetries for q < n − 1 by (n − 1)-form symmetry G(n−1).
The classifying space of an n-group G(n) is a fibration of BnG(n−1) over the classifying space of an (n− 1)-group:

B2G(1) → BG(2) → BG(0), B3G(2) → BG(3) → BG(2), · · · , BnG(n−1) → BG(n) → BG(n−1) . (125)

The background gauge fields for an n-group G consists of the background gauge field Cn for the top (n − 1)-form
symmetry, and the backgrounds for the lower (k − 1)-form symmetries Ck with 1 ≤ k ≤ n − 1, and they obey the
constraints

dC1 = 0, dCk = fk+1({Cj}k−1
j=1 ) for k ≥ 2 , (126)

where [fk+1] ∈ Hk+1(BG(k−1),G(k−1)) are called the Postnikov classes. The relations between the background
gauge fields can equivalently be described by the relation between the background gauge transformations: for the
transformation parameters λk of degree k,

C1 → λ−1
0 C1λ0 + λ−1

0 dλ0, C2 → C2 + α2(C1, λ0) + dλ1, C3 → C3 + α3(C1, C2, λ0, λ1) + dλ2, · · · , (127)

where αn are the anomaly descendants of fn+1.
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B Higher-group symmetry in Abelian gauge theories in the continuum

Let us give another derivation of the higher-group symmetry in the examples in Section 3 by embedding the discrete
gauge fields into continuous U(1) gauge fields. In other words, a ZN 1-form gauge field can be described by a pair
of U(1) gauge fields a, b [145, 146]

N

2π
adb , (128)

where a is a U(1) 1-form gauge field, and b is a (D − 2)-form U(1) gauge field that plays the role of the Lagrangian
multiplier constraining a to have ZN holonomy. As described in Ref. [146], b can also be dualized into a Higgs field
that breaks the gauge group of a from U(1) to ZN . The operator ei

∮
b2 has e2πi/N braiding with the Wilson line

ei
∮
a, and it is the magnetic defect of codimension two that carries unit holonomy of ZN gauge field.

B.1 Example: ZN gauge theory in (3+1)D

Let us turn on the background gauge fields C1 of the 0-form symmetry generated by the domain wall e
i

2π

∫
ada

decorated with gauged Levin-Gu phase, background B2 of the center 1-form symmetry generated by the magnetic
defect ei

∮
b, and background C3 for the 2-form symmetry generated by the Wilson line ei

∫
a. The action is∫ (

N

2π
adb+

1

2π
adaC1 + bB2 + aC3

)
. (129)

The equations of motion for b, a are

N

2π
da+B2 = 0,

N

2π
db+

1

2π
(2daC1 − adC1) + C3 = 0 =

N

2π
db+

1

2π
(−4π

N
B2C1 − adC1) + C3 . (130)

Taking the differential of the second equation gives

dC3 −
1

N
B2dC1 −

2

N
dB2C1 = 0 . (131)

For N = 2, this reproduces Eq. (35).
Let us also derive the symmetry by studying the 1-form transformation a → a− 2π

N λ, B2 → B2 + dλ. For the
action to be invariant, the background C3 transforms by the shift

C3 → C3 +
1

N
dλC1 , (132)

up to a total derivative (which is the usual background gauge transformation of C3). The is the transformation in
Eq. (131) that leaves the relation invariant.

B.2 Example: untwisted Z2
N gauge theory in (3+1)D

Let us denote the two ZN gauge fields by a, a′, and consider the background C1 for the 0-form symmetry generated
by e

i
2π

∫
ada′

, the backgrounds B2, B
′
2 for the center 1-form symmetry generated by the magnetic defects ei

∫
b, ei

∫
b′ ,

the backgrounds C3, C
′
3 for the 2-form symmetry generated by the Wilson lines ei

∫
a, ei

∫
a′
. The action is∫ (

N

2π
adb+

N

2π
a′db′ +

1

2π
ada′C1 + bB2 + b′B′

2 + aC3 + a′C ′
3

)
. (133)

The equations of motion of b, b′, a, a′ give

N

2π
da+B2 = 0,

N

2π
da′ +B′

2 = 0

N

2π
db+

1

2π
da′C1 + C3 = 0 =

N

2π
db− 1

N
B′

2C1 + C3,

N

2π
db′ +

1

2π
d(aC1) + C ′

3 = 0 =
N

2π
db′ − 1

N
B2C1 −

1

2π
adC1 + C ′

3 . (134)

Taking the differential of the last two lines gives

dC3 −
1

N
dB′

2C1 −
1

N
B′

2dC1 = 0, dC ′
3 −

1

N
dB2C1 = 0 . (135)
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This reproduces Eq. (48).
Let us also derive the symmetry by studying the 1-form transformation a → a − 2π

N λ, B2 → B2 + dλ, a′ →
a′ − 2π

N λ′, B′
2 → B′

2 + dλ′. For the action to be invariant, the background C3, C
′
3 transforms by the shift

C3 → C3 +
1

N
dλ′C1 , (136)

up to a total derivative (which is the usual background gauge transformation of B3, B
′
3). The is the transformation

in Eq. (135) that leaves the relations invariant.

B.3 Example: untwisted Z3
N gauge theory in (3+1)D

Similarly, let us consider Z3
N gauge theory with gauge fields a1, a2, a3. Let us turn on backgrounds Ci

3, C
ij
2 , B

i
2, C1

with i, j = 1, 2, 3 labeling the three gauge fields. The action is∫ (
N

2π
(a1db1 + a2db2 + a3db3) +

N

2π

(
a1a2C

12
2 + a3a1C

31
2 + a2a3C

23
2

))
+

∫ (
N2

(2π)2
a1a2a3B1 + b1B

1
2 + b2B

2
2 + b3B

3
2 + a1C

1
3 + a2C

2
3 + a3C

3
3

)
. (137)

The equation of motions are

N

2π
dai +Bi

2 = 0

N

2π
db1 +

N

2π

(
a2C

12
2 − a3C

31
2

)
+

N2

(2π)2
a2a3C1 + C1

3 = 0

N

2π
db2 +

N

2π

(
−a1C12

2 + a3C
23
2

)
+

N2

(2π)2
a3a1C1 + C2

3 = 0

N

2π
db3 +

N

2π

(
−a2C23

2 + a1C
31
2

)
+

N2

(2π)2
a1a2C1 + C3

3 = 0 . (138)

By taking the differentials of the above equations and comparing the coefficients of ai, aiaj , we find

dC12
2 −B3

2C1 = 0, dC31
2 −B2

2C1 = 0, dC23 − C1
2B1 = 0

dC1
3 −B2

2C
12
2 +B3

2C
31
2 = 0, dC2

3 +B1
2C

12
2 −B3

2C
23
2 = 0, dC3

3 +B2
2C

23
2 −B1

2C
31
2 = 0 , (139)

This reproduces the relation (98) without the ∪1 product, since for the background gauge fields that can be embedded
into U(1) background gauge fields, they satisfy super-commutativity as in differential forms, and the contributions
from higher cup products are trivial.

C Computation detail for fermionic SPT phases

In this appendix, we give the details for discussing the fermionic SPT phases in (3+1)D in Section 8.2, where we
used the 3-group symmetry to classify the fermionic SPT phases.

A useful formula is the Cartan formula [147]

Sq2(A2 ∪B2)
2
= Sq2A2 ∪B2 + Sq1A2 ∪ Sq1B2 +A2 ∪ Sq2B2 + dζ5(A2, B2) , (140)

with A2, B2 ∈ Z2(M,Z2) and
22

ζ5(A2, B2)(012345) ≡ A2(023)A2(012)B2(345)B2(235). (141)

We choose A2 = n2 + ω2 and B2 = n2 and the Cartan formula gives

Sq2(dn3)
2
= Sq2(n2 + ω2) ∪ n2 + Sq1(n2 + ω2) ∪ Sq1n2 + (n2 + ω2) ∪ Sq2n2 + dζ(n2 + ω2, n2) . (142)

22If we define Ā(ij) = A(0ij), the above ζ5 reduce to the Cartan coboundary ζ4 on the simplex ⟨12345⟩: ζ4(Ā, B)(12345) ≡
Ā(12)Ā(23)B(345)B(235) = Ā ∪ [(Ā ∪ B) ∪2 B + Ā ∪ B](12345), which is used to compute the O4 anomaly in (2+1)D fermionic
invertible phases [35].
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We use Sq2(dn3) = dn3 ∪2 dn3
2
= d(n3 ∪1 n3 + n3 ∪2 dn3) and define m2 = [n2 + ω2]2. The above identity becomes

d(n3 ∪1 n3 + n3 ∪1 dn2)
2
= m2 ∪m2 ∪ n2 +

dm2

2
∪ dn2

2
+m2 ∪ n2 ∪ n2 + dζ5(m2, n2)

2
= d(m2 ∪ n3) + d

(
−1

2
m2 ∪ (n2 ∪1 n2)

)
+ d(n3 ∪ n2) + dζ5(m2, n2)

2
= d

(
ω2 ∪ n3 + dn3 ∪1 n2 −

1

2
m2 ∪ (n2 ∪1 n2) + ζ5(m2, n2)

)
.

(143)

Therefore, we define our O5 as

O5 ≡ 1

2
(n3 ∪1 n3 + n3 ∪2 dn3 + ω2 ∪ n3 + dn3 ∪1 n2 + ζ5(n2 + ω2, n2)) +

1

4
[n2 + ω2]2 ∪ (n2 ∪1 n2) . (144)

Notice that this is the minimal choice for the O5 obstruction. In general, adding a cocycle to O5 is possible.

C.1 Comparison with the literature

Let us show that the anomaly O5 obtained agrees with the result in Eq. (220) of Ref. [34].
The Eq. (220) of Ref. [34] expressed the O5 obstruction (n1 = 0) as

O5(012345) =(−1)ω2∪n3+n3∪1n3+n3∪2dn3(012345)+ω2(013)dn3(12345)

× (−1)dn3(02345)dn3(01235)+ω2(023)[dn3(01245)+dn3(01235)+dn3(01234)]

× idn3(01245)dn3(01234) (mod 2)(−i)[dn3(12345)+dn3(02345)+dn3(01345)]dn3(01235) .

(145)

We are going to simplify it step by step:

1. (−1)dn3(02345)dn3(01235): this term is

1

2
m2(023)n2(345)m2(012)n2(235)

1
=

1

2
ζ5(m2, n2) , (146)

where we have used dn3(02345)
2
= m2(023)n2(345) and dn3(01235)

2
= m2(012)n2(235).

2. (−1)ω2(013)dn3(12345)+ω2(023)[dn3(01245)+dn3(01235)+dn3(01234)]: this term is

1

2
(ω2(013)m2(123)n2(345) + ω2(023)m2(012)[n2(245) + n2(235) + n2(234)])

1
=
1

2
(ω2(013)m2(123) + ω2(023)m2(012))n2(345)

1
=
1

2
(m2(013)n2(123) +m2(023)n2(012))n2(345)

+
1

2
(n2(013)n2(123) + n2(023)n2(012))n2(345)

+
1

2
(ω2(013)ω2(123) + ω2(023)ω2(012))n2(345)

1
=
1

2
(m2(013)n2(123) +m2(023)n2(012))n2(345) +

1

2
(n2 ∪1 n2) ∪ n2 +

1

2
(ω2 ∪1 ω2) ∪ n2

1∼1

2
(m2(013)n2(123) +m2(023)n2(012))n2(345) +

1

2
n2 ∪ (n2 ∪1 n2) +

1

2
ω2 ∪ (n2 ∪1 n2)

1
=
1

2
(m2(013)n2(123) +m2(023)n2(012))n2(345) +

1

2
m2(012)(n2(235)n2(345) + n2(245)n2(234))

1
=
1

2
(dn3(01235)n2(345) + dn3(01245)n2(234) + dn3(01345)n2(123) + dn3(02345)n2(012))

1
=
1

2
dn3 ∪1 dn2(012345) .

(147)

3. idn3(01245)dn3(01234) (mod 2)(−i)[dn3(12345)+dn3(02345)+dn3(01345)]dn3(01235): the first part is

1

4
m2(012)n2(245)n2(234) . (148)
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The second part is

−1

4
[m2(123) +m2(023) +m2(013)]2 · n2(235)m2(012)n2(235) = −1

4
m2(012)n2(235)n2(235) . (149)

Combining the above equations, it is simply

1

4
m2 ∪ (n2 ∪1 n2)(012345) . (150)

To sum up, Wang-Gu’s O5 can be written as

O5 =
1

2
(n3 ∪1 n3 + n3 ∪1 dn2 + ω2 ∪ n3 + dn3 ∪1 n2 + ζ5(m2, n2)) +

1

4
m2 ∪ (n2 ∪1 n2) , (151)

which is exactly Eq. (144) derived in the previous section.
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