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Abstract

We revisit the exact thermodynamic description of the classical sine-Gordon
field theory, a well-known integrable model. We found that existing results
in the literature based on the soliton-gas picture did not correctly take into
account light, but extended, solitons and thus led to incorrect results. This is-
sue is regularized upon requantization: we derive the correct thermodynamics
by taking the semiclassical limit of the quantum model. Our results are then
extended to transport settings by means of Generalized Hydrodynamics.
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1 Introduction

The sine-Gordon model is a one-dimensional relativistic field theory appearing in various
contexts. For example, it describes the low energy physics of a plethora of systems,
ranging from spin chains [1–4], spinful atoms [5], arrays of Josephson’s junctions [6, 7],
certain quantum circuits [8,9] and weakly tunneled-coupled quasicondensates [10–15]. Its
ubiquity is closely related to the vast applicability of bosonization [5,16], since sine-Gordon
can be regarded as one of the most natural massive perturbations of a gapless Luttinger-
Liquid. Consequently, this model is well known and widely studied by a broad community,
both numerically and analytically: one of the salient features of this field theory is its
integrability [17–19], which allows for a variety of analytic results on the one hand, and
guarantees atypical thermalization [20] and transport [21,22] on the other.

The versatility of sine-Gordon is further reflected in the multitude of angles from which
it has been analysed, that closely follow the development of new experimental platforms.
For example, deep mathematical questions in partial differential equations (PDEs) greatly
fueled the development of the inverse scattering method for integrable differential equa-
tions [18, 19], a category to which the classical sine-Gordon model belongs to. With the
experimental progresses in manipulating quantum matter, the general interest shifted to
explore the quantum integrability of sine-Gordon, first at the level of the few-body prob-
lem by determining the exact spectrum and scattering processes [23], then undertaking
the ambitious form-factor bootstrap program to determine observables’ matrix elements
on scattering states [17]. In the meanwhile, numerical studies mimicking plausible exper-
imental setups [11, 15] and new factual experiments [24–27] showed that the sine-Gordon
mass spectrum and form factors can be realized with great accuracy.

These last achievements fall under the umbrella of few-body excitations, but new
advances in quantum simulators [28] are responsible for a further shift in focus: how to
describe macroscopically excited states, both in and out of equilibrium?

While we have so far kept the quantum and classical sine-Gordon models on roughly the
same footing, this last question represents a historical bifurcation between the two: at the
quantum level, finite-temperature thermal states can be exactly characterized by means
of the Thermodynamic Bethe Ansatz (TBA) [29–31]. These general ideas can also be ap-
plied to out-of-equilibrium sudden quantum quenches [32,33] and, more recently, to study
transport within the framework of Generalized Hydrodynamics [22, 34, 35]. In contrast, a
parallel development in the classical realm stands on far more shaking foundations.

Before embarking on a more detailed discussion and substantiating our last assertion,
we wish to put forward the main goal of our work: in this paper, we study the thermody-
namics and hydrodynamic transport of the classical sine-Gordon model. Our motivations
are multifaceted: while many works have been devoted to study the classical sine-Gordon
thermodynamics with a variety of approaches [36–41], all of them led to inconsistent re-
sults [42] for a very good reason that will be clarified later on. Therefore, our work
solves the long-standing problem of deriving the exact thermodynamics of the classical
sine-Gordon field theory.

On a more pragmatic level, experimental realizations of sine-Gordon are often close to
the classical limit. This is for example the case, when sine-Gordon emerges as the low-
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energy description of tunnel-coupled and weakly-interacting quasicondensates [10, 11]: in
the regime of a large number of atoms and weak interactions commonly realized in exper-
iments [12], semiclassical methods account well for experimental observations. Therefore,
our findings are relevant for experimental applications.

Lastly, our results will serve as a stepping stone for future progresses in the quantum
realm as well: with the fast development of new experimental techniques, the realization
of a versatile sine-Gordon simulator deep into the quantum regime can be foreseen in the
near future [15, 43]. This calls for new theoretical advances able to keep the pace with
the experimental progress: here, Generalized Hydrodynamics is a prominent candidate for
taking on this ambitious challenge [44–47], but its application to sine-Gordon is largely
untapped. So far, only transport in clean and homogeneous settings has been consid-
ered [48], but taking into account inhomogeneities present in realistic experimental setups
represents a challenge on a whole new level [49–51]. In this perspective, developing first
the Generalized Hydrodynamics of the classical sine-Gordon suitable for experimental con-
figurations will be an irreplaceable laboratory to benchmark hydrodynamic ideas against
ab-initio Monte Carlo simulations [52, 53], serving as a backbone for future Generalized
Hydrodynamics results of the quantum model beyond reach of numerical checks. The
present work is the first step in this long term program.

Our paper is structured as follows: We begin by introducing the classical sine-Gordon
model in Section 2. We will comment on the previous strategies in the derivation of its
exact thermodynamics, their inconsistencies and pitfalls. We will identify the presence of
extended solitons with arbitrary small mass as the problem at the common root of these
methods (see also Refs. [54, 55] for related considerations). The crucial point comes from
the coalescence of two competing effects: on the one hand, light excitations are highly
excited at any finite temperature. On the other hand, any arbitrary large, yet finite,
volume poses a cutoff on the maximum width of the allowed solitons.

A correct derivation of the thermodynamics requires a regularization of these extended
modes: while a solution of this riddle by means of purely classical considerations is highly
desirable, it is still beyond our current understanding. To circumvent this issue, we take
another route: in Section 3 we derive the classical thermodynamics by taking the semiclas-
sical limit of the quantum model. While it may seem a complicated detour, quantization
introduces a finite mass gap in the model and cures the aforementioned problem. Our
final result shows that the sine-Gordon thermodynamics is fully describable by a collec-
tion of soliton-like excitations with a renormalized statistics. We wish to point out that
we have identified a similar feature in a previous investigation on nonequilibrium states
in the attractive Non-Linear-Schrödinger equation (NLS) [55]. The validity of our find-
ing is supported by an analytic analysis of the low-temperature regime, which was not
correctly captured by previous methods, and by comparison with ab-initio numerical sim-
ulations for arbitrary temperatures and couplings. After having dealt with equilibrium
thermodynamics, in Section 4 we revert to nonequilibrium settings. In particular, we use
Generalized Hydrodynamics to study partitioning protocols [56] and observe transport:
the agreement with numerical data is excellent. We gather our conclusions in Section 5
and provide an outlook on future directions stemming from our present findings. Some
appendices discussing more technical aspects follow.
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2 The classical sine-Gordon model

The sine-Gordon model is a one-dimensional relativistic field theory governed by the fol-
lowing Hamiltonian

H =

∫
dx

1

2
c2Π2 +

1

2
(∂xφ)2 +

m2c2

g2
(1− cos (gφ)) . (1)

H can be interpreted both on classical or quantum grounds. The only difference is in
regarding the conjugated fields φ and Π either as classical fields, thus obeying canonical
Poisson brackets {φ(x),Π(y)} = δ(x − y), or as operators with canonical commutators.
Within this section, we focus solely on the classical case, while in Section 3 we will take
a short detour into the quantum world. Above, c is the light velocity, m the bare mass
scale and g sets the interaction strength. In the classical case, all these quantities can
be set to unity by a proper renormalization of fields, distances and overall energy scale.
Nonetheless, we retain these couplings explicitly in view of the forthcoming semiclassical
limit.

We begin with characterizing the excitations’ content of the model [19, 57]. As it is
self-evident from the periodic cosine potential, the sine-Gordon model has infinitely many
degenerate ground states, or vacua, φ(x) = 2πn/g with n ∈ Z. This degeneracy allows for
the presence of topological excitations interpolating between neighboring vacua: these are
called kinks or antikinks depending on whether the phase grows or drops as x is increased.
The spatial profile of a soliton at rest is easily obtained by solving the classical equation of
motion with unbalanced boundary conditions, resulting in [57] φK(x) = 4

g arctan(e−mcx)+
2π/g. The soliton configuration can be translated and set in motion by using relativistic
invariance and boosting the spatial coordinate φK(x) → φK,θ(t, x− x0) = φK(cosh θ(x −
x0)− sinh θct), where θ is the rapidity and x0 the soliton position at t = 0. The antikink
configuration is simply the reflected profile φK̄,θ(t, x) = −φK,θ(t, x).

Since the kink’s field configuration departs from the ground state, its energy is finite. In
particular, as it is easy to check from the explicit solution φK , kinks behave as relativistic
particles with dispersion εK(θ) = Mc2 cosh θ where the soliton mass is

M =
8m

cg2
. (2)

The presence of topological excitations is a feature that is shared with many other
non-integrable models, for example the φ4−field theory in a double well. In contrast, the
peculiarity of sine-Gordon as an integrable field theory is manifested in the scattering
events: due to the presence of infinitely many conservation laws, scattering is largely
constrained and is non-diffractive [23]. Indeed, exact solutions to the equation of motion
describing multi-kink states can be explicitly built through the inverse scattering method
[18,19]. For example, a two-soliton solution can be found [57] as

φK,K̄(t, x) = −4

g
arctan

(
sinh(mc2t sinh θ)

tanh θ cosh(mcx cosh θ)

)
. (3)

Notably, one has the limiting cases (assuming θ > 0)

φK,K̄(t, x) =

φK,θ
(
t, x− ϕ(2θ)

2Mc cosh θ

)
+ φK̄,−θ

(
t, x+ ϕ(2θ)

2Mc cosh θ

)
t→ −∞

φK,θ

(
t, x+ ϕ(2θ)

2Mc cosh θ

)
+ φK̄,−θ

(
t, x− ϕ(2θ)

2Mc cosh θ

)
− 2π/g t→ +∞

(4)
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Hence, Eq. (3) describes the scattering event of an incoming kink-antikink pair. Thanks to
integrability, the scattering is completely elastic and the kink passes through the antikink
without transferring energy to other modes. The effect of interactions manifests in what
is called a time delay or trajectory shift of the solitons after scattering quantified by the
classical scattering shift

ϕ(θ) =
8

cg2
log

(
cosh θ + 1

cosh θ − 1

)
. (5)

Similarly, the kink-kink scattering shift can be derived and is identical to the kink-antikink
one. Kinks and antikinks alone do not exhaust all the possible excitations: together
with topologically-charged quasiparticles, neutral excitations are also present. These are
called breathers and are parametrized by a real spectral parameter σ ∈ [0, 1]. Breathers
can be seen as kink-antikink boundstates: indeed, the kink-antikink scattering state (3)
can be analytically continued to imaginary rapidities θ → iπ2 (1 − σ) and still remains a
solution of the equation of motion, even though it completely changes its character. After
analytic continuation, the field configuration remains localized around x = 0 with a width
`breather ∼ 2/[mc cos(π2 (1−σ))], but retains a non-trivial time dependence with a pulsating
motion: this is a breather at rest. The rest energy of the new particle is readily obtained
by analytic continuation of the two kinks energy 2Mc2 cosh(θ) → 2Mc2 sin(π2σ). One
therefore finds the breather masses as

mσ = 2M sin
(π

2
σ
)
. (6)

Of course, similarly to solitons, breathers can be set in motion by a Lorentzian boost
and they are found to obey a relativistic dispersion law. After having identified these
new excitations, the next task is to find their scattering properties. Fortunately, no new
calculations are needed and the breather-kink and breather-breather scattering shifts can
be derived from Eq. (5) through analytic continuation. First, one builds on the fact that,
thanks to integrability, the scattering shifts of multi-particles behave additively [29]. For
example, a kink with rapidity θ that collides with a kink and antikink of rapidities θa
and θb experiences a phase shift ϕ(θ − θa) + ϕ(θ − θb). Then, the scattering shift of a
kink with rapidity θ and a breather with rapidity θ′ is obtained by analytically continuing
θa → θ′ + iπ4 (1 − σ) and θb → θ′ − iπ4 (1 − σ). Similarly, the breather-breather scattering
shift is also computed

ϕσ,σ′(θ) =
16

cg2
log

(
[cosh(θ)− cos((σ + σ′)π/2)][cosh(θ) + cos((σ − σ′)π/2)]

[cosh(θ)− cos((σ − σ′)π/2)][cosh(θ) + cos((σ + σ′)π/2)]

)
. (7)

Consistently, it holds that limσ′→1 ϕσ,σ′(θ) = 2ϕσ(θ) and limσ→1 ϕσ(θ) = 2ϕ(θ), where
ϕσ(θ) is the breather-kink scattering shift. Notice the simple normalization (see Appendix
A) ∫

dθ ϕσ,σ′(θ) =
32π2

cg2
min(σ, σ′) . (8)

One could wonder if kinks, antikinks and breathers are a complete set of excitations
for sine-Gordon: an inverse scattering analysis on the infinite system shows that these are
the only possible excitations of solitonic type [19], but it still leaves room for dispersive
radiative modes. A priori, it is unclear if and how these modes should be taken into
account. Slightly anticipating on the content of Section 3, we found that radiative modes
do not contribute to the thermodynamic description of sine-Gordon as new entities distinct
from solitons. In contrast, radiation can be viewed as a condensation of light breathers,
as shown later by studying the low temperature regime.
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2.1 Classical methods for thermodynamics and the large-solitons prob-
lem

Before moving to the core of our paper, we briefly overview the different approaches to
the sine-Gordon’s thermodynamics and their difficulties, identifying the common plague
to these methods and outlining our strategy. We do not aim to give a comprehensive
overview, but rather only point out some key observations: for a more extensive discussion,
the reader can refer to the cited literature.

As we have already outlined, the first puzzle consists of identifying which are the rel-
evant excitations for macroscopically excited (e.g. thermal) states: an inverse scattering
analysis on the infinite system points at two radically different modes [19], namely soli-
tons and radiation. On the one hand, non-dispersive solitonic modes are expected to obey
a Maxwell-Boltzmann’s type of statistics, similarly to other classical PDEs such as the
Korteweg–De Vries (KdV) PDE [58]. In contrast, radiation should obey a Rayleigh-Jeans
distribution, as it has been shown in classical PDEs with only radiative modes, such as
sinh-Gordon [59,60] or the defocusing Non-Linear-Schrödinger equation [61]. If, and how,
these modes contribute to thermodynamics remained unclear so far. The story gets even
more complicated if one attempts to take the thermodynamic limit rigorously: in the
inverse scattering at finite volume, excitations are “quantized” through the complicated
inverse gap solution of the transfer matrix [62,63] (reminiscent of the finite-volume Bethe-
Ansatz equations of quantum systems [29]), and furthermore, there is no clear distinction
between solitons and radiation anymore. In contrast, all excitations seem to have a soli-
tonic flavor at finite volume: up to our knowledge, the effect of taking the thermodynamic
limit has not been well-understood. Some simplifications can be made by neglecting the
fine structure of the finite gap solutions and approximating them in a coarse-grained man-
ner by taking a continuum limit. Within this framework, the interaction-renormalized
phase space density of models with a single excitation species can be recovered. See for
example the sinh-Gordon model where only a radiative mode [59] is present. However, one
may wonder if this approach can be replicated for models with more particle species or
bound states thereof: in analogy with the string-charge duality of quantum models [64],
higher-rank representation of the transfer matrix may be needed. At the best of our
knowledge, the fulfillment of this program remains an open challenge in sine-Gordon.

An attempt to circumvent these technical bottlenecks has been made through more
phenomenological approaches, primarily within the soliton-gas picture [63,65–67]. In this
framework, one builds the thermodynamics of a gas of particles (the solitons) where in-
teractions are kept into account by giving particles an effective finite length, matched
with the soliton-soliton scattering shift. Radiation is entirely neglected. Soliton gases give
quantitatively correct results for other solitonic models, such as KdV [35,63], but fails for
sine-Gordon. Indeed, the so-derived thermodynamics lacks the correct low-temperature
limit [42], where sine-Gordon must be well approximated by the non-interacting massive
Klein-Gordon model. In passing, we stress that low temperatures excite only long wave-
lengths and, in contrast with sine-Gordon, the Klein-Gordon model features only radiation.
Actually, both attempts made through the inverse scattering and the soliton-gas picture
led to the same, albeit incorrect, set of integral equations describing the thermal states.
We do not report them here, but they will be discussed once we have derived our result.

It should be apparent by now that both these methods are problematic when the
system is put in a finite volume of size L and eventually taking L→∞, while retaining a
finite excitation density. Within the soliton-gas picture, the problem is clear: in the infinite
volume we find breathers whose mass and size are decided by the spectral parameter σ. As
σ approaches zero, their mass (6) vanishes and are therefore likely to be excited by thermal
fluctuations. One can expect these modes to be more and more relevant for σ → 0. On
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Figure 1: Pictorial representation of the soliton gas picture and the
role of extended solitons. Left: In the classical field theory, breathers with
arbitrary large extent exist, but on the other hand they cannot be placed in a
finite, albeit large, volume L. Right: in the quantum sine-Gordon model, the
spectral parameter is quantized ∼ ~, putting a maximum cap on the soliton
extension, thus acting as a regulator.

the other hand, their spatial extension grows and any finite volume will act as a cutoff
on the allowed breather `breather < L, as we depict in Fig. 1. While the problem is clear,
its solution is not evident and how to include the proper regularization in the soliton-gas
picture remains elusive for us.

Therefore, we will now take a different route and use the quantum sine-Gordon and its
thermodynamics as a starting point. As we will see, in the quantum model the breathers’
spectral parameter is quantized in units of ~, acting as a cutoff on the maximum size of the
breathers. Hence, by taking first the thermodynamic limit and only then the semiclassical
limit, we arrive to the correct result.

3 From the quantum to the classical thermodynamics

Semiclassical methods date back to the birth of quantum mechanics in a variety of contexts.
Covering a comprehensive overview is impossible, neither the focus of our investigation,
therefore we limit ourselves to their applications to integrability. The underlying idea is
that, sometimes, the thermodynamics of a quantum model can be better controlled than
the one of its classical counterpart. Therefore, one uses quantum physics to shed new
light on the classical world, going upstream to the usual common sense. Semiclassical
limits of integrable models appeared quite early in the literature: curiously, these ideas
have been applied to the very sine-Gordon model [39, 42], but an overlooked subtlety in
accounting for the entropy of states led to incorrect results, equivalent with the soliton-
gas picture. To the best of our knowledge, semiclassical limits of thermodynamics have
been more recently brought to the forefront in Ref. [59], finding a fertile terrain due to
the uprising interest in nonequilibrium many-body physics. Shortly after, these ideas have
been extended to sudden quenches [61] and then fused with Generalized Hydrodynamics to
tackle nonequilibrium protocols in several models [55,60,68]. Before turning to examining
sine-Gordon with this rich toolbox, we recollect some basic notions of the quantum model.

The quantum sine-Gordon — Replacing classical fields with operators in the sine-
Gordon Hamiltonian has far-reaching consequences. Here, we only focus on the main
ingredients needed for our purposes. The interested reader can refer to Ref. [57] and
references therein. As mentioned before, the quantum Hamiltonian is the same as the
classical one (1), provided the fields are promoted to operators. For later convenience,
we redefine the quantum interaction as g → gq. The quantum model is best discussed in
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terms of the coupling ξ =
cg2
q

8π

(
1− cg2

q

8π

)−1

, which determines the excitations’ spectrum of

the theory. For ξ > 1 the only excitations are kinks and anti-kinks: their mass is heavily
renormalized by quantum effects with respect to the classical result (2) M →Mq and has
been computed in Ref. [69]. For smaller couplings ξ, breathers appear in the spectrum
with quantized masses

mq;n = 2Mq sin(
π

2
nξ), n = 1, 2, ..., N N = dξ−1e . (9)

The other main ingredient we need is the scattering matrix, which has been exactly com-
puted in Ref. [23]. When two breathers meet, their scattering is purely transmissive, but
they accumulate a non-trivial phase due to interactions as

Sn,m(θ) =
sinh θ + i sin((n+m)πξ/2)

sinh θ − i sin((n+m)πξ/2)

sinh θ + i sin(|n−m|πξ/2)

sinh θ − i sin(|n−m|πξ/2)
×

min(n,m)−1∏
k=1

sin2 ((|n−m|+ 2k)πξ/4− iθ/2)

sin2 ((|n−m|+ 2k)πξ/4 + iθ/2)

cos2 ((m+ n− 2k)πξ/4 + iθ/2)

cos2 ((m+ n− 2k)πξ/4− iθ/2)
. (10)

Similarly, kinks are transmitted through breathers with a phase Sn(θ)

Sn(θ) =
sinh θ + i cos(nπξ/2)

sinh θ − i cos(nπξ/2)

n−1∏
k=1

sin2 ((n− 2k)πξ/4− π/4 + iθ/2)

sin2 ((n− 2k)πξ/4− π/4− iθ/2)
. (11)

When it comes to kinks, the scattering processes become more complicated. While
kink-kink and antikink-antikink scattering is transmissive with scattering matrix S(θ) =

− exp
[
−i
∫∞

0
dt
t

sinh(πt(1−ξ)/2)
sinh(πξt/2) cosh(πt/2) sin(θt)

]
, the scattering of kinks with antikinks has a

more quantum mechanical flavor and they can be either transmitted (as in the classical
case) or reflected, with amplitudes that are respectively

ST (θ) =
sinh(ξ−1θ)

sinh((iπ − θ)ξ−1)
S(θ) , SR(θ) = i

sin(πξ−1)

sinh((iπ − θ)ξ−1)
S(θ) . (12)

Armed with the knowledge of the quantum model, we will now turn to the semiclassical
limit.

3.1 Taking the semiclassical limit

The semiclassical limit is attained in the regime of high occupation number and weak inter-
actions. The proper scaling can be pinned down just by looking at the partition function
(or the propagator) in a path integral formalism, without even referring to integrability.
We will not repeat these passages since they have already been extensively discussed in
the literature, see e.g. Refs. [59,61], and simply quote the sought scaling. For the sake of
convenience, we take the limit by introducing a fictitious Planck constant ~ which will be
later sent to zero. The limit is then obtained by simultaneously rescaling

gq =
√
~g , 〈Qq〉 =

1

~
〈Q〉 . (13)

Above, Qq andQ are meant to be any conserved charge of the quantum and classical model,
respectively. While the scaling of conserved charges is crucial in analyzing thermodynamic
properties, the scaling of the interactions is already enough to tackle the few-body sector.
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The scaling of the spectrum and scattering data — As a propaedeutical anal-
ysis, we begin by analyzing the particle spectrum and scattering properties. The fist
oddity the quantum model exhibits in comparison with the classical one, is the fact that
kink-antikink scattering can both be transmissive or reflective. However, in the semiclas-
sical limit ξ ∝ ~ → 0, it is immediate to realize that only transmission is possible by
taking the ratio between the reflected and transmitted amplitudes: Indeed, in this limit
lim~→0 SR(θ)/ST (θ) = 0. We notice that, also far from the semiclassical regime, there are
special values of the interactions where scattering is purely transmissive. This happens at
the so called reflectionless points, whenever ξ−1 ∈ N: since in the semiclassical limit the
reflective component of the scattering matrix vanishes, the semiclassical limit can be taken
moving through reflectionless points. From the technical point of view, this is a major gain
and allows to avoid dealing with technicalities present at generic interactions [30,31,70,71]
and resulting in nested Bethe Ansatz, which will be anyway unimportant in the classical
limit. Due to the lack of reflection, quantum (anti)kinks behave as their classical counter-
parts, provided we show that the quantum scattering shift matches the classical one. We
postpone this point after we have analyzed the breather spectrum. The mapping from the
quantum breather index and the classical spectral parameter is

σ ↔ nξ ' n~
smax

, smax ≡
8π

cg2
, (14)

where we kept only the leading order in ~. Above, we defined the parameter smax that
has the interpretation of being the maximum number of breathers (divided by ~−1) sine-
Gordon would have upon requantization. With this identification the quantum mass law
(9) starts resembling the classical one (6) provided the soliton mass scales correctly. At
small couplings, the exact quantum kink mass [69] has the same form as the classical result
(2), but with the quantum interaction gq in place of the classical one g. Therefore, by
plugging ~ in, we establish the identification Mq = ~−1M , which results in the same scaling
for the breather masses. The ~−divergence of the overall mass scale is not a fluke of our
mapping, but it will be crucial to achieve the correct scaling of the conserved quantities
(13). When two quantum wave packets scatter, they experience a Wigner phase shift
dictated by the scattering phase [47,72]: the quantum scattering shift is readily extracted
from the logarithmic derivative of the scattering matrix. More precisely, for the breathers’
scattering one has ϕq;n,n′(θ) = i∂θ logSn,n′(θ): in the semiclassical limit, we must recover
the classical scattering shift. This can be easily done from Eq. (10), after having taken
the logarithm and the rapidity derivative, by replacing the sum with an integral according
to Eq.(14). We leave the details of the calculation to Appendix A, where we find

ϕσ,σ′(θ) ' ~ϕq;n,n′ , ϕσ(θ) ' ~ϕq;n , ϕ(θ) ' ~ϕq . (15)

Here, σ(σ′) is linked to n(n′) through Eq. (14). With these building blocks, we now move
to the thermodynamic limit.

The scaling of the excitations’ densities and phase-space — When an extensive
number of excitations is present in the system, macrostates can be described in terms of
a quasiparticle distribution. Therefore, in the classical model one introduces the so-called
root densities ρK(θ) and ρK̄(θ) describing the density of kinks and antikinks respectively,
and ρσ(θ) to account for the breathers. Similar quantities are introduced in the quantum
world within the framework of Thermodynamic Bethe Ansatz [29] and describe both equi-
librium states, and more general non-equilibrium steady states in the form of Generalized
Gibbs Ensembles [20]. As anticipated, in view of the semiclassical limit we can focus on the
reflectionless points of the quantum sine-Gordon, which is described by diagonal Thermo-
dynamic Bethe Ansatz and characterized by roots densities for kinks and antikinks, ρq;K(θ)
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and ρq;K̄(θ) respectively, and a root density for the breathers ρq;n(θ) [29, 30, 57]. We now
use the scaling of the charges (13) to infer the correspondence of root densities. Due to
locality, conserved charges act additively on quasiparticles leading to the expression

L−1〈Qq〉 =

∫
dθ {qq;K(θ)ρq;K(θ) + qq;K̄(θ)ρq;K̄(θ)}+

∑
n

∫
dθ qq;n(θ)ρq;n(θ) . (16)

Above, q(θ) is called the charge eigenvalue and, similarly to the scattering shift and the
energy, the charge eigenvalues of the breathers are obtained by analytic continuation
qq;n(θ) = qq;K

(
θ+iπ4 (1−nξ)

)
+qq;K̄

(
θ−iπ4 (1−nξ)

)
. In particular, sine-Gordon is known to

have conserved charges for all odd values of spin s of the form qq;K(θ) = qq;K̄(θ) = Mqc
2esθ

[57]: by setting s = ±1, for example, one recovers linear combinations of energy and
momentum.

The divergence of the overall quantum mass scale Mq ∝ ~−1 is crucial in the proper
limit: Eq. (16) converges to the classical expression if we set

ρK(θ) = lim
~→0

ρq;K(θ) , ρσ(θ) = lim
~→0

~−1ρq;n(θ)
∣∣∣
σ=n~/smax

. (17)

Therefore, from Eq. (16) we obtain

L−1〈Q〉 =

∫
dθ {qK(θ)ρK(θ) + qK̄(θ)ρK̄(θ)}+

∫ 1

0
dσsmax

∫
dθ qσ(θ)ρσ(θ) , (18)

where for the odd-spin classical charges we have qK(θ) = qK̄(θ) = Mc2esθ and qσ(θ) =
qK(θ + iπ4 (1 − σ)) + qK̄(θ − iπ4 (1 − σ)). In principle, the integration measure smax could
be absorbed in a redefinition of ρσ, but we prefer to keep it explicit. Besides conservation
laws, another key ingredient in describing thermodynamics is the total phase-space density
ρt: in the quantum regime, this is defined through a set of integral equations [29]. We
obtain a finite scaling from the quantum to the classical case by setting

ρtK(θ) = lim
~→0

~ρtq;K(θ) , ρtσ(θ) = lim
~→0

~ρtq;n(θ)
∣∣∣
σ=n~/smax

. (19)

The resulting equations in the classical field theory are thus

ρtK(θ) =
cM

2π
cosh θ−

∫
dθ′

2π
ϕ(θ− θ′)(ρK(θ′) +ρK̄(θ′))−

∫ 1

0
dσ smax

∫
dθ′

2π
ϕσ(θ− θ′)ρσ(θ′)

(20)

ρtσ(θ) =
cmσ

2π
cosh θ−

∫
dθ′

2π
ϕσ(θ−θ′)(ρK(θ′)+ρK̄(θ′))−

∫ 1

0
dσ′smax

∫
dθ′

2π
ϕσ,σ′(θ−θ′)ρσ′(θ′) .

(21)
Above, we omit the equation for the antikinks since it is the same as the kinks’ one.
In passing, we notice the physical interpretation of these equations [72]: ρt is nothing
else than the reduced phase-space of a gas of extended particles with rapidity-dependent
length, the latter being set by the scattering kernel. Indeed, the very same expression is
postulated by the soliton-gas picture [36,41].

The root density and the total root densities are the macroscopic variables upon which
thermodynamics is built. However, they come as two independent quantities and do not
yet describe, for example, thermal states. To do this, one should bind the two through
a minimization of a proper free energy: this is where our procedure and the soliton-gas
picture begin to differ.
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The entropy and large-soliton regularization — Let us consider the very concrete
problem of determining the root density of a thermal state with some inverse temperature
β. By starting with the quantum sine-Gordon, one defines a free energy

Aq = βq〈Hq〉 − Sq[{ρq;K , ρq;K , ρq;n}] , (22)

where the entropy Sq is nothing else than the so called Yang-Yang entropy [29]

Sq[{ρq;K , ρq;K , ρq;n}] = L

∫
dθ

{
ρtq;Ks

(
ρq;K
ρtq;K

)
+ ρtq;K̄s

(
ρq;K̄
ρt
q;K̄

)
+
∑
n

ρtq;ns

(
ρq;n
ρtq;n

)}
,

(23)
where for notation convenience we kept the rapidity dependence of the roots implicit
and defined the function s(x) = −x log x − (1 − x) log(1 − x). The classical free energy
is readily obtained from the quantum expression (22) by using our semiclassical scaling.
Since the expectation value of the energy diverges ∼ ~−1, the quantum temperature should
be likewise rescaled to attain a finite value. However, our main focus is now the entropy

Sq[{ρq;K , ρq;K , ρq;n}]
~→0
= L

∫
dθ

{
ρK

[
1− log

(
ρK
ρtK

)]
+ ρK̄

[
1− log

(
ρK̄
ρt
K̄

)]
+

+

∫ 1

δ~

dσ smaxρσ

[
1− log

(
ρσ
ρtσ

)]
− log ~

[
ρK + ρK̄ + 2

∫ 1

δ~

dσ smaxρσ

]}
. (24)

Above, we can recognize several terms: For example, kinks contribute to the entropy
with ρK̄

[
1− log

(
ρK̄/ρ

t
K̄

)]
, which is nothing else than the entropy of classical particles

(i.e. with Maxwell-Boltzmann statistics) in a renormalized volume set by the total root
density. Similar contributions are associated to antikinks and breathers. Nonetheless, a
further ∝ log ~ term seems to prevent a straightforward semiclassical limit. However, it
turns out to be crucial in order to get a well-defined expression in the classical model, as
we now discuss. Above, we introduced a ~−dependent cutoff in the breathers’ spectral
parameter σ > δ~. Naively, one could have imposed δ~ = 0, but when converting the
sum over the quantum breathers to an integral, it should not be forgotten that in the
quantum-classical correspondence (14) σ has a lower bound ∝ ~. As σ approaches zero,
the spatial extension of the breather grows, and δ~ is exactly the ingredient we need to
regularize the large-soliton problem faced by the soliton-gas picture. Indeed, in the soliton-
gas picture [36,41] and in previous semiclassical limits of sine-Gordon [38,39,42], the log ~
term in Eq. (24) has been overlooked and the cutoff δ~ was absent. We notice that the
∝ log ~ term can be seen as the chemical potential introduced in Ref. [40]: however, in our
case it is a divergent quantity, while in the quoted reference it is eventually sent to zero.

In contrast, one should fix δ~ with the following strategy: for finite ~, minimize the free
energy by finding the saddle point δAq/δρ = 0, then impose that the resulting equations
remain consistent (i.e. non-singular) as ~→ 0. The dangerous terms are those where the
breathers’ spectral parameter is small. In spirit, this computation closely follows the steps
of a previous semiclassical limit of the attractive Non-Linear-Schrödinger equation [55].
Therefore, we only report the result, leaving an overview of the computation to Appendix
B. In particular, we find that δ~ should be fixed by asking

log
(
~−1δ~smax

)
= 1 , (25)

11
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leading to the following equations describing the classical Thermodynamic Bethe Ansatz
(we report only those for kinks and breathers, the one for the antikinks is the same as the
kinks’ one)

σεσ(θ) = −2 + βc2mσ

σ
cosh θ +

1

σ

∫
dθ′

2π
ϕσ(θ − θ′)(e−εK + e−εK̄ )+

+
1

σ

∫
dθ′

2π

∫ 1

0
dσ′ ϕσ,σ′(θ − θ′)

e−(σ′)2εσ′ (θ
′) − 1

smax(σ′)2
, (26)

εK(θ) = log smax − 1 + βMc2 cosh θ +

∫
dθ′

2π
ϕ(θ − θ′)(e−εK + e−εK̄ )+

+

∫
dθ′

2π

∫ 1

0
dσϕσ(θ − θ′)e

−σ2εσ(θ′) − 1

smaxσ2
, (27)

where we introduced the effective energies ε and, for later use, the filling functions ϑ as

ϑK(θ) = e−εK(θ) =
ρK(θ)

ρtK(θ)
, ϑσ(θ) = e−σ

2εσ(θ) = (smaxσ)2 ρσ(θ)

ρtσ(θ)
, (28)

and an analogous definition holds for the antikinks. Before moving further, a few comments
are due: commonly in the literature, the filling functions are defined as the ratio between
the root density and the total root density, but this choice is not convenient in our case.
Indeed, ρσ(θ)

ρtσ(θ) ' 1/(σsmax)2 as σ → 0 (see Appendix B). Hence, we define the non-singular

part as the filling function. With our definition, limσ→0 ϑσ(θ) = 1. This is also reflected in
our definition of the effective energy ε, since limσ→0 εσ(θ) remains finite. Secondarily, even
if we insist in using the more conventional notation, the equations (26-27) differ from those
derived within the soliton-gas picture by i) an extra contribution to the source term and ii)
the presence of a “−1” term in the integrals over breathers. Notice that this modification
guarantees that (e−σ

2εσ(θ) − 1)/(smaxσ
2) remains finite for σ → 0. Eqs. (26) and (27) are

the main result of our work and describe the exact thermodynamics of the classical field
theory. The classical thermodynamics is approached by the solution of the quantum TBA
in the proper limit: in principle, it should be possible to verify the limit by numerically
solving the quantum TBA and taking small interactions, or equivalently many breathers.
However, in practice, convergence is slow as observed in the analogue semiclassical limit
of the attractive Non-Linear Schrödinger equation [55], and many breathers are expected
to be needed to attain convergence. Hence, we leave aside this numerical check and we
instead perform in what follows a posteriori analytical and numerical benchmarks of the
classical TBA, showing its validity.

3.2 The expectation value of the vertex operator

After having derived the equations governing the thermodynamics, we would like to test
their prediction on observables that can be analytically computed in some limiting cases
and numerically tabulated in all regimes. Conserved charges seem to be the ideal can-
didates, given their simple expression in terms of the root densities (18). For example,
one could focus on the energy. However, on thermal states the expectation value of the
Hamiltonian diverges, due to the UV-black body catastrophe (see also Refs. [55, 60]).
Therefore, we revert to other observables such as the expectation value of the vertex op-
erator 〈cos(gφ)〉. This observable is of central importance for experiments: for example,
in the coupled condensates implementation, matter-wave interferometry [12, 14, 73] gives
access to projective measurements of the relative phase profiles of the two condensates,
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Figure 2: The vertex operator at equilibrium. We compare the temper-
ature dependence of the expectation value of the vertex operator obtained by
solving the Thermodynamic Bethe Ansatz (TBA) equations Eq. (26-27) [sym-
bols] against the numeric predictions of the Transfer Matrix approach [full black
line]. As a comparison, we plot the low temperature asymptotics derived from the
Klein-Gordon field theory [red dashed line]. While at large β the three curves co-
incide, a clear deviation of the Klein-Gordon approximation is observed at higher
temperature, while the agreement between the Transfer Matrix and the exact
prediction remains excellent. At equilibrium, the mass scale m, sound velocity c
and interactions g can be absorbed in a rescaling of distances and fields. There-
fore, we set m = c = g = 1 in the above leaving β as the only free parameter.
Numerical methods are discussed in Appendix D.

which map into the sine-Gordon phase. From these measurements, the expectation vertex
can be recovered and it is routinely used in experiments to quantify the “phase locking”
of the field.

Within the quantum case, this observable can be computed in closed form for any
Generalized Gibbs Ensemble, and thus on thermal states as well, by observing that cos(gφ)
is proportional to the derivative of the Hamiltonian w.r.t. the bare mass m, and then using
the Hellmann-Feynman theorem [74]. We stress that the applicability of the Hellmann-
Feynmann theorem does not rely on the knowledge of the operatorial form of the charges
to be used in the GGE, which in the quantum sine-Gordon is still an open challenge [70],
but in contrast uses a representative state of the ensemble [32,33] whose GGE is defined by
the rapidity occupancies in the thermodynamic limit, namely the root densities. From the
quantum result, the semiclassical limit can be taken: the details are discussed in Appendix
C.

Before reporting the formula, we need a preliminary definition of the so-called dressing
operation in the classical theory. Due to the singular behavior of the canonical defini-
tion of the filling function discussed previously, it is convenient to redefine the standard
expression of the dressing operation by removing the singular part. Let us consider a
triplet of test functions {τK(θ), τK̄(θ), τσ(θ)}. One defines then the dressing operation
{τK(θ), τK̄(θ), τσ(θ)} → {τdrK (θ), τdr

K̄
(θ), τdrσ (θ)} as the solution of the following linear in-
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tegral equations

στdrσ (θ) =
τσ(θ)

σ
− 1

σ

∫
dθ′

2π
ϕσ(θ − θ′)[ϑK(θ′)τdrK (θ′) + ϑK̄(θ′)τdrK̄ (θ′)]

− 1

σ

∫ 1

0

dσ′

smax

∫
dθ′

2π
ϕσ,σ′(θ − θ′)ϑσ′(θ′)τdrσ′ (θ′) , (29)

τdrK (θ) = τK(θ)−
∫

dθ′

2π
ϕ(θ − θ′)[ϑK(θ′)τdrK (θ′) + ϑK̄(θ′)τdrK̄ (θ′)]+

−
∫ 1

0

dσ

smax

∫
dθ′

2π
ϕσ(θ − θ′)ϑ(θ′, σ)τdrσ (θ′) . (30)

These classical dressing equations naturally emerge as the semiclassical limit of the quan-
tum ones (see Appendix C). Notice the connection between the total root densities and the
dressed derivative of the momenta 2πρtK(θ) = (∂θpK)dr(θ) and 2πρtσ(θ) = σ2(∂θpσ)dr(θ),
with pK(θ) = Mc sinh θ and pσ(θ) = mσc sinh θ the kink’s and breather’s momenta, re-
spectively. The expectation value of the vertex operator can be then computed with the
following expression (we omit the obvious θ−dependence of the functions for the sake of
notation)

2
m2c2

g2
〈1− cos(gφ)〉 =

∫
dθ

2π

∫ 1

0

dσ

smax
mσc(cosh θεdrσ − c sinh θpdrσ )ϑσ+∫

dθ

2π
Mc(cosh θεdrK − c sinh θpdrK )ϑK +

∫
dθ

2π
Mc(cosh θεdrK̄ − c sinh θpdrK̄ )ϑK̄ . (31)

We are finally in the right position to test our thermodynamic prediction: in Fig-
ure 2 we numerically solve the set of integral equations defining thermal states (26,27),
then we plug the result in Eq. (31). The resulting data are compared against an ab-
initio numerical evaluation of the vertex operator on thermal states obtained through the
Transfer Matrix approach [75, 76], finding perfect agreement for all temperature regimes.
Despite the similar name, this Transfer Matrix method is different from the one we pre-
viously mentioned in the context of integrability and we shortly discuss it in Appendix
D. We stress that we perfectly capture the low-temperature regime, where other methods
gave incorrect results, see Ref. [42] for a compact overview. It turns out that the low
temperature regime is even amenable to an analytical analysis: this is a very instructive
calculation that i) shows the importance of cutoff δ~ in the entropy, leading us to the
correct equations (26,27), and ii) helps shining light on the role of the, so far missing, ra-
diative modes. Indeed, at low temperatures the phase field is expected to be pinned down
at one of the potential minima, let’s say φ = 0. Hence, upon Taylor expanding the co-
sine potential, the sine-Gordon Hamiltonian (1) is well-approximated by the Klein-Gordon

model HKL =
∫

dx {1
2c

2Π2(x) + 1
2(∂xφ)2 + m2c2

2 φ2}. The Klein-Gordon field theory has
only a single radiative mode, thus is distributed according to a Rayleigh-Jeans distribution
1/[β × (energy)], leading to

2
m2c2

g2
〈1− cos(gφ)〉

β→∞
' m2c2〈φ2〉KL = m2c3

∫
dθ

2π

1

βmc2 cosh θ
. (32)

We will now recover this result from sine-Gordon. First, we simplify Eqs. (26,27): for
small temperatures, the kink-antikink fillings are exponentially suppressed, hence we can
entirely neglect them. Likewise, only breathers with small σ will contribute: therefore, we
can safely approximate mσ ∼Mπσ. We furthermore can make additional approximations:
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we toss away the “−2” term in Eq. (26) which is subleading with respect to βMc2π. Since
only breathers with small spectral parameter are important, we can approximate ϕσ,σ′(θ)
with the proper limit. In particular, the scattering shift collapses to a Dirac−δ in the

rapidity space ϕσ,σ′(θ− θ′)
σ,σ′→0

= 4πsmax min(σ, σ′)δ(θ− θ′). Lastly, by neglecting further
terms subleading w.r.t. βMc2π, we can extend the integration domain of the spectral
parameter to the whole real axis. We finally reach the simplified equation

σεσ(θ)
β→+∞

= βc2πM cosh θ +

∫ ∞
0

dσ′
2 min(σ, σ′)

σ

e−(σ′)2εσ′ (θ) − 1

(σ′)2
. (33)

Albeit non-trivial, these equations can be exactly solved [37,55], leading to an exact low-
temperature analytical expression for the filling function (28)

ϑσ(θ)
β→+∞

=
(βσMc2π cosh θ)2

4 sinh2
(
βσ
2 Mc2π cosh θ

) . (34)

We now revert to the dressing equations (29) by invoking the same approximations and
with some simple manipulations, the dressing equations supplemented with Eq. (34) are
readily recast in a scaling form

τdrσ (θ)
β→+∞

=

[
lim
σ→0

τσ(θ)

σ

]
u
(
βσMc2π cosh θ

)
σ2 (βMc2π cosh θ)

, (35)

where u(x) satisfies

u(x) = x−
∫

dy
2 min(x, y)

4 sinh2(y/2)
u(y) . (36)

An explicit solution can be found by taking a second derivative on both sides and obtaining

the differential equation x sinh2(x/2)d2u(x)
d2x

= u(x), which leads to u(x) = x coth(x/2)− 2.
We use this solution in Eq. (31) and, upon neglecting kinks and antinkins, we find

2
m2c2

g2
〈1− cos(gφ)〉 = m2c3

∫
dθ

2π

1

βmc2 cosh θ

∫ ∞
0

dx
x2 coth(x/2)− 2x

4 sinh2
(
x
2

) . (37)

Noticing the identity
∫∞

0 dxx
2 coth(x/2)−2x

4 sinh2(x2 )
= 1, we finally have the the equality of the above

expression with Eq. (32). We have therefore shown the consistency of the low-temperature
regime of our sine-Gordon thermodynamics. Notice that the “−1” in the integrand of Eq.
(33), which has been overlooked in the soliton-gas picture, is crucial to obtain the correct
result. Before finally moving to the nonequilibrium scenario, we would like to further
comment on the radiation-soliton interplay: our analysis of the vertex operator shows
how the breathers for small spectral parameter (each of them having solitonic nature) can
collectively behave as the radiative mode of the Klein-Gordon field theory. However, since
all the modes contribute to the vertex operator, how this reorganization happens is not
evident. A better understanding can be achieved by computing, in the low-temperature
limit, the total energy carried by the modes with rapidity θ and integrated over the spectral
parameter ∫ 1

0
dσsmaxmσc

2 cosh θρσ(σ)
β→∞

=
mc cosh θ

2πβ
. (38)

We can compare this result with the thermal mode occupation of Klein-Gordon: the

mode density at fixed rapidity n(θ) is populated as n(θ) =
d[ 1

2π
mc sinh(θ)]

dθ
1

βmc2 cosh θ
, where

the 1/[β × (energy)] term comes from the Rayleigh-Jeans distribution of radiation in the
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momentum space, while the prefactor is the Jacobian to pass from momenta to rapidities.
Multiplying the Klein-Gordon mode density by the energy mc2 cosh θ we match Eq. (38),
undoubtedly showing that radiative modes can be thought of as a “condensation” of
extended solitons with the same rapidity.

4 From thermodynamics to transport: Generalized Hydro-
dynamics

We built the thermodynamics of the classical sine-Gordon theory, but the same concepts
can be extended to nonequilibrium states, such as homogeneous quantum quenches [77,78],
and transport settings [48] through Generalized Hydrodynamics. Here, we take this second
path and study the paradigmatic transport setting, namely the partitioning protocol [56].
To this end, we need to write down the proper hydrodynamic equations. As it is assumed
within the well-established method of Generalized Hydrodynamics [22, 34, 35], within a
local density approximation the root density is promoted to be a weakly space-time de-
pendent function that locally parametrizes the state. In the simplest scenario where the
sine-Gordon Hamiltonian is kept homogeneous in space and constant in time, while the
only inhomogeneity is carried by the initial state, the large scale dynamics is captured by
the following continuity equations

∂tρσ(θ, t, x) + ∂x[veff
σ ρσ(θ, t, x)] = 0 , ∂tρK(θ, t, x) + ∂x[veff

K ρK(θ, t, x)] = 0 . (39)

As usual, we omit the antikinks’ equation since it is analogous to the kinks’ one. Above,
the effective velocity veff is a state-dependent renormalized velocity that is defined by
properly “dressing” the group velocity, thus obtaining veff

σ = (∂θεσ)dr/(∂θpσ)dr and veff
K =

(∂θεK)dr/(∂θpK)dr (although exceptions to this definition are known [79]). The dressing
is performed by using the root-density at a given space and time position, such that the
effective velocity gets an implicit dependence in space and time as well. The equations (39)
have been proposed for the first time in quantum models in the seminal papers Refs. [34,35],
but further progresses have been made including corrections beyond the Eulerean scale
[80–83] and inhomogeneities and time-dependence in the Hamiltonian [49, 50]. We leave
these questions for future developments: the interested reader can find these extensions,
together with many other results and applications, in the recent review paper Ref. [22].
Eq. (39) can be equivalently recast in more convenient equations for the filling function
ϑ, which is also promoted to be a weakly space-time dependent function

∂tϑσ(θ, t, x) + veff
σ ∂x[ϑσ(θ, t, x)] = 0 , ∂tϑK(θ, t, x) + veff

K ∂x[ϑK(θ, t, x)] = 0 . (40)

Since veff is state-dependent itself, the equivalence of the two formulations may appear
not evident, but passing from one to the other requires standard manipulations already
discussed in the literature [34, 35] and thus is not reported here. Of course, we checked
that these hydrodynamic equations are consistent with taking the semiclassical limit of the
Generalized Hydrodynamics of the quantum sine-Gordon model. As anticipated, we aim
to use these equations to study the paradigmatic partitioning protocol: in this setting, the
state is initialized in two different halves, each of them described by a Genealized Gibbs
Ensemble and thus identified by a left(right) filling function ϑL(R). For example, thermal
states at different temperatures are a common choice. Then, at t > 0 the two halves are
joined and let to evolve with the sine-Gordon Hamiltonian, generating non-trivial currents
and activating transport. While generic (non-integrable) systems usually feature diffusive
behavior, integrability induces ballistic transport. This is reflected into the scale invariant
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Figure 3: Hydrodynamic transport stemming from partitioning proto-
cols. We show the ray-dependent profiles ζ = x/(ct) of the vertex operator [Left]
and topological charge density [Right] in partitioning protocols. As an example,
we fix m = c = g = 1 and consider three cases in total: in two of them [blue
dots and yellow triangles] we choose a temperature imbalance with zero topo-
logical charge. In the third case [green diamonds] we study equal temperatures
with a chemical potential imbalance of the topological charge. The effect of the
latter barely affects the vertex operator, but has a clear effect on the topological
charge. Continuous lines are obtained as the solution of Eq. (41), symbols are
Monte Carlo data (see D for details). Error bars are estimated as the variance of
20 independent Monte Carlo runs with ≈ 500 samples each. Upon close inspec-
tion, it can be seen that the solid lines have some residual irregularities: this is a
discretization error due to the finite grid (we used ≈ 3000 points).

solution of Eq. (40) when applied to the partitioning protocol: after a short time transient
which depends on the details of the interface between the two initial halves, the evolving
hydrodynamic state is not an independent function of t and x, but only depends on the
ratio ζ = x/(ct). This allows one to derive an exact implicit solution to the partitioning
protocol [34,35]

ϑσ(θ, ζ) = Θ(veff
σ (θ, ζ)− ζ)ϑLσ (θ) + Θ(ζ − veff

σ (θ, ζ))ϑRσ (θ) . (41)

Above, Θ is the Heaviside-theta function. We report only the equations for the breathers,
but analogous equations hold for kinks and antikinks. The above solution is implicit due
to the state-dependence of the effective velocity, but an iterative numerical scheme ensures
fast convergence.

To test our hydrodynamic equations, we compare the solution of Eq. (41) against
ab-initio numerical simulations. The Transfer Matrix method used in the previous section
cannot be generalized out of equilibrium, therefore we employ Monte Carlo schemes. These
techniques are standard, but some care should be taken in properly defining the junction
between the two initial halves: we report a short overview in Appendix D. We focus on
the partitioning of thermal states, possibly deformed with a non-trivial topological charge.

Indeed, in sine-Gordon a charge counting the kink-antikink difference, but being in-
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sensitive to breathers, can be defined as

Z =
g

2π

∫
dx ∂xφ , (42)

and it is commonly known as the topological charge. This charge is explicitly conserved
by the sine-Gordon Hamiltonian and captures the winding number of the field across the
system. In terms of charge eigenvalues on the excitations, which we denote with z, one
has zK(θ) = 1, zK̄(θ) = −1 and zσ(θ) = 0: thermal states can be easily deformed to take
into account a non-trivial topological charge by adding a chemical potential coupled to
the topological charge eigenvalue in Eqs. (26-27) βH → βH+µZ. The topological charge
gives us an extra parameter to benchmark and a further observable to test our prediction.
In Figure 3 we show partitioning protocols for a variety of parameters, finding excellent
agreement between hydrodynamics and Monte Carlo data, thus proving the validity of the
hydrodynamic equations (40).

5 Conclusion and Outlook

In this paper, we revisited the thermodynamics of the classical sine-Gordon field theory,
identifying a common issue in previous works due to solitons of vanishing mass, but growing
spatial extension. These solitons cause subtleties in taking the thermodynamic limit,
which we circumvent by considering the semiclassical limit of the quantum model. In this
framework, the Planck constant acts as a regulator putting a maximum cap to the size of
solitons, allowing us to first safely take the thermodynamic limit and only then the classical
one. Our result shows that solitons alone account for the exact thermodynamic of sine-
Gordon without any explicit contribution of any radiative: In fact, radiative modes in this
context can be rather seen as a collective effect of light solitons. We also studied transport
in the form of partitioning protocols, laying the foundations for further developments of
the Generalized Hydrodynamics for the classical sine-Gordon model. This work opens up
several interesting directions that we are eager to explore. First of all, while the physical
role of the Planck constant in acting as an infrared regulator is clear, a regularization of
the large-soliton problem within the purely classical realm is highly desirable and would
allow to tackle other integrable models without an obvious quantum counterpart.

Large solitons with arbitrary spatial extension are present in a plethora of classical and
even quantum models with possibly far-reaching consequences. For example, this is the
case in certain quantum magnets with non-abelian symmetries that feature superdiffusive
transport such as the isotropic Heisenberg chain [84]: there, extended excitations with
classical nature have been identified as the culprit of the anomalous transport [54]. It has
been previously put forward that superdiffusion can also be understood as a fluctuating
Goldstone mode of the non-abelian symmetry in an effective bath of heavier excitations [85]
(see also [86]): it is natural to wonder if, in analogy to the condensation of solitons into
radiative modes we observed in sine-Gordon, the Goldstone mode of the Heisenberg chain
can be seen as a condensation of large solitons. Lastly, remaining within the sine-Gordon
framework, we aim to use this work as a stepping stone to extend the Generalized Hydro-
dynamics approach to feature inhomogeneities in the sine-Gordon’s couplings: although
a general hydrodynamic theory of inhomogeneous interactions has been already devel-
oped [49, 50], we expect complications arising due to binding-unbinding of solitons into
breathers, similarly to the bound state recombination featured by other models [55,87,88].
This question is not of mere theoretical interest, but we expect to have direct experimental
application, too, as for instance the coupled quasicondensate experiment [12]. The latter
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realizes a sine-Gordon simulator with inhomogeneous couplings and, depending on the
parameters, is well described by the semiclassical regime. We envision that a full hydro-
dynamic treatment may shed new light on the dynamics and relaxation of the experiment.

Data and code availability

Data analysis of Monte Carlo sampling, a Mathematica notebooks for the Transfer Matrix
approach and a solver for the classical Thermodynamic Bethe Ansatz and partitioning are
available on Zenodo upon reasonable request [89].
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A The semiclassical limit of the quantum scattering shift

Here, we explicitly show how to recover the classical breather-breather phase shift ϕσ,σ′(θ)
in the semiclassical limit. As it has been explained in the main part of this paper, for the
quantum scattering the definition ϕq;n,n′(θ) = i∂θ logSn,n′(θ) holds true. Therefore, the
natural starting point for the semiclassical limit is the logarithm of the quantum breather-
breather scattering matrix reported in Eq. (10). Focusing on the second term only (the
first term will drop out in the semiclassical limit), we get

logSn,m(θ) ∝ log

min(n,m)−1∑
k=1

sin2
(

(|n−m|+ 2k)πξ4 − i
θ
2

)
sin2

(
(|n−m|+ 2k)πξ4 + i θ2

) cos2
(

(m+ n− 2k)πξ4 + i θ2

)
cos2

(
(m+ n− 2k)πξ4 − i

θ
2

) ,
(43)

in which we replace the discrete parameter n with the continuous spectral parameter σ
following the relation (14). This brings an explicit ~-dependence such that we can take
the limit ~→ 0. The sum is then converted to an integral giving a factor ~−1, which leads
to the reported scaling behavior in Eq. (15) and the fact that the first factor in Eq. (10)
vanishes. Concretely, we arrive at

logSσ,σ′(θ) =

min(σ,σ′)∫
0

dτsmax log

[
sin2

(
(−|σ′ − σ| − 2τ)π4 + i θ2

)
cos2

(
(σ′ + σ − 2τ)π4 + i θ2

)
sin2

(
(−|σ′ − σ| − 2τ)π4 − i

θ
2

)
cos2

(
(σ′ + σ − 2τ)π4 − i

θ
2

)].
(44)
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From here, we can use the definition of ϕσ,σ′(θ) = i∂θ logSσ,σ′(θ) and exchange the deriva-
tive ∂θ with ∂τ while keeping track of the appropriate factors stemming from the chain rule.
Following this procedure and using trigonometric identities the integral can be carried out,
and we obtain the classical phase shift

ϕσ,σ′(θ) =
2smax

π
log

(
[cosh(θ)− cos((σ + σ′)π/2)][cosh(θ) + cos((σ − σ′)π/2)]

[cosh(θ)− cos((σ − σ′)π/2)][cosh(θ) + cos((σ + σ′)π/2)]

)
. (45)

An analogous calculation can be done for the breather-kink phase shift ϕσ(θ). The semi-
classical limit of the kink-kink phase shift ϕ(θ) boils down to

ϕ(θ) =
smax

π

∫ ∞
0

dt

t

sinh(tπ/2)

cosh(πt/2)
cos(θt) =

smax

π
log

cosh θ + 1

cosh θ − 1
. (46)

We did not manage to analytically perform the integral, but we numerically checked the
last identity with machine precision. It is also useful to calculate the normalization of the
breather-breather scattering

∫
dθ′ϕσ,σ′(θ − θ′). To do so, we make use of the fact that

ϕσ,σ′(θ) is the derivative of i logSσ,σ′ , hence
∫

dθ′ϕσ,σ′(θ − θ′) = i logSσ,σ′(θ)
∣∣∣θ=+∞

θ=−∞
. To

evaluate this, we can conveniently use Eq. (44) and simply take the limit of logarithms of
hyperbolic functions, giving∫

dθ ϕσ,σ′(θ
′ − θ) = −2smax

min(σ,σ′)∫
0

dτ
(
(−|σ′ − σ| − 2τ)π − 2π + (σ′ + σ − 2τ)π

)
=

= 4πsmax min(σ, σ′). (47)

Note that the extra −2π in the integral comes from crossing a branch-cut in the complex
plane.

B Linking the Planck constant and the large-soliton cutoff

In this Appendix, we discuss in more detail how to obtain the finite equations (26)-
(27) describing the classical sine-Gordon model in thermal equilibrium. A very similar
procedure was used in our previous paper to obtain the out-of-equilibrium phase of the
Non-Linear Schrödinger equation with attractive interactions [55].

The starting point is the minimization of the classical version of the free energy (22).
However, the semiclassical entropy (24) still has a term ∝ log(~) diverging in the limit
~ → 0. At the same time, the ratio ρσ(θ)/ρtσ(θ) develops a singularity ∝ σ−2, which is
why we keep an explicit cutoff σ > δ~ > 0 in the first place. Inspired by our previous work
on the Non-Linear Schrödinger equation [55], we define the effective energies ε according
to Eq. (28). By first computing the saddle-point δAq/δρ = 0, and then expressing the
so-obtained equations in terms of the effective energies, we get

− εK(θ) + βMc2 cosh θ + log ~ +

∫
dθ′

2π
ϕ(θ − θ′)(e−εK(θ′) + e−εK̄(θ′))

+

∫
dθ′

2π

∫ 1

δ~

dσsmaxϕσ(θ − θ′)e
−σ2εσ(θ′)

(smaxσ)2
= 0 , (48)

− σ2εσ(θ)− 2 log(smaxσ) + βc2mσ cosh θ + 2 log ~ +

∫
dθ′

2π
ϕσ(θ − θ′)(e−εK(θ′) + e−εK̄(θ′))

+

∫
dθ′

2π

∫ 1

δ~

dσ′smaxϕσ,σ′(θ − θ′)
e−(σ′)2εσ′ (θ

′)

(smaxσ′)2
= 0 , (49)
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with the explicit cutoff δ~, that we find self-consistently in what follows. In the inte-
grals over the breathers, we single out the diverging part which can be then analytically
computed by using Eq. (8)∫

dθ′

2π

∫ 1

δ~

dσ′smaxϕσ,σ′(θ − θ′)
e−σ

′2εσ′ (θ
′)

(smaxσ′)2
=∫

dθ′

2π

∫ 1

δ~

dσ′smaxϕσ,σ′(θ − θ′)
1

(smaxσ′)2
+

∫
dθ′

2π

∫ 1

δ~

dσ′smaxϕσ,σ′(θ − θ′)
e−σ

′2εσ′ (θ
′) − 1

(smaxσ′)2
=

2

[
log

(
σ

δ~

)
+ (1− σ)

]
+

∫
dθ′

2π

∫ 1

δ~

dσ′smaxϕσ,σ′(θ − θ′)
e−σ

′2εσ′ (θ
′) − 1

(smaxσ′)2
. (50)

Plugging this result back into the full equation (49) gives (we focus on the equation for
the breathers, the equations for the kinks closely follow the same analysis)

− σ2εσ + 2
[
− log

(
~−1δ~smax

)
+ 1− σ

]
+ βc2mσ cosh θ

+

∫
dθ′

2π
ϕσ(θ − θ′)(e−εK(θ′) + e−εK̄(θ′)) +

∫
dθ′

2π

∫ 1

δ~

dσ′ϕσ,σ′(θ − θ′)
e−(σ′)2εσ′ (θ

′) − 1

smax(σ′)2
= 0,

(51)

where, indeed, the log σ singularities of the two terms exactly balance. One is left with the
task of suitably choosing δ~. To this end, we consider the σ → 0 limit of this expression:
if εσ does not diverge, then (e−(σ′)2εσ′ (θ

′) − 1)/(σ′)2 is non-singular and we can safely
remove the cutoff in the integral. We now observe that the kernels vanish in this limit
limσ→0 ϕσ = limσ→0 ϕσ,σ′ = 0 as well as the breather mass mσ → 0. Therefore, taking the
σ → 0 limit of the equation within these assumptions, we are left with

lim
σ→0

[Eq. (51)]→
[
− log

(
~−1δ~smax

)
+ 1 = 0

]
, (52)

which unambiguously fixes δ~. A similar procedure can be carried out for the kink equa-
tions (48), leading to the finite expressions of the equations (27).

C The expectation value of the vertex operator

In this Appendix, we compute the expectation value of the vertex operator in the clas-
sical field theory by taking advantage of quantum results. To this end, one first notices
that ∂mĤ =

∫
dx2mc2

g2 (1 − cos(gφ)), then uses the Hellmann-Ferynman theorem: for any

eigenstate of the quantum Hamiltonian |E〉 it holds 〈E|∂mĤ|E〉 = ∂m(〈E|Ĥ|E〉) = ∂mE.
The derivative of the energy is easy to compute, the only caveat is that one must derive
the eigenvalues of finite-size eigenstates before eventually taking the thermodynamic limit.
We notice that for each physical root density, there exist representative eigenstates |E〉
such that they are described by ρ in the thermodynamic limit [32,33]. These are standard
computations in integrability [50,74] leading to

1

L
∂m〈Hq〉 =

∫
dθ

2π

Mq

m
c
(

cosh θεdr
q;K(θ)− c sinh θpdr

q;K

) ρq;K(θ)

ρtq;K(θ)
+∫

dθ

2π

Mq

m
c
(

cosh θεdr
q;K̄(θ)− c sinh θpdr

q;K̄

) ρq;K̄(θ)

ρt
q;K̄

(θ)
+

∑
n

∫
dθ

2π

mq;n

m
c
{

cosh θεdr
q;n(θ)− c sinh θ pdr

q;n(θ)
} ρq;n(θ)

ρtq;n(θ)
. (53)
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Above, L is the system’s size introduced for extensive reasons, and we have already
approximated the quantum soliton mass with the semiclassical limit, hence Mq = ~−1M ,
thus featuring a linear dependence in the bare mass m. Here, the superscript “dr”
stands for the quantum dressing operation [29] analogous to the classical one in Eq.
(20-21). For any test functions {τK(θ), τK̄(θ), τn(θ)}, the quantum dressing operation
{τK(θ), τK̄(θ), τn(θ)} → {τdr

K (θ), τdr
K̄

(θ), τdr
n (θ)} is defined by the following coupled inte-

gral equations

τdr
q;K(θ) = τq;K(θ)−

∫
dθ′

2π
ϕq(θ − θ′)

(
τdr
q;K(θ′)

ρq;K(θ′)

ρtq;K(θ′)
+ τdr

q;K̄(θ′)
ρq;K̄(θ′)

ρt
q;K̄

(θ′)

)

−
∑
n

∫
dθ′

2π
ϕq;n(θ − θ′)τdr

q;n(θ′)
ρq;n(θ′)

ρtq;n(θ′)
, (54)

τdr
q;n(θ) = τq;n(θ)−

∫
dθ′

2π
ϕq;n(θ − θ′)

(
τdr
q;K(θ′)

ρq;K(θ′)

ρtq;K(θ′)
+ τdr

q;K̄(θ′)
ρq;K̄(θ′)

ρt
q;K̄

(θ′)

)

−
∑
n′

∫
dθ′

2π
ϕq;n,n′(θ − θ′)τdr

q;n′(θ
′)
ρq;n′(θ

′)

ρtq;n′(θ
′)
. (55)

From here, one can show how the classical dressing operation naturally emerges in the
semiclassical limit. We first replace the quantum expressions with the classical ones with
the correct scaling of ~ (see Eqs. (15,17, 19), pass over from the sum over breathers to an
integral according to Eq. (14), and see that ~ drops out everywhere.
Note that through the non-singular parametrisation of the breather filling (28), an ex-
tra (smaxσ)−2 appears in the integral over the spectral parameter σ. Since this is in-
convenient, we redefine the dressing operation for the breathers in such a way that
τdrσ = σ2

[
τdr
n

]
σ=n~/smax

while the kinks remain unaltered τdrK = τdr
K . With this, we recover

the dressing operation reported in the main text in Eq. (20-21). Using the quantum-
classical correspondence for the dressing operation, the classical expectation value of the
vertex operator (31) readily follows from Eq. (53).

D Numerical methods

In this Appendix we shortly overview the numerical methods used in this paper. A mathe-
matica notebook for the Transfer Matrix approach used to compute equilibrium quantities
(Figure 2) and a solver for the thermodynamic equation Eqs. (26-27) and partitioning pro-
tocols are available on Zenodo upon reasonable request [89]. However, we only provide
the Monte Carlo data but not the source code, since it is a standard method.

D.1 Solving the thermodynamics and partitioning

The first step is defining a convenient discretization of the phase space. To this end, we
use a cartesian discretization that is nonlinear in the σ space, building a tassellation of the
domain phase space [0, 1]× [−Λ,Λ] in pairs {σi, θi}, where Λ is a large rapidity cutoff. In
principle, rapidities can be also discretized according to a non-linear function, but this is
not very important. In contrast, the non-linear discretization in σ is chosen to be denser
at the origin, i.e. where the Eqs. (26-27) become less regular. Each of these points is taken
as a representative of a rectangle with edges placed on the midpoints between the chosen
point and the neighbouring ones. The space of kinks is discretized only on the rapidities.
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The set of integral equations governing the thermodynamics are then discretized: in this
respect, it is crucial to have a proper discretization of convolutions involving ϕ, which
features singularities. Let us imagine ϕ is convoluted with a test function τσ(θ) smooth
in the phase space

∫
dσ

∫
dθϕσi,σ(θj − θ)τσ(θ) =

∑
a,b

∫ σa+σa+1
2

σa+σa−1
2

dσ

∫ θb+θb+1
2

θb+θb−1
2

dθϕσi,σ(θj − θ)τσ(θ) '

∑
a,b

ϕ
(d)
{σi,θj},{σa,θb}τσa(θb) , (56)

where ϕ
(d)
{σi,θj},{σa,θb} =

∫ σa+σa+1
2

σa+σa−1
2

dσ

∫ θb+θb+1
2

θb+θb−1
2

dθϕσi,σ(θj − θ) .

We experienced that this discretization gives stable and fast-convergent results provided

the integration kernel ϕ
(d)
{σi,θj},{σa,θb} is well-approximated. To this end, we isolate the

singular part ϕ
(S)
σ,σ′(θ) by defining it as

ϕ
(S)
σ,σ′(θ) =

2smax

π
log

[
θ2 + π2

4 (σ + σ′)2

θ2 + π2

4 (σ − σ′)2

]
+

2smax

π
σσ′ log

(
θ2 + 1

θ2 + π2

4 (σ + σ′ − 2)2

)
, (57)

and the remaining being the non-singular part ϕ
(NS)
σ,σ′ (θ) = ϕσ,σ′(θ) − ϕ

(S)
σ,σ′(θ). With this

definition, ϕ(S) absorbs the singularities of ϕ while retaining the same asymptotic behavior
(it vanishes for large rapidities as well as if one of the two spectral parameters is sent to
zero). The singular part is simple enough to analytically perform the integral in Eq.
(56), while the integral over the non-singular part is approximated as a constant over the
integration domain

ϕ
(d)
{σi,θj},{σa,θb} '

σa+1 − σa−1

2

θb+1 − θb−1

2
ϕ(NS)
σi,σa(θj−θb)+

σa+σa+1
2∫

σa+σa−1
2

dσ

θb+θb+1
2∫

θb+θb−1
2

dθϕ(S)
σi,σ(θj−θ) .

(58)
A similar discretization is employed for the kink-kink scattering shift and kink-breather
one. With this approximation, the linear integral equations for the dressing are converted
in linear matrix equations easy to numerically solve. The nonlinear equation determining
the effective energy needs further care for a correct handling of the integral: let us focus
only on this part for the sake of clarity and pick a term σc from the spectral parameter
discretization. Its role will become clear soon: we split the integral as follows∫ ∞

−∞

dθ′

2π

∫ 1

0
dσ′ ϕσ,σ′(θ − θ′)

e−(σ′)2εσ′ (θ
′) − 1

smax(σ′)2
=∫ ∞

−∞

dθ′

2π

∫ (σc+σc−1)/2

0
dσ′ ϕσ,σ′(θ − θ′)

e−(σ′)2εσ′ (θ
′) − 1

smax(σ′)2
+∫ ∞

−∞

dθ′

2π

∫ 1

(σc+σc−1)/2
dσ′ ϕσ,σ′(θ − θ′)

e−(σ′)2εσ′ (θ
′)

smax(σ′)2
+∫ ∞

−∞

dθ′

2π

∫ 1

(σc+σc−1)/2
dσ′ ϕσ,σ′(θ − θ′)

−1

smax(σ′)2
.
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Figure 4: The discretized solution of the filling function. Here, we show
the discretized filling function resulting from a numerical solution of the TBA
equations. As an example, we show the case g = m = c = 1 and β = 0.3 and zero
topological charge, using approximately 3000 points in total in the discretization.
Left: filling function of breathers. Right: filling function of kinks (antikinks not
reported, being identical to kinks) .

For small values of the spectral parameter σ′, the kernel ϕσ,σ′(∆θ) is very peaked
around small rapidity differences ∆σ ' 0, but the support grows as σ′ gets larger. While
e−(σ′)2εσ′ (θ

′) quickly decays to zero for large rapidities (at fixed σ′), the −1 factor does
not. By splitting the two terms we ensure that we can use a rapidity cutoff tailored
on the fast decaying e−(σ′)2εσ′ (θ

′). However, for small spectral parameters one wants to
retain the two terms together, in order to balance the 1/(σ′)2 singularity. The last line
can be integrated exactly by using the fact that

∫
dθϕσ,σ′(θ) = 4πsmax min(σ, σ′), while

the rest is discretized in the same spirit as Eq. (56) by reintroducing the cutoff in the
rapidity space as well. The so-discretized nonlinear integral equations can be then solved
with standard routines. The choice of σc must be made in such a way that ϕσ,σ′<σc(∆θ)
is very peaked in the rapidity space, having the smallest support as possible, while we
still want to retain a few discretized points σi < σc for a correct discretization of the
integrals. Notice that since limσ→1 ϑσ(θ) = 1 holds by construction, the rapidity cutoff
Λ does not have to be necessarily chosen such that ϑσ(θ) has support in λ ∈ [−Λ,Λ] for
every σ. It is rather sufficient requiring this only for σ > σc. Eventually, the convergence
of the approximation upon increasing the cutoff and improving the discretization must
be checked. As an example, in Fig. 4 we show the numerically computed filling function
obtained with ∼ 3000 points in the discretization.

D.2 The Transfer Matrix approach

The Transfer Matrix approach is a standard method to convert one dimensional classical
systems at equilibrium into zero-dimensional quantum mechanical problems, easy to be
solved. Let us consider a Gibbs Ensemble on a finite size [−L/2, L/2] with periodic
boundary conditions, with the aim of computing the average of a given local observable of
the phase field in x = 0, i.e. O(φ(0)). Later, the observable can be chosen as the vertex
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operator. Within a path integral point of view

〈O(φ(0))〉 =

∫
DφO(φ(0))e

β
∫ L/2
−L/2 dx 1

2
(∂xφ)2+m2c2

g2
(1−cos(gφ))∫

Dφeβ
∫ L/2
−L/2 dx 1

2
(∂xφ)2+m2c2

g2
(1−cos(gφ))

=
Tr[e−

L
2
ĤeffO(φ)e−

L
2
Ĥeff ]

Tr[e−LĤeff ]
,

(59)
where the path integral is now seen as a propagator in imaginary time induced by a
quantum mechanical thermal ensemble with effective temperature L, and an effective
quantum Hamiltonian Ĥeff

Ĥeff =
1

2β
∂2
φ +

m2c2

g2
(1− cos(gφ)) . (60)

In the thermodynamic limit L→ +∞, the effective thermal ensemble is projected on the
ground state. Therefore, 〈O(φ)〉 is simply recovered by numerically computing the ground
state of Ĥeff, and then taking the expectation value of the observable of interest. The
only subtlety to be taken care of is that the potential is bounded and the field φ can get
arbitrary large values. Nonetheless, we experienced that taking φ ∈ [−πn/g, πn/g] with n
a sufficiently large integer, imposing periodic boundary conditions and then discretizing the
derivative operator over the interval converges for n large enough. Notice that restricting
to the first Brilluoin zone n = 1 is not sufficient.

D.3 The Monte Carlo sampling

Monte Carlo simulations consist of two steps: i) a standard proposal-rejection scheme
to sample the initial thermal distribution and ii) a deterministic evolution of the so-
generated field configuration with the equation of motion. The phase field is discretized
on a equispaced grid of points with lattice spacing a, the classical Hamiltonian is likewise
discretized: when sampling equilibrium ensembles, the distribution of the phase φ and the
conjugated momentum factorize, the second being a simple i.i.d. Gaussian distribution
for each lattice site. The φ−part of the Hamiltonian is discretized as

H[φ] = a
∑
j

1

2a2
(φj+1 − φj)2 +

m2c2

g2
(1− cos(gφj)) . (61)

Field configurations are then randomly updated by selecting a field site j and proposing
an update φj → φ′j + δφ, with δφ Gaussianly distributed with zero mean. The new
configuration is then accepted with probability P = exp(−βH[φ′])/ exp(−βH[φ]). After a
sufficient number of moves, the Markovian process samples the thermal distribution. To
sample the partitioning protocols with two different temperatures and possibly topological
charges, several choices can be made: for example, the inverse temperature β can be
promoted to be a smooth function interpolating between the two ensembles at the interface.
However, we found it difficult to implement the topological charge imbalance in this setting.
Therefore, we rather used Dirichlet boundary conditions by pinching the field in the center
as well. More precisely, we enclose the field in two intervals [−L/2, 0] and [0, L/2] imposing
these boundary conditions: at the center we fix φ(0) = 0, while at the boundary φ(L/2)
and φ(−L/2) are chosen according to the desired value of the topological charge (42),
enforcing a microcanonical ensemble for the latter. In this setup, it is easy to account for
two different temperatures as well. We stress that different ways to describe the interface
at t = 0 will lead to different finite-time transient, but all of these will converge to the
same late-time partitioning profile. For t > 0, the barrier is lifted and φ(0) is not pinned
to zero, but rather allowed to evolve. In contrast, we retain Dirichlet boundary conditions
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at the two extrema of the system. The equations of motion are then discretized according
to the scheme [59]

φj(t+dt) = 2φj(t)−φj(t−dt)+
dt2

a2
(φj+1(t)+φj−1(t)−2φj(t))−dt2

m2c2

g
sin(gφj(t)) , (62)

which guarantees an all-time bounded discretization error, while other higher order meth-
ods such as Runge-Kutta would lead to exponential instabilities. We notice that simplectic
methods exactly preserving integrability for any discretization order may be envisaged [60],
but on the practical side we observed convergence for sufficiently small discretizations. The
initial conditions for the above equations are obtained by assigning to φj(t = 0) a config-
uration sampled from the Monte Carlo, while φ(t = dt) = φj(t = 0) + dtc2Πj , with Πj

being Gaussianly distributed according to ∼ exp(−β c22 Πj).
In practice, for the parameters using in Figure 3 we attain convergence with a lattice

spacing a = 0.1 and dt = 10−4. We use 4000 lattice sites for a total length L = a×4000 =
400, the field configurations are let to evolve until a maximum time t = 110 to avoid
finite-size effects. For each parameter choice, we run 20 independent Monte Carlos, each
of them collecting approximately 500 samples. Then, we consider the total average as the
representative value and the error bars are estimated as the variance over the independent
runs.
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