Gaussian state approximation of quantum many-body scars
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Quantum many-body scars are atypical, highly nonthermal eigenstates of kinetically constrained
systems embedded in a sea of thermal eigenstates. These special eigenstates are characterized, for
example, by a bipartite entanglement entropy that scales as most logarithmically with subsystem
size. We use numerical optimization techniques to investigate if quantum many-body scars of the
experimentally relevant PXP model are well approximated by Gaussian states. These states are
described by a number of parameters that scales quadratically with system size, thereby having
a much lower complexity than generic quantum many-body states. We find that this is a good
description for the quantum many-body scars away from the center of the spectrum.

I. INTRODUCTION

Typical isolated quantum many-body systems ther-
malize under their own internal dynamics [1-3]. Un-
der time evolution, such systems loose information about
their initial condition, leading to the emergence of sta-
tistical mechanics. Recent times show a keen interest
in quantum many-body systems that fall out of this
paradigm. By now, several mechanisms leading to the
breakdown of thermalization have been identified, among
them many-body localization [4-6], quantum many-body
scarring [7-9], and Hilbert space fragmentation [10, 11].

Quantum many-body scarring is a form of ergodicity
breaking that can be observed in constrained quantum
systems [12]. In contrast to many-body localized sys-
tems, quantum many-body scarred systems do not ther-
malize only when being initialized in certain highly polar-
ized out-of-equilibrium states [13]. These systems show
long-living approximate periodic revivals to their initial
state, which can be related to a small number of spe-
cial, highly nonthermal eigenstates embedded in a sea of
thermal eigenstates [14]. These special eigenstates are
known as quantum many-body scars, in loose analogy to
the single-body quantum scars first observed by Heller
in 1984 [15]. Quantum many-body scars have attracted
tremendous attention both theoretically [7-9] and exper-
imentally [12, 16-18] in recent years. Several models cap-
turing the phenomenon of quantum many-body scarring
have been introduced, with the so-called PXP model for a
chain of Rydberg atoms being arguably the most paradig-
matic example [13, 14, 19].

For a number of models, quantum many-body scarred
eigenstates can be constructed analytically [9, 20]. For
quantum many-body scars without a known exact form,
approximate matrix product states can be obtained [21-
24]. Other works used for example mean-field like meth-
ods to approximate quantum many-body scars [25-27],
and it has been suggested that they occur due to prox-
imity of the model to to an integrable point [28-30].

Quantum many body scars have an entanglement en-
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tropy which grows at most logarithmically with subsys-
tem size [13, 14]. Since ground states of local quadratic
Hamiltontians scale similarly with system size [31], in
this work, we consider if quantum many-body scars can
be well approximated by ground states of non-interacting
systems. These states belong to the a family of Gaussian
states (also known as coherent states) and are fully de-
scribed by a number of parameters that scales quadrati-
cally with the system size, thereby having a much lower
degree of complexity than generic quantum many-body
states [32]. Gaussian states have been found to provide
an effective description of many-body states in a broad
range of settings, for example in the context of the mean-
field theory of superconductivity [33], or many-body lo-
calization [34-41].

In this work, we numerically optimize the parameters
of a general non-interacting fermionic system towards a
maximum overlap of a symmetrized ground state with
a given quantum many-body scar of the PXP model,
which is a paradigmatic toy model of quantum many-
body scars. Related optimization procedure for a com-
plimentary problem have been recently proposed [42, 43].

The outline of this work is as follows. In Section II,
we introduce the model and the properties utilized in
the remainder of this work. Section III outlines the ap-
proximation procedure, and in Section IV we present our
results. In Section V, we conclude and outline some pos-
sible directions for future investigations.

II. MODEL

We consider the PXP model with open boundary con-
ditions,

L—2
Hpxp = Z (Pi Xin Pi+2> +X\P+ P X, (1)

i=1

where X; = 67 and P, = 1 (1 —7) with 67 and 67 de-
noting the Pauli x and z operators acting on site ¢, respec-
tively. Motivated by experiments for which this model
results as an effective description [12], up and down spin
states are referred to as “ground” and “excited” states,
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respectively. We consider the experimentally relevant
subspace of the Hilbert space that does not contain two
neighboring sites in the excited state. Due to the projec-
tor terms P;, this subspace is decoupled from the rest of
the Hilbert space. The Hamiltonian is symmetric with
respect to spatial inversion, governed by the operator 7,
which maps site ¢ to site L —i+ 1. The Hamiltonian also
anti-commutes with the parity operator, ¢ = HiL=1 o7,
such that if |¢)g) is an eigenstate of Hpxp with eigenvalue
E, then C |¥g) is an eigenstate with energy —E. The
spectrum is, therefore, symmetric around energy zero and
contains an exponentially (in system size) large number
of zero-energy eigenstates [44-46]. Since the parity op-
erator has eigenvalues &1, any eigenstate of the Hamil-
tonian can be decomposed as |Yg) = (Py + P-) |¥Eg),
where Py are the projectors on the corresponding sub-
spaces of CA; Applying the operator C to this state gives,
C|WEg) = (Py—P_)|¢Yg), which as mentioned above, cor-
responds to an eigenstate of energy —F. Therefore, for

E #0, (Yp[ClYp) = (p|P|vp) — (VB P-|¢r) = 0, and

we see that (Yp|Py[Yp) = (Vp|P-[¢YE) = 1/2.

Quantum many-body scars are eigenstates character-
ized by an anomalously high overlap with the Zs-ordered
states |Zy) = |eceo---e0) and |Z,) =|cece---0e),
where o and e are pictorial representations of a site in
the ground and excited state, respectively [13, 14]. These
special eigenstates display a bipartite entanglement en-
tropy that scales at most logarithmically with subsystem
size. The null space of the Hamiltonian is also known to
host a quantum many-body scar for certain system sizes
[13, 21, 47]. As motivated below, we do not consider these
zero-energy scars in this work. The quantum-many body
scars have almost equal energy separations of Q) ~ 1.31,
which only weakly depends of the system size. This re-
sults in the appearance of long-lived periodic revivals to
the initial state starting from a Zs-ordered state.

III. GAUSSIAN STATE APPROXIMATION

The most general quadratic Hamiltonian with L
fermionic modes is given by

L
H=Y" {AijézéjﬂLé(Bijéjé; - Bjeics) |, (2)
ij=1

where A is Hermitian and B is antisymmetric and the op-
erators ¢; and é; obey the standard fermionic anticommu-
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tation relations {¢;,¢;} = {é) 7.cj:} = O.and .{ci,c}} =1L
Fermions are created and annihilated in pairs, meaning
that eigenstates can have either an even or an odd num-

ber of fermions. Hamiltonian (2) is diagonalized by a

Bogoliubov transformation [32, 48, 49],

di =Y (Uijej + Vigel) (3)

J
dl =3 (Vi) + Uses), (4)

J
where U and V are required to obey UVT + VUT =0
and UUT + VV1 = 1 in order for a@-, dAj to obey the
fermionic anti-commutation relations. The eigenstates
of Hamiltonian (2) are thus given by product states in
the basis of the quasi-particles created by (ZI on top of a

quasi-particle vacuum, [1)g).

In this work, we focus on the question whether quan-
tum many-body scars can be well approximated by sym-
metrized ground state of a non-interacting Hamiltonian,

|1/Ji> = N(W’o) + 7ATWJO>) . (5)

Here N is a normalization factor, and |t)o) is the ground-
state of (2). The states are symmetrized to follow the
inversion symmetry of the scars, which results in a better
approximation (see the Appendix for details). For quan-
tum many-body scars which are symmetric with respect
to inversion we take |¢4), and for quantum many-body
scars which are antisymmetric we take |¢_).

We look for matrices A and B characterizing the
quadratic Hamiltonian (2), which give maximal overlap
between |¢1) and a given quantum many-body scar. To
compute the overlap, we take the state |[¢+) in the basis
where n; = é;réz is diagonal, and the quantum many-body
scar in the basis where 67 is diagonal. The PXP model
is time-reversal symmetric, therefore we lower the com-
putational costs by restricting A and B to be real. Since
the quantum many-body scars have considerable overlap
with the Zs state, for the initial guess of the matrices A
and B we use

A=diag(1,1,-1,1,...,-1,1)  B=0, (6)

such that the initial ground state of (2) is given by the Zy
state. The number of fermions in this ground state cor-
responds to the number of (—1)’s on the main diagonal
of A. Since in the fermionic language the parity operator
is given by C = (—1)", where N is the operator count-
ing the number of fermions, a state with an even (odd)
number of fermions is an eigenstate of the parity opera-
tor with eigenvalue +1 (—1). By changing the sign of the
first element on the main diagonal of the initial guess for
A we can control the evenness of the fermion number and
as such the parity of the ground state. We have found
empirically that the best optimized output is obtained by
changing the sign of the first (or last) diagonal element
of A, instead of changing the sign of other diagonal ele-
ments of A. Taking the diagonal elements of A as +1 in
a random fashion leads to significantly lower optimized
overlaps.

For the optimization procedure we use the Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno (also known



as LM-BFGS) algorithm [50], which we terminate when
the gradient of the overlap with respect to the optimiza-
tion parameters is equal to zero up to numerical preci-
sion. We remark that it is generically impossible to ana-
lytically find the optimal parameters of a Gaussian state
approximating a given many-body state [51].

We consider relatively modest system sizes due to the
high computational costs of the optimization procedure.
Typically, optimization requires several thousands, or
with outliers, several tens of thousands evaluations of the
overlap. For each such overlap the many-body ground-
state of the quadratic system has to be re-calculated. We
note that, while the single-particle states of a quadratic
model can be computed in time polynomial with the sys-
tem size, the computation of the many-body ground state
scales exponentially with the system size.

We note in passing, that the outlined procedure does
not typically correspond to the calculation of the natu-
ral orbitals from the diagonalization of the single-particle
density matrix. In fact, it is known that a ground state
constructed in the basis of natural orbitals produces op-
timal results only for states with two fermions [51, 52].

IV. RESULTS

Since the quadratic Hamiltonian (2) conserves the
evenness of the number of fermions, we have to approx-
imate the projections of the scars onto different parity
sectors, Py |tscar), separately. We note, that for system
sizes dividable by 4, the Zs state lies in the positive par-
ity sector and in the negative parity sector otherwise. On
the other hand, as shown in Section II, all eigenstates
of the PXP model (with nonzero eigenvalue), including
the scars, have the same overlap with both sectors. We
denote by |tinit) the symmetrized ground state of Hamil-
tonian (2) which corresponds to the initial choice of ma-
trices A and B according to (6). The resulting optimized
symmetrized state will be denoted by |¢opt). For con-
venience, in Fig. 1 we plot 4|(1/)0pt|Pi|¢scar>|2, which is
bounded from above by unity, since <1/1scar|15i|1/}scar> =
1/2 (see Section IT). We focus only on scars with posi-
tive energies, Fgcar > 0, since the spectrum of the PXP
model is symmetric around zero. We do not consider
quantum many-body scars at zero energy, since scars are
not uniquely defined due to numerous degeneracy at zero
energy.

Fig. 1 shows the initial 4|<winit\15i|z/)scar>|2 and opti-
mized overlaps 4|(Yopt| Pi [thscar)|? for system sizes L = 8
to L = 14 as a function of the energies of the scars,
Fscar. We observe that the optimized overlap is close to
unity for the two quantum many-body scars closest to the
edge of the spectrum. In fact, the highest-energy scars
are the highest excited eigenstates (or, equivalently, the
ground states). We also note that the optimization leads
to a significant improvement of the overlap for quantum
many-body scars away from the center of the spectrum,
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FIG. 1. Blue lines (upper sets of curves) show the
optimized overlaps 4|(Yopt| Py |[tscar)|?( upper panel) and
4| (opt | P—|thscar)|® (lower panel) for several system sizes
as a function of the energy of the quantum many-body
scars. Red lines (lower sets of curves) show the over-
lap 4|<¢init|P+‘wscar>|2 (upper panel) and 4‘<winit‘Pf |¢scar>‘2
(lower panel). The largest possible overlap with this normal-
ization is unity.

as can be seen by comparing to the overlap with the ini-
tial guess, |Vinic) = (|Z2) £ |Z5)) /V/2.

Quantum many-body scars distinguish themselves
from other types of non-ergodic many-body states by
their anomalously high overlap with the |Z3) and |Z))
states. This can be seen at the lower (red) set of lines
in Fig. 1, which shows the overlap, 4|<1/11nit|15+|1/fscar>|2,
where |[Yii) = (|Z2) £|Z5)) /v/2. In Fig. 2, we see
that also the optimized state has a qualitatively simi-
lar overlap with the |Zs) and |Z5) states, by plotting
|<1/Jinit\1/fopt>|2 as a function of the energy of the quantum
many-body scars for the system sizes considered above.
It is interesting to note that at the edges of the spectrum
where the approximation of the scars is the best, the op-
timized and initial states are almost orthogonal to each
other.

The structure of the optimized matrices A and B could
provide insight on the structure of the quantum many-
body scars. Fig. 3 shows color plots of the optimized ma-
trices for the scar with the second-highest (the highest-
energy scar is the ground state) energy at system size
L = 14. The optimized Hamiltonian is not translation-
ally invariant (even in the bulk) and exhibits a notion
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FIG. 2. The overlap |(topt [¥init)|? as a function of the energy
of the quantum many-body scars at several system sizes.
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FIG. 3. Color plots of the matrices A (left) and B (right)
of the quadratic Hamiltonian (2), whose ground-state has the
largest overlap with the scar with the second-highest energy
for L = 14. The top panels correspond to optimization with
respect to Py |t)scar) and the bottom panels with respect to

P |thscar). The scale has been chosen such that the largest
absolute value is unity.

of locality, reflected in the band-like structure. This ob-
servation is presumably related to the low-entanglement
property of the quantum many-body scars.

V. CONCLUSIONS AND OUTLOOK

We have studied to what extent quantum many-body
scars in the PXP model can be described by inversion
symmetrized Gaussian state, which corresponds to a

ground-state of a quadratic Hamiltonian with no particle
number conservation. For this, we numerically optimized
a quadratic fermionic Hamiltonian whose ground-state
has a maximal overlap with the quantum many-body scar
under consideration. We found that quantum many-body
scars away from the center of the spectrum can be well
described by states of this form. This holds in particu-
lar for the highest (or equivalently, lowest) energy quan-
tum many-body scar. We also showed, that the optimal
quadratic Hamiltonian is local, has a non-negligible pair-
ing and is not translationally invariant. In fact, enforc-
ing translation invariance in the optimization procedure,
provides considerably lower overlaps (not shown). Since
entanglement entropy of ground-states of local quadratic
Hamiltonians scales logarithmically with the system size
[31], our result suggests that similar scaling will hold also
for quantum many-body scars, at least not too close to
the center of the spectrum.

In this work, we have used a distinct quadratic Hamil-
tonian for each quantum many-body scar. In future stud-
ies, it would be interesting to see if a single optimal
quadratic Hamiltonian can be used to reasonably capture
the structure of each of the scars, as also to understand
the origin of such an effective single-particle description.
It would be also interesting to investigate further if simi-
lar results can be obtained for other quantum many-body
scarred models.
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Appendix: Optimization results for Gaussian states

Here, we study the overlap of quantum many-body
scars with optimized Gaussian states, here denoted by
[opt,0), instead of the symmetrized version |¢opt) [see
(5)]. As this investigation is only for illustrative pur-
poses, we restrict the analysis to optimization with re-
spect to the parity sector containing the Z, state, which
is arguably physically the most interesting. Fig. 4 shows
the optimized overlaps as a function of the energy of the
quantum many-body scar for several system sizes. Com-
paring the results with those shown in Fig. 1, we observe
a substantially lower overlap, which highlights the im-
portance of symmetrization.
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FIG. 4. The optimized overlaps 4|(vscar ’Pi‘ WYopt,0)|? for sev-

eral system sizes as a function of the energy of the quantum
many-body scars. The sign of the projector P4 is chosen such
that it projects on to the parity sector containing the Zo state.
The largest possible overlap with this normalization is unity.
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