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Quantum many-body scars are atypical, highly nonthermal eigenstates embedded in a sea of
thermal eigenstates that have been observed in, for example, kinetically constrained quantum many-
body models. These special eigenstates are characterized by a bipartite entanglement entropy that
scales as most logarithmically with the subsystem size. We use numerical optimization techniques
to investigate if quantum many-body scars of the experimentally relevant PXP model can be well
approximated by Gaussian states. Gaussian states are described by a number of parameters that
scales quadratically with system size, thereby having a much lower complexity than generic quantum
many-body states, for which this number scales exponentially. We find that while quantum many-
body scars can typically be well approximated by (symmetrized) Gaussian states, this is not the
case for ergodic (thermal) eigenstates. This observation suggests that the non-ergodic part of the
PXP Hamiltonian is related to certain quadratic parent Hamiltonians, thereby hinting on the origin
of the quantum many-body scars.

I. INTRODUCTION

Typical isolated quantum many-body systems ther-
malize under their own internal dynamics [1–3]. Un-
der time evolution, such systems loose information about
their initial condition, leading to the emergence of sta-
tistical mechanics. Recent years show a keen interest
in quantum many-body systems that fall out of this
paradigm. By now, several mechanisms leading to the
breakdown of thermalization have been identified, among
them many-body localization [4–6], quantum many-body
scarring [7–9], and Hilbert space fragmentation [10, 11].

Quantum many-body scarring is a form of ergodicity
breaking that can be observed, among others [12], in con-
strained quantum many-body systems [13]. In contrast
to many-body localized systems, quantum many-body
scarred systems avoid thermalization only when being
initialized in certain highly polarized out-of-equilibrium
states [14]. These systems show long-living approximate
periodic revivals to their initial state, which can be re-
lated to a small number of special, highly nonthermal
eigenstates embedded in a sea of thermal eigenstates [15].
These special eigenstates are known as quantum many-
body scars, in loose analogy to the single-body quantum
scars first observed by Heller in 1984 [16]. Quantum
many-body scars have attracted tremendous attention
both theoretically [7–9] and experimentally [13, 17–20] in
recent years. Several models capturing the phenomenon
of quantum many-body scarring have been introduced,
with the so-called PXP model for a chain of Rydberg
atoms being arguably the most paradigmatic example
[14, 15, 21].

The origin of quantum many-body scars is part of a
timely debate. For a number of models such as the spin-1
XY model, quantum many-body scarred eigenstates can
be constructed analytically [9, 22]. For quantum many-
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body scars without a known exact form, approximate ma-
trix product states can in certain cases be obtained [23–
26]. Other works used for example mean-field like meth-
ods to approximate quantum many-body scars [27–29],
and it has been suggested that they occur due to proxim-
ity of the model to to an integrable point [30–32]. Com-
plementary to the approach used in this work (introduced
below), it has also been established that the quantum
many-body scars of the PXP model admit a description
in terms of polynomially many (in system size) low-lying
magnon excitations above the ground state [33].

In this work, we numerically optimize the parameters
of the most general non-interacting fermionic system to-
wards a maximum overlap of a (symmetrized) ground
state with a given quantum many-body scar of the PXP
model. Related optimization procedures for a comple-
mentary problem in quantum many-body physics have
been found to be fruitful in recent years [34, 35]. We find
that (symmetrized) Gaussian states typically provide a
good description for the quantum many-body scars, in-
dicating that the scars carry certain quadratic features.

The quantum many body scars of the PXP model have
a bipartite entanglement entropy that scales at most log-
arithmically with subsystem size [14, 15]. Since ground
states of local quadratic Hamiltontians scale similarly
with system size [36], in this work, we investigate if quan-
tum many-body scars of the PXP model can be well ap-
proximated by ground states of non-interacting systems.
These states belong to the family of Gaussian states (also
known as coherent states), and are fully described by a
number of parameters that scales quadratically with the
system size [37], thereby having a much lower degree of
complexity than generic quantum many-body states, for
which this number scales exponentially. Gaussian states
have been found to provide an effective description of
many-body eigenstates in a broad range of settings, for
example in the context of the mean-field theory of su-
perconductivity [38], or many-body localization [39–46].
Indications for a Gaussian structure of quantum many-
body scars would suggest that the non-ergodic part of the
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PXP Hamiltonian is related to certain quadratic parent
Hamiltonians, thereby hinting on the origin of quantum
many-body scars.

The outline of this work is as follows. In Section II,
we introduce the model and the properties utilized in
the remainder of this work. Section III outlines the ap-
proximation procedure, and in Section IV we present our
results. In Section V, we conclude and outline some pos-
sible directions for future investigations.

II. MODEL

We consider the PXP model with periodic boundary
conditions,

ĤPXP =

L∑
j=1

P̂j X̂j+1 P̂j+2, (1)

where X̂j = σ̂x
j and P̂j = 1

2

(
1− σ̂z

j

)
with σ̂x

j and σ̂z
j

denoting the Pauli x and z operators acting on site j,
respectively. We impose σx

L+1 ≡ σx
1 and σz

L+1 ≡ σz
1

to account for the periodic boundary conditions. Mo-
tivated by experiments for which this model results as
an effective description [13], we refer to up and down
spin states as “ground” and “excited” states, respec-
tively. We consider the experimentally relevant subspace
of the Hilbert space that does not contain two neigh-
boring sites in the excited state. Due to the projec-
tor terms P̂i, this subspace is decoupled from the rest
of the Hilbert space. Next to the translational symme-
try, the Hamiltonian is symmetric with respect to spa-
tial inversion, governed by the operator π̂, which maps
site i to site L − i + 1. The Hamiltonian also anti-
commutes with the parity operator Ĉ =

∏L
i=1 σ̂

z
i , such

that if |ψE⟩ is an eigenstate of ĤPXP with energy E,

then Ĉ |ψE⟩ is an eigenstate with energy −E. The spec-
trum is, therefore, symmetric around energy zero and
contains an exponentially (in system size) large number
of zero-energy eigenstates [47–49]. Since the parity op-
erator has eigenvalues ±1, any eigenstate of the Hamil-
tonian can be decomposed as |ψE⟩ = (P̂+ + P̂−)|ψE⟩,
where P̂± are the projectors on the corresponding sub-

spaces of Ĉ. Applying the operator Ĉ to this state gives
Ĉ|ψE⟩ = (P̂+−P̂−)|ψE⟩, which, as mentioned above, cor-
responds to an eigenstate of energy −E. Therefore, when
E ̸= 0, ⟨ψE |Ĉ|ψE⟩ = ⟨ψE |P̂+|ψE⟩−⟨ψE |P̂−|ψE⟩ = 0, and

we see that ⟨ψE |P̂+|ψE⟩ = ⟨ψE |P̂−|ψE⟩ = 1/2.
Since we aim to compare eigenstates of a spin model

with those of a fermionic model, we express the Hamil-
tonian of the PXP model in terms of fermionic operators
through a Jordan-Wigner transformation,

ĉ†j = eiπ
∑j−1

k=1 P̂k σ̂+
j , (2)

ĉj = e−iπ
∑j−1

k=1 P̂k σ̂−
j , (3)

with σ̂x
j = 1

2 (σ̂
+
j + σ̂−

j ). The operators ĉj and ĉ†j
obey the standard fermionic anti-commutation relations

{ĉj , ĉk} = {ĉ†j , ĉ†k} = 0 and {ĉk, ĉ†k} = 1. It is impor-
tant to note that the mapping to fermionic operators is
not unique, and different mappings can potentially give
different results. While the resulting fermionic Hamilto-
nian is non-local due to uncompensated Jordan-Wigner
strings, this is not an issue as we focus on the properties
of (quantum many-body scarred) eigenstates instead of
properties of the PXP Hamiltonian.
Quantum many-body scars are eigenstates character-

ized by an anomalously high overlap with the Z2-ordered
states |Z2⟩ = | • ◦ • ◦ · · · • ◦⟩ and |Z′

2⟩ = | ◦ • ◦ • · · · ◦ •⟩,
where ◦ and • are pictorial representations of a site in
the ground and excited state, respectively [14, 15]. These
special eigenstates display a bipartite entanglement en-
tropy that scales at most logarithmically with subsystem
size. The null space of the Hamiltonian is also known
to host a quantum many-body scar for certain system
sizes [14, 23, 50]. As motivated below, we do not con-
sider these zero-energy scars in this work. The quantum-
many body scars have almost equal energy separations
of Ω ≈ 1.31, which only weakly depends of the sys-
tem size. This results in the appearance of long-lived
periodic revivals to the initial state starting from a Z2-
ordered state. The PXP model hosts various additional
non-ergodic eigenstates (see, e.g., Ref. [50]), which are
sometimes referred to as quantum many-body scars as
well. Here, we adapt the more restrictive definition of
quantum many-body scars as introduced above. We refer
to Ref. [8] for a recent review on the different definitions
of quantum many-body scars used in the literature.

III. GAUSSIAN STATE APPROXIMATION

The most general quadratic Hamiltonian with L
fermionic modes is given by

Ĥ =

L∑
j,k=1

[
Ajk ĉ

†
j ĉk +

1

2

(
Bjk ĉ

†
j ĉ

†
k −B∗

jk ĉj ĉk

)]
, (4)

where A is Hermitian, B is antisymmetric, and the oper-

ators ĉj and ĉ†j obey the standard fermionic anticommu-
tation relations as introduced above. Fermions are cre-
ated and annihilated in pairs, meaning that eigenstates
can have either an even or an odd number of fermions.
Hamiltonian (4) is diagonalized by a Bogoliubov trans-
formation [37, 51, 52],

d̂j =
∑
k

(
Ujk ĉk + Vjk ĉ

†
k

)
(5)

d̂†j =
∑
k

(
V ∗
jk ĉ

†
k + U∗

jk ĉk
)
, (6)

where U and V are required to obey UV T + V UT = 0

and UU† + V V † = 1 in order for d̂j , d̂
†
k to obey the
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fermionic anti-commutation relations. The eigenstates
of Hamiltonian (4) are thus given by product states in

the basis of the quasi-particles created by d̂†i on top of a
quasi-particle vacuum.

In this work, we focus on the question whether quan-
tum many-body scars can be well approximated by sym-
metrized ground state of a non-interacting Hamiltonian,

|ψ±⟩ = N (|ψ0⟩ ± π̂|ψ0⟩) . (7)

Here N is a normalization factor, and |ψ0⟩ is the ground-
state of Hamiltonian (4). The states are symmetrized to
follow the inversion symmetry of the scars, which results
in a better approximation (see Appendix A for the over-
lap of non-symmetrized Gaussian states with quantum
many-body scars). We remark that |ψ±⟩ is typically not
a Gaussian state itself. For quantum many-body scars
which are symmetric with respect to inversion we take
|ψ+⟩, and for quantum many-body scars which are anti-
symmetric we take |ψ−⟩.

We look for matrices A and B characterizing the
quadratic Hamiltonian (4), which give maximal overlap
between |ψ±⟩ and a given quantum many-body scar. To
compute the overlap, we take the state |ψ±⟩ in the basis

where n̂j = ĉ†j ĉj is diagonal, and the quantum many-
body scar in the basis where σ̂z

j is diagonal. The PXP
Hamiltonian expressed in this basis is a real-valued ma-
trix. Physically, this means that the time-evolution op-
erator is symmetric under time-inversion. Therefore, we
lower the computational costs by restricting A and B to
be real. Since the quantum many-body scars have con-
siderable overlap with the Z2 state, for the initial guess
of the matrices A and B we take

A = diag (±1, 1,−1, 1, . . . ,−1, 1) B = 0, (8)

such that the initial ground state of (4) is given by the Z2

state. The number of fermions in this ground state cor-
responds to the number of (−1)’s on the main diagonal
of A. Since in the fermionic language the parity operator

is given by Ĉ = (−1)
N̂
, where N̂ is the operator counting

the number of fermions, a state with an even (odd) num-
ber of fermions is an eigenstate of the parity operator
with eigenvalue +1 (−1). By changing the sign of the
(arbitrarily chosen) first element on the main diagonal
of the initial guess for A we can control the evenness of
the fermion number and as such the parity of the ground
state. Taking the diagonal elements of A as ±1 in a ran-
domized fashion, such that the initial guess of the ground
state is given by a randomly chosen product state, leads
to significantly lower optimized overlaps.

For the optimization procedure we use the Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno (also known
as LM-BFGS) algorithm [53], which we terminate when
the gradient of the overlap with respect to the optimiza-
tion parameters is equal to zero up to numerical preci-
sion. In short, this algorithm works in two steps. First,
it determines the Hessian of the cost function (here, the
overlap) in order to determine the direction in which the

increase is maximal. Second, it optimizes the step size
in this direction such that the increase is at its maxi-
mum. For small system sizes, we have tested the per-
formance of all optimization algorithms implemented in
the Python SciPy package [54]. We empirically observed
that this algorithm provides optimal results in terms of
the optimized overlaps. We remark that it is generically
impossible to analytically find the optimal parameters
of a Gaussian state approximating a given many-body
state [55]. As the optimization algorithm (like all nu-
merical optimization algorithms) searches for local max-
ima, it is important to ensure the initial guess to be as
close as possible to the desired result. One could alterna-
tively choose the initial guesses of A and B such that the
ground state of Ĥ is given by the product state that has
the highest overlap with the quantum many-body scar
under consideration. Typically, but not always, this is
the Z2 state. For the quantum many-body scars closer
to the center of the spectrum, this is not always the Z2

state. For this, we find qualitatively similar results. Ini-
tializing A and B with random elements (subject to the
symmetry constraints) gives, as expected, very low opti-
mized overlaps.
We consider relatively modest system sizes due to the

high computational costs of the optimization procedure.
Typically, optimization requires several thousands, or
with outliers, several tens of thousands evaluations of the
overlap. For each such overlap the many-body ground-
state of the quadratic system has to be re-calculated. We
note that, while the single-particle states of a quadratic
model can be computed in time polynomially with the
system size, the computation of the many-body ground
state scales exponentially with the system size. We note
in passing, that the outlined procedure does not typically
correspond to the calculation of the natural orbitals from
the diagonalization of the single-particle density matrix.
In fact, it is known that a ground state constructed in the
basis of natural orbitals produces optimal results only for
states with two fermions [55, 56].

IV. RESULTS

Since the quadratic Hamiltonian (4) conserves the par-
ity of the number of fermions, we have to approximate
the projections of the scars onto different parity sectors,
P̂±|ψscar⟩, separately. as shown in Section II, all eigen-
states of the PXP model (with nonzero energy), including
the quantum many-body scars, have the same overlap 1/2
with both sectors. The projections of the eigenstates on
the parity sectors are eigenstates of Ĥ2

PXP. Because of the

particle-hole symmetry of ĤPXP (the anti-commutation

of HPXP and C), we have that Ĥ2
PXP commutes with the

parity operator, while ĤPXP does not. For Ĥ2
PXP, the

number of creation and annihilation operators in each
term is even. We note, that for system sizes dividable by
4, the Z2 state lies in the positive parity sector and in
the negative parity sector otherwise.
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By |ψinit⟩, we denote the symmetrized ground state
of Hamiltonian (4) for the initial choice of matrices A
and B according to (8). The resulting optimized sym-
metrized state will be denoted by |ψopt⟩. For con-
venience, in what follows we focus on the quantity
4|⟨ψopt|P̂±|ψscar⟩|2, which is bounded from above by

unity, since ⟨ψscar|P̂±|ψscar⟩ = 1/2 (see Section II). We
focus only on scars with positive energies, Escar > 0, since
the spectrum of the PXP model is symmetric around zero
and the projections on a parity sector of eigenstates with
non-zero energy E and −E are identical up to an over-
all minus sign. We do not consider quantum many-body
scars at zero energy, since quantum many-body scars are
not uniquely defined due to the numerous degeneracy at
zero energy.

Fig. 1 shows the initial 4|⟨ψinit|P̂±|ψscar⟩|2 and opti-

mized overlaps 4|⟨ψopt|P̂±|ψscar⟩|2 for system sizes L = 8
to L = 14 as a function of the energies of the scars,
Escar. We observe that the optimized overlap is typi-
cally close to unity, and shows only a weak system-size
dependence. We also note that the optimization leads to
a significant improvement of the overlap, as can be seen
by comparing to the overlap with the initial guess |ψinit⟩.
As discussed below Eq. (8), this initial guess is given

by |ψinit⟩ = (|Z2⟩ ± |Z′
2⟩) /

√
2 when the Z2 state is in

the same parity sector as the optimized state, while the
initial guess is the same but with the first spin is flipped
when the Z2 state is not in the same parity sector. In Ap-
pendix B, we show that significantly lower overlaps are
obtained for non-scarred (thermal) eigenstates, in par-
ticular at larger system sizes or when the Z2 state is not
in the same parity sector as the optimized state. We
note in passing, that although the optimized states are
not confined to the constrained Hilbert space of the PXP
model by construction, the high overlap implies that the
optimized states almost fully reside there.

Quantum many-body scars distinguish themselves
from other types of non-ergodic many-body states by
their anomalously high overlap with the |Z2⟩ and |Z′

2⟩
states. This can be seen at the lower (red) set of lines

in Fig. 1, which shows the overlap, 4|⟨ψinit|P̂+|ψscar⟩|2,
where, as mentioned before, |ψinit⟩ = (|Z2⟩ ± |Z′

2⟩)/
√
2

in the upper panel when L is dividable by 4 and in the
lower panel otherwise. In Fig. 2, we see that also the
optimized state has a qualitatively similar overlap with
the |Z2⟩ and |Z′

2⟩ states, by plotting |⟨ψopt|Z2⟩|2 as a
function of the energy of the quantum many-body scars
for the system sizes considered above. It is interesting
to note that at the edges of the spectrum, the optimized
and initial states are almost orthogonal to each other.

The structure of the optimized matrices A and B could
provide insight on the structure of the quantum many-
body scars. Fig. 3 shows color plots of the optimized ma-
trices for the scar with the second-highest (the highest-
energy scar is the ground state) energy at system size
L = 14. The optimized Hamiltonian exhibits a notion of
locality, reflected in the band-like structure. The quan-

0.0

0.2

0.4

0.6

0.8

1.0

4
|〈ψ

o
p
t
(i
n
it
)
|P̂

+
|ψ

sc
a
r
〉|2

L = 8
L = 10
L = 12
L = 14

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Escar

4
|〈ψ

o
p
t
(i
n
it
)
|P̂

−
|ψ

sc
a
r
〉|2

FIG. 1. Blue lines (upper sets of curves) show the

optimized overlaps 4|⟨ψopt|P̂+|ψscar⟩|2(upper panel) and

4|⟨ψopt|P̂−|ψscar⟩|2 (lower panel) for several system sizes
as a function of the energy of the quantum many-body
scars. Red lines (lower sets of curves) show the over-

lap 4|⟨ψinit|P̂+|ψscar⟩|2 (upper panel) and 4|⟨ψinit|P̂−|ψscar⟩|2
(lower panel). The largest possible overlap with this normal-
ization is unity.
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FIG. 2. The overlap |⟨ψopt|Z2⟩|2 as a function of the energy
of the quantum many-body scars at several system sizes.

tum many-body scars are known to have decaying spa-
tial correlations and sub-volume law scaling of the en-
tanglement entropy. It is thus natural that the optimal
quadratic Hamiltonians are local. With this said, we do
not constrain the approximating quadratic Hamiltonians,
such that the outcome of the optimization could have
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−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A, parity sector −1 B, parity sector −1

FIG. 3. Color plots of the matrices A (left) and B (right)
of the quadratic Hamiltonian (4), whose ground-state has the
largest overlap with the scar with the second-highest energy
for L = 14. The top panels correspond to optimization with
respect to P̂+ |ψscar⟩ and the bottom panels with respect to

P̂− |ψscar⟩. The scale has been chosen such that the largest
absolute value is unity.

been non-local. We observe a checkerboard-pattern of
the matrices A and B that suggests a translational in-
variance for translations over two sites, instead of “full”
translational invariance. This does not appear to be sur-
prising given the fact that our trial wavefunctions [Eq. 7]
break the translational invariance of the matrices A and
B. In Appendix A, we show that significantly lower over-
laps are obtained when the trial wavefunction is not sym-
metrized. This provides a hint that the (non-Gaussian)
quantum many-body scars are close to superpositions
of two Gaussian states invariant under translations by
two sites. Although (non-symmetrized) Gaussian states
can be translationally invariant, our results suggests that
such states are not sufficient to capture the structure of
the (non-Gaussian) quantum many-body scars properly.

V. CONCLUSIONS AND OUTLOOK

Quantum many-body scars are states with low en-
tanglement embedded in ergodic (thermal) eigenstates.
In this work, we have studied to what extent quantum
many-body scars in the PXP model can be described by
inversion symmetrized Gaussian states, corresponding to
a symmetrized ground state of a quadratic Hamiltonian
with no particle number conservation. It is not guaran-
teed a priori that quantum many-body scars can be de-
scribed by such states since not all low-entangled states
are Gaussian. We numerically optimized the parame-
ters of the most general quadratic fermionic Hamiltonian
such that the (symmetrized) ground state has maximal
overlap with the quantum many-body scar under consid-
eration. We found that quantum many-body scars can

typically be well described by states of this form. We
also showed that the optimal quadratic Hamiltonian is
local, has a non-negligible pairing, and is translation-
ally invariant only every two sites. Significantly lower
overlaps are obtained when the trial wavefunction is not
symmetrized. Since entanglement entropy of ground-
states of local quadratic Hamiltonians scales logarithmi-
cally with the system size [36], our result suggests that
a similar scaling will hold also for quantum many-body
scars. It is important to note that the optimization of
ergodic, (thermal) eigenstates leads to very poor results,
indicating that while the scarred states have Gaussian
structure, this is not the case for the ergodic states.
In the literature, various other approximations of quan-
tum many-body scars have been suggested. Possibly (in
spirit) closest to our approach are the approximations
by bosonic quasi-particle excitations on top of certain
reference states [33], or these following from mean-field
like approaches [27]. Although these approaches yield
(slightly) better overlaps, we believe that the quality of
our results does not rule out an underlying structure of
quantum many-body scars in terms of Gaussian states.

In this work, we have used a distinct quadratic Hamil-
tonian for each quantum many-body scar. In future
studies, it would be interesting to see if a single opti-
mal quadratic Hamiltonian can be used to capture the
structure of each of the scars, and also to understand the
origin of such an effective single-particle description. One
might hypothesize that the single-particle eigenstates of
the quadratic Hamiltonians become (almost) identical in
the thermodynamic limit. Alternatively, one might spec-
ulate that the PXP Hamiltonian has some hidden block-
diagonal structure with the quantum many-body scars
given by the ground state of the blocks. Then, no sin-
gle quadratic Hamiltonian is expected to exist. A re-
lated open question is whether multiple distinct parent
Hamiltonians can be found for a given quantum many-
body scar. This question is relevant, in particular, when
aiming to unify the various approximation schemes that
have been proposed in the literature. It would be also
interesting to investigate further if similar results can be
obtained for other quantum many-body scarred models.
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FIG. 4. The optimized overlaps 4|⟨ψscar|P̂±|ψopt,0⟩|2 for sev-
eral system sizes as a function of the energy of the quantum
many-body scars. The sign of the projector P± is chosen such
that it projects on to the parity sector containing the Z2 state.
The largest possible overlap with this normalization is unity.

Appendix A: Optimization results for
non-symmetrized Gaussian states

Here, we study the overlap of quantum many-body
scars with non-symmetrized optimized Gaussian states,
here denoted by |ψopt,0⟩, instead of the symmetrized ver-
sion |ψopt⟩ [see (7)]. As this investigation is only for illus-
trative purposes, we restrict the analysis to optimization
with respect to the parity sector containing the Z2 state,
which is arguably physically the most interesting. Fig. 4
shows the optimized overlaps as a function of the energy
of the quantum many-body scar for several system sizes.
Comparing the results with those shown in Fig. 1, we ob-
serve a substantially lower overlap, which highlights the
importance of symmetrization.

Appendix B: Optimization results for non-ergodic
eigenstates

Here, we study the overlap of non-ergodic (ther-
mal) eigenstates with optimized (symmetrized) Gaussian

states. We restrict the analysis to optimization with re-
spect to the parity sector containing the Z2 state, which
is arguably physically the most interesting. For each sys-
tem size, we consider the eigenstates with energies closest
to integers. If such an eigenstatate is a quantum many-
body scar, we take the eigenstate which is second-closest
in energy. Fig. 5 shows the results. The overlaps for
thermal eigenstates are significantly lower than those for
quantum many-body scars (cf. Fig. 1). We thus see
that our approach works well for quantum many-body
scars, while it works significantly less well for thermal
eigenstates.
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FIG. 5. The optimized overlaps 4|⟨ψscar|P̂±|ψopt⟩|2 for several
system sizes as a function of the energy for thermal eigen-
states. See the main text for the choice of the eigenstates.
The sign of the projector P± is chosen such that it projects
on to the parity sector containing the Z2 state. The largest
possible overlap with this normalization is unity.
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