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Abstract

The AKLT state is the ground state of an isotropic quantum Heisenberg spin-
1 model. It exhibits an excitation gap and an exponentially decaying correla-
tion function, with fractionalized excitations at its boundaries. So far, the one-
dimensional AKLT model has only been experimentally realized with trapped-
ions as well as photonic systems. In this work, we successfully prepared the
AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device.
In particular, we developed a non-deterministic algorithm on the IBM quantum
processor, where the non-unitary operator necessary for the AKLT state prepa-
ration is embedded in a unitary operator with an additional ancilla qubit for
each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively repre-
sented by a parametrized circuit composed of single-qubit and nearest-neighbor
CX gates. Compared with the conventional operator decomposition method from
Qiskit, our approach results in a much shallower circuit depth with only nearest-
neighbor gates, while maintaining a fidelity in excess of 99.99% with the original
operator. By simultaneously post-selecting each ancilla qubit such that it belongs
to the subspace of spin-up |↑〉, an AKLT state can be systematically obtained by
evolving from an initial trivial product state of singlets plus ancilla qubits in
spin-up on a quantum computer, and it is subsequently recorded by performing
measurements on all the other physical qubits. We show how the accuracy of our
implementation can be further improved on the IBM quantum processor with
readout error mitigation.

Contents

1 Introduction 2

2 The AKLT state 4

3 Preparing the AKLT state on a quantum computer 6
3.1 Implementing local projections within unitary operators 6

1



SciPost Physics Submission

3.2 Quantum circuit implementation 7
3.3 Variational circuit recompilation for the three-qubit unitary operator 9
3.4 Implementation layout on IBM quantum processors 11
3.5 State measurement and post-selection 11

4 Measurement results 13
4.1 State fidelity 13
4.2 Verification of the AKLT state 13

5 Conclusion 16

References 17

A Transformation to an unitary operator 27

B Variational circuit optimization 28

C Explicit exact forms of the AKLT state for L = 2 and L = 3 29
C.1 Open boundary conditions 29
C.2 Periodic boundary conditions 31

D Readout error mitigation and device specifications 32

E Entanglement spectrum 35

1 Introduction

The current age has witnessed tremendous progress in the quantum simulation of novel many-
body phenomena [1, 2, 3, 4, 5, 6]. In particular, there has been intense recent focus on using
noisy intermediate-scale quantum (NISQ)-era [7] quantum computers to assist in large-scale
tasks with the goal of eventual quantum supremacy [8, 9]. Among them, programmable
digital quantum computers have so far been successfully used for the implementation and
study of discrete time crystals (DTC) [10, 11], quantum chemistry problems with Hartree-Fock
methods [12], fractional quantum Hall states [13, 14], spin chain dynamics [15, 16], interacting
topological lattice models [17, 18], many-body localization [19], lattice gauge theory [20] and
quantum spin liquid states [21]. These examples in general involve (but are not limited to)
three categories of usage of quantum computers for condensed matter physics: time evolution,
ground state search and state preparation. Such efforts are made with the goal of overcoming
major drawbacks in current numerical approaches. These include the exponential “curse”
of exact diagonalization (ED) [22], the sign problem in Fermionic quantum Monte Carlo
simulations [23], and the rapid growth of entanglement in tensor network states [24, 25].

At the current juncture, there are still limitations and challenges in using NISQ-era quan-
tum computers for large scale simulations. Some major issues include large circuit depth, low
gate fidelity, and thermal noise from the execution of the quantum circuit [26]. In response,
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many classical algorithms and approaches based on matrix product state (MPS) have been
recently proposed for state preparation [27, 28, 29]. However, some of these methods cannot
be directly implemented on qubit-based devices due to the restrictions on the MPS physi-
cal dimensions [27]. Another challenge, which would be present even for a perfect quantum
computer, is that state preparation with projective opreations to generate it [30, 13, 31] is a
fundamentally non-unitary process which requires the implementation of non-unitary opera-
tors. Progress has lately been made through imaginary time evolution approaches combined
with variational algorithms [32, 33], or through constructing a deterministic measurement op-
erator [34, 35]. However, these techniques may not always be practical for NISQ-era quantum
processors such as the IBM Q system due to short qubit coherence times. In general, vari-
ous requisite operators cannot be directly decomposed into the fundamental unitary gates on
NISQ-era quantum computers, posing difficulties for existing schemes for state preparation.

In this work, we propose an algorithm and demonstrate the preparation of a particular
type of quantum many-body state, the so-called Affleck, Kennedy, Lieb, and Tasaki (AKLT)
state [36, 37], on NISQ-era quantum computers. As a type of Valence-Bond-Solid (VBS)
state [37], it is the exact ground state of the spin-1 AKLT model, which is the paradigm of
a strongly correlated symmetry protected topological (SPT) phase with a Haldane gap [38]
and fractional excitations at its boundaries [36, 39, 40]. SPT phases of matter received much
attention recently on quantum computers [41, 42, 43, 44, 45, 46, 17], and the two-dimensional
generalization of the AKLT model on a trivalent lattice is proposed to be a universal re-
source [47, 48] for measurement-based quantum computation [49, 50, 51]. So far, the 1D
AKLT state has been experimentally realized and characterized on photonic implementa-
tions [52] using cluster states [53] and in trapped ions [54]. Recently, we notice that there
have been much efforts to construct the VBS state, including in particular the AKLT state
in 1D with measurement assisted preparation [55], and in 2D with a post-selection algorithm
[56]. With the usage of tensor network states, both 1D and 2D AKLT states can be prepared
adiabatically [57]. For our work, instead of performing the variational searching of the AKLT
state as the ground state of the spin-1 AKLT model [58], we show that the AKLT state can be
obtained by evolving from a trivial initial product state composing of a chain of singlets. On
a NISQ-era quantum computer (e.g., IBMQ), the main challenge is the non-unitarity of the
state preparation, and our new approach is based on augmenting the non-unitary subspace
with additional ancilla qubits, such that an effectively non-unitary operator can be realized
through measurement-based post-selection. This allows us to implement non-unitary opera-
tors with unitary gates, achieving the simultaneous non-unitary projection on every site of an
initial product state made up of a chain of singlets. For an efficient quantum circuit realization
of this unitary operator, another matrix product state (MPS)-based algorithm on a classical
computer is used to transform the operator into a parametrized circuit via variational opti-
mization [59, 60, 61, 62, 17]. Most recently, MPS-based algorithms have been applied for the
investigations of translational-invariant systems [63, 64]. Compared with other recent AKLT
state preparation methods [55, 56, 57], our approach only requires nearest-neighbor CX gates,
and the full circuit that prepares the AKLT state is much shallower than that from Qiskit’s
default isometry decomposition method [65]. Also, the evolution from the initial state has
only one step, and it does not require any mid-circuit measurements [66] or special encoding
of the states in the spin-1 triplet manifold [55] on IBM Q.

This paper is organized as follows. First, in Sec. 2, we introduce the AKLT model and its
ground state, i.e. the AKLT state. Sec. 3 discusses the details of the approach used in this
work to prepare the AKLT state, which includes transforming the projection operator into a

3



SciPost Physics Submission

unitary one, a variational parametrized circuit for the three-qubit operator, and post-selection
of the results. Sec. 4 presents the characterization of AKLT states for L = 2, 3, 4 and 5 on
IBMQ devices, and discusses various factors which could affect the fidelity of the prepared
state. Finally, we highlight the conclusion of this work in Sec. 5.

2 The AKLT state

Below, we briefly introduce the AKLT state [36, 37]. Consider a 1D spin chain with 2L spin-
1/2s, grouped into pairs of adjacent spins as illustrated in FIG. 1(a). In general, each pair of
adjacent spin-1/2s either forms a spin-0 singlet state (| ↑↓〉 − | ↓↑〉)/

√
2, or one of the three

symmetric states

|+〉 = | ↑↑〉 (1)

|O〉 = 1/
√

2 (|↑↓〉+ |↓↑〉)
|−〉 = |↓↓〉

which spans the spin-1 subspace. To construct the AKLT state, we first project onto the
spin-1 subspace of each pair of adjacent spin-1/2s [circled in FIG. 1(a)], such that we obtain
an effective chain of L spin-1s.

Before any constraints are applied, each pair of adjacent spin-1s can have a total spin of
S = 0, 1 or 2. The AKLT state is the unique state satisfying the constraint that every pair of
adjacent spin-1s (i.e. the four consecutive spin-1/2s in two adjacent circles) is allowed to have
a total spin of S = 0 or 1, but not 2. In terms of the constituent spin-1/2s, this is equivalent
to the constraint that each spin-1/2 forms a (spin-0) singlet with another spin-1/2 from an
adjacent spin-1 pair, as illustrated in FIG. 1(a). This would be the picture that our AKLT
state algorithm is based on - we shall first prepare the spin singlets, and next project spin-1/2
pairs connected to adjacent singlets onto their total S = 1 subspace.

The above spin chain picture can be recasted as an MPS representation of the AKLT state
|ψ〉, for both periodic and open boundary conditions (PBCs and OBCs):

|ψ〉PBC =
∑
σ

Tr [Aσ1Aσ2 · · ·AσL ] |σ1σ2 · · ·σL〉 , (2)

|ψ〉OBC =
∑
σ

[
blA

T
Aσ1Aσ2 · · ·AσLbrA

]
|σ1σ2 · · ·σL〉 , (3)

where σi ∈ {+, O,−} labels the i-th spin-1 basis state, with corresponding MPS matrices
Aσgiven by

A+ = +

√
2

3
τ+, A0 = −

√
1

3
τ z, A− = −

√
2

3
τ−, (4)

τ z and τ± = τx ± iτy spanning the set of Pauli matrices [67, 68]. Since (τ±)2 = 0, this
matrix representation keeps track of the AKLT constraint that two adjacent spin-1s do not
add up to total spin S = 2. Under PBCs, there has to be an equal number of |+〉 and
|−〉 in |σ1σ2 · · ·σL〉, as enforced by the trace operator Tr. Under OBCs, which is the more
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Figure 1: Structure of the AKLT state. (a) The AKLT state with open boundary con-
ditions (OBCs) with L = 5: solid lines connect two spin-1/2 qubits, forming singlet states.
Each pair of spin-1/2s (circled) from two consecutive singlets are projected via P̂ onto their
total spin S = 1 sector, via Eq. (6). (b) With the help of ancilla qubits (brown spheres),
the non-unitary projectors P̂ can be embedded in unitary operators Û acting on three qubits
(red dashed square): the two spin-1/2s (blue spheres) plus the ancilla qubit. The solid black
line connecting two physical qubits forms a singlet. The actual physical embedding into IBM
quantum processor qubits is shown Sect. 3.4.

convenient scenario for implementation on the quantum processor [see Fig. 4], we will have to

fix the end spins – in the above, we have chosen these boundary vectors to be blA =
(
1 0

)T
,

and brA =
(
0 1

)T
, up to a normalization factor. This means that both boundary spins are

fixed as spin up, which is the same as the MPS representation described in Ref. [69]. As is
shown below in Fig. 2, this choice is of convenience for our implementation, as all qubits are
initialized as spin up on the IBM Q system. For this choice, there is necessarily one more
|+〉 compared to the number of |−〉. The explicit forms of |ψ〉PBC and |ψ〉OBC are given in
Appendix C for L = 2 and L = 3.

Although we shall directly prepare the AKLT state through an MPS (Eqs. 2 and 3)
quantum circuit, we note in passing that the AKLT state can also be obtained as the unique
zero ground state [36, 37] of the following projection operator:

P̂S=2 =

L−1∑
i=1

[
Si · Si+1 +

1

3
(Si · Si+1)

2 +
2

3

]
, (5)

which projects onto the total spin S = 2 sector in all pairs of adjacent spin-1s. It can be
derived [36] by considering the total spin operator (Si + Si+1)

2 with eigenvalues proportional
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to S(S + 1), where Si and Si+1 are the spin-1 operators of adjacent spin-1s.

3 Preparing the AKLT state on a quantum computer

3.1 Implementing local projections within unitary operators

The preparation of the AKLT state on a quantum circuit crucially requires non-unitary opera-
tors for projecting onto the spin-1 subspace of each adjacent spin-1/2 pair [FIG. 1(a)]. Inspired
by the techniques introduced in Refs. [29, 70, 71], we develop an approach for preparing the
AKLT state by embedding the projection operator on each spin-1/2 pair into a 3-qubit uni-
tary operator that admits an additional ancilla qubit. By subsequently projecting the ancilla
qubit onto a chosen state |↑〉 by post-selection [see FIG. 1(b)], we can realize the non-unitary
S = 1 projection on the two spin-1/2s. This approach allows us to prepare the AKLT state
according to the MPS formalism given in [72, 67].

Explicitly, as shown in FIG. 1 (a), a local spin-1 in the bulk, which forms one “site” of
an AKLT chain in OBCs, is built from a pair of adjacent spin-1/2 through the projection
operator

P̂ = (|+〉 〈+|) + (|O〉 〈O|) + (|−〉 〈−|) (6)

=


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

 ,

expressed in the spin-1/2 basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}, with |+〉 = |↑↑〉, |O〉 = 1/
√

2(|↑↓〉+
|↓↑〉) and |−〉 = |↓↓〉 defined as before. Note that the spin-1/2s are the physical degrees of
freedom on a quantum processor, even though they are often referred to as virtual spins in
the AKLT literature.

This spin-1 projector of Eq. (6) is non-unitary as P̂P̂† 6= I, which is not possible to be
directly implemented on a quantum computer such as IBM Q. To realize it in a quantum
circuit, we embed it in a 3-qubit unitary operator Û which takes the form

Û =

[
P̂ Q̂
Q̂ P̂

]
(7)

in the product basis of the ancilla qubit and the two spin-1/2 qubits. Here, we stipulate

Q̂ =


0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

 , (8)

such that Û is unitary, i.e. Û†Û = I. As both P̂ and Q̂ are symmetric, it is easy to verify
that P̂2 + Q̂2 = I4×4, and Q̂P̂ + P̂Q̂ = 04×4.
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For this three-site subsystem consisting of two original spin chain qubits and an ancilla
qubit, we examine input states of the form

|ψ〉 = |↑〉 ⊗ |φ〉 =

(
1
0

)
⊗ |φ〉, (9)

where |↑〉 represents an ancilla qubit in the spin-up state, and |φ〉 represents the two adjacent
qubits which are paired as a singlet. Applying Eq. (7) to the above three-qubit state, we have

Û |ψ〉 =

(
P̂ |φ〉
Q̂ |φ〉

)
= |↑〉 ⊗ P̂ |φ〉+ |↓〉 ⊗ Q̂ |φ〉 . (10)

Therefore, it is clear that after projecting the output ancilla qubit onto |↑〉, say via post-
selection, the target state |φ〉 is indeed acted on by the nonunitary projector P̂ i.e.

〈↑| Û (|↑〉 ⊗ |φ〉) = P̂|φ〉. (11)

The above technique contains only one single-step evolution that does not require any
mid-circuit measurement for the preparation of the AKLT state [66], which provides a new
approach towards embedding a non-unitary projection operator P̂ into a unitary operator Û
for further decomposition into basis gates on a quantum computer, which will be discussed
shortly. We also remark that our approach can be used to prepare the AKLT state under both
OBCs to PBCs, although the PBC case requires a quantum device geometry such that a closed
loop of qubits exists, and are accompanied by appropriately located branches functioning as
ancilla qubits [see Fig. 4] 1.

3.2 Quantum circuit implementation

We break up the preparation of the MPS-based AKLT state into two steps, as sketched in
FIG. 2. We first prepare the paired singlet states [two solid dots connected with a solid line
in Fig. 1(a)] as initial states through the combination of X gates, a Hadamard gates and a
CX gate (see notations in Qiskit [65]), which corresponds to the operations to the left of the
red dashed line in FIG. 2. An X gate is essentially a Pauli-X operator, and a Hadamard gate
H maps |↑〉 [|↓〉] to (|↑〉+ |↓〉)/

√
2
[
(|↑〉 − |↓〉) /

√
2
]
:

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, (12)

while a CX gate is a two-qubit controlled-X gate which performs a Pauli-X operation on
the target qubit whenever the control is in state |↓〉.

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (13)

1But see Ref. [73, 74, 18] for possibly implementing long-ranged couplings.
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Figure 2: Illustrative quantum circuit for the preparation of a 2L = 6-qubit AKLT
state with OBC. The roles of the 9 qubits q0 to q8 are given in Fig. 1(b), with L ancilla
qubits q0, q3, q6 and the remain 2L qubits representing the spin-1/2 chain. Qubits q1 and q8
are boundary qubits while qubits q2, q4 and q5, q7 pair up as singlets. The state preparation
consists of two steps, as separated by the red dashed line: First, the initial state consisting
of L − 1 = 2 singlet pairs is initialized as shown to the left of the red line, where each
combination of CX,X and Hadamard gate (H) gates creates a singlet. Next, to the right of
the red line, the 3-qubit unitary operation Û from Eq. (7) is effected, where every third qubit
q3k is an ancilla. To recover the non-unitary spin-1 projection P̂ from Eq. (6), post-selection
“〈0|” operations are performed on the ancilla qubits, as described by Eq. (10). The OBC
AKLT state shown in FIG. 1(a) is obtained through measurements and post-selections on the
physical qubits. With the circuit geometry given in FIG. 1(b), the CX gates between q2, q4
and q5, q7 act between nearest neighbor qubits when embedded in a quantum processor (also
see Fig. 4).
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which is expressed in the same basis as in Eq. (6). Next, we perform the S = 1 projections
P̂ on spins-1/2 pairs from adjacent singlets, which is undertaken by the unitary operation Û
of Eq. (7). The ancilla qubits associated with the first, second, third etc pairs are labeled
“q0” , “q3” and “q6” etc. in FIGs. 1(b) and 2.

FIG. 2 shows the circuit structure for a small illustrative system with L = 3; we point out
that the aforementioned procedure can be extended to arbitrarily large system sizes, as one
can apply the unitary operator Û simultaneously to all corresponding sites, i.e.

|ψ〉AKLT =

(
L−1⊗
k=0

〈↑|3k

)[
Û (0, 1, 2)⊗ Û (3, 4, 5)⊗ · · · |ψ〉0

]

=

(
L−1⊗
k=0

〈↑|3k

)L−1∏
j=0

Û (3j, 3j + 1, 3j + 2) |ψ〉0


=

L−1∏
j=0

P̂j |φ〉0

(14)

where |ψ〉0 =
∏L−1
k=0 |↑〉3k ⊗ |φ〉0 is the product state of all the ancilla qubits in spin up

(
∏L−1
k=0 |↑〉3k), and singlet pairs (|φ〉0) generated from the first step. For each j, P̂j is the same

projection operator as P̂ in Eq. (6). 〈↑|3k (k = 0, 1, 2, · · · , L−1) represents the projection i.e.

postselection of the ancilla qubits onto spin up. We use the notation Û (3j, 3j + 1, 3j + 2) to
indicate that the unitary operator Û acts on qubits 3j, 3j + 1 and 3j + 2. The last line from
the above Eq. (14) is basically a product version of Eq. (11). From there, by simply following
the same way as how the AKLT state is constructed by the projection operator in the MPS
formalism in Refs. [67, 69], one could obtain the exact expression of the AKLT state for both
OBC and PBC in Eq. (3) and (2), respectively.

3.3 Variational circuit recompilation for the three-qubit unitary operator

In general, unitary operators on a quantum circuit are transpiled in terms of the basis gates
and the device geometry of the physical quantum processor. On the IBM Q device, two-qubit
gates such as CX gates and SWAP gates, incur non-negligible error, and a practical challenge
is to reduce the number of such two-qubit gates as far as possible. Explicitly, the IBM Q
device which we use have CX gate error rate from 0.6% to 5% (see FIG. 4), and accordingly,
any circuit containing more than a few tens CX gates is not ideal for robust simulation on
such a quantum device.

In our work of realizing the AKLT state, a crucial step is implementing the three-qubit
operation in Eq. (7) on a quantum circuit. A straightforward approach has so far been the
isometry decomposition (see Appendix A), but that involves a large number of two-qubit CX
gates as well as single-qubit gates [75]. For Û , the transpile function 2 from Qiskit requires
at least 24 CX gates.

Moreover, of these CX gates, 8 are not nearest-neighbor, and this will further require
SWAP gates after being transpiled to the quantum hardware if these three qubits are aligned
as a linear chain.

2The function transpile transforms a given input quantum circuit into an equivalent circuit which matches
the geometry of a specific device, e.g. ibmq montreal from IBM Q. It can also optimize the circuit for execution
on the NISQ-era quantum computer.
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On today’s NISQ-era quantum computers, we are aware that the Variational Quantum
Algorithms (VQAs) are effective methods for the current NISQ-era device [76, 77] with reduced
number of gates. In VQAs, parameterized circuits are first obtained on a classical computer
by an optimization algorithm, and then these circuits with optimized parameters are executed
on the quantum computer. As such, we consider a variational approach known as the circuit
recompilation [60, 61, 78, 17, 18], which has been shown to give promising approximations
to the original unitary whilst having much shallower circuit depths, and with fewer CX
and single-qubit gates compared to the default isometry decomposition. This will result in
significantly lower aggregate gate error on current NISQ-era quantum processors.

To conduct the circuit recompilation, we consider the ansatz shown in FIG. 3, where the
original 3-qubit unitary operator Û is substituted with a variational circuit V̂ consisting of an
initial layer of single-qubit U3 rotations (pink block), followed by nl layers, each consisting of
two U3 gates and a CX gate (purple blocks). The CX gate acts between the “middle” qubit
and either of the other two qubits, depending on whether the layer index is odd or even.
This recompiled circuit consists of 9 + 6nl variational parameters, with each 3D rotation
gate U3(φ, θ, λ) parametrized by three rotational parameters φ, θ and λ that are optimized
through a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints
(L-BFGSB) [79, 80, 17]. To avoid being trapped in the local minima, we use a basin-hopping
method [81, 82, 83, 84], where small perturbations are added to each optimization round
followed by local minimization for each step, and the search is from nl = 5 layers to nl = 9
layers. The loss function is constructed as follows: for both target unitary operator Û and
the ansatz V̂ operator, each is first reshaped to a rank-2M (M = 3L) tensor where each index
has a dimension of two. By contracting these two tensors V̂ and Û as a scalar, and after
normalizing and negating it, we have

f
(
Û , V̂

)
= 1− 1

2M

∑
j1,··· ,jM

∑
i1,··· ,iM

Û j1,··· ,jMi1,··· ,iM V̂
i1,··· ,iM
j1,··· ,jM , (15)

where Û j1,··· ,jMi1,··· ,iM and V̂ i1,··· ,iMj1,··· ,jM are the rank-2M tensors reshaped from their corresponding

operator. We then obtain the loss function f
(
Û , V̂

)
for the optimization [85]. See Appendix B

for details of the optimization process.
Since the loss function from Eq. (15) itself is constructed in a way that is independent of any

initial state, the validity of the recompiled circuit can be simply characterized by computing
the circuit fidelity (F(V̂ |β〉 , Û |β〉)) between a random state |β〉 acted by the original target
operator (which is Û here), and the same state acted by the recompiled operator V̂:

F(V̂ |β〉 , Û |β〉) = 〈β| V̂†Û |β〉 . (16)

In our work, we achieved very high circuit fidelity F > 99.99% of the recompiled V̂ gates
typically with just nl = 8 variational layers. Also, compared with other recent proposals of
implementing the non-unitary operator using imaginary time evolution [86, 33], our approach
consists of only one step of unitary evolution from a trival singlet product state plus ancilla
qubits in spin-up, followed by a measurement-based post-selection. The corresponding varia-
tional circuit renders a sufficiently shallow circuit such that the outcomes are robust against
the quantum gate infidelity on IBM Q. More details are given below FIG. 9 of the appendix.
The dataset contains the recompiled V̂ for this work has also been uploaded [87]. Here, we
remark that the required efforts to realize the AKLT state for a larger system size seem to be
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Figure 3: Variational circuit recompilation of the three-qubit unitary operator Û .
The unitary operator Û in FIG. 2 is replaced by a ansatz circuit V̂ consisting of an initial
layer of three single-qubit U3 gates (pink) followed by nl layers, each containing one CX gate
and two U3 gates (purple). Show here are nl = 2 layers. The optimized parameters for every
U3(φ, θ, λ) gate are obtained by training a tensor network on a classical computer [60, 61, 17].

high for the NISQ-era device, and therefore a better fidelity of the preparation of the state
shall be expected when more qubits with high gate fidelity are available in the future.

3.4 Implementation layout on IBM quantum processors

To prepare the AKLT state on actual quantum processors, we need to embed the quantum
circuits from Figs. 2 and 3 onto suitable device layouts. To maximize efficiency and minimize
gate errors, it is highly preferable that the logical structure of the qubit couplings [Fig. 2(b)]
conforms as closely as possible to the actual physical couplings within the quantum processor
(if not, more distant couplings can still be effected by “stacking” CX gates [18, 88], but doing
so introduces greater gate errors.). In particular, since we require one ancilla qubit for every
two qubits in the logical spin-1/2 chain, we should ideally have an uninterrupted chain of 2L
qubits such that every even (or odd) qubit is connected to an additional ancilla qubit.

In FIG. 4, we show how we embedded AKLT states of different sizes L = 2 [FIG. 4(a)],
L = 3 [FIG. 4(b)], L = 4 [FIG. 4(c)] and L = 5 [FIG. 4(d)] on the IBM quantum processor
(Throughout this work, we use “ibmq montreal”). These configurations are also selected
because they are susceptible to the lowest amounts of gate errors, as according to calibration
data. The physical (ancilla) qubits are highlighted using red (green) squares, and the grey
arrows indicates the direction of ascending qubit labels (from q0 to q3L−1).

3.5 State measurement and post-selection

After the state preparation, we need to compellingly measure the putatively prepared state
to check whether the AKLT state was indeed realized. The IBM quantum computer only
allows for measurements that outputs whether a qubit is spin up or down - by repeating a
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Avg 2.860e-2 Avg 1.771e-2

min 6.819e-3min 8.100e-3 max 9.770e-2 max 5.686e-2

Figure 4: Layouts of the utilized qubits on our IBM quantum processor
(a) - (d) shows the selected qubits in the ibmq montreal quantum computer prepara-
tion of sized L = 2, 3, 4 and 5 AKLT states, respectively. The spin-1/2 chain (an-
cilla) qubits are highlighted by red (green) solid squares. The grey arrow points
the direction of each qubit chain from the beginning. For different system sizes
L = 2, 3, 4 and 5, the qubits chosen on ibmq montreal are: (a) [11, 14, 13, 15, 12, 10],
(b) [11, 14, 13, 10, 12, 15, 17, 18, 21], (c) [24, 23, 21, 17, 18, 15, 10, 12, 13, 16, 14, 11] and (d)
[24, 23, 21, 17, 18, 15, 10, 12, 13, 16, 14, 11, 5, 8, 9], with gray arrows indicating the directions of
ascending qubit labels. The error for single-qubit Pauli-X gates and CX gates are also shown.

large number of “shots” or “runs”, the expectation value of 〈τz〉 = 〈q|τz|q〉 of a qubit q can
be measured 3.

Following the quantum circuit being executed on the IBM quantum processor over a
large number of shots, we perform post-selection not just to project out the ancilla qubit
for effectively non-unitary evolution, but also to mitigate the effect of noise on the data so
as to enhance the signal-to-noise ratio. To implement P̂ from Sec. 3.1 via post-selection, the
instances where the ancilla qubits are all measured to be spin up (‘|↑〉’) are recorded, and those
with at least one spin down (‘|↓〉’) are discarded. Of those instances that are post-selected
thus far, we can perform another round of post-selection to eliminate spurious instances
compromised by noise. We only keep instances whose bit strings conserve the total spin up
numbers i.e. with the same number of ‘|↑〉’ in the context of IBM Q data of counts. This
is because the projection operator, sometimes also called the symmetrization operator [68]
from Eq. (6), does not change the total spin number, and therefore the state itself after the
application of the unitary operator should have the same number of spin up (‘|↑〉’) with the

3Although not necessary for our purpose, the spin-1/2 expectation in any other direction can be measured
by rotating the qubit prior to measurement.
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initial product state of singlets. After that, the probability amplitude for each qubit of the
AKLT state in the spin-1/2 basis can be calculated and compared with the exact values from
the MPS, which is discussed in the following section (see also Appendix. C).

4 Measurement results

In this section, we present and evaluate the performance of our algorithm for preparing the
OBC AKLT state on a quantum processor. We first introduce the Hellinger fidelity for
quantifying how closely the prepared AKLT state agrees with the exact simulated AKLT
state in Sec. 4.1. Next, we present measurement results of the AKLT state with different sizes
in Sec. 4.2, and briefly discuss some broader implications.

4.1 State fidelity

To evaluate the validity of our state-preparation algorithm of FIG. 3, we use the Hellinger
fidelity [89]. This quantity can directly estimate the similarity between two probability distri-
butions, which is suitable for the sampling statistics nature of IBM Q data, as it is ananalog
to quantum fidelity for classical probability distributions [90] 4. Most recently, this quan-
tity has been used to characterize the performance of Dicke state preparation on the IBM Q
system [90], as well as to investigate the quantum circuit reproducibility [91]. Here, we re-
mark that although the Hellinger fidelity does not take into account the coherent information
between different basis in the Hilbert space, it circumvents the large number of tomogra-
phy circuits, which is suitable for NISQ-era devices such as IBM Q. In analogy to classical
probabilities, for any two states represented in the spin-1/2 basis as

|R〉 =
∑
i

ri |σi〉 , |S〉 =
∑
i

si |σi〉 , (17)

the Hellinger fidelity is defined as

F (|R〉 , |S〉) =

[∑
i

√
|ri|2|si|2

]2
. (18)

If |R〉 and |S〉 were identical, all the coefficients
√
|ri|2|si|2 = |ri|2 would sum to unity;

otherwise, the departure of F from unity signifies the lack of perfect agreement between |R〉
and |S〉. Here, we take |R〉 and |S〉 as the AKLT state prepared on the quantum processor
and the exact AKLT state simulated using the local noiseless Qiskit aer simulator backends
on the Qiskit Terra circuits respectively. In other words, |ri|2 is the probability distribution
obtained from measuring the physical quantum circuit and |si|2 represent the exact AKLT
state probability distribution.

4.2 Verification of the AKLT state

In FIG. 5, we present very good agreement between the OBC AKLT states prepared on
the IBM quantum computer (with and without error mitigation) with the results from the

4In this case, we also do not need to further construct additional quantum tomography circuits after prepar-
ing the AKLT state, which will add on error for the results.
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Figure 5: Characterization of AKLT state preparation with open boundary condi-
tions. (a) Comparison of the probability amplitudes of the L = 2 AKLT state components in
the spin-1/2 basis. (b) and (c) comparison of the probability amplitudes of the L = 3 AKLT
state components in the spin-1/2 basis. In panels (a), (b) and (c), from darker to lighter
color, the bar indicates the ideal local noiseless simulation results from aer simulator, the
unmitigated and mitigated results from the real devices. For all panels, the mitigated and
unmitigated results are obtained from ibmq montreal, and error bars are calculated based on
91 repeated executions. A maximum of 32000 shots is used for each execution, and therefore
the effective shots for each circuit is 91× 32000 = 2912000.

noiseless local simulator. Here, the signatures of the AKLT state characterization are the
probability amplitudes of each basis component for L = 2 and L = 3, which are obtained via
post-selection of the raw measurement output from the IBM quantum computer5. We observe
qualitative agreement with the results from the noiseless aer simulator for L = 2 and 3 in
Fig. 5(a) - (c). As for L = 5, which is only presented in Fig. 6, the numerical readout error
mitigation is extremely costly, i.e. one needs 215 circuits to construct the calibration matrix,
which is beyond the maximal number of circuits each IBM Q device could host per submission.
Therefore, the readout error mitigation is performed using the mthree package [92] without
explicitly constructing a calibration matrix (see details of error mitigation in Appendix. D).
We execute all the circuits, including those for readout error mitigations at the same time, so
as to reduce the effect of stochastic noise on the device as much as possible. Therefore, for
each circuit for L, the result is calculated and averaged over 91 repeated executions of the
same circuit on ibmq montreal. This is the maximum allowable number for which each circuit
for L can be repeated on this device. The error bars represent the standard error.

As mentioned above, the number of CX gates which grows linearly with the system size
L in the recompiled quantum circuit mainly contributes to the error in the simulation on the
IBM Q device, and FIG. 5 illustrates such effect clearly.According to the case with L = 2

5The local simulation results obtained from aer simulator is quite close to those exact values calculated
from the MPS representation (see Appendix. C.1), up to a relative error of magnitude 10−3.
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Figure 6: Averaged Hellinger fidelity F (|ψ〉L , |Φ〉) as a function of system size
L. From darker to lighter color, the line represents the mitigated results using variational
parametrized circuits (solid line with triangles), the unmitigated results using variational
parameterized circuits (dashed line with circless), and those results obtained using default
transpile function from Qiskit (dot-dashed line with squares). All results were obtained
from ibmq montreal averaged over 91 repeats of executions. |Φ〉 is the state obtained from
noiseless Qiskit aer simulator. Notably, the recompiled variational circuit ansatz, whether
with or without error mitigation, significantly preserves the fidelity as L increases.

in FIG. 5(a), we find that our results are very close to the exact values for all component
basis states. However, for L = 3 in FIG. 5(b) and (c), only the value for the basis 〈↑↑↓↓↑↑〉
is close to the exact one, while most of the others exhibit some visible deviations from the
exact values. Overall, the averaged Hellinger fidelity F (|ψ〉L , |Φ〉) starts to drop dramatically
after L = 3 where |Φ〉 is the state obtained from noiseless Qiskit aer simulator. For both
L = 2 and L = 3 cases, compared with the unmitigated results, the error mitigation does
not show an obvious improvement. Since our error mitigation method only focuses on the
readout error, the effect of the error mitigation is much more significant for larger systems
where more qubit measurements are required.

To check how fast the fidelity decreases when the system size increases, or whether a high
fidelity can be sustained, we study the averaged Hellinger fidelity F (|ψ〉L , |Φ〉) versus L in
FIG. 6. As also apparent in FIG. 5, we observed that for larger systems, the state fidelity
decreases quickly for the default transpiled AKLT state, indicating a poor state preparation.
This is because the total number of CX gates increases linearly with respect to the system
size L, and therefore CX gate errors quickly become the most dominant source of gate fidelity
errors in the quantum processor. In that case, our approach for the readout-error mitigation
will be less effective when L increases. Moreover, compared to the fidelity for different L
using the default transpile function from Qiskit, the advantage of our variational approach
is more obvious for larger systems, although the fidelities for smaller systems with L = 2
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are almost the same. Our findings indicate that the variational parametrized (recompiled)
circuit with fewer CX gates is capable of maintaining a higher state fidelity and more accurate
probability amplitudes for larger system sizes (see also Appendix. A). Furthermore, according
to the result under the readout error mitigation in FIG. 6, although the improvement in the
fidelity value is modest, the effect of error mitigation is more significant for larger system
sizes. This is because a larger system size requires more measurements during the state’s
preparation. As a result, once the gate fidelity on quantum processors improves in the near
future, our algorithm will achieve significantly higher fidelities state preparation even at larger
L. Here, we remark again that to further characterize the coherent information of the AKLT
state beyond the scope of the Hellinger fidelity, we calculated the entanglement spectrum in
Sec. E using the expansion the density matrix in terms of Pauli strings [45].

Our algorithm can also be naturally extended to perform the preparation of the AKLT
state with PBCs, although, for the current stage, this is restricted by the geometry of IBM
Q devices, as a specific qubit ring is needed such that both edge spins are connected. In
Appendix. C.2, we show the results for a local classical noiseless simulation of the preparation
of the AKLT state with PBC without noise, which shows good agreement with the values
computed from the MPS representation 6. Also, as our circuit is notably shallower than the
one generated using the default transpile function from Qiskit, it has the capacity for further
operations on the obtained AKLT state, e.g. performing quench dynamics of the state, or
using the state for the calculation of observables interested by post selecting all the ancilla
qubits to be in |↑〉.

5 Conclusion

In conclusion, we presented an efficient algorithm to prepare the AKLT state on an IBM
quantum computer. By using an additional ancilla qubit, we are able to embed the non-unitary
projection operator into a unitary operator acting on three qubits. Through the variational
recompilation of the operator, such a three-qubit operation is then entirely transformed into
a parametrized circuit with a reduced circuit depth. This approach is non-deterministic, and
therefore we show the state can be obtained by evolving a trivial initial product state of singlets
plus ancilla qubits in spin-up using this parametrized circuit, and then by post-selection and
spin number conservation. The simulations on the noisy IBM quantum processor show that the
state fidelity is higher for those with smaller system sizes, and due to the aggregate CX gate
error when the system size is larger, the lower fidelity indicates the poorer state preparation.
Accordingly, the effect of readout-error mitigation on the state fidelity is more obvious in
cases of larger system sizes. In terms of the variational recompilation of the quantum circuit,
our approach provides an efficient way to both prepare AKLT state with fewer CX and single
qubit gates on NISQ-era quantum processors, and for subsequent operations using the state
preparation. Also, the evolution from the initial state only has one step, and it does not
require any mid-circuit measurement.

In the future, this work will inspire similar algorithms for higher-dimensional AKLT states
[36, 37, 93, 47, 48, 94], or other types of VBS states which are of great interest to the
condensed matter physics community. More specifically, to extend our current approach

6We remark here that the geometry of ibmq washington is possible to host a six-site PBC AKLT state, but
we do not study that in this work.
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to higher-dimensional AKLT states, it is vital to come up with a suitable encoding of the
triplet states in the spin-1 manifold such that its MPS representation could be explicitly
implemented. More careful studies should also be performed to increase the state fidelity for
larger system sizes with suitable error mitigation techniques and adequate numerical resources.
With appropriate redefinitions of the basis states, the exponentially large Hilbert space of even
modestly sized quantum processors can be used to demonstrate the physics in large multi-
dimensional lattices [95, 96, 97, 98], as already demonstrated in Ref. [18]. Another possible
direction is to come up with quantum algorithms for the computation of the relevant quantities
from the AKLT state which is already prepared on a quantum computer. This is of great
importance to the application of quantum computers on many-body physics, but is still at its
infancy in current literature.

We also note that non-unitary operators also describe the time evolution of effectively
non-Hermitian systems. As such, with some modifications, our algorithm can be adapted
to simulate non-Hermitian many-body phenomena as well as entanglement dynamics on the
quantum computer [99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]. As a concrete
case in point, the phase transition associated with PT symmetry breaking is generally induced
by gain or loss, which can be realized by coupling system qubits to an ancilla qubit analogously
to our approach [112, 113, 114]. Moreover, in terms of realizing loss as dissipation, one can
simulate quantum systems with dissipative boundaries [115, 116, 117]. In addition, under
appropriate generalizations, non-unitary dynamics can be directly embedded in a quantum
circuit, which would facilitate the simulation of dissipative quantum dynamics on a quantum
computer. [118, 119, 120, 121, 122, 123].

Acknowledgements

T. C. thanks Tim Byrnes for fruitful discussions. T. C. and R. S. thank Truman Ng for discus-
sions on the quantum simulation implementation on IBM Quantum services. We acknowledge
the use of IBM Quantum services for this work. The views expressed are those of the authors,
and do not reflect the official policy or position of IBM or the IBM Quantum team. The dia-
grams of quantum circuits in this work were partially produced using Quantikz [124]. T. C.
and R. S. contributed equally to this work.

Funding information T. C. and B. Y. acknowledges support from the Singapore National
Research Foundation (NRF) under NRF fellowship award NRF-NRFF12-2020-0005. C. H. L.
acknowledges support from the Singapore’s NRF Quantum engineering grant NRF2021-QEP2-
02-P09.

References

[1] P. W. Anderson, More is different, Science 177(4047), 393 (1972),
doi:10.1126/science.177.4047.393.

[2] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev.
Mod. Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885.

17

https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1103/RevModPhys.80.885


SciPost Physics Submission

[3] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk,
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[25] J. I. Cirac, D. Pérez-Garćıa, N. Schuch and F. Verstraete, Matrix product states and
projected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93,
045003 (2021), doi:10.1103/RevModPhys.93.045003.

[26] S. Johnstun and J.-F. Van Huele, Understanding and compensating for noise
on ibm quantum computers, American Journal of Physics 89(10), 935 (2021),
doi:10.1119/10.0006204.

[27] S.-J. Ran, Encoding of matrix product states into quantum circuits of one- and two-qubit
gates, Phys. Rev. A 101, 032310 (2020), doi:10.1103/PhysRevA.101.032310.

[28] A. Holmes and A. Y. Matsuura, Efficient quantum circuits for accurate state preparation
of smooth, differentiable functions, In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 169–179, doi:10.1109/QCE49297.2020.00030
(2020).

19

https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1038/s41534-022-00527-1
https://doi.org/10.1103/PhysRevLett.129.140502
https://doi.org/10.1103/PhysRevA.103.032606
https://doi.org/10.1103/PRXQuantum.2.030334
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1119/10.0006204
https://doi.org/10.1103/PhysRevA.101.032310
https://doi.org/10.1109/QCE49297.2020.00030


SciPost Physics Submission

[29] S.-H. Lin, R. Dilip, A. G. Green, A. Smith and F. Pollmann, Real- and imaginary-
time evolution with compressed quantum circuits, PRX Quantum 2, 010342 (2021),
doi:10.1103/PRXQuantum.2.010342.

[30] M. Nakamura, Z.-Y. Wang and E. J. Bergholtz, Exactly solvable fermion chain de-
scribing a ν = 1/3 fractional quantum hall state, Phys. Rev. Lett. 109, 016401 (2012),
doi:10.1103/PhysRevLett.109.016401.

[31] A. W. Schlimgen, K. Head-Marsden, L. M. Sager-Smith, P. Narang and D. A. Mazziotti,
Quantum state preparation and nonunitary evolution with diagonal operators, Phys.
Rev. A 106, 022414 (2022), doi:10.1103/PhysRevA.106.022414.

[32] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin and X. Yuan, Variational ansatz-
based quantum simulation of imaginary time evolution, npj Quantum Information 5(1),
75 (2019), doi:10.1038/s41534-019-0187-2.

[33] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. S. L.
Brandão and G. K.-L. Chan, Determining eigenstates and thermal states on a quantum
computer using quantum imaginary time evolution, Nature Physics 16(2), 205 (2020),
doi:10.1038/s41567-019-0704-4.

[34] Y. Mao, M. Chaudhary, M. Kondappan, J. Shi, E. O. Ilo-Okeke, V. Ivannikov and
T. Byrnes, Deterministic measurement-based imaginary time evolution, arXiv preprint
arXiv:2202.09100 (2022).

[35] M. Kondappan, M. Chaudhary, E. O. Ilo-Okeke, V. Ivannikov and T. Byrnes,
Imaginary-time evolution with quantum nondemolition measurements: Multiqubit in-
teractions via measurement nonlinearities, Phys. Rev. A 107, 042616 (2023),
doi:10.1103/PhysRevA.107.042616.

[36] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-
bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987),
doi:10.1103/PhysRevLett.59.799.

[37] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Valence bond ground states in
isotropic quantum antiferromagnets, Communications in Mathematical Physics 115(3),
477 (1988), doi:10.1007/BF01218021.

[38] I. Affleck, Quantum spin chains and the haldane gap, Journal of Physics: Condensed
Matter 1(19), 3047 (1989), doi:10.1088/0953-8984/1/19/001.

[39] T. Kennedy, Exact diagonalisations of open spin-1 chains, Journal of Physics: Con-
densed Matter 2(26), 5737 (1990), doi:10.1088/0953-8984/2/26/010.

[40] S. R. White and D. A. Huse, Numerical renormalization-group study of low-lying eigen-
states of the antiferromagnetic s=1 heisenberg chain, Phys. Rev. B 48, 3844 (1993),
doi:10.1103/PhysRevB.48.3844.

[41] A. T. K. Tan, S.-N. Sun, R. N. Tazhigulov, G. K.-L. Chan and A. J. Minnich, Realizing
symmetry-protected topological phases in a spin-1/2 chain with next-nearest neighbor
hopping on superconducting qubits, arXiv preprint arXiv:2112.10333 (2021).

20

https://doi.org/10.1103/PRXQuantum.2.010342
https://doi.org/10.1103/PhysRevLett.109.016401
https://doi.org/10.1103/PhysRevA.106.022414
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1103/PhysRevA.107.042616
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/BF01218021
https://doi.org/10.1088/0953-8984/1/19/001
https://doi.org/10.1088/0953-8984/2/26/010
https://doi.org/10.1103/PhysRevB.48.3844


SciPost Physics Submission

[42] F. Mei, Q. Guo, Y.-F. Yu, L. Xiao, S.-L. Zhu and S. Jia, Digital simulation of topological
matter on programmable quantum processors, Phys. Rev. Lett. 125, 160503 (2020),
doi:10.1103/PhysRevLett.125.160503.

[43] D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela and E. G. Dalla Torre, Iden-
tification of symmetry-protected topological states on noisy quantum computers, Phys.
Rev. Lett. 125, 120502 (2020), doi:10.1103/PhysRevLett.125.120502.

[44] A. Smith, B. Jobst, A. G. Green and F. Pollmann, Crossing a topological phase
transition with a quantum computer, Phys. Rev. Research 4, L022020 (2022),
doi:10.1103/PhysRevResearch.4.L022020.

[45] K. Choo, C. W. von Keyserlingk, N. Regnault and T. Neupert, Measurement of the
entanglement spectrum of a symmetry-protected topological state using the ibm quantum
computer, Phys. Rev. Lett. 121, 086808 (2018), doi:10.1103/PhysRevLett.121.086808.

[46] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco,
S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. Hazzard et al.,
Quantum simulators: Architectures and opportunities, PRX Quantum 2, 017003 (2021),
doi:10.1103/PRXQuantum.2.017003.

[47] T.-C. Wei, I. Affleck and R. Raussendorf, Affleck-kennedy-lieb-tasaki state on a hon-
eycomb lattice is a universal quantum computational resource, Phys. Rev. Lett. 106,
070501 (2011), doi:10.1103/PhysRevLett.106.070501.

[48] A. Miyake, Quantum computational capability of a 2d valence bond solid phase, Annals
of Physics 326(7), 1656 (2011), doi:https://doi.org/10.1016/j.aop.2011.03.006.

[49] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86,
5188 (2001), doi:10.1103/PhysRevLett.86.5188.

[50] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf and M. Van den
Nest, Measurement-based quantum computation, Nature Physics 5(1), 19 (2009),
doi:10.1038/nphys1157.

[51] T.-C. Wei, R. Raussendorf and I. Affleck, Some Aspects of Affleck–Kennedy–Lieb–Tasaki
Models: Tensor Network, Physical Properties, Spectral Gap, Deformation, and Quantum
Computation, pp. 89–125, Springer International Publishing, Cham, doi:10.1007/978-
3-031-03998-0 5 (2022).

[52] R. Kaltenbaek, J. Lavoie, B. Zeng, S. D. Bartlett and K. J. Resch, Optical one-way
quantum computing with a simulated valence-bond solid, Nature Physics 6(11), 850
(2010), doi:10.1038/nphys1777.

[53] D. E. Browne and T. Rudolph, Resource-efficient linear optical quantum computation,
Phys. Rev. Lett. 95, 010501 (2005), doi:10.1103/PhysRevLett.95.010501.

[54] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker and C. Monroe, Real-
ization of a quantum integer-spin chain with controllable interactions, Phys. Rev. X 5,
021026 (2015), doi:10.1103/PhysRevX.5.021026.

21

https://doi.org/10.1103/PhysRevLett.125.160503
https://doi.org/10.1103/PhysRevLett.125.120502
https://doi.org/10.1103/PhysRevResearch.4.L022020
https://doi.org/10.1103/PhysRevLett.121.086808
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1103/PhysRevLett.106.070501
https://doi.org/https://doi.org/10.1016/j.aop.2011.03.006
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/nphys1157
https://doi.org/10.1007/978-3-031-03998-0_5
https://doi.org/10.1007/978-3-031-03998-0_5
https://doi.org/10.1038/nphys1777
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevX.5.021026


SciPost Physics Submission

[55] K. C. Smith, E. Crane, N. Wiebe and S. Girvin, Deterministic constant-depth prepara-
tion of the aklt state on a quantum processor using fusion measurements, PRX Quantum
4, 020315 (2023), doi:10.1103/PRXQuantum.4.020315.

[56] B. Murta, P. M. Q. Cruz and J. Fernández-Rossier, Preparing valence-bond-solid states
on noisy intermediate-scale quantum computers, Phys. Rev. Res. 5, 013190 (2023),
doi:10.1103/PhysRevResearch.5.013190.

[57] Z.-Y. Wei, D. Malz and J. I. Cirac, Efficient adiabatic preparation of tensor network
states, Phys. Rev. Res. 5, L022037 (2023), doi:10.1103/PhysRevResearch.5.L022037.

[58] J. Kim, M. Kim, N. Kawashima, J. H. Han and H.-Y. Lee, Construction of variational
matrix product states for the heisenberg spin-1 chain, Phys. Rev. B 102, 085117 (2020),
doi:10.1103/PhysRevB.102.085117.

[59] J. Gray, quimb: A python package for quantum information and many-body calculations,
Journal of Open Source Software 3(29), 819 (2018), doi:10.21105/joss.00819.

[60] K. Heya, Y. Suzuki, Y. Nakamura and K. Fujii, Variational quantum gate optimization,
arXiv preprint arXiv:1810.12745 (2018).

[61] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger and P. J. Coles,
Quantum-assisted quantum compiling, Quantum 3, 140 (2019), doi:10.22331/q-2019-
05-13-140.

[62] S.-N. Sun, M. Motta, R. N. Tazhigulov, A. T. Tan, G. K.-L. Chan and A. J. Min-
nich, Quantum computation of finite-temperature static and dynamical properties of
spin systems using quantum imaginary time evolution, PRX Quantum 2, 010317 (2021),
doi:10.1103/PRXQuantum.2.010317.

[63] F. Barratt, J. Dborin, M. Bal, V. Stojevic, F. Pollmann and A. G. Green, Parallel
quantum simulation of large systems on small nisq computers, npj Quantum Information
7(1), 1 (2021), doi:10.1038/s41534-021-00420-3.

[64] J. Dborin, V. Wimalaweera, F. Barratt, E. Ostby, T. E. O’Brien and A. G. Green,
Simulating groundstate and dynamical quantum phase transitions on a superconducting
quantum computer, Nature Communications 13(1), 5977 (2022), doi:10.1038/s41467-
022-33737-4.

[65] M. S. Anis et al., Qiskit: An open-source framework for quantum computing,
doi:10.5281/zenodo.2573505 (2021).

[66] IBM Quantum Lab, https://quantum-computing.ibm.com/lab/docs/iql/manage/

systems/midcircuit-measurement/.
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[90] S. Aktar, A. Bärtschi, A.-H. A. Badawy and S. Eidenbenz, A divide-and-conquer ap-
proach to dicke state preparation, IEEE Transactions on Quantum Engineering 3, 1
(2022), doi:10.1109/TQE.2022.3174547.

[91] S. Dasgupta and T. S. Humble, Characterizing the reproducibility of noisy quantum
circuits, Entropy 24(2) (2022), doi:10.3390/e24020244.

[92] P. D. Nation, H. Kang, N. Sundaresan and J. M. Gambetta, Scalable mitigation
of measurement errors on quantum computers, PRX Quantum 2, 040326 (2021),
doi:10.1103/PRXQuantum.2.040326.

[93] J. Cai, A. Miyake, W. Dür and H. J. Briegel, Universal quantum computer from a
quantum magnet, Phys. Rev. A 82, 052309 (2010), doi:10.1103/PhysRevA.82.052309.

[94] T.-C. Wei, I. Affleck and R. Raussendorf, Two-dimensional affleck-kennedy-lieb-tasaki
state on the honeycomb lattice is a universal resource for quantum computation, Phys.
Rev. A 86, 032328 (2012), doi:10.1103/PhysRevA.86.032328.

[95] C. H. Lee, Many-body topological and skin states without open boundaries, Physical
Review B 104(19), 195102 (2021), doi:10.1103/PhysRevB.104.195102.

[96] Y. E. Kraus and O. Zilberberg, Quasiperiodicity and topology transcend dimensions,
Nature Physics 12(7), 624 (2016), doi:10.1038/nphys3784.

[97] I. Petrides, H. M. Price and O. Zilberberg, Six-dimensional quantum hall effect
and three-dimensional topological pumps, Physical Review B 98(12), 125431 (2018),
doi:10.1103/PhysRevB.98.125431.

24

https://doi.org/10.1021/jp970984n
https://doi.org/10.1126/science.285.5432.1368
https://doi.org/10.1017/CBO9780511721724
https://doi.org/10.21105/joss.00819
https://doi.org/10.1103/PhysRevLett.122.180501
https://doi.org/10.5281/zenodo.8131793
https://doi.org/10.3389/fphy.2022.906399
https://doi.org/doi:10.1515/crll.1909.136.210
https://doi.org/10.1109/TQE.2022.3174547
https://doi.org/10.3390/e24020244
https://doi.org/10.1103/PRXQuantum.2.040326
https://doi.org/10.1103/PhysRevA.82.052309
https://doi.org/10.1103/PhysRevA.86.032328
https://doi.org/10.1103/PhysRevB.104.195102
https://doi.org/10.1038/nphys3784
https://doi.org/10.1103/PhysRevB.98.125431


SciPost Physics Submission

[98] C. H. Lee, Y. Wang, Y. Chen and X. Zhang, Electromagnetic response of quantum
hall systems in dimensions five and six and beyond, Physical Review B 98(9), 094434
(2018), doi:10.1103/PhysRevB.98.094434.

[99] Y. Ashida, Z. Gong and M. Ueda, Non-hermitian physics, Advances in Physics 69(3),
249 (2020), doi:10.1080/00018732.2021.1876991.

[100] P.-Y. Chang, J.-S. You, X. Wen and S. Ryu, Entanglement spectrum and entropy
in topological non-hermitian systems and nonunitary conformal field theory, Physical
Review Research 2(3), 033069 (2020), doi:10.1103/PhysRevResearch.2.033069.

[101] C. H. Lee and P. Ye, Free-fermion entanglement spectrum through wannier interpolation,
Physical Review B 91(8), 085119 (2015), doi:10.1103/PhysRevLett.128.010402.

[102] Y.-Y. Zou, Y. Zhou, L.-M. Chen and P. Ye, Measuring non-unitarity in non-hermitian
quantum systems, arXiv preprint arXiv:2208.14944 (2022).

[103] C. H. Lee, Exceptional bound states and negative entanglement entropy, Physical Review
Letters 128(1), 010402 (2022), doi:10.1103/PhysRevLett.128.010402.

[104] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter and D. N.
Christodoulides, Non-hermitian physics and pt symmetry, Nature Physics 14(1), 11
(2018), doi:10.1038/nphys4323.

[105] K. Kawabata, K. Shiozaki, M. Ueda and M. Sato, Symmetry and topol-
ogy in non-hermitian physics, Physical Review X 9(4), 041015 (2019),
doi:10.1103/PhysRevX.9.041015.

[106] S. Mu, C. H. Lee, L. Li and J. Gong, Emergent fermi surface in a many-
body non-hermitian fermionic chain, Physical Review B 102(8), 081115 (2020),
doi:10.1103/PhysRevB.102.081115.

[107] T. Yoshida, K. Kudo and Y. Hatsugai, Non-hermitian fractional quantum hall states,
Scientific reports 9(1), 1 (2019), doi:10.1038/s41598-019-53253-8.

[108] L. Li, C. H. Lee and J. Gong, Impurity induced scale-free localization, Communications
Physics 4(1), 1 (2021), doi:10.1038/s42005-021-00547-x.

[109] T. Yoshida, K. Kudo, H. Katsura and Y. Hatsugai, Fate of fractional quan-
tum hall states in open quantum systems: Characterization of correlated topologi-
cal states for the full liouvillian, Physical Review Research 2(3), 033428 (2020),
doi:10.1103/PhysRevResearch.2.033428.

[110] F. Qin, R. Shen and C. H. Lee, Non-hermitian squeezed polarons, Phys. Rev. A 107,
L010202 (2023), doi:10.1103/PhysRevA.107.L010202.

[111] R. Shen and C. H. Lee, Non-hermitian skin clusters from strong interactions, Commu-
nications Physics 5(1), 1 (2022), doi:0.1038/s42005-022-01015-w.

[112] Y. Ashida, S. Furukawa and M. Ueda, Parity-time-symmetric quantum critical phenom-
ena, Nature communications 8(1), 1 (2017), doi:10.1038/ncomms15791.

25

https://doi.org/10.1103/PhysRevB.98.094434
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/PhysRevResearch.2.033069
https://doi.org/10.1103/PhysRevLett.128.010402
https://doi.org/10.1103/PhysRevLett.128.010402
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevB.102.081115
https://doi.org/10.1038/s41598-019-53253-8
https://doi.org/10.1038/s42005-021-00547-x
https://doi.org/10.1103/PhysRevResearch.2.033428
https://doi.org/10.1103/PhysRevA.107.L010202
https://doi.org/0.1038/s42005-022-01015-w
https://doi.org/10.1038/ncomms15791


SciPost Physics Submission

[113] L.-J. Zhai and S. Yin, Out-of-time-ordered correlator in non-hermitian quantum sys-
tems, Physical Review B 102(5), 054303 (2020), doi:10.1103/PhysRevB.102.054303.

[114] R. Hamazaki, Exceptional dynamical quantum phase transitions in periodically driven
systems, Nature communications 12(1), 1 (2021), doi:10.1038/s41467-021-25355-3.

[115] J. Jin, A. Biella, O. Viyuela, C. Ciuti, R. Fazio and D. Rossini, Phase diagram of the
dissipative quantum ising model on a square lattice, Physical Review B 98(24), 241108
(2018), doi:10.1103/PhysRevB.98.241108.
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[128] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow and J. M. Gambetta,
Error mitigation extends the computational reach of a noisy quantum processor, Nature
567(7749), 491 (2019), doi:10.1038/s41586-019-1040-7.

[129] J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin and S. Endo, Mitigating
realistic noise in practical noisy intermediate-scale quantum devices, Phys. Rev. Applied
15, 034026 (2021), doi:10.1103/PhysRevApplied.15.034026.

[130] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme and
A. Kandala, Scalable error mitigation for noisy quantum circuits produces competitive
expectation values, Nature Physics pp. 1–8 (2023), doi:10.1038/s41567-022-01914-3.

[131] S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay and J. M. Gambetta, Mitigating
measurement errors in multiqubit experiments, Phys. Rev. A 103, 042605 (2021),
doi:10.1103/PhysRevA.103.042605.

[132] J. R. Wootton, F. Harkins, N. T. Bronn, A. C. Vazquez, A. Phan and A. T. As-
faw, Teaching quantum computing with an interactive textbook, In 2021 IEEE In-
ternational Conference on Quantum Computing and Engineering (QCE), pp. 385–391,
doi:10.1109/QCE52317.2021.00058 (2021).

A Transformation to an unitary operator

To realize the non-unitary projection P̂ in Eq. (6) from the main text, we consider embedding
it into a three-qubit operation U via the following ansatz [29]

Û =

[
P̂ Â√

Î − P̂†P̂ B̂

]
(19)

with identity matrix Î. Thus, Û can be solved by the following Û ′ ansatz

Û ′ =
[

P̂ Î√
Î − P̂†P̂ Î

]
= ÛR̂. (20)

Here, R̂′ is computed by the QR decomposition of Û ′, which accordingly gives the solution of
Û in Eq. (7). The target state from the operation Û is obtained by the post-selection given
in Eq. (10) of the main text.

As mentioned in the main text, the three-qubit operation in Eq. (7) can also be realized
with the isometry decomposition in FIG. 7 which requires 24 CX gates. However, the circuit
based on our variational approach described in FIG.3 requires much fewer gates: 8 CX gates
for a total of 8 layers. The corresponding comparison of the result is shown in FIG. 8. Here,
the basis states are those component basis of the corresponding AKLT state (L = 2 and
L = 4) represented in the spin-1/2 basis similar to those shown in Fig. 5 7. For smaller
system such as L = 2, the probability amplitude for both approaches are almost equally close
to the exact values [FIG. 8(a)]. However, the effective number of shots for our approach is

7For the purpose of presentation, we did not show them explicitly here.
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Figure 7: Numerical decomposition of the three-qubit operation in Eq. (7). The decomposition
requires 24 CX-gates which are more than the circuit under 8 layers from the variational
approach in FIG. 3. The circuit diagram is generated using Qiskit.

almost two times more than the default transpile approach [FIG. 8(c)]. Once the system
size goes larger (L = 4), for certain basis states, especially for those with larger probability
amplitude values, our approach shows that they are closer to the exact values than the default
transpile approach [FIG. 8(b)], and more effective number of shots [FIG. 8(d)] as well. As
a result, it renders better state fidelity, as already discussed in the main text. All simulations
were executed on ibm montreal. Our approach also indicates that since the circuit is shallower
and there are more effective number of shots, it is capable of further operations once the AKLT
state is prepared.

B Variational circuit optimization

In FIG. 9, we illustrate the performance of the variational circuit parameterization by showing
both the averaged circuit fidelity F and the maximum fidelity Fmax with respect to differ-
ent number of layers nl, as well as different number of iterations of the optimizations. The
averaged F and the error bars are computed over 20 rounds of repeats of the complete op-
timization. It is found that an iteration number of 600 can already render a parameterized
circuit fidelity closer to 1, as shown in FIG. 9. With layer nl = 8, the optimization could
result in an averaged circuit fidelity F close to 1 with fixed number of iterations and basin
hoppings [FIG. 9(a)]. For nl = 5, 6, 7, they fail to achieve a fidelity larger than the case of
nl = 8 within all 20 rounds of repeat. When nl = 9, though F is not better than the case of
nl = 8 due to the other parameters chosen such as increasing the number of basin hopping
during the circuit optimization to avoid being trapped in the local minimal, the largest Fmax

for nl = 9 still gives a fidelity larger than 99.99% [FIG. 9(b)]. Therefore, throughout this
work, we choose nl = 8 as the least number of CX and single-qubit gates to minimize the
gate fidelity error. Comparing our outcomes with the numerical decomposition of Û using
the default transpile function from Qiskit, our approach results in fewer CX gates for each
unitary operator, and the number of the CX gates scales linearly with the size of the AKLT
state. Therefore, our finding shows that we are able to realize the same unitary operator on
a quantum circuit with much shallower circuit depth.
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Figure 8: Probability amplitude for (a) L = 2 and (b) L = 4 AKLT basis states. From
lighter to darker color, the curve for each panel represents the results obtained using the
default transpile approach (dot-dashed line), the noiseless aer simulator (dashed line),
and the variational parameterized circuit (solid line); The effective number of shots for (c)
L = 2 and (d) L = 4 AKLT basis states. From lighter to darker color, the curve for each
panel represents the results obtained using the default transpile approach (dot-dashed line),
and the variational parameterized circuit (solid line). For all panels, the x axis stands for
basis states (we omit the expression for each basis state for purpose of simple presentation),
and the total shots for each execution is 32000, which is the maximum number of shots for
ibm montreal. The basis states are those component basis of the AKLT state represented in
the spin-1/2 basis.

C Explicit exact forms of the AKLT state for L = 2 and L = 3

To characterize the validity of our prepared AKLT state, we check whether the state com-
ponents in spin-1/2 basis are the same as those from the exact MPS representations, and
how close their corresponding probability amplitudes obtained from the real IBM Q device
on are to the exact value. We remark that since the Aσ matrices from Eq. (4) only normalize
the whole state in the thermodynamic limit [67, 68], we calculate the probability amplitude
distribution from the normalized coefficients, and compare them with the results from IBM
Q after performing the post-selection. In the following context, for simplicity, we calculate
the exact values for both OBC and PBC at L = 2 as an example.

C.1 Open boundary conditions

For simplicity, we first show a L = 2 AKLT state with OBC with details. The non-trivial
basis states calculated from the exact MPS expression are:

|ψ〉OBC
L=2 = α1 |O〉 |+〉+ α2 |+〉 |O〉 (21)
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Figure 9: Effect of number of variational ansatz labels nl on the validity of circuit recompila-
tion: (a) Averaged circuit recompilation fidelity F̄ as a function of the number of recompiled
circuit layers nl. For all the curves, the darker blue color represents the larger number of it-
erations: 600 (circle), 700 (square) and 800 (triangle). The error bar of each data is obtained
by calculating the standard error from 20 rounds of optimizations. (b) Maximum circuit re-
compilation fidelity Fmax as a function of the number of recompiled circuit layers nl. For all
the curves, the darker red color represents the larger number of iterations: 600 (circle), 700
(square) and 800 (triangle). For all panels, the number of basin hopping is fixed at 20. The
dashed line indicates the value of fidelity equal to 1.

and

α1 = blA
T
AOA+brA = −

√
2

3
(22)

α2 = blA
T
A+AObrA =

√
2

3

where blA
T

=
(
1 0

)T
, brA =

(
0 1

)T
, and AO = −

√
1
3τ

z, A+ = +
√

2
3τ

+ which are the

same expressions from Eq. (4) and (3). As the state in Eq. (21) is unnormalized, we first
expand each in the spin-1/2 basis by substituting |+〉 = |↑↑〉, and |O〉 = 1/

√
2 (|↑↓〉+ |↓↑〉)

into Eq. (21):

|ψ〉OBC
L=2 =

α1√
2

(|↑↓〉+ |↓↑〉) |↑↑〉+
α2√

2
|↑↑〉 (|↑↓〉+ |↓↑〉) (23)

=
α1√

2
|↑↓↑↑〉+

α1√
2
|↓↑↑↑〉+

α2√
2
|↑↑↑↓〉+

α2√
2
|↑↑↓↑〉

As stated above, this state is not normalized. We introduce a normalization factor N =√
2
(
α1/
√

2
)2

+ 2
(
α2/
√

2
)2

which exactly corresponds to the post-selection procedure in
Sec. 3.1 of the main text, and compute the normalized coefficient for the wavefunction as

α̃1 =
1

N
α1√

2
= −1

2
(24)

α̃2 =
1

N
α2√

2
=

1

2
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and the state itself becomes

|ψ̃〉OBC

L=2 = α̃1 |↑↓↑↑〉+ α̃1 |↓↑↑↑〉+ α̃2 |↑↑↑↓〉+ α̃2 |↑↑↓↑〉 . (25)

Therefore, the normalized probability amplitude for each component basis is then

P [|↑↓↑↑〉] =
1

4
, P [|↓↑↑↑〉] =

1

4
(26)

P [|↑↑↑↓〉] =
1

4
, P [|↑↑↓↑〉] =

1

4

For L = 3, by following the same procedure as decribed above, we can obtain

|ψ〉OBC
L=3 = α1 |+〉 |−〉 |+〉+ α2 (|+〉 |O〉 |O〉 − |O〉 |+〉 |O〉+ |O〉 |O〉 |+〉) (27)

where α1 = −2
√

6/9 and α2 =
√

6/9. After inserting the expression of |O〉 and the normal-
ization, the state itself becomes

|ψ̃〉OBC

L=3 = α̃1 |↑↑↓↓↑↑〉+ α̃2 (|↑↑↑↓↑↓〉+ |↑↑↓↑↑↓〉+ |↑↑↑↓↓↑〉+ |↑↑↓↑↓↑〉) (28)

− α̃2 (|↑↓↑↑↑↓〉+ |↓↑↑↑↑↓〉+ |↑↓↑↑↑↓〉+ |↓↑↑↑↓↑〉) + α̃2 (|↑↓↑↓↑↑〉+ |↓↑↑↓↑↑〉+ |↑↓↓↑↑↑〉+ |↓↑↓↑↑↑〉)

and therefore the normalized probability amplitude for each component basis is

P [|↑↑↓↓↑↑〉] =
4

7
(29)

P [|↑↑↑↓↑↓〉] =
1

28
, P [|↑↑↓↑↑↓〉] =

1

28
, P [|↑↑↑↓↓↑〉] =

1

28
, P [|↑↑↓↑↓↑〉] =

1

28

P [|↑↓↑↑↑↓〉] =
1

28
, P [|↓↑↑↑↑↓〉] =

1

28
, P [|↑↓↑↑↑↓〉] =

1

28
, P [|↓↑↑↑↓↑〉] =

1

28

P [|↑↓↑↓↑↑〉] =
1

28
, P [|↓↑↑↓↑↑〉] =

1

28
, P [|↑↓↓↑↑↑〉] =

1

28
, P [|↓↑↓↑↑↑〉] =

1

28

C.2 Periodic boundary conditions

For an AKLT state with PBC, instead of two seperate spins at the boundaries, the MPS has
a trace for each matrix product in Eq. (2). The non-trivial basis states for a L = 2 AKLT
state are:

|ψ〉PBC
L=2 = α1 |+〉 |−〉+ α2 |O〉 |O〉+ α3 |−〉 |+〉 (30)

and

α1 = Tr
[
A+A−

]
= −2

3
(31)

α2 = Tr
[
AOAO

]
=

2

3

α3 = Tr
[
A−A+

]
= −2

3

Again, we substitute |+〉 = |↑↑〉, and |O〉 = 1/
√

2 (|↑↓〉+ |↓↑〉) into Eq. (30):

|ψ〉PBC
L=2 = α1 |↑↑↓↓〉+

α2

2
(|↑↓↑↓〉+ |↓↑↑↓〉+ |↑↓↓↑〉+ |↓↑↓↑〉) + α3 |↓↓↑↑〉 (32)
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With the normalization factor N =
√
α2
1 + 4(α2/2)2 + α2

3 = 2/
√

3 corresponding to the post-
selection process, we obtain the normalized coefficient for the wavefunction as

α̃1 =
α1

N =
1√
3

(33)

α̃2 =
α2

2N =
1

2
√

3

α̃3 =
α3

N =
1√
3

and the state itself becomes

|ψ̃〉PBC

L=2 = α̃1 |↑↑↓↓〉+ α̃2 (|↑↓↑↓〉+ |↓↑↑↓〉+ |↑↓↓↑〉+ |↓↑↓↑〉) + α̃3 |↓↓↑↑〉 (34)

Therefore, the normalized probability amplitude for each component basis is then

P [|↑↑↓↓〉] = P [|↓↓↑↑〉] =
1

3
(35)

P [|↑↓↑↓〉] = P [|↓↑↑↓〉] = P [|↑↓↓↑〉] = P [|↓↑↓↑〉] =
1

12

Similarily, for L = 3, the state computed from the exact MPS representation is

|ψ〉PBC
L=3 = −α |+〉 |O〉 |−〉+ α |+〉 |−〉 |O〉+ α |O〉 |+〉 |−〉 − α |O〉 |−〉 |+〉 − α |−〉 |+〉 |O〉+ α |−〉 |O〉 |+〉

(36)

where α = 2
3
√
3
. The normalized state is

|ψ̃〉PBC

L=3 = −α̃ (|↑↑↑↓↓↓〉+ |↑↑↓↑↓↓〉) + α̃ (|↑↑↓↓↑↓〉+ |↑↑↓↓↓↑〉) + α̃ (|↑↓↑↑↓↓〉+ |↓↑↑↑↓↑〉)
(37)

− α̃ (|↑↓↓↓↑↑〉+ |↓↑↓↓↑↑〉)− α̃ (|↓↓↑↑↑↓〉+ |↓↓↑↑↓↑〉) + α̃ (|↓↓↑↓↑↑〉+ |↓↓↓↑↑↑〉)

And then we get the probability amplitude for each basis state in the spin-1/2 basis as

P [|↓↓↑↑↓↑〉] = P [|↑↓↓↓↑↑〉] = P [|↓↑↑↑↓↓〉] = P [|↑↑↓↑↓↓〉] = P [|↑↑↓↓↓↑〉] = P [|↓↓↑↑↑↓〉] (38)

= P [|↓↓↑↓↑↑〉] = P [|↓↓↓↑↑↑〉] = P [|↓↑↓↓↑↑〉] = P [|↑↓↑↑↓↓〉] = P [|↑↑↑↓↓↓〉] = P [|↑↑↓↓↑↓〉] =
1

12

We show the results for the L = 2 and L = 3 AKLT states with PBC in FIG. 10. In
order to host a minimal number of single-qubit as well as CX gates, the implementation for
PBC requires a special circuit geometry where the both edge spins are connected, as shown
in FIG. 10(a). We plot the results for PBC AKLT state probability distribution for L = 2
[FIG. 10(b)] and L = 3 [FIG. 10(c)] using the noiseless aer simulator from Qiskit, which
shows good agreement with the exact results calculated from MPS, as derived above.

D Readout error mitigation and device specifications

A major error which can be mitigated in our experiment on IBM Q is the readout error, where
there exists a possibility of measuring |↑〉 but renders a |↓〉, and vice versa. Recent progress
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Figure 10: AKLT state preparation with periodic boundary condition (PBC): (a) Setup for
AKLT state with PBC. Each solid black dot indicates a physical qubit site, and the solid
black line represents the initial singlet bond. Two ancilla qubits are represented by smaller
hallow circles, connected to the corresponding physical qubit via a dashed grey line. The
larger circles represent the spin-1 site. The unitary operators are applied on the three-qubit
sites (red-lined squares); (b) Probability amplitude for L = 2 and 3 AKLT state with PBC.
Lighter blue bar represents the exact values calculated from MPS representation in Sec . C.2,
and the darker blue bar represents the results obtained from the noiseless aer simulator in
Qiskit.

have seen tremendous efforts in the mitigation of the measurement error [125, 126, 127, 128,
86, 129, 130]. For Qiskit [65] environment itself, one could first run a number of calibration
circuits with different initial conditions, and then estimate the true measurement counts based
on the calibration matrix formed from the outcomes from those calibration circuits [131, 132].
In this paper, we utilize a recent readout error mitigation approach [92] which requires only
a handful of circuits without the construction of full calibration matrix.

In order to be suitable for the job submission framework of IBM Q platform, and to make
full use of the calibration approach, we combine the circuits (‘physical circuits’) for the prepa-
ration of AKLT state with the calibration circuits together into one single job and submit
to the IBM Q platform on the cloud. This is to enforce that the ‘physical circuits’ and the
calibration circuits are executed almost at the same time, which will make the calibration
more accurate. Also, in order to have the same quantum register layout for both ‘physical
circuits’ and the calibration circuit, we first select and transpile the ‘physical circuit’ onto the
corresponding real device with respect to the best fitness function using the device error data
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which were calibrated by IBM Q for high-difelity quantum nondemolition (QND) measure-
ments [17], and then use this particular layout for the calibration circuit so that the qubits
used for both categories of circuits are exactly the same. We then submit both categories of
circuits together to the real device on IBM Q for execution.

We show the device error obtained from IBM Q ibmq montreal in FIG. 11.

ibmq_montreal

Avg 2.860e-2

min 8.100e-3 max 9.770e-2

Avg 1.771e-2

min 6.819e-3 max 5.686e-2

Figure 11: Calibration data of ibmq montreal on 2022-09-22 22:56: (a) Mapview of the cali-
bration data on IBM Q ibmq montreal device; (b) Range of single-qubit Pauli-X gate error
(left panel) and CX gate error (right panel) with their averaged values. The averaged relax-
ation time T1 and decoherence time T2 for the qubits is 122.93µs and 92.16µs, respectively.
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E Entanglement spectrum

In this section, we present our results of the entanglement spectrum by measuring a reduced
density matrix. Here, we consider the AKLT state with L = 2 8, and select the subsystem as
the first two physical qubits. For a reduced density matrix ρ, we can expand it in terms of
Pauli strings [45], and our two-site case is given by

ρ =
1

22

∑
α1,α2=I,X,Y,Z

cα1,α2σα1,1σα2,2, (39)

where the coefficients can be simply computed as follows

cα1···αn = Tr [σα1,1σα2,2ρ] . (40)

For our simulations on the quantum computer, we only perform the measurement along
Tr [σZ,1σZ,2ρ]. In order to measure other coefficients, we apply rotations on qubits. For
example, to measure Tr [σZ,1σZ,2ρ], we rotate the two selected qubits from σZ,1 and σZ,2 to
σX,1 and σX,2.

We display the results of the simulations in FIG. 12 (a), where both the noiseless and
the noisy simulation exhibit good agreement with the exact result. Then, after obtaining
the reduced density matrix, we can numerically diagonalize ρ to compute its entanglement
spectrum, and the results are shown in FIG. 12 (b). Here, the noiseless simulation fits the
exact result well, and since the process of numerical diagonalization is extremely sensitive to
the magnitude of the matrix elements, there exists a slight disagreement between the noisy
simulation and the exact result.

(a) (b)

Figure 12: (a) Measurement of the half-chain (the first two physical qubits) reduced density
matrix of the AKLT state in L = 2. (b) The entanglement spectrum (eigenvalues of the
reduced density matrix) obtained from the data in panel (a).

8The system size beyond L = 2 is currently numerically heavy for us to compute all the necessary quantities
on IBM Q using our algorithm. We plan to improve this in our future work.
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