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Abstract

Hyperbolic geometry on the one-bordered torus is numerically uniformized using Liouville

theory. This geometry is relevant for the hyperbolic string tadpole vertex describing the one-

loop quantum corrections of closed string field theory. We argue that the Lamé equation,

upon fixing its accessory parameter via Polyakov conjecture, provides the input for the

characterization. The explicit expressions for the Weil-Petersson metric as well as the local

coordinates and the associated vertex region for the tadpole vertex are given in terms of

classical torus conformal blocks. The relevance of this vertex for vacuum shift computations

in string theory is highlighted.
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1 Introduction

Closed string field theory (CSFT) is a second-quantized formalism for string theory (for reviews

see [1–4]). Despite the ongoing activity at multiple fronts in recent years [5–25], an explicit descrip-

tion of string vertices amenable to practical calculations is still lacking and this prevents further

developments in CSFT. In particular, the construction of CSFT solutions are obscured primarily by

our poor geometric understanding of the nature of string vertices.

In bosonic CSFT, the string vertices Vg,n are subsets of moduli spaces of Riemann surfaces of

genus g and n punctures Mg,n endowed with a choice of local coordinates around each puncture

up to a phase that satisfies the geometric Batalin-Vilkovisky (BV) equation [1]. Historically, the

minimal-area metrics [26–32] are used to specify Vg,n. Even though the minimal-area vertices lead

to many insights on CSFT in the past, the existence issue for the higher genus surfaces persists and

there is no clear efficient and systematic way to obtain a description for them, except for genus 0.
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On the contrary, the hyperbolic string vertices of Costello and Zwiebach [33] work at the quantum

level and it appears to be more amenable to an explicit description, see the developments [34–40].

These vertices are constructed by considering bordered Riemann surfaces endowed with hyperbolic

metric (that is, the metric with constant negative curvature K = −1) whose borders have the

length L = 2πλ and grafting semi-infinite flat cylinders of the same circumference at each border.

The grafted cylinders naturally provide the local coordinates around each puncture and the vertex

regions for the moduli integration are specified by restricting to surfaces whose systoles are equal

to or greater than L.1 It is shown that hyperbolic string vertices solve the geometric BV equation

if 0 < L ≤ 2 arcsinh 1 ≡ L∗ = 2πλ∗ using the collar lemma [41].

Hyperbolic string vertices are recently related to Liouville theory and classical conformal blocks

by the author [40]. It is shown that their local coordinates and the associated vertex regions can be

constructed in the spirit of conformal bootstrap. This connection is intriguing and may eventually

provide an improved understanding for the geometric input of the hyperbolic CSFT. The goal of

this paper is to further elaborate on this emerging method in the case of higher genus surfaces

that has been only sketched in [40] and construct the local coordinates and vertex region for the

hyperbolic string tadpole vertex, hyperbolic tadpole for short. The construction here heavily relies

on the known expressions of the classical torus conformal blocks [42,43].

To summarize, we demonstrate that the solutions ψ(z) to the Lamé equation

∂2ψ(z) +
1

2
(δ · ℘ (z, τ) + c)ψ(z) = 0 , (1.1)

can be used to obtain the local coordinates for the hyperbolic tadpole in the vertex and the Feynman

regions on the z-plane with the identification z ∼ z + 1 ∼ z + τ . Here ℘ (z, τ) is the Weierstrass

elliptic function and δ = 1/2 + λ2/2, with L = 2πλ is the circumference of the grafted cylinder.

The accessory parameter c as a function of the moduli of the torus τ and the length of the border L

is fixed in terms of a (version of) on-shell Liouville action (3.8) upon using a (version of) Polyakov

conjecture (2.29). Its expression for the vertex and Feynman regions are given in (3.28) and (4.8)

respectively. These regions are demarcated by finding the length of the systole, see figure 5. A

Mathematica package for the local coordinates is available upon request.

As a byproduct of our motivation from CSFT, we effectively provide a numerical characterization

of the hyperbolic geometry on the one-bordered torus. That is, we obtained the length of the simple

closed geodesics, as well as the hyperbolic metric, as a function of the moduli and the length of the

border. Furthermore, we also derived the Weil-Petersson (WP) metric on the moduli space of the

one-bordered torus as a series expansion and calculated its associated volume. Similar work along

these lines has been performed for the four-punctured sphere in [44, 45] and for the four-bordered

sphere in [40] in the limit L→∞. Extending them to finite L amounts to a trivial work.

The local coordinates for the vertex region V1,1 and the Feynman region F1,1 can be used to

compute off-shell one-loop diagrams systematically in (super-)string theory, in particular ones that

appear in vacuum shift calculations, from first-principles. These calculations have been addressed

in the past either using CSFT-inspired arguments [46, 47] or at the semi-formal level [48], with a

suggestion of using SL(2,C) vertices to eventually make it explicit. However, we point out that

there are serious drawbacks of using SL(2,C) vertices for systematic calculations involving a vacuum

shift and mass renormalization currently; the local coordinates at the one-loop is semi-explicit and

1Systole of a Riemann surface is defined as the length of the shortest non-contractible curve that is non-homotopic

to a boundary component.
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it is not clear how to extend SL(2,C) vertices to remaining Riemann surfaces, especially to tori with

two punctures. Since hyperbolic vertices are specified by a geometric prescription from the get-go

these issues never rise. As long as the classical conformal blocks for Riemann surfaces are available

everything can be determined explicitly.

The rest of the paper is organized as follows. We begin by detailing the procedure for how to

solve for the local coordinates of quantum hyperbolic string vertices in section 2 and then specialize

to the hyperbolic tadpole vertex. We present the Lamé equation and the Polyakov conjecture that

determines its accessory parameter. The material in this section is primarily from [43], but we

provide a detailed summary in order to set our conventions and fit into the framework of [40]. In

section 3, we describe the conformal bootstrap procedure to uniformize the hyperbolic geometry.

We compare our results with the exact expressions for special situations and check the modular

crossing equation numerically. Here, we also find the WP metric and calculate its associated volume.

Finally, we derive the vertex region and the local coordinates for the hyperbolic tadpole vertex in

the subsequent two sections. We conclude our paper in section 6.

In appendices A and B we provide details on the special functions used in this work and our

derivation of the classical torus conformal blocks after [42]. In appendix C we give additional details

on our numerical results. We derive the Polyakov conjecture for tori with n hyperbolic singularities

in appendix D.

2 The Polyakov conjecture for the hyperbolic tadpole

In this section we introduce the Lamé Equation: the Fuchsian equation relevant for the hyperbolic

tadpole vertex and argue for the Polyakov conjecture for tori with a single hyperbolic singularity. 2

We begin by making general remarks on the behavior of Fuchsian equations on higher genus surfaces

and then immediately specialize to the case of hyperbolic tadpole. We use the conventions and

formalism of [40] with ingredients taken from [43].

2.1 The Fuchsian equation for higher genus surfaces

The (holomorphic) Fuchsian equation is given by

∂2ψ +
1

2
T (z)ψ = 0 . (2.1)

It is possible to use this equation and its hyperbolic monodromy problem to construct the local co-

ordinates of classical hyperbolic vertices, as shown in [37,40]. The hyperbolic monodromy problem

asks for the conditions on T (z) such that the solutions ψ(z) can realize real (PSL(2,R)) hyper-

bolic monodromy around the punctures, called hyperbolic singularities. This problem is originally

considered in [49,50].

In this paper, we consider genus g Riemann surfaces with n hyperbolic singularities. The key

point for the extension to non-vanishing genus is that the Fuchsian equation (2.1) is invariant under

2We often use the words puncture, hyperbolic singularity, border (of length L) and the grafted flat cylinder (of

circumference L) interchangeably throughout this work, as these eventually describe the same situation as far as the

hyperbolic vertices are concerned. The usual sense of a puncture, that is a parabolic singularity or hyperbolic cusp,

corresponds to the case L = 0. We make the distinction when it may possibly lead to confusion.
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the conformal transformation z → z̃ as long as the objects ψ(z) and T (z) transform as

ψ(z) =

(
∂z̃

∂z

)−1/2

ψ̃(z̃) , T (z) =

(
∂z̃

∂z

)2

T̃ (z̃) + {z̃, z} , (2.2)

with the Schwarzian derivative {·, ·} is given by

{z̃, z} =
∂3z̃

∂z̃
− 3

2

(
∂2z̃

∂z̃

)2

, (2.3)

as usual. The transformation property (2.2) allows to use (2.1) on any given patch z on the surface

by taking (2.2) as their transition functions. Then the ideas and proofs for the genus 0 surfaces

in [40] translates to higher genus surfaces word-by-word. In particular the equation (2.1), together

with its solutions that realize hyperbolic PSL(2,R) monodromy around each puncture, can be used

to construct the local coordinates of quantum hyperbolic vertices. We point out that T (z) in this

context is commonly referred as complex projective structure [51].

Demanding a hyperbolic real monodromy around each puncture pi ∈ Σg,n(Li) with i = 1, · · · , n
forces T (z) to contain double poles of residue δi > 1/2 at each puncture. We call δi the classical

weights and parameterize them as

δi =
1

2
+
λ2
i

2
=

1

2
+

1

2

(
Li
2π

)2

. (2.4)

In order to see why such a pole structure is present in T (z), take a local coordinate patch z around

the puncture pi on the surface Σg,n(Li) and place pi at z = 0. Then we see

∂2ψ +
1

2

δi
z2
ψ(z) + · · · = 0 =⇒ ψ±(z) ∼ z1/2±iλi(1 + · · · ) . (2.5)

That is, there is a basis of solutions that produces a (diagonal) real hyperbolic monodromy as a

consequence of taking z → e2πiz. This is akin to the situation for the classical hyperbolic vertices.

Notice that we indicate the dependence of the surfaces and the moduli spaces to the parameters

Li ≡ 2πλi by parenthesis. These parameters are associated to the circumference of the grafted flat

cylinders of string vertices [37].

However, there is one crucial difference between the classical and quantum vertices in terms

of how the rest of T (z) is parameterized. Recall that there were n − 3 undetermined accessory

parameters that appeared as residues of the simple poles at the position of the punctures for genus

0 surfaces [40]. Such a “global” representation for T (z) is not available for higher genus surfaces.

Nevertheless, there are 3g − 3 + n undetermined complex accessory parameters contained in T (z),

which can be argued by considering the pants decomposition of Riemann surfaces [41]. Recall that

all hyperbolic surfaces admits pant decomposition upon specifying 3g− 3 + n disjoint simple closed

geodesics. Their lengths and twists provide a local coordinate in the moduli space. In hyperbolic

geometry these coordinates are real. However, from the perspective of T (z) and its associated metric,

this is not the case since the monodromies are elements of PSL(2,C), not PSL(2,R), generally. So

we should rather think that there are additional 3g−3+n parameters (the “imaginary” parts of the

lengths and twists) that has been set to 0 in order to obtain real monodromies. This immediately

shows that there should be additional 3g − 3 + n complex parameter on top of the usual complex

moduli that has to be specified in T (z) for the hyperbolic geometry. These are the accessory

parameters.
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Another way to argue for the existence of 3g−3+n undetermined complex accessory parameters is

as follows [52]. Assume we have two complex projective structures G(z) and G′(z). Their difference

G(z) − G′(z) is a quadratic differential since it transforms as such by (2.2). Moreover, the vector

space of quadratic differentials on an n punctured genus g surface Σ, Q(Σ), is 3g − 3 + n complex

dimensional [53]. As a consequence, a generic complex projective structure T (z) on Σ can be

parameterized as

T (z) = R(z) +

3g−3+n∑
n=0

γiQi(z) , (2.6)

where R(z) is a reference complex projective structure and {Q1(z), · · · , Q3g−3+n(z)} is a basis

for Q(Σ). Here γi ∈ C are the undetermined 3g − 3 + n complex accessory parameters of this

parametrization that have to be fixed according to our demands on the monodromy. They depend

on the choice of the reference R(z) and the basis for Q(Σ). There exists ways to construct R(z)

directly given the surface Σ, for example, via symmetric bidifferential on Σ [54]. A yet another

argument for the existence of the accessory parameters for higher genus can be found in [55].

In the next subsection we specialize to the simplest quantum vertex g = n = 1 which contains

a single complex accessory parameter. We are going to comment on the ways to make progress for

remaining quantum vertices in conclusion 6 and appendix D.

2.2 The Lamé equation

In this subsection we specialize to tori with one hyperbolic singularity Σ1,1(L). They can be viewed

as a quotient of the complex z-plane sans origin C× by a lattice Λ = Z + τZ for τ = τ1 + iτ2 ∈ C,

Σ1,1(L) ' C×/Λ , (2.7)

where the singularity is placed at the origin using the translation invariance. In other words, we

identify z ∼ z + 1 ∼ z + τ for z ∈ C×. It is sufficient to take τ ∈ H as Λ contains negative integer

lattice points. In fact, τ belongs to the moduli space M1,1(L) which is simply the quotient of the

upper-half plane H by the modular group PSL(2,Z)

τ ∈M1,1(L) = H/PSL(2,Z) =
{
τ ∈ H

∣∣ |Re τ | ≤ 1/2, |τ | ≥ 1 , τ ∼ τ + 1 , τ ∼ −1/τ
}
, (2.8)

as these describe inequivalent tori with a hyperbolic singularity. We call the set (2.8), considered

as a subset of H, the fundamental domain. Per usual, the action of the modular group PSL(2,Z) is

generated by the transformations

T : z → z, τ → τ + 1 , S : z → z

τ
, τ → −1

τ
. (2.9)

For the hyperbolic tadpole, the only moduli is τ when we fix L = 2πλ and the position of the

singularity. Rather than working with Σ1,1(L) directly, we are going to work on C× after (2.7).

This forces us to puncture the origin, as well as its images under the action of the lattice Λ, which

makes the geometric quantities doubly-periodic. The coordinate z refers to the global coordinate of

C× henceforth unless stated otherwise.
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Since having a hyperbolic monodromy demands having a double poles at the singularities with

classical weights δ > 1/2 as explained earlier in (2.5), T (z) in (2.1) takes the form of

T (z) =
δ

z2
+

∑
λ∈Λ\{0}

[
δ

(z − λ)2
− δ

λ2

]
+ c = δ · ℘ (z, τ) + c , (2.10)

by double periodicity. Notice that we have included a double pole (with appropriate subtraction

factor for the convergence) for z = 0 and each of its images. The constant c = c(τ, τ) is the single

accessory parameter that should be fixed upon demanding a real hyperbolic monodromy around the

puncture and its images. Crucially, simple poles at z = 0 and its images is absent because of the

z → −z symmetry and regular terms are forbidden by the periodicity condition under the action

of Λ. Thus we are naturally lead to consider the Weierstrass elliptic function ℘(z, τ). Some of its

useful properties are listed in appendix A.

The relevant (holomorphic) Fuchsian equation for the hyperbolic tadpole is then given by

∂2ψ(z) +
1

2
(δ · ℘ (z, τ) + c)ψ(z) = 0 . (2.11)

This is known as the Lamé equation whose solutions are the Lamé functions [43]. Before we solve

this equation in order to find the local coordinates, the accessory parameter c as a function of the

moduli τ has to be found so that the solutions can realize a real hyperbolic monodromy around the

puncture. This is equivalent to demanding T (z) is given by

T (z) = −1

2
(∂ϕ)2 + ∂2ϕ , (2.12)

where ds2 = eϕ|dz|2 is the hyperbolic metric on the torus with a geodesic border of length L ≡ 2πλ.

We observe that the Lamé equation (2.11) stays invariant under z → z+ 1 and z → z+ τ by (A.2),

so it is indeed doubly periodic. Also we demand that the accessory parameter c under the action of

the modular group PSL(2,Z) (2.9) changes as

T : c(τ, τ)→ c(τ + 1, τ + 1) = c(τ, τ) , S : c(τ, τ)→ c

(
−1

τ
,−1

τ

)
= τ2 c(τ, τ) , (2.13)

so that the Lamé equation (2.11) stays modular invariant. We have used the property (A.2) here and

taken ψ(z) to be invariant under the modular group. The anti-holomorphic counterpart is similar.

As a consequence, the local coordinates would be modular-invariant as well.

Finally we point out the accessory parameter is endowed with an involution symmetry. That is

τ → −τ =⇒ c→ c . (2.14)

This can be argued taking the complex conjugate of (2.11) and noticing the torus with the moduli

τ is equivalent to the torus with the moduli τ = −τ . The involution symmetry forces c ∈ R when

Re τ = 0. Combined with the constraints from the modular transformations (2.13) the involution

symmetry further demands arg c = − arg τ for |τ | = 1. This shows for τ = i, exp(iπ/3) we have

c = 0 regardless of the value of the length of the border 2πλ.

2.3 The Polyakov conjecture

In this subsection we determine the accessory parameter c = c(τ, τ) of the Lamé equation (2.11) by

considering the first non-trivial null state of the Virasoro algebra on the one-bordered torus, which
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we subsequently use to argue for the Polyakov conjecture for the hyperbolic tadpole. We are going

to use the (modified) Liouville theory of [40]. The ideas here made an appearance in [43] before,

but in the case of parabolic/elliptic singularities—we extend them to the hyperbolic singularities

trivially. Like in [40], the methods here stem from heuristic path integral arguments so they don’t

consist of rigorous proofs. Nonetheless, we are going to justify the results by its consequences in the

upcoming sections.

We begin with the relevant correlator for us, which is

〈Σ1,1〉τ ≡ 〈Hλ(0, 0)〉τ . (2.15)

We indicated the dependence of the correlator on the moduli of the torus by the subscript τ and set

the position of the “hole operator” (see [40]) to the origin using the translational symmetry. Here

we have

∆ =
Q2

2
δ =

Q2

2

[
1

2
+
λ2

2

]
= β (Q− β), β =

1

2
+
iλ

2
. (2.16)

As usual, Q = b + b−1 and it is related to the central charge of Liouville’s theory by c = 1 + 6Q2.

An important thing to notice that under the modular group the correlator (2.15) changes as

T : 〈Σ1,1〉τ → 〈Σ1,1〉τ+1 = 〈Σ1,1〉τ , S : 〈Σ1,1〉τ → 〈Σ1,1〉− 1
τ

= |τ |2∆〈Σ1,1〉τ , (2.17)

using the weights (2.16) and the modular transformations (2.9).

We are interested in the first non-trivial null state of a Verma module. This is given by

|χ±〉 =

[
L−2 −

3

2(2∆± + 1)
L−1

]
|φ±〉 , (2.18)

where |φ±〉 is a primary state of weight ∆± where

∆+ = −1

2
− 3b2

4
, ∆− = −1

2
− 3

4b2
, (2.19)

and L−n are the Virasoro charges. We denote the fields associated to the states in (2.18) without a

ket. Inserting the null field into the correlator in (2.15) leads to a decoupling equation〈
χ+(z)Hλ(ξ, ξ)

〉
τ

=
〈
L−2φ+(z)Hλ(ξ, ξ)

〉
τ

+
1

b2
〈
L2
−1φ+(z)Hλ(ξ, ξ)

〉
τ

= 0 . (2.20)

Here L−n are the Virasoro charges acting on the fields. Note that L−1 = ∂z is the generator of

translations. Also notice that we have〈
L−2 φ+(z)Hλ(ξ, ξ)

〉
τ

= 〈TL(z)φ+(z)Hλ(ξ, ξ)〉τ . (2.21)

from the fact that L−2 φ+(z) appears in the correlator and it is equal to the constant term in

TLφ+ operator product expansion by the normal ordering. Here TL(z) is the stress-energy tensor of

Liouville theory.

Now we use the conformal Ward identity on n-punctured tori derived in [56]. In particular, what

we require are the equations (28) and (29), which we report here3

〈TL(z)X〉τ − 〈TL(z)〉τ 〈X〉τ =
n∑
i=1

[
∆k (℘ (z − ξi, τ) + 2η1(τ))

+ (ζ (z − ξi, τ) + 2η1(τ)ξi) ∂ξi

]
〈X〉τ + 2πi∂τ 〈X〉τ , (2.22)

3In our conventions 2πT there(z) = ThereL (z), see section 3 in [56] and [40].
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and

〈TL(z)〉τ = 2πi∂τ logZ(τ) , (2.23)

where X = φ1(ξ1) · · ·φN (ξn) is a collection of primaries of weights ∆i and Z(τ) ≡ 〈1〉τ is the

partition function. We have used the following special functions in the expression above

ζ(z, τ) = ∂z log ϑ1(z|τ) + 2η1(τ)z , (2.24a)

℘(z, τ) = −∂zζ(z, τ) , (2.24b)

η1(τ) = (2π)2

[
1

24
−
∞∑
n=1

nqn

1− qn

]
= −2πi∂τ log η(τ) , (2.24c)

where ζ(z, τ) is the Weierstrass zeta function, ϑ1(z|τ) is the odd Jacobi theta function, and η(τ) is

the Dedekind eta function whose conventions are given in appendix A. Observe that the Weierstrass

elliptic function ℘(z, τ) has already introduced from different perspective in (2.10).

Taking X = φ+(z)Hλ(ξ, ξ) in (2.22) and subsequently using (2.21), (2.23) and (2.24), we see

that the decoupling equation (2.20) takes the form of[
1

b2
∂2
z + (2∆+η1(τ) + 2η1(τ)z∂z) + ∆ (℘ (z − ξ, τ) + 2η1(τ)) (2.25)

+ (ζ (z − ξ, τ) + 2η1(τ)ξ) ∂ξ + 2πi∂τ

] 〈
φ+(z)Hλ(ξ, ξ)

〉
τ

+ 2πi∂τ logZ(τ) = 0 .

We take ξ → 0 using the translational symmetry on the torus in the subsequent analysis.

Now we are going to consider the semi-classical limit (b → 0) of the equation (2.25). The

important thing to notice here that φ+ field remains light and ∆+ → −1/2, while the hole operator

becomes heavy (i.e. it scales with ∼ 1/b2). So we expect that there will be a factorization

〈φ+(z)Hλ(0, 0)〉τ ∼ φ
cl
+(z)〈Σ1,1〉τ , (2.26)

where φcl+(z) is the classical configuration for the field φ+(z).

We can evaluate 〈Σ1,1〉τ using the saddle point approximation to the path integral

〈Σ1,1〉τ ∼ exp

[
− 1

2b2
S

(1,1)
HJ (τ, τ ;λ)

]
. (2.27)

Here S
(1,1)
HJ (τ, τ ;λ) is the on-shell action resulting from the (modified) Liouville theory on the torus.

We call this the on-shell Hadasz-Jaskólski (HJ) action as in [40]. Note that it depends on the moduli

τ and it’s complex conjugate, as well as the parameter λ. It is a real function. We are going to

discuss evaluation of this action in the next section.

Employing two equations above, we find the semi-classical limit of the equation (2.25) to be

∂2
zφ

cl
+(z) +

1

2

[
δ · ℘ (z, τ) + 2 δ · η1(τ)− 2πi∂τS

(1,1)
HJ (τ, τ ;λ)

]
φcl+(z) = 0 , (2.28)

This is nothing but the Lamé equation (2.11) whose accessory parameter is given

c(τ, τ ;λ) = 2 δ · η1(τ)− 2πi∂τS
(1,1)
HJ (τ, τ ;λ) . (2.29)
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This is the Polyakov conjecture for the torus with one hyperbolic singularity. We remark that

the entire reasoning here can be generalized to the n-bordered torus by considering the decoupling

equation (2.20) upon insertion of additional hole operators in the correlator. Since this is outside of

the main development of the paper and for completeness we present its derivation in appendix D.

Let us remark on the relation (2.29). First, the choice of the accessory parameter c in (2.29)

guarantees that the Lamé equation (2.11) can realize a real hyperbolic monodromy around the

puncture and its images. The justification for this as follows. The second derivative term in (2.28)

purely comes from the L2
−1 term in (2.20), while the rest of the terms comes from L−2 which is

related to the correlator 〈TL(z)φ+(z)Σ1,1〉τ as explained in (2.21). This correlator factorizes in the

semi-classical limit and 〈Σ1,1〉τ factor drops out of the equation (2.28) and we are left with

〈TL(z)〉 ∼ T clL (z) where T clL (z) =
1

2b2

(
δ · ℘(z, τ) + 2 δ · η1(τ)− 2πi∂τS

(1,1)
HJ (τ, τ ;λ)

)
. (2.30)

The expression inside the parenthesis is precisely the stress-energy tensor (2.12) associated with the

hyperbolic metric [40]. Additionally, we see that φcl+(z) is related to the weight −1/2 primaries ψ(z)

used to construct the local coordinates in (2.1).

Deriving the Polyakov conjecture from the decoupling equation (2.20) and interpreting the clas-

sical null field φcl+(z) as a weight −1/2 primary is not special to the case here: it holds for any

Riemann surface. In particular, we can run a similar argument for genus 0 surfaces, for details

see [57]. This provides an alternative argument to the one used in [40]. For higher genus surfaces,

on the other hand, the derivation by the decoupling equation sketched above is more accessible.

One of the important checks for the conjecture (2.29) is to test its consistency with the involu-

tion (2.14) and modular symmetries (2.9). The consistency for the involution symmetry is apparent

given S
(1,1)
HJ is a real function. The consistency for the modular symmetry can be established by

noticing S
(1,1)
HJ have the following modular transformations

T : S
(1,1)
HJ (τ, τ ;λ)→ S

(1,1)
HJ (τ + 1, τ + 1;λ) = S

(1,1)
HJ (τ, τ ;λ) , (2.31a)

S : S
(1,1)
HJ (τ, τ ;λ)→ S

(1,1)
HJ

(
−1

τ
,−1

τ
;λ

)
= S

(1,1)
HJ (τ, τ ;λ)− 2δ log |τ | , (2.31b)

by (2.17) and (2.27). This immediately shows the Polyakov conjecture (2.29) is consistent with

the T transformation by (A.10). It is also consistent with the S transformation via (2.13), (2.24c)

and (A.10).

Given the Polyakov conjecture for the hyperbolic tadpole (2.29), solving the hyperbolic mon-

odromy problem turns into determining S
(1,1)
HJ (τ, τ ;λ), i.e. the on-shell action of the (modified)

Liouville theory on the torus. It is possible to construct this action via classical modular conformal

bootstrap.We evaluate S
(1,1)
HJ (τ, τ ;λ) as a function of the moduli τ and the length of the border

L = 2πλ in the next section.

3 Uniformizing one-bordered torus

In this section we uniformize the hyperbolic geometry on the one-bordered torus. By this we mean

finding the length of the simple closed geodesic of one-bordered torus as a function of moduli and the

length of the border, evaluating the on-shell HJ action S
(1,1)
HJ (τ, τ) specifying the accessory parameter

9



of (2.11) through (2.29) and solving the Weil-Petersson (WP) metric on the moduli space. We test

our results by comparing them with the exact results at the symmetric points and checking modular

crossing, as well as computing the WP volume of the moduli space M1,1.

We begin by considering the correlator (2.15). Like in [40], we use the operator formalism to

write the following modular bootstrap equation

〈Hλ(0, 0)〉τ =

∫
Q
2

(1+iR+)

dλ′ C̃(λ′, λ,−λ′) eQ2λ′2s/2 |F∆
1+6Q2,∆′(q)|

2 . (3.1)

Let us describe the equality (3.1) in more detail. Here C̃ is the reflection-symmetric DOZZ formula

for the three-point function of Liouville theory. Only its semi-classical limit is relevant for us and

this is evaluated in [50] for hyperbolic singularities. It is given by

C̃(λ3, λ2, λ1) ∼ exp

[
−Q

2

2
S

(0,3)
HJ (λ3, λ2, λ1)

]
, (3.2)

where S
(0,3)
HJ (λ3, λ2, λ1) is the on-shell HJ action on the sphere with three hyperbolic singularities,

whose expression is given by

S
(0,3)
HJ (λ3, λ2, λ1) = 2

∑
σ2,σ3=±

F

(
1

2
+
iλ1

2
+ σ2

iλ2

2
+ σ3

iλ3

2

)
+ 2

3∑
j=1

[
H(iλj) +

π

2
|λj |
]
, (3.3)

for λi ∈ R up to an irrelevant additive constant. The functions F and H are defined by

F (x) ≡
∫ x

1
2

dy log
Γ(y)

Γ(1− y)
, H(x) ≡

∫ x

0
dy log

Γ(−y)

Γ(y)
. (3.4)

The on-shell action S
(0,3)
HJ (λ3, λ2, λ1) is invariant under flipping the sign of its arguments and totally

symmetric by construction.

In (3.1), we have taken two of the arguments of C̃ equal and opposite of each other and integrate

over them. This is because we are supposed to identify two hole operators with border length L =

2πλ′ in the generalized hyperbolic three-vertex to construct the hyperbolic tadpole. We additionally

included eQ
2λ′2s/2 in order embed a possible finite flat cylinder of circumference 2πλ′ in the geometry.

The external hole operator has the associated border length 2πλ. We take λ, λ′ ≥ 0 without loss of

generality.

Finally, the function F∆
1+6Q2,∆′(q) in (3.1) is the torus conformal blocks and it is entirely de-

termined by the Virasoro algebra as a function of the moduli q = e2πiτ . It depends on the central

charge c = 1 + 6Q2 and the conformal weights ∆,∆′ of the external and internal operators respec-

tively. Its semi-classical limit, the classical torus conformal blocks fλλ′(q) is expected to be related

to the torus conformal blocks by [43]

F∆
1+6Q2,∆′(q)

Q→∞∼ exp
[
Q2fλλ′(q)

]
. (3.5)

Although there is no rigorous proof of this relation, like in the case of the four-punctured sphere [58],

the non-trivial exponentiation behavior is well-supported by the expansion of the torus conformal

block, which can be found by a recursion [42]. More details on this recursion are given in appendix B.
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We are interested in the semi-classic limit (Q→∞) of the expression (3.1), as this is expected to

describe the hyperbolic geometry in question. Combining the remarks above, together with (2.27),

we see that

exp

[
−Q

2

2
S

(1,1)
HJ (τ, τ ;λ)

]
∼
∞∫

0

dλ′ exp

[
−Q

2

2

(
S

(0,3)
HJ (λ′, λ,−λ′)− λ′2s− 2fλλ′(q)− 2f

λ
λ′(q)

)]
. (3.6)

Here the bar indicates the complex conjugation. This integral is dominated by the saddle point at

λ′ = λs(τ, τ ;λ) in the Q→∞ limit and the action S
(1,1)
HJ (τ, τ ;λ) is evaluated by solving

∂

∂λ′

[
S

(0,3)
HJ (λ′, λ,−λ′)− λ′2s− 2fλλ′(q)− 2f

λ
λ′(q)

]
λ′=λs(τ,τ ;λ)

= 0 . (3.7)

This produces

S
(1,1)
HJ (τ, τ ;λ) = S

(0,3)
HJ (λs, λ,−λs)− λ2

ss− 2fλλs(q)− 2f
λ
λs(q) , (3.8)

and the accessory parameter c (2.29) reads,

c(q, q;λ) = (1 + λ2) η1(q) + 4π2q
∂S

(1,1)
HJ (q, q;λs)

∂q
= (1 + λ2) η1(q)− 8π2q

∂fλλ′(q)

∂q

∣∣∣∣
λ′=λs(τ,τ ;λ)

.

(3.9)

3.1 The saddle-point and the length of the simple closed geodesic

As in [40], the semi-classical expectation suggests that the length of the simple non-contractible

geodesic (called simply as internal geodesic) is 2πλs on Σ1,1(L) and the length of the string prop-

agator to be proportional to s. We set s = 0 for now and come back to s > 0 case relevant for

Feynman diagrams in the next section.

We begin by solving for the saddle-point (3.7). For this we need the derivative of S
(0,3)
HJ (λ′, λ,−λ′)

and fλλ′(q). Let us focus on the first one. As pointed out in [50], we have

∂S
(0,3)
HJ

∂λ′
(λ′, λ,−λ′) = −2π + 2i log

[
γ

(
1

2
+
iλ

2
+ iλ′

)
γ

(
1

2
− iλ

2
+ iλ′

)
Γ(1− iλ′)2

Γ(1 + iλ′)2

]
= 4λ′ logR(λ′, λ,−λ′) , (3.10)

where γ(z) ≡ Γ(z)/Γ(1−z). The extra π’s come from using the gamma function identity Γ(z+1) =

z Γ(z) and their associated branch differences after integrating. We point out the right-hand side is

related to the mapping radius of the (generalized) hyperbolic three-vertex [37]

R(λ1, λ2, λ3) = e−π/2λ1

[
Γ(1− iλ1)2

Γ(1 + iλ1)2

γ
(

1
2(1 + iλ1 + iλ2 + iλ3)

)
γ
(

1
2(1− iλ1 − iλ2 + iλ3)

) γ (1
2(1 + iλ1 − iλ2 + iλ3)

)
γ
(

1
2(1− iλ1 + iλ2 + iλ3)

)]i/2λ1 ,
(3.11)

which we have used in (3.10).

It is advantageous to consider the series expansion of (3.10) in λ′. Fortunately, we can obtain it

in closed form using the polygamma functions ψ, see (A.13) for conventions. This is simply due to

log Γ
(
a+ iλ′

)
= log Γ(a) +

∞∑
n=1

[
ψ(n−1) (a)

n!
(iλ′)n

]
. (3.12)
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After some algebra and using (A.14a) it can be shown that

∂S
(0,3)
HJ

∂λ′
(λ′, λ,−λ′) =

∞∑
n=0

sn(λ)(λ′)n , (3.13)

where the coefficients sn(λ) are given by

sn(λ) =



−2π if n = 0

−8
[
γ + Re ψ(0)

(
1
2 + iλ

2

)]
if n = 1

0 if n ∈ 2Z≥1

8 (−1)dn/2e

n

[
Re ψ(n−1)( 1

2
+ iλ

2 )
(n−1)! + ζ(n)

]
if n ∈ 2Z≥1 + 1

. (3.14)

These coefficients can be further simplified for the punctured torus (λ = 0) using (A.14b).

We also need to take derivative of the torus conformal blocks with respect to λ′. This is

∂fλλ′(q)

∂λ′
=
λ′

2
log q − (1 + λ2)2λ′

4(1 + λ′2)2
q +O(q2) =

λ′

2
log q −

[
1

4
(1 + λ2)2λ′ + · · ·

]
q +O(q2) . (3.15)

We point that in the second line we have expanded in λ′ like we did for derivative of S
(0,3)
HJ and dots

stand for this expansion.

For a moment, let us focus on the log q part of the classical conformal block and ignore the

remaining higher powers in q and consider the linear term in λ′ in (3.13). The saddle-point equa-

tion (3.7) reads

0 = −2π − 8λs

[
γ + Re ψ(0)

(
1

2
+
iλ

2

)]
− λs log |q|2 + · · · (3.16)

=⇒ λs =
−2π

8
[
γ + Re ψ(0)

(
1
2 + iλ

2

)]
+ log |q|2

+ · · · = 2π

s1(λ)− log |q|2
+ · · · .

For convenience, we define the parameter

ξ ≡ 2π

s1(λ)− log |q|2
, (3.17)

Now it is possible to set up a recursive procedure to compute λs as an expansion of ξ. For example,

the saddle-point equation to order λ3
s is given by

0 = −2π + λss1(λ) + λ3
ss3(λ) + · · · − λs log |q|2 + · · · =⇒ λs = ξ − ξ

2π
s3(λ)λ3

s + · · · . (3.18)

Plugging this equation back into itself we find

λs = ξ − ξ4

2π
s3(λ) + · · · = ξ − 2ξ4

3π

[
Re ψ(2)

(
1
2 + iλ

2

)
2

+ 2ζ(3)

]
ξ4 + · · · . (3.19)

This procedure can be repeated to arbitrarily high orders to find λs as an expansion of ξ.

Before we do that, let us discuss the inclusion of higher powers of q to this expansion. Keeping

only the linear terms in λ′ again, the saddle-point equation (3.7) takes the form

0 = −2π + λss1(λ)− λs log |q|2 + λs(1 + λ2)2 Re(q) + · · · (3.20)

=⇒ λs =
2π

s1(λ)− log |q|2 + (1 + λ2)2 Re(q) + · · ·
+ · · · = ξ − ξ2

2π
(1 + λ2)2 Re(q) + · · · ,
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Moduli τ Border length L Exact result Computed result Relative error

i 0 2 arccosh
√

2 ≈ 1.7627471740 1.7627471745 4.03× 10−10

eiπ/3 0 2 arccosh 3/2 ≈ 1.9248473 1.9248475 1.20× 10−7

eiπ/3 2 arcsinh 1 ≈ 1.76 ≈ 2.0006589936 2.0006589940 1.72× 10−10

Table 1: The comparison between the exact and computed results for the length of the internal geodesics

for the square (τ = i) and rhombus (τ = eπi/3) torus with a border of length 0 and L∗ = 2 arcsinh

1. The exact results are taken from [59].

We can also write a recursion similar to (3.18) and then use the geometric series to expand the de-

nominator. In the language of [44,45], the expansion in q can be understood as a “non-perturbative”

correction on top of the ξ series because we have q ∼ e−1/ξ2 . We point that these corrections are

highly suppressed relative to the “perturbative” series for |τ | > 1.

In summary, we conclude that λs can be found as a double expansion in ξ and q:

λs = ξ +

[
−(1 + λ2)2

2π
Re(q) +

3(1 + λ2)2(−75 + 154λ2 + 37λ4)

1024π
Re(q2) + · · ·

]
ξ2

+

[
(1 + λ2)4

4π2
Re(q)2 + · · ·

]
ξ3 (3.21)

+

[
−

2Re ψ(2)
(

1
2 + iλ

2

)
+ 4ζ(3)

3π
+

(1 + λ2)2

π
Re(q)

− 3(1 + λ2)2(−27 + 1018λ2 + 341λ4)

2048π
Re(q2) + · · ·

]
ξ4 + · · · .

We have obtained the expansion to the order O(ξ19, q4). Setting λ to a precise value allows us to

go even higher-orders in the expansion so we always used the highest order possible for our result.

In the context of hyperbolic CSFT, the most natural value for λ is λ = λ∗ = arcsinh 1/π [33], so we

often investigate this case explicitly. However, we additionally investigate λ = 0 (i.e. one-punctured

torus) because of its simplicity. We point out this procedure is similar to [44,45] and different from

the one in [40]. In principle, it is possible to do something similar for the case considered in [40].

The comparison of our results with the exact results by Maskit [59] is shown in table 1 and

figure 1. The agreement is stellar and the relative errors are usually less than ∼ 10−7. Further

evidence of the convergence of the series (3.21) is given in appendix C.

3.2 The on-shell HJ action, modular symmetry, and the accessory parameter

Having a saddle-point at λ′ = λs allows us to write down the on-shell action S
(1,1)
HJ (τ, τ ;λ) as an

expansion in ξ and q via (3.8). A crucial observation here is that S
(0,3)
HJ has the following expansion

in λ′ by integrating (3.13)

S
(0,3)
HJ (λ′, λ,−λ′) = s−1(λ) +

∞∑
n=1

sn−1(λ)

n
(λ′)n . (3.22)

Here s−1(λ) is given by evaluating S
(0,3)
HJ (0, λ, 0)

s−1(λ) = S
(0,3)
HJ (0, λ, 0) = 8F

(
1

2
+
iλ

2

)
+ 2H(iλ) + πλ , (3.23)
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Numerical

Exact

0.0 0.5 1.0 1.5

1.92

1.94

1.96

1.98

2.00

L = 2 π λ

L
s=
2
π
λ s

The geodesic length Ls(L) for τ=eπ i/3

Ls

L

Figure 1: The progression of the length of the internal geodesic Ls = 2πλs as a function of the length of

the border L = 2πλ for the rhombus torus τ = eiπ/3. The black dashed line is the exact result

obtained from [59].

where we have used the fact F (1/2 + x) = F (1/2 − x), see (3.4). Take note that s−1(λ = 0) = 0.

Similarly, we will expand the classical conformal block (B.4) in λ′.

The on-shell action S
(1,1)
HJ (τ, τ ;λ) is then given by

S
(1,1)
HJ (τ, τ ;λ) = s−1(λ) + s0(λ)λs +

s1(λ)

2
λ2
s + · · · (3.24)

− λ2
s

2
log |q|2 −

[
(1 + λ2)2

2
− (1 + λ2)2

2
λ2
s + · · ·

]
Re(q) + · · ·

= 8F

(
1

2
+
iλ

2

)
+ 2H(iλ) + π|λ| − 2πλs +

π

ξ
λ2
s + · · ·

−
[

(1 + λ2)2

2
− (1 + λ2)2

2
λ2
s + · · ·

]
Re(q) + · · · ,

where we have combined the leading term coming from classical torus conformal blocks with the λ2
s

term in S
(0,3)
HJ . Since we have λs ∼ ξ, we can plug (3.21) in the expansion above and that would

produce a double expansion in ξ and q given by

S
(1,1)
HJ (τ, τ ;λ) =

[
8F

(
1

2
+
iλ

2

)
+ 2H(iλ) + π|λ| − (1 + λ2)2

2
Re(q) + · · ·

]
− πξ

+

[
1

2
(1 + λ2)2 Re(q) + · · ·

]
ξ2 + · · · . (3.25)

Note that O(ξ) term won’t receive any non-perturbative correction because of the construction

in (3.24) and due to λs ∼ ξ at the leading order in ξ. We further observe the coefficient of O(ξ0)

terms always contain terms of the form Re(qn), but this will not be the case for higher orders.

The on-shell action S
(1,1)
HJ (τ, τ ;λ) has to satisfy the modular crossing

S
(1,1)
HJ (τ, τ ;λ) = S

(1,1)
HJ

(
−1

τ
,−1

τ
;λ

)
+ (1 + λ2) log |τ | , (3.26)
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Border Length Mean Standard deviation Median Minimum Maximum

0 1.16× 10−5 1.18× 10−5 7.75× 10−6 2.08× 10−7 7.21× 10−5

2 arcsinh1 4.30× 10−7 5.08× 10−7 2.48× 10−7 7.89× 10−11 3.39× 10−6

Figure 2: The distribution of the relative errors for the crossing equation (3.26) for λ = 0 and λ =

arcsinh1/π. The points are sampled from the fundamental domain with Im(τ) < 1.2. We observed

errors tend to increase for larger values of Im(τ).

as a result of its modular invariance property given in (2.31). In order to test its validity we randomly

sampled ≈ 7.5× 103 points inM1,1(L), evaluated both sides of (3.26), and calculated their relative

errors. The results are shown in figure 2 for λ = 0, λ∗. The errors are indeed tiny and the modular

crossing (3.26) is numerically satisfied to good accuracy.

Let us finally consider the expansion of the accessory parameter c = c(q, q) (3.9) in moduli.

Observe that we have, from (3.17)

4π2q
∂

∂q
= 4π2q

∂ξ

∂q

∂

∂ξ
= 2πξ2 ∂

∂ξ
. (3.27)

Endowed with this, we can find the perturbative expansion for the accessory parameter using (2.24c)

and (3.25). This is given by

c(q, q;λ) = π2

[
(1 + λ2)

6
− (1 + λ2)(5 + λ2) q + · · ·

]
+ π2

[
−2 + (1 + λ2)2 q + · · ·

]
ξ2 + · · · . (3.28)

This series is invariant under involution symmetry (2.14) by construction. We note that the co-

efficient of ξ0 is a holomorphic function of q, despite the entire series is not. This point will be

important in the next subsection when we investigate the asymptotics of this formula.

The overall behavior of the accessory parameter c = c(τ, τ) in M1,1(L) is shown in figure 3. It

is apparent from the figures that the accessory parameter is indeed involution symmetric and we

obtained results closer to the exact values whenever available. The investigation of the modularity

of the accessory parameter (3.28) is relegated to appendix C.

Given (3.28), it is possible to investigate the degeneration limit q → 0 (τ → i∞) analytically,

albeit it is not relevant for CSFT. We see c → (1 + λ2)π2/6 = δπ2/3 from (3.28). On top of this,

the Weierstrass elliptic function takes the form

lim
τ→i∞

℘(z, τ) =
∑
n∈Z

[
1

(z − n)2
− 1

n2

]
= π2 csc2(πz)− π2

3
, (3.29)
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π /2

π

-π

-π /2
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π /2

π

Border Length τ = i τ = eiπ/3

0 −1.52× 10−4 −1.02× 10−3

2 arcsinh1 1.12× 10−5 5.85× 10−5

Figure 3: The accessory parameter c = c(τ, τ). The black contours are for the real and imaginary parts,

white contours are for the absolute value, and the color shading indicates the phase in the figure.

We show the result we obtained for τ = 0, eiπ/3 in the table blow. Recall c = 0 for them.

as the sum over the lattice Λ reduces to just the sum of the real lattice points. In the second line

we evaluated the infinite sum using an identity and the Riemann zeta function. As a result, T (z)

in the Lamé equation (2.11) evaluates to

T (z) = δ π2 csc2(πz) . (3.30)

In the limit τ → i∞, we have a punctured infinite strip in the z-plane due to identification

z ∼ z + 1 and the punctures are placed at z = 0 and its images. This geometry can be conformally

mapped to the thrice-punctured sphere u with the exponential map u = exp(2πiz). The puncture

at z = 0 (and its images) gets mapped to u = 1 and z = ±i∞ are mapped to u = 0,∞ respectively.

Because of the degeneration limit, the classical weights associated with u = 0,∞ are supposed to

taken to be 1/2 (i.e they are genuine cusps). These points are identified with each other to create

a noded once-bordered torus.

Now recall that T̃ (u) in the Fuchsian equation for the three-punctured sphere is given by [37]

T̃ (u) =
δ1

u2
+

δ2

(1− u)2
+
δ1 + δ2 − δ3

u(1− u)
. (3.31)

Pulling back T̃ (u) to the z-plane with the exponential map u = exp(2πiz) using (2.2), evaluating

{u, z} = 2π2, and subsequently taking δ1 = δ, δ2 = δ3 = 1/2 it can be shown that it indeed

produces (3.30). We see that our procedure generates a sensible result in the degeneration limit.
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3.3 The Weil-Petersson metric and the volume of M1,1(L)

In this subsection, we solve for the Weil-Petersson (WP) metric gWP on the moduli space M1,1(L)

as a series expansion in moduli and compute its associated volumes. A mathematically oriented

introduction to the WP metric can be found in [41].

We claim that the WP metric gWP = gττ |dτ |2 = gqq|dq|2 on M1,1(L) is given by

gττ = A∂τ c = −2πiA∂τ ∂τ S
(1,1)
HJ (τ, τ ;λ)

=⇒ gqq = −2πiA ∂q ∂q S
(1,1)
HJ (q, q;λ) =

A

2πi |q|2
q ∂q c(q, q;λ) , (3.32)

where A is a complex constant (with a possible dependence on λ) that we are going to determine

momentarily. In other words, we claim that the on-shell action S
(1,1)
HJ is essentially the Kähler

potential for gWP . As far as the knowledge of the author goes such a relation hasn’t been proven

and we are not going to argue for it, as it would take us far from the scope of this work. Instead we

will just explore its consequences. Still, it may be possible to argue this relation using the conformal

Ward identity heuristically just as in (2.22), but with two stress-energy insertions, along the lines

discussed in [60–62] and this was our motivation behind our claim in (3.32). We remark that in the

case of genus 0 with elliptic/parabolic singularities an analogous relation has already established

rigorously [63] and tested for the four-punctured sphere in [45]. Clearly the metric (3.32) is invariant

under modular transformations.

Let us begin by fixing the constant A. We do this by investigating the degeneration limit τ → i∞
(q → 0). In this limit it is easy to see that the length of the internal geodesic ` and twist θ it goes

under (with ` ∼ `+ θ describing the same surface) asymptotically takes the form

` = 2πλs ≈ −
4π2

log |q|2
,

2πθ

`
≈ arg q , (3.33)

from (3.17) and (3.21). Using the Wolpert’s magic formula [64], the WP 2-form ωWP associated

with the WP metric asymptotically becomes

ωWP = d` ∧ dθ ≈ − 16π3

|q| log3 |q|2
d(|q|) ∧ d(arg q) = − 8π3i

|q|2 log3 |q|2
dq ∧ dq , (3.34)

and from this we see that the WP metric is

ωWP =
i

2
gqq dq ∧ dq =⇒ gqq ≈ −

16π3

|q|2 log3 |q|2
, (3.35)

asymptotically. Given the equations (3.27) and (3.28), we also find the WP metric asymptotically

to be, through (3.32),

gqq̄ ≈
(

A

2πi |q|2

)
×
(

16π4

log3 |q|2

)
≈ − 8π3iA

|q|2 log3 |q|2
=⇒ A = −2i . (3.36)

The first term was due to the normalization in (3.32) while the second term is from (3.28). Note

that the coefficient of the ξ0 term in (3.28) being holomorphic was crucial to have this asymptotic

form. In summary, we conclude that A = −2i from last two relations and we find it is independent

of the length of the border. We emphasize that it should be possible to obtain this normalization

factor by deriving the identity (3.32) from the conformal Ward identity. Regardless, it is already
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Figure 4: The volume VWP (L) as a function of the length of the border L. The solid curve is the exact

result (3.39), the dashed curve is π2/6 and the red points are the results of our integration. The

uncertainties are due to MC integration. The best fit weighted by the uncertainties is given by

VWP (L) = 1.635 + 0.0413L2, which is sufficiently close to the analytic result (3.39).

promising that two distinct methods of calculating the WP metric close to degeneration yields the

same result. In fact, this is exactly the expected asymptotic form [65–67].

Equipped with the normalization, we can use (3.32) to write the WP metric as a series expansion

gqq =
ξ3

|q|2

[(
2− 2(1 + λ2)2Re(q) + · · ·

)
+

(
−6(1 + λ2)2

π
Re(q) + · · ·

)
ξ + · · ·

]
, (3.37)

An important point to notice here that this metric has to be real by (3.32) and its normalization.

We see this is indeed the case: the non-perturbative corrections always combine with each other to

have a dependence on the real part of q exclusively.

Given gWP , it is possible to compute the WP volume VWP of M1,1(L) by

VWP (L) =

∫
M1,1(L)

ωWP =
i

2

∫
M1,1(L)

gττ dτ ∧ dτ . (3.38)

This volume has an exact expression and it is given by [68]

VWP (L) =
π2

6
+
L2

24
≈ 1.645 + 0.0417L2 , (3.39)

in our conventions. We compute the volume VWP using (3.37) and the results are shown in figure 4.

We performed Monte-Carlo (MC) integration by uniformly sampled 105 points in the fundamental

region with a cutoff placed at Im(τ) = 20 to evaluate (3.38). For each value of L, we have repeated

the integration 10 times and take the mean. As shown in figure 4, we have a satisfactory match

and the quadratic dependence of the volume to the length of the border is apparent. This result

strongly suggests the formula (3.32) produces the WP metric on M1,1(L).
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4 The vertex and Feynman regions

In this section we consider the case with s > 0 in (3.6), which is relevant for the geometries that

contain internal flat cylinders, i.e. string propagators. This will subsequently lead to the description

of the boundary of the vertex region ∂V1,1(L) and the dependence of the Schwinger parameter of

the propagator q = e−s+iθ to the moduli τ and the length of the border L of the torus.

Begin by considering the saddle-point equation (3.7) again, but with s > 0

s = − log |q| = 1

2λs

∂

∂λ′

[
S

(0,3)
HJ (λ′, λ,−λ′)− 2fλλ′(q)− 2f

λ
λ′(q)

]
λ′=λs

= 0 . (4.1)

Given the moduli τ and the border length L, the length of the internal geodesic 2πλs and s are not

independent from each other. Since the circumference of the string propagator in hyperbolic CSFT

is given by 2πλ, we consider the situation where we set λs = λ in this subsection.

We would like to evaluate s as a function of the moduli τ and the length of the border L. For

that we need the following two derivatives. The first one is the derivative of the action S
(0,3)
HJ and

the classical torus conformal blocks evaluated at λ′ = λ. We find

s = − log |q| = 2 logR(λ, λ,−λ)− 2

λ
Re

[
∂fλλ′(q)

∂λ′

]
λ′=λ

(4.2)

= −π
λ

+
i

λ
log

[
γ

(
1

2
+

3iλ

2

)
γ

(
1

2
+
iλ

2

)
Γ(1− iλ)2

Γ(1 + iλ)2

]
− 1

2
log |q|2 +

1

2
Re q + · · · .

The boundary of the vertex region is placed at s = 0 and this produces the following curve for

∂V1,1(L) (notice the similarity to the form given in [40])

R(λ, λ,−λ)λ = e−π/2
[
γ

(
1

2
+

3iλ

2

)
γ

(
1

2
+
iλ

2

)
Γ(1− iλ)2

Γ(1 + iλ)2

]1/2i

=

∣∣∣∣exp

[
∂fλλ′(q)

∂λ′

]∣∣∣∣
λ′=λ

. (4.3)

The shape of this curve for assorted values of λ has been plotted in figure 5. Note that the

boundary curves ∂V1,1(L) may appear like constant Im(τ) lines, but this is just an illusion of Re(qn)

terms in classical torus blocks being highly suppressed when Im(τ) & 1/2. We observed decreasing

the value of λ decreases the size of the Feynman region. This makes sense, given that λ → 0 the

entire moduli space turns into the vertex region since the length of the internal geodesics is always

larger than the boundary length [34].

There appears to be two “critical” values for λ: the values when the boundary touches τ = i

and τ = eiπ/3. Let us name them λ1 and λ2 respectively. We estimated λ1 ≈ 0.292 and λ2 ≈ 0.332.

When 0 < λ < λ1, as in the case of quantum hyperbolic CSFT, the vertex and Feynman regions

are present and the Feynman region is covered once (see figure 6). When λ1 < λ < λ2, the vertex

and Feynman region are still present, however the part of the Feynman region gets covered finitely

many times, as we have to map the Schwinger parameter q to the outside of the fundamental region.

Once this part gets mapped back to the fundamental region it leads to overcounting. Finally, we

have λ > λ2, for which the vertex region disappears entirely whereas the Feynman region is still

covered multiple times.

Looking at the λ → ∞ limit is also interesting. In this case the hyperbolic three-string vertex

with two punctures got sewed reduces to the minimal-area vertex described by a Strebel differential

with the same punctures got sewed together [40]. This is precisely the situation investigated three
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Figure 5: Left: The decomposition of the moduli space M1,1(L∗) to the vertex V1,1(L∗) and the Feynman

F1,1(L∗) regions. Right: The progression of the boundary curve ∂V1,1(2πλ) as a function of λ.

As λ increases, the vertex region shrinks and eventually disappears.

decades ago in [69] and it is argued that the Feynman region gets covered infinitely-many times.4.

Our claim is that the curve (4.3), in the λ → ∞ limit, produces the behavior for the same curve

shown in figure 10 of [69]. We have qualitatively observed that ∂V1,1(L) in (4.3) appears to approach

the behavior given in [69] as L increases, see figure 5.

We point out that it is difficult to investigate the behavior around |q| ≈ 1 (i.e. Im(τ) ≈ 0)

directly by taking the λ → ∞ limit of (4.3), even though we have observed such WKB-like limit

appears to exist for the classical torus blocks of [42], akin to the case of classical 4-point blocks [40].

This can be attributed to the facts that the torus conformal block (B.1) converges uniformly on the

regions {q, |q| = e−ε < 1} for any ε > 0 (which is apparent following the reasoning in [70]) and the

series seem to require increasing number of terms in q for smaller ε.

Finally, we can find the Schwinger parameter of the string propagator q as a function of the

moduli τ and the length of the border L using (4.2). This is given by

q(τ ;λ) = eπ/λ
[
γ

(
1

2
+

3iλ

2

)
γ

(
1

2
+
iλ

2

)
Γ(1− iλ)2

Γ(1 + iλ)2

]−1/iλ

exp

[
2

λ

∂fλλ′(q)

∂λ′

]
λ′=λ

= R(λ, λ,−λ)−2 exp

[
2

λ

∂fλλ′(q)

∂λ′

]
λ′=λ

. (4.4)

The argument for this is just as in [40]. The parameter q is a holomorphic function of the moduli τ

(therefore q) for 0 < |q| ≤ 1 for which the curve |q| = 1 describes ∂V1,1(L). Furthermore, the point

q = 0 has to get mapped to the boundary of the moduli space τ = i∞ (i.e q = 0) with a well-defined

Taylor expansion [69, 71]. This fixes the function above uniquely (up to an unimportant phase) by

the Riemann mapping theorem. The behavior of this function for λ = λ∗ is shown in figure 6.

4The author thanks Barton Zwiebach for pointing out this reference.
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Figure 6: The behavior of the Schwinger parameter q = q(τ) (4.4) in the Feynman region F1,1(L∗).

4.1 The accessory parameter for Feynman diagrams

In this subsection we modify the arguments of the previous section to derive the accessory parameter

for the situation where there is a string propagator present in the geometry. Calling the on-shell

action resulting from (3.8) S
(1,1)
HJ,s>0(q, q;λ) when s > 0 and defining

S
(1,1),F
HJ (q, q;λ) ≡ S(1,1),s>0

HJ (q, q;λ) + λ2s , (4.5)

the relevant accessory parameters is given by, upon replacing S
(1,1)
HJ → S

(1,1),F
HJ in (3.9),

c(q;λ) = (1 + λ2) η1(q) + 4π2q
∂S

(1,1),F
HJ

∂q
(q, q;λ) . (4.6)

The justification for this can be provided as in [40]: there is an annulus part in the geometry so

there should be additional contributions to the on-shell action due to the modulus of the cylinder,

while the rest of the on-shell action does not get affected.

Using (3.8), we immediately see

S
(1,1),F
HJ (τ, τ ;λ) = S

(0,3)
HJ (λ, λ,−λ)− 2fλλ (q)− 2f

λ
λ(q) (4.7)

= 2F

(
1

2
+

3iλ

2

)
+ 6F

(
1

2
+
iλ

2

)
+ 6H(iλ) + 3πλ− 2fλλ (q)− 2f

λ
λ(q) ,

where we have used (3.3), together with identities F (1/2 + x) = F (1/2 − x) and H(x) = H(−x),

see (3.4). From this, the accessory parameter for the Feynman region cF is given by

cF (q;λ) = (1 + λ2) η1(q)− 8π2q
∂fλλ (q)

∂q
= δ

π2

3
− 2π2λ2 − 5π2(1 + λ2)q +O(q2) . (4.8)

which is a holomorphic function in the moduli as somewhat expected.
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Similar to what we did in subsection (3.2), an interesting limit to investigate is the degeneration

limit, i.e. τ → i∞ or q → 0. In this limit we have cF → δπ2/3 − 2π2λ2. Given this and the

identity (3.29), T (z) in the Lamé equation evaluates to

T (z) = δ π2 csc2(πz)− 2π2λ . (4.9)

Observe how δπ2/3 part of cF coming from η1 has canceled. When λ → 0, this is equal to (3.30).

This is consistent, the flat cylinder degeneration reduces to the cusp-like degeneration when λ = 0.

Like earlier, the punctured infinite strip in the z-plane can be conformally mapped to the three-

punctured sphere u with the exponential map u = exp(2πiz). Because of the flat cylinder degenera-

tion, we identify the holes around u = 0 and u =∞ this time. Accordingly, we take δ1 = δ2 = δ3 = δ

in (3.31). After pulling T̃ (u) to the z-plane, we indeed obtain (4.9). This result supports the valid-

ity of (4.8). For the general cases, we should compare (4.8) with the accessory parameter obtained

from sewing the pair-of-pants with itself. Unfortunately, the description of the latter is not currently

available.

Given the accessory parameter (4.8), it is possible to find the local coordinates for the surfaces

in the Feynman region F1,1(L) using the Lamé equation as well. This is the task we describe in the

next section, along with finding the local coordinates for the vertex region V1,1(L).

5 The local coordinates

Finally, we describe the procedure to derive the local coordinate for the hyperbolic tadpole vertex

and the one-loop Feynman diagrams. We have already found the accessory parameters solving the

hyperbolic monodromy problem through the Polyakov conjecture for both, so all we have to do

is to solve the Lamé equation (2.11) and relate its solutions to the local coordinates. In the first

subsection we describe the Lamé function that will be used to construct the local coordinates. Then

we make some remarks on the computation of the mapping radii in the subsequent subsection and

derive the local coordinates in the final subsection.

5.1 Lamé functions

The solutions to the Lamé equation are called Lamé functions and we are going to consider their

expansions around z = 0. Suppose they have the expansion of the form

ψ(z) = zα
∞∑
n=0

anz
n with a0 = 1 . (5.1)

where α is a complex number. Considering the series (A.3), we arrive to the following equality

∞∑
n=0

an(n+ α)(n+ α− 1)zn−2 +

[
c

2
+

δ

2z2
+
δ

2

∞∑
n=1

(2n+ 1)G2n+2 z
2n

][ ∞∑
n=0

anz
n

]
= 0 . (5.2)

Let us focus on the leading term ∼ z−2. This gives

α =
1

2
(1± iλ) , (5.3)
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essentially by our construction. This choice realizes a diagonal real hyperbolic monodromy around

the puncture z = 0. Different sign choices in α leads to two linearly independent solutions.

The rest of the expansion can be found by matching powers of z with each other and solving for

the coefficients an recursively. For example, it is easy to see that a1 = 0 for the next term from the

coefficient of z−1 (in fact all odd powers of z vanishes by symmetry). We find

ψ±(z) =
z(1±iλ)/2

√
iλ

[
1− c

4(−2± iλ)
z2 − c2 − 6(2± iλ)(1 + λ2)G4

32(−8 + λ(λ∓ 6i))
z4 + · · ·

]
. (5.4)

Here we have included an overall multiplicative factor to normalize the Wronskian to one, W (ψ−, ψ+) =

1. We point out that the overall phase of z itself is ambigious while solving (5.2). This is not to

be confused with the irrelevant overall phase of the local coordinates of CSFT. We are going to

comment on how this phase ambiguity can be resolved momentarily.

The associated scaled ratio is given by

ρ(z) =

(
ψ+(z)

ψ−(z)

)1/iλ

= z

[
1 +

c

2(4 + λ2)
z2 +

36 c2 + 3(1 + λ2)(4 + λ2)2G4

8(4 + λ2)2(16 + λ2)
z4 + · · ·

]
. (5.5)

We emphasize the dependence on the moduli τ appears in the accessory parameter c and the

Eisenstein series G2n, see (A.4). This series is expected to converge until z hits an image of the

puncture at z = 0, but it is possible to analytically continue beyond it. Notice the hyperbolic

monodromy for these solutions is not compatible yet–it will be upon including the correct mapping

radii, which we undertake next subsection.

5.2 Mapping radii

Like in [37], the local coordinates are related to the scaled ratio up to a multiplicative constant that

depends on λ, whose inverse is the mapping radius associated with the local coordinate. Recall that

the definition and transformation of the mapping radius is given by

r(z) =

∣∣∣∣ dzdw
∣∣∣∣
w=0

and r(z) =

∣∣∣∣∂z̃∂z
∣∣∣∣−1

r(z̃) . (5.6)

This quantity has determined by the pair of hypergeometric functions 2F1(a, b; c; z) realizing the

hyperbolic monodromy around each puncture and demanding compatible monodromies in the case

of hyperbolic three-string vertex. Such connection formulas are not available for the Lamé functions

generally. Despite this obstacle, it is possible to obtain the mapping radii like it is done for the

four-bordered spheres in [40].

Before we discuss the derivation of the mapping radius for once-bordered tori, we expand the

discussion in [40,50] and argue for the following identity for a Riemann surface Σg,n and the on-shell

action S
(g,n)
HJ [ϕ] associated with such surface:

∂S
(g,n)
HJ [ϕ]

∂λi
= 2λi log ri(u) , (5.7)

where Hi is the flat region around ith puncture (“hole”) and ri(u) is its associated mapping radius

in the u-plane. This is the plane for which the surface Σg,n is uniformized as the Riemann sphere

containing n + 2g punctures and the holes around g punctures are identified with the plumbing
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fixture in their local coordinates to account for the genus. The geodesic length of ∂Hi is given by

2πλi as usual. The distinguishing feature of this plane is that it is like the complex plane considered

in [40], but addition of appropriate identifications. Given this, the calculus in such plane is simple

and we will be able to do the operations described below. Finally, Note that we are taking partial

derivative with respect to one of the λi’s while keeping the others fixed in (5.7).

In the u-plane, upon taking derivative with respect to λi, integrating-by-parts and employing the

equation of motion, the only remaining terms are the ones associated with the holes Hi around the

punctures. This is because after these operation we are left with terms localized on the boundary

of the patches after these operation and sewing them cancel each other, localizing the terms to the

small regularization circles around each puncture. This reasoning here also restricts the appearance

of the derivative of the mapping radii with respect to λi, see the form given in equation (B.2) of [40]

and equation (23) in [50]. In the view of this remark, let us place the ith puncture at u = 1 and

write

∂S
(g,n)
HJ [ϕ]

∂λi
= lim

ε→0

[
i

4π

n∑
j=1

∫
|u−1|=ε

∂ϕ

∂λi

(
∂ϕ

∂u
du− ∂ϕ

∂u
du

)
(5.8)

+
1

2πε

n∑
j=1

∫
|u−1|=ε

|du| ∂ϕ
∂λi

]
+ 2λi log ri(u) ,

Furthermore, we have the Weyl factor around the ith puncture as the following expansion on Hi

ϕ(u, u) = log λ2
i − log |u− 1|2 +O(u− 1, u− 1) , (5.9)

since it describes flat semi-infinite cylinder around u = 1. As a result, the only remaining term

in (5.8) are those associated with the ith puncture. But a quick observation shows that these two

terms in (5.8) cancel each other and we indeed obtain (5.7).

We emphasize again that the mapping radius ri(u) above is given in the u-plane. Depending

on the way surface Σg,n is uniformized, we have to transform the mapping radii according to (5.6).

In the case of g = n = 1, we would like the mapping radius r(z) = r for the z-plane and using the

exponential map u = e2πiz we actually have to use the relation

∂S
(1,1)
HJ

∂λ
(τ, τ ;λ) = 2λ log 2πr . (5.10)

given ri(u) = 2πr(z) = 2πr by (5.6).

As a consistency check, let us demonstrate the change in both sides of (5.10) is the same under

the modular transformations (2.9). The T portion of the modular transformation is trivial. For the

S portion, the change of the right-hand side of (5.7) is given by, from the definition of the mapping

radius (5.6),

r

(
z

τ
,−1

τ

)
=
r(z, τ)

|τ |
=⇒ 2λ log r

(
z

τ
,−1

τ

)
= 2λ log r(z, τ)− 2λ log |τ | . (5.11)

This is exactly how the left-hand side of (5.7) changes by (2.31) upon taking derivative with respect

to λ. So we see they are indeed consistent.
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We would like to take a derivative of S
(1,1)
HJ (τ, τ ;λ) with respect to λ now. We first notice is the

parameter ξ of (3.17) depends on λ and we have

∂ξ

∂λ
= − ξ

2

2π

ds1(λ)

dλ
= −2ξ2

π
Imψ(1)

(
1

2
+
iλ

2

)
. (5.12)

In the view of this, we find

log 2πr =

[
− π

2λ
+

i

2λ
log

[
γ

(
1

2
+
iλ

2

)4(Γ(1− iλ)

Γ(1 + iλ)

)2
]
− (1 + λ2)Re(q) + · · ·

]
+ · · · . (5.13)

We have adjusted branches in the expression above in order to match the form given in [37]. Notice

that when q → 0 this generates the mapping radius derived in [37], more specifically R(0, λ, 0)

in (3.11). Also notice as λ→ 0, we have

2πr ≈ 16 exp
(
− π

2λ

)
[1 + · · · ] , (5.14)

which is the expected behavior from the appearance of a hyperbolic cusp [34,37]. Here dots indicate

the subleading terms in λ.

The identity analogous to (5.7) applies to the situation when the internal flat cylinders are

present. Imagine for each 3g− 3 +n disjoint simple closed geodesics of length 2πλk we have grafted

flat cylinder of size sk. This will modify the on-shell action by

S
(g,n),F
HJ [ϕ] ≡ S(g,n),s>0

HJ [ϕ] +

3g−3+n∑
k=1

λ2
ksk . (5.15)

Here λk’s of the internal geodesics are distinct from those of the borders. The identity (5.7) still

holds in this situation upon replacing S
(g,n)
HJ [ϕ]→ S

(g,n),F
HJ [ϕ] by the similar reasoning before. In the

case of g = n = 1, this can be further written as

dS
(1,1),F
HJ

dλ
(τ, τ ;λ) = 2λ log 2πrF + 2λs , (5.16)

Here rF stands for the mapping radius in the Feynman region in the z-plane. Note that we take

a total derivative with respect to λ in this expression. This is the form we are going to consider due

to simplicity of (4.7). The mapping radii rF is then given by

log 2πrF =
i

2λ
log

[
− π

2λ
γ

(
1

2
+

3iλ

2

)
γ

(
1

2
+
iλ

2

)(
Γ(1− iλ)

Γ(1 + iλ)

)2
]
− Re(q) + · · · , (5.17)

using (4.7). Again, the branches are adjusted appropriately for this expression. In the q → 0 limit

we generate the mapping radius R(λ, λ,−λ) in (3.11) of [37], as it is expected from this limit. The

modularity concerns work similarly to (5.11) and the λ→ 0 behavior matches with (5.14).

5.3 The local coordinates and the hyperbolic metric

Endowed with the mapping radii we can obtain the local coordinate patch on the one-punctured

torus for given τ ∈M1,1 and λ using (3.28) and (4.8). We have

w̃(z) =
ρ(z)

r
=
z

r

[
1 +

c

2(4 + λ2)
z2 +

36 c2 + 3(1 + λ2)(4 + λ2)2G4

8(4 + λ2)2(16 + λ2)
z4 + · · ·

]
, (5.18)
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where r, c are the associated mapping radii in the z-plane and the accessory parameter corresponding

to the vertex or Feynman regions, respectively.

The function w̃(z) is not exactly the local coordinate for the hyperbolic tadpole as there was a

phase ambiguity in z mentioned below (5.4), which has been propagated here. The ambiguity in

question can be set by letting

w(z) = w̃
(
ie−i arg τz

)
, (5.19)

which would produce the true local coordinates. This is the correct choice, given that when w̃(z) is

complex conjugated it describes the local coordinate for the torus whose moduli is τ̄ . On the other

hand, when w(z) is complex conjugated it still describes the torus with τ . This consideration fix

the ambiguity. We also see (5.19) is modular invariant up to a phase, consistent with our discussion

below (2.13), using the equations (2.13), (5.11) and (A.4).

Some examples for the local coordinates in the vertex region are shown in figure 7. The white

region surrounded by the black curve is the local coordinate patch on the z-plane and its boundary

is where the flat cylinder makes contact with the hyperbolic surface. Along with the local coordinate

patch we have plotted the hyperbolic metric eϕ. Recall that its expressions is given by [40]

ds2 = eϕ|dz|2 = λ2 |∂w(z)|2

|w(z)|2
|dz|2

sin2 (λ log |w(z)|+ λ log r)
. (5.20)

Any choice of w(z) in (5.20) leads to (possibly singular) hyperbolic metric. However, only w(z)

in (5.19) leads to the hyperbolic metric with geodesic boundary that is regular and singularity-free

on the one-bordered torus. The regularity is equivalent to the double periodicity under the action

of the lattice Λ in this context. Indeed, figure 7 shows that using (5.19) gives an almost doubly-

periodic metric. Since the problematic points are toward to the corners, it is reasonable to think that

including higher-orders terms in the expansions achieves double periodicity. We observed increasing

order of the expansion systematically improves this behavior.

6 Conclusion

In this paper, we have derived the local coordinates and vertex region of the hyperbolic tadpole

vertex that is relevant for the one-loop diagrams in closed string field theory. To that end, we have

considered a torus with a hyperbolic singularity which lead us to the Lamé equation (2.11). We have

used the Polyakov conjecture (2.29) to fix its accessory parameters and use the formalism of [40] to

obtain the relevant geometric data. We emphasize that only the cubic information of CSFT, together

with the input from the classical torus conformal blocks, was sufficient for our construction. As a

byproduct, we uniformized the hyperbolic geometry on the one-bordered torus numerically and find

the Weil-Petersson metric in the moduli space M1,1(L) as an expansion in moduli. We have ran

non-trivial checks and confirmed it leads to consistent results with the literature.

The hyperbolic tadpole vertex can be used to perform vacuum shift calculations in CSFT from

first principles and this was our primary motivation behind this study. However, the vacuum shifts

themselves are not observable [48] and there is no clear advantage of using hyperbolic vertices over

other possible choices at this moment. The real advantage of using hyperbolic vertices is going to be

apparent when the vacuum shift is considered in conjunction with the mass renormalization, which
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Figure 7: The local coordinate patch (inside the black curve) and the hyperbolic metric for the bordered

tori τ = i and τ = 0.40 + 0.99i. The length of the geodesics border is L = L∗ = 2 arcsinh1.

Constant eϕ contours have plotted. We have used O(z93) in the expansion (5.19).

will yield physical results such as renormalized masses and S-matrix elements.5 For example, the

prime target here is the SO(32) heterotic string theory on Calabi-Yau 3-folds [47], for which the

perturbative vacuum shifts and the external states undergo mass renormalization.

However, the question of higher genus hyperbolic vertices remain open due to our poor under-

standing of classical conformal blocks for them. In particular, we need to solve for the hyperbolic

geometry on the two-punctured torus in order to renormalize masses directly using the microscopic

theory. Even though its Polyakov conjecture can be derived with relative ease (see appendix D), the

classical conformal blocks necessary for the rest of the evaluation lacks. The most straightforward

way to approach this problem would be to derive an (efficient) recursion relation for arbitrary blocks

similar to the one given in [42] and take the semi-classical limit. Some steps towards it has been

already undertaken in [75]. Despite these set-backs, we still see that the accessory parameter prob-

lem plays an important role in hyperbolic CSFT and a deeper theoretical understanding of them is

certainly required.

Beyond motivations stemming from CSFT, it may be interesting to look at the Weil-Petersson

Laplacian on the moduli spaceM1,1(L), similar to what is done forM0,4(0) in [45], as it is expected

the spectrum to exhibit chaos. Another possibility for a future work is to investigate the results

of [76, 77] by evaluating the Laplacian on the surface directly and compare. Finally, it is possible

to solve for the curvature of the Weil-Petersson metric over the moduli space using our techniques

and this may be of interest in the theory of Riemann surfaces.
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A Special functions

Here we list the definitions, conventions, and properties of the special functions we have used

throughout this work. For general references see [53, 78, 79]. The most important special function

for us was the Weierstrass elliptic function ℘ (z, τ)

℘ (z, τ) ≡ 1

z2
+

∑
λ∈Λ\{0}

[
1

(z − λ)2
− 1

λ2

]
, (A.1)

associated with the lattice Λ = Z + τZ for τ ∈ H. By construction it satisfies

℘ (z, τ) = ℘ (z + 1, τ) = ℘ (z + τ , τ) , ℘ (z, τ) = ℘ (z, τ + 1) =
1

τ2
℘

(
z

τ
,−1

τ

)
. (A.2)

This function has a Laurent expansion around z = 0 of the form

℘(z, τ) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(τ) z2k where G2k(τ) =
∑

λ∈Λ\{0}

1

λ2k
, (A.3)

which converges for |z| < 1. Here G2k for k ≥ 1 are called the Eisenstein series. They have the

following modular transformations

G2k(τ + 1) = G2k(τ) , G2k

(
−1

τ

)
= τ2kG2k(τ) , (A.4)

and the q-expansions

G2k = 2ζ(2k) +
4ζ(2k)

ζ(1− 2k)

∞∑
n=1

σ2k+1(n)qn where σ2k+1(n) =
∑
d|n

d2k+1 . (A.5)

Here ζ is the Riemann zeta function ζ(s) =
∑∞

k=1 k
−s and σ2k+1(n) is the divisor sum function

defined as the sum of the (2k + 1)-th powers of the divisors of the integer n.

An auxillary function to the Weierstrass elliptic function is the Weierstrass zeta function ζ(z, τ)

(not to be confused with Riemann zeta function). This is defined as

ζ(z, τ) ≡ 1

z
+

∑
λ∈Λ\{0}

[
1

z − λ
+

1

λ
+

z

λ2

]
. (A.6)

It is clear ℘(z, τ) = −∂zζ(z, τ) as given in (2.24a). This function is quasi-periodic, meaning

ζ(z, τ) = ζ(z + 1, τ)− 2 ζ

(
1

2

)
= ζ(z + τ, τ)− 2 ζ

(τ
2

)
, (A.7)

and it has the following modular transformations

ζ(z, τ) = ζ(z, τ + 1) =
1

τ
ζ

(
z

τ
,−1

τ

)
. (A.8)
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These properties will be used in appendix D.

Furthermore, we encountered the Dedekind eta function, which is defined by

η(τ) ≡ q
1
24

∞∏
n=1

(1− qn) where q = e2πiτ . (A.9)

as usual. This immediately implies the identity (2.24c). The Dedekind eta function enjoys the

following modular properties

η(τ + 1) = eiπ/12η(τ) , η

(
−1

τ

)
= (−iτ)1/2η(τ) . (A.10)

We have also made use of the odd Jacobi theta function

ϑ1(z|τ) ≡ i
∞∑

n=−∞
(−1)nq(n−1/2)2/2un−1/2 = 2q

1
8 sin(πz)

∞∏
n=1

(1− qn)(1− uqn)(1− u−1qn) , (A.11)

where u = e2πiz. The functions ζ(z, τ), ϑ1(z|τ) and η(τ) can be related to each other as in (2.24a)

or equivalently as [43,56]

℘ (z, τ) = −∂2
z log ϑ1(z|τ) + 4πi∂τ log η(τ) . (A.12)

Finally, we have used the polygamma functions in our evaluation of the saddle-point (3.7). These

are defined as

γ(n)(z) ≡ dn+1

dzn+1
log Γ(z) for n ≥ 0 . (A.13)

In particular, their values at z = 1, 1/2 are evaluated in terms of the Riemann zeta function and

the Euler–Mascheroni constant γ as follows

γ(n)(1) =

−γ if n = 0

(−1)n+1 n! ζ(n+ 1) if n ≥ 1
, (A.14a)

γ(n)

(
1

2

)
=

−γ − 2 log 2 if n = 0

(−1)n+1 n! (2n+1 − 1)ζ(n+ 1) if n ≥ 1
. (A.14b)

B Classical torus conformal blocks

In this appendix we present our conventions and computation of the classical torus conformal blocks,

based on the recursion relation derived in [42]. Begin with the torus conformal block,

F∆
c,∆′(q) =

q∆′− c−1
24

η(τ)

[
1 +

∞∑
n=1

qnH∆,n
1+6Q2,∆′

]
. (B.1)

The functions F∆
c,∆′(q) are entirely determined by the Virasoro algebra and depends on the central

charge c, as well as the conformal dimensions ∆,∆′ of the external and internal operators. We are

interested in their expansions in q = e2πiτ .
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The coefficients H∆,n
1+6Q2,∆′

satisfy a recursion relation of the form [42]

H∆,n
1+6Q2,∆′

=
∑

1≤rs≤n

Ars(c)

∆′ −∆rs(c)
Prs(c,∆,∆rs + rs)Prs(c,∆,∆rs)H

∆,n−rs
c,∆rs+rs

, (B.2)

akin to the Zamolodchikov’s recursion for the 4-point conformal blocks. Here the base case is given

by H∆,0
1+6Q2,∆′

= 1 and the ingredients for the recursion are given as follows. First, the function

Ars(c) is defined as

Amn(c) =
1

2

(
m∏

k=1−m

n∏
l=1−n

)′
1

kb+ l
b

, (B.3a)

where the prime indicates that the terms with (k, l) = (0, 0), (m,n) are skipped in the product.

Furthermore, we have

Pmn(c,∆1,∆2) =
m−1∏
p=1−m

p+m is odd

n−1∏
q=1−n

p+n is odd

α1 + α2 + pb+ q
b

2

α1 − α2 + pb+ q
b

2
, (B.3b)

with αi is related to ∆i through

∆i =
1

4
(Q2 − α2

i ) , (B.3c)

Finally ∆rs is defined by

∆rs(c) =
Q2

4
− 1

4

[
rb+

s

b

]2
. (B.3d)

The recursion relation (B.2) can be used to obtain the full torus conformal block (B.1). We

don’t report them since we are primarily interested in the classical torus conformal blocks fλλ′(q)

given by the limit (3.5). We have computed fλλ′(q) to order O(q4) for general λ (and higher orders

for the pre-determined values of λ). Its expressions is given by

fλλ′(q) =
1

4
λ
′2 log q +

(1 + λ2)2

8(1 + λ′2)
q+ (B.4)

+
(1 + λ2)2(−48(1 + λ2)(1 + λ

′2)2 + 96(1 + λ
′2)2(2 + λ

′2) + (1 + λ2)2(−7 + 5λ
′2)

256(1 + λ′2)3(4 + λ′2)
q2 +O(q3) .

We refrain listing higher orders as the expressions get highly convoluted.

C Numerical details

We provide additional details on our numerical computations in this appendix. We begin with the

investigation of the convergence of the series (3.21). Figure 8 shows the convergence of the length

of the internal geodesic 2πλs computed using the double series expansion (3.21) for assorted values

of τ and λ. We observe that the convergence is indeed achieved. It is interesting to take note that

the perturbative series (that is, the series in ξ (3.17)) plus the first few non-perturbative corrections

(that is, the series in Re(q)) already generates the exact results in [59] to high accuracy, similar
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Figure 8: The progression of the convergence of the length of the internal geodesic with increasing orders

in the expansion (3.21) . The dashed line indicates the exact result due to [59].

to [45]. This supports the validity of our procedure. Analogous convergence behavior has observed

for the different values of τ and the remaining expansions in our study. We omit reporting them.

Next, we provide an evidence for the modular invariance of the accessory parameter c, see

figure 9. Like in figure 2, the relative errors are relatively tiny and it is not really surprising given

that we have also showed the modular invariance of S
(1,1)
HJ . Compared to the errors for the modular

crossing of S
(1,1)
HJ the errors here are about 3 orders of magnitude higher. This is expected, as we

have taken a derivative of S
(1,1)
HJ to obtain c. This has necessarily decreased the accuracy.

D The Polyakov conjecture for the n-bordered torus

In this appendix, we present the Polyakov conjecture for the torus with n hyperbolic singularities

for completeness. The relevant Fuchsian equation is given by

∂2ψ +
1

2

[
n∑
i=1

(δi ℘(z − ξi, τ) + µi ζ(z − ξi, τ)) + c

]
ψ = 0 , (D.1)

assuming the hyperbolic singularities are placed at z = ξi and their associated classical weights are

δi for i = 1, · · ·n. Here the reason for the appearance of the function ℘(z − ξi, τ) is exactly same as

before, while the function ζ(z − ξi; τ) appears as a consequence of having additional punctures and

subsequent breaking of the z → −z symmetry when there was a single puncture placed at z = 0.

This breaking allows us to include a simple pole at each puncture and its images, see (A.6). The
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Figure 9: The distribution of the relative errors for the crossing equation for the accessory (2.13) for λ = 0

and λ = arcsinh1/π. The points are sampled from the fundamental domain with Imτ < 1.2.

inclusion of regular terms are still restricted by the double-periodicity. We point out this equation

made an appearance in [80] in a different, but somewhat related, context.

The torus moduli τ and the position of the punctures ξi are the complex moduli for fixed classical

weights. There are n independent moduli, upon noticing one of ξi can be set to a fixed location by

the translational invariance. Here τ is taking values in H/PSL(2,Z) as usual, while ξi belongs to

the set (C \ {ξ1, · · · , ξi−1, ξi+1 · · · ξn})/Λ.

The variables c and µi are the accessory parameters and they should be chosen so that real

hyperbolic monodromies can be realized. There are n of them given that they satisfy the constraint

n∑
i=1

µi = 0 . (D.2)

This can be argued by considering the contour integral of the expression inside the square bracket

in (D.1) for which the contour surrounds all n punctures. It is possible to deform this contour

to contain all the images instead. The consistency then requires all residues to add up to zero,

giving (D.2). When n = 1, µ1 = 0 as expected. Observe that this constraint guarantees the term

inside the square bracket (D.1) is doubly-periodic, using the (quasi-)periodicity properties (A.2)

and (A.7). This was the primary reason why we added ζ(z; τ) function in (D.1) in order to include

simple poles at the punctures and their images.

We point out there is an involution symmetry of the form

τ → −τ , ξi → ξi − τ =⇒ c→ c+ 2
n∑
i=1

µi ζ

(
τ

2

)
= c, µi → µi , (D.3)

after complex conjugating (D.1) and using (D.2). Note that shifting ξi was necessary in order to

put ξi back in the “fundamental region” of the torus after complex conjugation. This can be used

to constrain the accessory parameters for sufficiently symmetric configurations.

Now consider the analog of the equation (2.25) when there are multiple insertions of n hole
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operators Hλi with their associated conformal weights ∆i. This is given by[
1

b2
∂2
z + (2∆+η1(τ) + 2η1(τ)z∂z) +

n∑
i=1

(
∆i (℘ (z − ξi, τ) + 2η1(τ)) (D.4)

+ (ζ (z − ξi, τ) + 2η1(τ)ξi) ∂ξi
)

+ 2πi∂τ

]〈
φ+(z)

n∏
i=1

Hλi(ξi, ξi)

〉
τ

+ 2πi∂τ logZ(τ) = 0 .

In the semi-classical limit we expect the correlator to have a factorization of the form〈
φ+(z)

N∏
i=1

Hλi(ξi, ξi)

〉
τ

∼ φcl+(z)〈Σ1,n〉τ ∼ φcl+(z) exp

[
− 1

2b2
S

(1,n)
HJ (τ, ξi)

]
, (D.5)

given φ+(z) stays light while the hole operators get heavy. We have indicated the collection of

hole operators simply by 〈Σ1,n〉τ above and evaluated it using the saddle-point approximation to

the path integral. Here S
(1,n)
HJ (τ, ξi) is the (regularized) on-shell action relevant for this particular

geometry. It depends on τ and the position of the punctures ξi as well as their complex conjugates,

but we haven’t indicated the dependence on the latter for brevity.

Upon taking the semi-classical limit of (D.4) we get

∂2
zφ

cl
+(z) +

1

2

[ n∑
i=1

(
δi℘ (z − ξi, τ) + 2δiη1(τ) (D.6)

− (ζ(z − ξi, τ) + 2η1(τ)ξi) ∂ξiS
(1,n)
HJ (τ, ξi)

)
− 2πi∂τS

(1,n)
HJ (τ, ξi)

]
φcl+(z) = 0 ,

and the accessory parameters c and µi are fixed by

c = 2η1(τ)

n∑
i=1

[
δi − ξi ∂ξiS

(1,n)
HJ (τ, ξi)

]
− 2πi∂τS

(1,n)
HJ (τ, ξi), (D.7a)

µi = −∂ξiS
(1,n)
HJ (τ, ξi) , (D.7b)

This is the Polyakov conjecture for the torus with n hyperbolic singularities. We point out the linear

constraint (D.2) can be thought as consequence of the translational invariance due to the conformal

Ward identity.

As a sanity check, let us test the modular invariance of the relation (D.7). The modular invariance

of the equation (D.1) demands

T : c(τ, τ)→ c(τ + 1, τ + 1) = c(τ, τ) , µi(τ, τ)→ µi(τ + 1, τ + 1) = µi(τ, τ) (D.8a)

S : c(τ, τ)→ c

(
−1

τ
,−1

τ

)
= τ2 c(τ, τ) , µi(τ, τ)→ µi

(
−1

τ
,−1

τ

)
= τ µi(τ, τ) (D.8b)

Furthermore, we have

T : 〈Σ1,1〉τ → 〈Σ1,1〉τ+1 = 〈Σ1,1〉τ , S : 〈Σ1,1〉τ → 〈Σ1,1〉− 1
τ

= |τ |2
∑n
i=1 ∆i〈Σ1,1〉τ , (D.9)

by the conformal weights of the hole operators, which subsequently produces

T : S
(1,n)
HJ (τ, ξi)→ S

(1,n)
HJ (τ + 1, ξi) = S

(1,n)
HJ (τ, ξi) , (D.10a)

S : S
(1,n)
HJ (τ, ξi)→ S

(1,n)
HJ

(
−1

τ
,
ξi
τ

)
= S

(1,n)
HJ (τ, ξi)− 2

n∑
i=1

δi log |τ | . (D.10b)
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Figure 10: The two-bordered torus and its associated decomposition.

From these relations it is apparent that the Polyakov conjecture is indeed consistent with the modular

invariance (D.7).

The relation (D.7) alone is not sufficient to construct the local coordinates for the n-punctured

torus: the on-shell action S
(1,n)
HJ has to be known as well. Constructing S

(1,n)
HJ as function of the

moduli requires the knowledge of the classical conformal blocks for the torus with arbitrary number

of puncture. Assuming these blocks are obtained (for example, using a version of [75]) it is quite

trivial to repeat an analogous bootstrap procedure to solve for S
(1,n)
HJ . For example, the two-bordered

torus requires performing the decomposition shown in figure 10.

Lastly, let us make some further, more speculative, comments. Like in subsection 3.3, it is

reasonable to expect that the on-shell action S
(1,n)
HJ is the Kähler potential for the Weil-Petersson

metric gij on the moduli space M1,n(Li). More precisely, it is natural to conjure

gij ∼ ∂i∂j̄S
(1,n)
HJ , (D.11)

where i, j stands for the moduli τ, ξi and their complex conjugates or their combinations thereof.

Secondly, the ideas here may admit a generalization to the surfaces with genus greater than one. In

this case the most natural way to present the Fuchsian equation would be on the hyperbolic upper

half-plane H, with demanding invariance under the Fuchsian group Γ ⊂ PSL(2,R) associated with

the surface Σg,n ' H/Γ. During this construction the analogs of the functions ℘(z, τ) and ζ(z, τ)

for the Fuchsian groups will be needed and this will require introducing the sophisticated machinery

of automorphic forms of the subgroups of PSL(2,R), see [81]. It is quite probable that this may

allow us to write down an appropriate Polyakov conjecture. Once this is done, we are again only

bounded by our ability to compute the classical conformal blocks and the on-shell action as far as

the expressions for the local coordinates and vertex regions are concerned.
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