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Abstract1

We show that the matrix product state (MPS) provides a thermal quantum pure state2

(TPQ) representation in equilibrium in two spatial dimensions over the whole temper-3

ature range. We use the Kitaev honeycomb model as a prominent example hosting a4

quantum spin liquid (QSL) ground state to target the two specific-heat peaks previously5

solved nearly exactly using the free Majorana fermionic description. Starting from the6

high-temperature random state, our TPQ-MPS wrapping the cylinder precisely repro-7

duces these peaks, showing that the quantum many-body description based on spins8

can still capture the emergent itinerant Majorana fermions in a Z2 gauge field. The9

truncation process efficiently discards the high-energy states, eventually reaching the10

long-range entangled topological state.11
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1 Introduction23

Characterizing a thermal quantum state, a quantum many-body state at finite temperature is24

an ongoing fundamental challenge in condensed matter physics and beyond, since it is often25

a matter of quantum and classical correlations studied in statistical and quantum information26

physics [1]. Such a state has an intriguing aspect in that its representation is largely left facul-27

tative [2]; the Gibbs state is a mixture of an exponential number of states given by the density28

matrix ρβ of vanishingly small purity P ∼ e−Θ(N). The thermal pure quantum (TPQ) state,29

on the other hand, is a single pure state of purity P = 1. In addition, there exist numerous30

thermal mixed quantum (TMQ) states with a purity between Gibbs and TPQ (see Fig. 1(a)).31

Canonical typicality guarantees that all these choices equivalently yield the same thermal equi-32

librium properties of the subsystem [3,4], and are macroscopically in the “same" thermal state.33

Since Gibbs, TPQ, and TMQ states rely on different design concepts, even when applying the34

“same" tensor network representation, its structure, convergence, or the amount of numerical35

resources required likely depend on which type of thermal state is chosen.36

An important development concerning the Gibbs state is the matrix product density op-37

erator (MPDO), which provides a direct tensor network representation of the density matrix38

operator, ρβ [5, 6]. Another standard form of the Gibbs state is the purified state analog39

to thermofield double, consisting of the size-N system and the same numbers of ancilla de-40

grees of freedom each suspended to a local site [7]. Ancilla serve as an entanglement bath41

and tracing out the ancilla corresponds to taking the Gibbs ensemble. These emphdoubled42

states also conform to a matrix product operator (MPO) approach 1, whose schematic illus-43

trations are shown in Fig. 1(a). Here, the entanglement entropy is meaningless as a measure44

to characterize the Gibbs state. Instead, the thermal area law of mutual information between45

subsystems determines the bond dimension χ of MPO’s [10–12]. The numerical drawback of46

MPDO or purification is the increase of the Hilbert space dimension due to the doubled degrees47

of freedom. Still, MPDO has been developed further recently using the XTRG algorithm [13],48

which realizes an exponential cooling down of the system by iteratively multiplying the matrix49

ρβ ×ρβ = ρ2β , allowing to reach very low temperatures rapidly. XTRG has successfully been50

applied to two dimensions including our target [14,15], the Kitaev honeycomb model [16].51

The TPQ state, in comparison, consisting only of physical degrees of freedom, is pure by52

construction, and does not need the doubling of the local Hilbert space. In MPDO and its ana-53

logues, the doubling or the ancilla play the role of an ensemble average—or the classical mix-54

ture of states—which provide the volume-law thermal entropy. The lack of doubling implies55

that the pure TPQ state needs to store the same amount of entropy internally as a volume-law56

entanglement entropy [17–19]. For such purpose, the tensor-network-based representation57

bounded by the area law entanglement are thought to naturally be out of reach. Yet, the58

authors have recently exploited the specific form of matrix product state (MPS) practically re-59

covering the volume law entanglement; only two ancilla/auxiliaries are attached to both edges60

of the one-dimensional (1D) MPS train, yet they have turned out to be sufficient to keep the61

nearly uniform distribution of entanglement entropy density throughout the system 2 which62

is essential for the volume law entanglement. We call this construction the TPQ-MPS [19].63

1The difference between MPDO and purification is that the MPDO is not necessarily positive definite after trun-
cation, whereas purification using a canonical form is positive definite. However, purification generally requires
larger χ than MPDO [8], and there are some examples [9] that the purification MPO shows a divergence of χ at
low temperatures, which may indicate that the thermal area law may not safely apply.

2If we take a bipartition of the TPQ-MPS system into left and right, each attached to the auxiliary, the en-
tanglement entropy does not depend on the size of the left/right part, unlike the usual MPS that follows the
size-dependent Page curve. This translational invariance of the entanglement entropy allows entanglement en-
tropy between the center-n sites and the rest (with N − n sites and two auxiliaries) to follow the n-linear volume
law (see Ref. [19]).
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The TPQ state itself has a numerically long history [20–23] far before the formulative seminal64

works [24, 25]. They mostly rely on a full Hilbert space representation using Lanczos-based65

methods that limit the system size to typically N ≲ 30−40. The TPQ-MPS largely shrinks the66

representation space and increases N by factors by efficiently choosing its constituent states67

to those representing the target temperature limited by the bond dimension of the MPS.68

The present work advances a few steps in developing a TPQ-MPS for two dimensions (2D),69

particularly for a quantum mechanically nontrivial quantum spin liquid state with long-range70

entanglement. Encoding the substantial amount of entanglement expected for QSL within an71

MPS or a tensor-network is generically a challenging task, although reported in the case of72

ground state [26–28]. Our result is the first to track the state by an MPS in the nearly pure73

form from the high-temperature random state down to the QSL with substantial entanglement74

between limited selection of basis states.75

We finally refer to some TMQ-state-based approaches; the minimally entangled typical76

thermal state (METTS) [29, 30] mixes (takes an equal weight average of) a series of MPS77

generated from the Markov process. The quantum Monte Carlo designs a local product state78

basis to suppress the sign problem [31, 32], which are recently highlighted in combination79

with the iPEPS.80

2 Construction of the TPQ-MPS state81

We consider the standard imaginary-time evolution in generating the TPQ state at inverse82

temperature β = 1/T given as83

|Ψβ〉= e−
β
2 H|Ψ0〉 = U(β/2) |Ψ0〉, (1)

where H is the Hamiltonian of the system of interest, and the initial state |Ψ0〉 representing84

an ’infinite-T ’ state is chosen as random, satisfying |Ψ0〉〈Ψ0| ∝ I .85

We now specify the construction of TPQ-MPS utilized here. The 1D tensor train of size-86

N and bond dimension χ is prepared with auxiliary degrees of freedom added to both ends87

to provide an entanglement bath (Fig. 1(b)). Here, instead of the χ × χ form proposed in88

Ref. [19], each auxiliary consists of Naux sites with the same local Hilbert space d as the phys-89

ical sites of the system, i.e. d = 2 for S = 1
2 spins, resulting in rank-3 tensors of the form90

χi−1×χi×d. The number of auxiliary sites dictates the maximum bond dimension at the edge91

of the physical system as χaux = dNaux and, hence, the maximum amount of entanglement92

between the auxiliary and the system. We emphasize that the auxiliary sites are not coupled93

to the physical system by any physical exchange, and therefore only the identity is applied to94

them during the imaginary time-evolution.95

We extend TPQ-MPS to two spatial dimensions by wrapping the lattice on a cylinder with a96

finite circumference and wind the 1D MPS structure around, enumerating all the sites linearly97

(see Fig. 1(c)). Cylinder tensor networks are fairly standard techniques nowadays, involving98

various variants in the way of wrapping the lattice and subsequent enumeration schemes.99

The precise way of wrapping the lattice can have physical implications; The system, although100

gapless in the two-dimensional limit, maybe gapped if the gapless nodes are not on allowed101

momenta lines in the Brillouin zone [27]. There are choices of particular cylindrical geometry102

known to capture the gapless state of the KH model [28,33], but are not used here. The choice103

of such cylinder is important for the ground state but not for the temperature we can reach in104

the present study. The enumeration scheme should, ideally, not alter the physical properties.105

However, in reality, it can influence the spatial distribution of correlations and entanglement in106

particular for relatively small bond dimensions [14]. We employ a helical enumeration scheme107

with 8×3×2 (YC8×3×2, which has circumference Lcirc = 6 and is illustrated in Fig. 1(c)) and108
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Figure 1: (a) Schematic illustration of different thermal quantum states, classified
by purity. The two well-known representations of the Gibbs state are sketched. (b)
Schematic illustration of TPQ-MPS with auxiliary degrees of freedom providing an
entanglement bath, and the MPO-based imaginary time evolution. (c) Illustration
of the honeycomb lattice composed of x-, y-, and z- bonds. For the underlying 1D
MPS structure, we use a cylindrical geometry with a helical enumeration scheme as
is highlighted by orange dashed lines. Equivalent bonds across the boundary are
marked with the same roman literal. Specifically shown is the YC8×3×2 geometry
with a shifted (by one lattice vector) boundary condition. Orange dots connected by
solid lines represent the auxiliary sites.

8× 4× 2 sites (YC8×3×2, Lcirc = 8) conforming to YC3-1 and YC4-1, respectively, using the109

convention in Ref. [34]. Both schemes treat the x- and z-bond on equal footing, i.e. they are110

nearest neighbors in the 1D MPS structure, while the y-bonds turn into an exchange with range111

2Lcirc − 1 sites. This choice results in the smallest χM PO of the time-evolution unitary, while112

also reducing the number of nearest-neighbor bonds cut by a bipartition which, at sufficiently113

low T , enters the amount of entanglement entropy encoded in the TPQ-MPS.114

The long-range interactions within the effective 1D model make the time-evolving block115

decimation scheme [35–37] in Eq. (1) infeasible. Instead, we rely on an MPO formulation of116

the time-evolution operator [38] 3. Specifically, we discretise U(β/2) = [U(dτ)]N with small117

imaginary time steps dτ and represent U(dτ) as MPO [38]. 4 After each MPO-MPS product,118

3We note that time-dependent variational principle (TDVP) [39,40] can be utilized as well.
4The MPO representation of the imaginary time evolution is given as W II(dτ) ≡ U(dτ), following Ref. [38].

Splitting dτ= τ1 +τ2 with sufficiently chosen complex τ1 and τ2 such that U(dτ)≈W II(τ2)W II(τ1) reduces the
error in dτ by one order.
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the MPS is compressed using a variational scheme [41] reducing χ. We use an upper bound119

for the maximum χbulk = {362,512, 724} to limit the computational resources needed. If the120

bound is not reached, small Schmidt values λi are discarded provided either of the two criteria121

are met: (I) discard all λi ≤ strunc or (II) discard all λi sufficing
∑

i λ
2
i < (s

sum
trunc)

2 beginning122

from the smallest λi .123

Further technical details are given as follows; The initial random TPQ-MPS state |Ψ0〉 is124

prepared by applying a sequence of random unitaries to Néel-like product state in the z-basis,125

i.e. | · · · ↑↓ · · · 〉 5 and cap the bond dimension at χini = 32. We prepare Nsamples = 100 indepen-126

dent random initial states (see Supplementary A for details [2]) and take the imaginary-time127

step typically as dτ = 0.1 and finer ones at β ≤ 0.8. The truncation thresholds are set to128

strunc = 10−6 and ssum
trunc = 10−5 unless stated otherwise. Measurements are not independent129

concerning β , but are done at certain series of fixed β during the single run of imaginary-130

time evolution and the Nsamples averages are taken from a set of independent runs. The TenPy131

library [42] is used for all MPS-related numerical calculations.132

3 Application to the Kitaev honeycomb model133

We employ TPQ-MPS to the Kitaev honeycomb (KH) model defined as [16]134

H = Kx

∑

〈i, j〉x

σx
i σ

x
j + Ky

∑

〈i, j〉y

σ
y
i σ

y
j + Kz

∑

〈i, j〉z

σz
iσ

z
j , (2)

where σγi are Pauli operators σx , σ y , and σz acting on sites i. The three sets of parallel bonds135

on the honeycomb lattice are labeled as γ= {x , y, z} (see Fig. 1(c)). The Kitaev interaction Kγ136

couples a neighboring pair of spins 〈i, j〉γ along the γ-bond by an Ising-like exchange σγi σ
γ
j .137

The KH model features a gapless QSL ground state if Kα ≤ Kβ + Kγ is satisfied for all per-138

mutations of the bond labels {x , y, z}. Otherwise, a gapped QSL is found which adiabatically139

connects to the Toric Code [43]. Here, we focus on the case of Kx = Ky = Kz =
1
3 .140

The KH model features a double-peak structure in the specific heat, signalling crossovers141

and releasing an entropy of ∆S/N = 1
2 ln 2 each. The associated two energy scales are well142

known [44]: At the high-T peak, TH/K ≈ 0.5, nearest-neighbor spin-spin correlations develop143

and the fractionalization into itinerant and localized Majorana fermions occurs. The latter144

contributes to the formation of fluxes at each hexagonal plaquette given as WP =
∏

i∈P σ
γP (i)
i ,145

where γP(i) = x , y, z is the label of bond connected to site i while not being part of the146

plaquette P . The fluxes give an extensive set of quantum numbers, wP = ±1, which are147

disordered at T ≲ TH/K . Below the low-T peak, TL/K ≈ 0.016, the fluctuation of fluxes is148

suppressed and we eventually find 〈WP〉 → 1. They form the staticZ2 lattice-gauge field, fixing149

half of the Hilbert space per unit cell. A local Hilbert space dimension of
p

2 per site remains150

which is associated with itinerant-free Majorana fermions. Although the KH model at finite151

temperature is not exactly solvable, once Z2 bond variables constituting the Z2 gauge field are152

treated as classical degrees of freedom, a combination of classical Monte Carlo method with153

free (Majorana) fermion exact diagonalization (MC+FFED) provides a nearly exact calculation154

in a relatively large cluster, as performed by Nasu, et.al [44]. Whereas, its counterpart Eq.(2) is155

a quantum many-body Hamiltonian which is generically difficult to solve at finite temperatures156

from the front door. Therefore, the model provides a good platform and benchmark for our157

approach. We would like to emphasize that our approach, unlike MC+FFED, is not custom158

tailored to the Kitav model and can be applied to other quantum many-body Hamiltonian.159

5We take 25 iterations of applying a random unitaries. The randomization is based on a TEBD algorithm with
random two-site unitaries. Although not relevant to our model, an advantage of this method is the possibility of
utilizing charge conservation, e.g. when studying a U(1) symmetric model.
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Figure 2: Temperature (T = β−1)-dependent (a) energy density E and (b) specific
heat density exhibiting the double peak obtained by TPQ-MPS on cluster YC8×3×2
and YC8×4×2 and several χbulk. Reference date (black dots) uses MC+FFED on
12 × 12 × 2 sites [44]. YC8×4×2 exhibits a good quantitative agreement with
MC+FFED down to T ∼ 0.05. We attribute the difference in the position of TL , in
particular for YC8×3×2, to the finite circumference geometry used here; the ground
state energies EGS of an infinitely long Lcirc = 6 cylinder (YC3-1, dash-dotted horizon-
tal line) obtained by iDMRG has a ground state energy density lower than the bulk
exact one [16] (solid horizontal line) by about ∼ 0.01K , yielding different crossover
slopes in E near TL and a shifted peak. (c) The evolution of the plaquette flux aver-
age, 〈Wp〉. The flux-free state at T = 0 exhibits 〈Wp〉= 1.

Our TPQ-MPS data in Fig. 2 exhibits a good qualitative agreement with the results obtained160

from MC+FFED [44] on a 12× 12× 2 cluster and XTRG using a YC6× 4× 2 geometry [15];161

The energy density6 E rapidly decreases near TH resulting in a crossover peak in the specific162

heat C . A second step of energy reduction occurs near TL . The two-step behavior is already163

present for small χbulk = 362 with well converged behaviour down to T ∼ 0.2 including the164

high-T peak in the specific heat. Whereas for T ≲ 0.2, the finite-size and finite-χ effects165

inevitably influence the data; In Fig. 2(a) we display in two different lines the ground state166

energy obtained using iDMRG on an infinite cylinder with the same circumference Lcirc = 6, 8167

and helical boundary condition YC3-1 and YC4-1, respectively. The circumference seriously168

affect the numerically achieved ground state energies and consequently the specific heat which169

can be summarized as follows: (I) The cylinder with Lcirc = 6 features an enhanced reduction170

in energy upon cooling down approaching the significantly lower ground state energy. The171

low-T peak in specific heat is of similar height to MC+FFED, while shifted to a two to three172

6We are computing the energy density neglecting the left Nl = Lcirc and right Nr = Lcirc sites of the physical
system to obtain a better estimate of the energy density in the bulk
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Figure 3: Evolution of the truncation error and bond dimension of the KH model:
(a) Accumulated truncation error per unit of imaginary-time ∂βΣtrunc and bond di-
mension χ̄ averaged over the system, and (b) fidelity F of the evolved MPS before
and after the truncation accumulated for all β j < β .

times higher temperature. (II) For Lcirc = 8 we obtain an evolution of the energy closer to173

MC+FFED, thus reducing the finite-size effect signicantly. For TL ≳ T ≳ 0.2, however, TPQ-174

MPS overestimates E compared to MC+FFED. Here, increasing χ gradually reduces E possibly175

approching MC+FFED for sufficiently large χ. Near T ∼ TL and below, the effect of finite χ176

ceases and the energy eventually approaches both MC+FFED as well as the ground state en-177

ergy. As a consequence of the overestimated energy density at intermediate T , we obtain an178

enhanced slope of E resulting in a higher peak in the specific heat. Again, increasing χ im-179

proves accuracy, reduces the height of the peak and results in a behaviour closer to MC+FFED.180

The peak position is very similar to MC+FFED at any χ.181

A recent XTRG calculation applied to the Kitaev model reports the lower-peak at TL ∼ 0.19182

with the peak-height of∼ 0.3 using a 6×4×2 cylinder [15]. While the circumference is similar183

to our YC8×4×2, the XTRG work uses a slightly shorter cylinder, does not use helical boundary184

condition, and employs a different winding scheme. The agreement with XTRG is very good185

above T ∼ TL , but while TL is similar to XTRG, we obtain higher peaks.186

The average of Z2 fluxes in Fig. 2(c) nicely marks the two peaks by an onset of nonzero187

value (TH) and the inflection point (TL), finally approaching 〈WP〉 → 1 at T → 0 systematically188

for various χbulk.189

We like to remark that in many frustrated spin models, the specific heat at T ≲ 0.1 nat-190

urally suffers large finite-size effect independent of the method employed. For example, in191

kagome lattice Heisenberg antiferromagnet, specific choices of clusters sometimes yield un-192

physical peaks or features not observed in other choices of cluster [25,45] possibly obscuring193

the physical behaviour.194

4 How truncation affects the TPQ-MPS state195

We now quantify the TPQ-MPS based on the error analysis during the run by focusing on two196

quantities: The first one is the sum of all discarded Schmidt values (λi for i > i0(β j) which197

fulfills aforementioned I or II in §.2) accumulated over a single imaginary-time evolution,198

Σtrunc(β) =
∑

β j<β

∑

i>i0(β j)

λ2
i (β j) . (3)
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The second one is the product of the fidelities of the state |Ψ(β j)〉 = W II(dτ)Ψ(β j−1)〉 (see199

Ref.[36]) and |Ψ̃(β j)〉 just before and after truncation, respectively, for all truncations down200

to the temperature β−1,201

F(β) =
∏

β j<β

(|〈Ψ̃(β j)|Ψ(β j)〉|2) , (4)

which evaluates how we deviate from the non-truncated wave function at β . The amount of202

truncated Schmidt values per unit of imaginary time is given as ∂βΣtrunc. In Figure 3 we show203

the evolution of ∂βΣtrunc, of the average bond dimension χ̄, and of F . Upon cooling down,204

∂βΣtrunc remains below 10−7 until χ̄ reaches χ̄ ∼ χbulk, which occurs near T ∼ 1. Larger χbulk205

(smaller system) generally lowers this threshold temperature. At these high temperatures,206

the evolution is very accurate reflected in a fidelity F ∼ 1. Upon lowering the temperature,207

∂βΣtrunc increases and then reaches a plateau at TL ≲ T ≲ TH with values ∂βΣtrunc ∼ 10−5 to208

10−4 depending on χbulk. Here, F starts to depart gradually from 1, which is more distinct209

for smaller χbulk. At T ≲ TL the error ∂βΣtrunc reduces again and F starts to flatten out. For210

YC8×3×2 at χbulk = 512, χ̄ slightly drops, indicating the reduction in the size of the Hilbert211

space needed to effectively encode the low-temperature state.212

These observations suggest two effects of the truncation χ; For relatively small χbulk that213

is reached quickly, in particular at intermediate TL ≲ T ≲ TH , taking a larger χ lowers the214

energy towards the optimal value. This becomes evident upon inspection of E in Fig. 2(a),215

whose accuracy improves for larger χbulk approaching the MC+FFED data.216

The second effect concerns the states at high energy. Let us expand the TPQ state con-217

structed for the full Hilbert space for finite N . The system is split into a smaller part A (with218

dimension DA) and a bigger part B, which is Schmidt decomposed as219

|Ψβ〉=
DA
∑

n=1

λn|nA〉|nB〉 (5)

to the orthogonal basis sets {|nA〉} and {|nB〉}. The local part A is thermalized and its density220

operator is approximated by the Gibbs state in A as221

ρA =
DA
∑

n=1

λ2
n|nA〉〈nA| ≃

e−βHA

ZA
(6)

where {|nA〉} is thought to be the energy eigenbasis of the subsystem’s Hamiltonian HA. For222

its eigenvalues {EA
n}, the Schmidt coefficient λn is represented as e−βEA

n/2/
p

ZA, and we find223

|Ψβ〉 ≃
DA
∑

n=1

e−βEA
n/2

p

ZA
|nA〉|nB〉. (7)

Note here that {|nB〉} is left unknown. We finally truncate |Ψβ〉 as DA→ χ in Eq.(7), discarding224

the basis states with small weight. Specifically, information of |nA〉 belonging to higher EA
n225

is lost. This explains the capability of TPQ-MPS to express qualitatively different quantum226

states from high to low temperatures; The truncation of the MPS efficiently compresses the227

information needed to represent the thermal state in particular at low temperatures. Moreover,228

in TPQ-MPS, the variance of physical quantities among different initial states becomes smaller229

by more than one order for lower temperature [2, 19]. This is in sharp contrast to the usual230

random sampling methods or Monte Carlo methods, where the sampling error is by orders of231

magnitude larger in the lower temperature phase.232
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5 Conclusion233

To summarize, the TPQ-MPS is applied to 2D by wrapping the MPS train into cylinders.234

The two peaks in the specific heat in the Kitaev honeycomb lattice signaling the fractional-235

ization of spins into Majorana fermions and fixing the Z2 gauge flux are both reproduced.236

While finite-size effects appear at T ≲ 0.1 as is common with other methods, finite-χ affects237

the MPS-TPQ only intermediate temperatures T ∼ 0.1 and is less of a concern at very low238

temperatures T ≲ 0.01. Here, the truncation process of TPQ-MPS efficiently discards the239

higher-temperature information explaining why it can track a nearly pure thermal state with240

its volume-law entanglement–equivalent to the thermal entropy–across a wide range of tem-241

peratures. This allows the state starting from random at high temperature (initial state) to242

gradually reach the qualitatively different long-range entangled topological ordered ground243

state.244
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A Random sampling average255

TPQ-MPS is a random sampling method using the MPS representation of the quantum many-256

body wave function. Since the quality of the MPS state relies its bond dimension χbulk prac-257

tically accessible in the computation, a smaller χbulk requires a number of independent runs258

to be averaged over. This number is generally by orders of magnitude smaller than METTS259

and other MPS methods when applying them to the same system. One may anticipate that260

the present 2D Kitaev honeycomb (KH) model may require more samples than for 1D sys-261

tems [19]. As illustrated in Fig. 1 in the main text, the higher the purity is, fewer samples262

Nsamp are needed to safely reproduce the thermal quantum state. In TPQ-MPS, the Nsample-263

independent runs are performed starting from the independent initial random MPS, yielding264

a set of unnormalized states over different β j for each, {|Ψ(l)(β j)〉}
Nsample

l=1 . The random average265

of physical quantities O is taken as266

〈O〉=
∑Nsample

l=1 〈Ψ
(l)(β j)|O|Ψ(l)(β j)〉

∑Nsample

l=1 〈Ψ(l)(β j)|Ψ(l)(β j)〉
. (8)

Here, the summations of samples are taken independently between the numerator and denom-267

inator, since the partition function is given by the denominator Z =
∑M

l=1〈Ψ
(l)(β j)|Ψ(l)(β j)〉268

(the reasoning for why the average taken by the normalized |Ψ(l)(β j)〉 does not provide the269

correct sampling average is analytically shown in Ref.[ [2]]).270
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Figure 4: Normalized fluctuation of partition function (NFPF) δz2 as a function of T
for the data calculated in Fig. 2 for the KH model with different χbulk. The number
of samples required to obtain the same quality data scales linearly with δz2.

The number Nsample required can be measured using a quantity called normalized fluctua-271

tion of partition function (NFPF),272

δz2 =
Var(〈Ψ(β j)|Ψ(β j)〉)
�

〈Ψ(β j)|Ψ(β j)〉
�2 , (9)

where · · · is the random average. It is shown that the purity of the thermal state scales with273

δz2 and the larger δz2 means that the obtained state varies much with a sample. In fact,274

we showed that the number of samples needed, Nsample, to obtain the same quality of Eq.(8)275

increases proportionally to δz2 [2].276

The results of δz2 for the present calculation on the KH model are given in Fig. 4 for a set of277

data given in Fig. 2. The largest δz2 at low-T ranges at 10−1−101, which is comparable to the278

value for the 1D Heisenberg model [2] which used Nsample = 100. Based on this comparison,279

we also adopt Nsample = 100 for the 2D case. The present calculation shows that the 2D TPQ-280

MPS is as capable as the 1D case despite the consensus that the calculations in 2D are much281

more difficult than in 1D.282

The plateau of ∂βΣtrunc observed in Fig. 3 agrees with the plateau of δz2, and as in Fig. 3,283

χbulk dependence appears at T ≲ 100, showing that δz2 is indeed a good measure to qualify284

the quantum state. We find a suppression of δz2 by a log scale in terms of χbulk, indicating the285

high capability of TPQ-MPS to store the information required for a wide range of temperatures286

exhibiting different natures.287
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