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Abstract: An early result of algebraic quantum field theory is that the algebra of any

subregion in a QFT is a von Neumann factor of type III1, in which entropy cannot be well-

defined because such algebras do not admit a trace or density states. However, associated to

the algebra is a modular group of automorphisms characterizing the local dynamics of degrees

of freedom in the region, and the crossed product of the algebra with its modular group yields

a type II∞ factor, in which traces and hence von Neumann entropy can be well-defined. In

this work, we generalize recent constructions of the crossed product algebra for the TFD to,

in principle, arbitrary spacetime regions in arbitrary QFTs, formally paving the way to the

study of entanglement entropy without UV divergences. In contrast to previous works, we

emphasize that this construction is independent of gravity. In this sense, the crossed product

construction represents a refinement of Haag’s assignment of nets of observable algebras to

spacetime regions by providing a natural construction of a type II factor. We present several

concrete examples: a QFT in Rindler space, a CFT in an open ball of Minkowski space, and

arbitrary boundary subregions in AdS/CFT. In the holographic setting, we provide a novel

argument for why the bulk dual must be the entanglement wedge, and discuss the distinction

arising from boundary modular flow between causal and entanglement wedges for excited

states and disjoint regions.
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1 Introduction

The central object of study in algebraic quantum field theory is a so-called net of observables

[1–3]

O → A(O) , (1.1)

where O is a spacetime region and A(O) is the algebra of observables localized to that region.

Generally speaking, this is a C∗-algebra which may be completed to a von Neumann algebra

in the weak operator topology [4]. These algebras satisfy A(O)′′ = A(O) where the prime

denotes the commutant in B(H). There is an analogous operation at the level of spacetime

regions, namely the spacelike complement O′, and regions satisfying O′′ = O are called

causally complete.1 Thus, while any open spacetime region may be assigned a C∗-algebra

A(O), imposing further axioms on the assignment (1.1) leads to relations between the von

Neumann algebras defined on O and other related regions. In particular, if one has Haag

duality, A(O)′ = A(O′), then A(O) = A(O′′) for causally complete regions O. This will

be the case for the concrete examples in the present work, though we emphasize that the

1The causal completion of a region O is generically bigger than the domain of dependence D(O), which

will be relevant in our discussion of holography in sec. 4.
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abstract construction holds in generality.2 Crucially, for any theory obeying the standard

axioms of QFT, the resulting local algebra is type III1 [4, 9–13]. Physically, one can think of

this algebra as consisting of local observables constructed from suitably smeared fields with

support limited to the region.

The type III nature of these algebras is responsible for a central difficulty in the study

of entanglement in QFT, namely the infinities resulting from the fact that the von Neumann

entropy is ill-defined. The infinite value of entanglement entropy has plagued the subject from

the start, and is especially relevant in light of attempts to understand the entropy of black

holes and horizons more generally [14]. These infinities arise from the lack of a finite trace

on the algebras of observables, thereby obstructing the existence of density states localized

to the region. Moreover, the algebra of operators in type III theories does not admit a tensor

factorization, in contrast to type I factors appearing in quantum mechanics [15–17].3 See [20]

for a relevant review of entanglement entropy in QFT, [21] for an explanation of the type

classification in terms of renormalization schemes, or [22] for a pedagogical introduction to

operator algebras aimed at physicists.

Physicists have generally taken a cavalier attitude to such technicalities, and the study of

entanglement in field theory has played a central role in many developments, in particular our

understanding of the holographic dictionary in AdS/CFT. A key question in this context is:

what bulk physics can be reconstructed from a given subregion of the boundary CFT? As we

shall discuss in sec. 4, the answer to this question relies heavily on entanglement-based probes

[23–25], which motivates a careful understanding of entanglement for holographic theories,

particularly in the context of the emergent spacetime paradigm (cf. sec. 5). In the specific

context of the TFD, which will appear in the following sections, the entanglement structure

encoded in the fact that the two copies of the bulk theory do not factorize is essential for

understanding the black hole interior, which is causally inaccessible from either boundary.

In attempts to understand black holes more generally, the incorrect use of type I reasoning

ultimately leads to the black hole information or firewall paradox [17, 26, 27]. It thus seems

that a satisfactory theory of quantum gravity will remain beyond our reach until entanglement

in QFT is properly understood.

Recently, there have been exciting advancements in this vein. In an early attempt [28]

to understand black hole interiors via modular inclusions, the algebra of the TFD was simply

assumed to be type III, based on the idea of subregion-subregion duality (see sec. 4), i.e., the

duality with the algebra of bulk operators in the left and right exteriors. Additional support

for this idea was subsequently given in [29, 30], which conjectured that the change in character

of the boundary algebra from type I to type III arises from the Hawking-Page transition, in

which black holes become canonically favourable in the bulk; see [22, 31] for more explanation.

The nature of the algebras was finally proven only recently in [32] (see also [33] for further

2Haag duality is a natural condition that one expects in any reasonable QFT, but for the specific examples

considered herein, it is not an assumption, since Haag duality is known to hold for Rindler space [5, 6] and

CFTs [7], and hence also for the holographic dual subalgebra in the bulk; see [8] and references therein.
3Note however that one can still assign them weaker notions of statistical independence, cf. [18, 19].
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discussion of missing information in this context). In a remarkable paper [27], it was shown

that one can deform the boundary algebra perturbatively in 1/N from type III1 to type II∞
by adjoining the generator of the modular automorphism group, which is dual to the ADM

mass in the bulk, via the crossed product [4] (reviewed below, not to be confused with the

more familiar cross product). In stark contrast to type III algebras, type II algebras do admit

a well-defined trace, and hence a meaningful definition of von Neumann entropy for density

states.4 Indeed, the exciting result of [27] is that this allows one to obtain an expression for

the generalized entropy in a system (namely, the TFD above the Hawking-Page transition)

in which it was previously, in the type III theory, fundamentally ill-defined. Subsequently,

this crossed product construction was applied to a microcanonical version of the TFD (which

avoids the need to work perturbatively) in [34], the algebra of de Sitter space together with

an observer in [35], and JT gravity in [36, 37].

In this paper, we show that this reduction from type III to type II can be generalized

to in principle arbitrary subregions of arbitrary QFTs by adjoining the appropriate modular

Hamiltonian. In this sense, the crossed product construction may be viewed as a refinement

of (1.1) in the sense that it allows one to associate a trace on the local algebra of observables

in any quantum field theory, i.e.,

O → A(O) → Â(O) , (1.2)

where the final type II algebra Â(O) is obtained naturally from the type III algebra A(O), and

admits density states and a trace. The essential idea is as follows: associated to each algebra

is a group of modular automorphisms generated by a modular Hamiltonian, which belongs

to neither the algebra nor its commutant; physically, the modular Hamiltonian describes the

dynamics local to the region [4]. Modular automorphisms of any type III1 factor are outer,

and the crossed product of the algebra with a group of outer automorphisms yields a better-

behaved type II factor [38]. Thus, incorporating the associated modular flow to a local algebra

yields a well-defined trace, allowing one to define generalized entropy for subregions in any

quantum field theory.5

The advantage of this construction can also be understood to yield a formalization of

the concept of a density state for quantum field theory. Many results in QFT, particularly

in the study of entanglement, are formulated in terms of the reduced density matrix of some

subregion of the theory, obtained by a partial trace over the complement and normalized in

the Hilbert space trace. The issue with this in the type III1 algebra is two-fold: there is no

finite trace with which to normalize the density states, and there is no operator K in the

4We note however that while von Neumann entropy in type I theories may admit an interpretation in terms

of counting states, this is not the case in type II theories, so the physical interpretation of von Neumann

entropy in the present situation differs; see [27] for further comment.
5Intuitively, the crossed product of a von Neumann algebra A and a group G, both acting on a Hilbert

space H, is the von Neumann algebra generated by A and the unitary representation of G. Some divergences

may remain after this procedure, but these are mainly IR divergences associated with infinite horizon area and

can be dealt with by using suitable regulators.
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algebra of the subregion such that the reduced density state can be written ρ = e−K ; i.e.,

the reduced density matrix does not exist. The crossed product construction solves both of

these issues by effectively adjoining the generator of the density states, which we call the

(modular) charge to distinguish it from the full modular Hamiltonian, allowing one to define

density states in the resulting type II algebra as well as providing a trace that is unique up to

rescaling. We also stress that one need not assume the tensor factorization of the underlying

Hilbert space into subregions and their complements to obtain such reduced states, as this is

not true for the types of algebras one encounters in quantum field theory. This is in line with

defining density states and entanglement adapted to algebras of observables as opposed to a

particular Hilbert space representation [39–41].

The remainder of this paper is organized as follows. In sec. 2, we review the crossed

product construction as formulated in [27], and highlight that the reduction to type II is an

intrinsic feature of incorporating the local dynamics of the region that does not necessarily

rely on any gravitational aspects as suggested in [34]. We then apply this construction to

some important examples of both holographic and non-holographic QFTs. We first consider

non-holographic systems in 3, and construct the type II factors for an arbitrary QFT in

Rindler space (subsec. 3.1) and a CFT in an open ball of Minkowski spacetime (subsec. 3.2),

and obtain the generalized entropy in both cases.6 We then turn to holography in sec. 4, and

begin by providing a novel algebraic argument for why the bulk dual of a boundary subregion

must be the entanglement wedge. We consider a general boundary subregion in AdS/CFT,

and apply the crossed product construction for the vacuum state of a large-N gauge theory.

We also discuss excited states and disjoint boundary subregions, where the entanglement and

causal wedges no longer coincide and the modular flow becomes non-geometric. We speculate

on some boundary diagnostics of the switchover effect in the bulk based on the appearance

of a non-local mixing term in the modular charge. We close in sec. 5 with a conceptual

summary and ideas for future work. Since it plays a key role in our analysis, a review of the

mapping between a Rindler wedge and an open ball is provided in appendix A.

Note added: as this work was completed, [42] appeared with closely related ideas on

generalizations of the crossed product construction mentioned above. However, there are a

number of key conceptual distinctions between our respective approaches. First, as with the

initial works [27, 34, 35], their approach relies on the concept of a normalized density state on

the type III1 factor in order to obtain the generalized entropy (via an expression for relative

entropy that holds in theories of type I or II). In contrast, our renormalization procedure

is distinct from previous approaches and immediately leads to a subtracted entropy for the

type III1 factors, which we show is UV finite, and hence is preferable insofar as all inter-

mediate steps are well-defined. As we shall show, the entropy for the vacuum state of the

subalgebra is obtained directly without recourse to the purely formal identities for relative

entropy used previously, which can only be used to compute trivial excitations that do not

6As a caveat for large-N gauge theories, one must renormalize the modular Hamiltonian appropriately and

work perturbatively in N to apply the crossed product construction. This case will be discussed in sec. 4.
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alter the entangling surface; see subsec. 4.2.7 The recovery of the vacuum area contribution

is another distinction in the present paper, as the normalization chosen in previous works

effectively removes this term of interest. A third, and perhaps the most important, common-

ality with previous works in [42] is the reliance on gravitational constraints, i.e., the belief

that (quantum) gravity is somehow essential to transmute the type of the algebra from III

to II. As we emphasize however, this is not the case: the modular automorphism for any

local algebra of quantum field theory is outer, and the crossed product of such an algebra

with this group is type II. In other words, the crossed product is a mathematical construction

that adjoins the intrinsic dynamics, and is a priori independent of gravitational constraints

and does not require the introduction of an auxiliary observer. (Of course, for the case of

linearized quantum gravity coupled to matter, the crossed product algebra will respect the

constraints; see sec. 2 for further discussion.) Finally, we discuss several examples in detail,

in particular subregions defined via quantum extremal surface prescriptions in AdS/CFT. In

the holographic case, we also provide a simple but novel argument that the entanglement

wedge (as opposed to the causal wedge) is necessarily the bulk dual of a boundary subregion,

and discuss extremal surface phase transitions in relation to the emergence of non-locality of

the modular flow.

2 Modular Hamiltonians and the crossed product

In this section, we review the general construction introduced in [27] for defining an entropy

by first reducing a type III algebra to type II via the crossed product. Intuitively, the crossed

product ⋊ provides a way of combining an algebra together with its dynamics (i.e., group

action) into a larger algebra. The corresponding Hilbert space then provides a more natural

description of the states under the group action. In the present case, we will be interested in

the action of the (modular) Hamiltonian, so that in some sense the crossed product provides us

with a more covariant description of the physics under (modular) time evolution. Remarkably,

in the case of quantum field theories, this allows one to obtain a well-defined expression for

entanglement entropy by reducing the corresponding von Neumann algebra from type III to

type II [27].

Here let us briefly summarize this construction; the interested reader is encouraged to

consult the original work [27] for details, or [22] for a pedagogical review. To begin, suppose

A acts on a Hilbert space H, and let T (not necessarily in A) be a self-adjoint operator that

generates a group of automorphisms, i.e.,

eisTae−isT ∈ A , ∀a ∈ A, s ∈ R . (2.1)

7That said, we do employ similar expressions as [42] in our discussion of trivially excited states in 4.2.

Specifically, the right-hand sides of (4.19) and (4.20) are purely formal insofar as they involve expressions for

the entropy in the original type III theory, though the left-hand sides of both expressions are UV-finite. We

emphasize however that the main results do not rely on such decompositions, and that these were introduced

purely to illustrate that the manifestation of such excitations can be formally understood as a difference of

von Neumann entropies, and does not involve a new area term.
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More compactly, defining the unitary operator U = eisT , we may express this as

UAU−1 = A . (2.2)

Such automorphisms come in two types: if U ∈ A, the automorphism is called inner; other-

wise, it is outer. Physically, inner automorphisms are simply unitary transformations that

belong to the algebra. Accordingly, they don’t result in any fundamentally new structure,

in the sense that the crossed product algebra (introduced momentarily) reduces to a simple

tensor product algebra. Conversely, outer automorphisms can be thought of as equivalence

classes of unitary transformations. In the present case, we are specifically interested in the

crossed product of the algebra and its modular automorphism group, which for type III fac-

tors is always outer. Crucially, it is a standard result in the theory of operator algebras that

the crossed product of a type III1 algebra with its modular automorphism group is a von

Neumann algebra of type II∞ [38].

This fact was beautifully exploited in [27] to obtain a well-defined formula for the entropy

of the thermofield double (TFD) state, which is dual to the eternal black hole in AdS/CFT,8

and subsequently applied to de Sitter space [35] and a microcanonical version of the TFD

[34]; see also [36, 37] for applications to JT gravity. The general construction can be phrased

as follows: let T be the generator of an automorphism group of A as above, and X be some

bounded function on R. It is important that T has a well-defined action on A, while X

belongs to the commutant (by construction). In [27, 34], X was taken to be the Hamiltonian

of the left CFT, HL (since one works from the right copy for convenience), and in [35] it

was interpreted as the Hamiltonian of an observer in dS. In general, we will take it to be the

modular charge of the commutant A′.9 The crossed product algebra

Â := A⋊ R (2.3)

is then obtained by adjoining (bounded functions of) T +X to A, so that Â is generated by

operators of the form [27]

aeisT ⊗ eisX , a ∈ A, s ∈ R . (2.4)

Note that if T ∈ A, then aeisT ∈ A, so Â reduces A⊗R. In the present case, we take T to be

the modular Hamiltonian of the original algebra, which belongs neither to the algebra nor to

the commutant.

Specifying to the case of the TFD [27], let us take A to be the algebra of the right CFT.10

We then wish to adjoin HR. However, this is not the modular Hamiltonian, since the latter

8Throughout this work, we consider the TFD above the Hawking-Page transition, where the algebra is of

type III1 in the thermodynamic limit.
9To streamline the general exposition, we are temporarily ignoring issues of normalization of these operators,

which will be discussed in the concrete examples below.
10This was denoted Ar,0 in [27], while the crossed product algebra was denoted AR. Here, we will simply

use a hat to denote the crossed product algebra, and drop the subscripts.
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has support on both the algebra and its commutant, i.e., both CFTs. Formally, one writes

H = HR −HL , (2.5)

which expresses the fact that time translations are a group of automorphisms of the TFD in

which time moves upwards on the right boundary and downwards on the left. In contrast,

while one can define suitably normalized one-sided HamiltoniansHR,L that have a well-defined

action on their respective CFT, they do not generate automorphisms of the TFD, since they

act only on one side. We will usually refer to these one-sided Hamiltonians as charges or

generators, to avoid confusion with the modular Hamiltonian H. Consequently, we instead

identify T with (2.5), which generates an group of outer automorphisms of the algebra. We

can then take X := HL, which acts only on the commutant, so that adjoining T + X is

physically equivalent to adjoining HR, as originally desired.11 In the bulk of course, this

corresponds to the fact that the two copies of AdS are infinitely entangled and do not form

a tensor product, so the one-sided Hamiltonians are not even well-defined; see [22, 27] for

further discussion.

Adjoining the one-sided Hamiltonian to the algebra in this manner was analyzed for

the TFD dual to an AdS-Schwarzschild black hole in [27, 34]. In the bulk, the modular

Hamiltonian is formally written h = hR − hL, and acts on both the left and right exterior

algebras, corresponding to a timeshift in opposite directions, so that the evolution of the

entire t = 0 Cauchy slice is smooth across the bifurcation surface. This is a symmetry of

the spacetime that can be removed by a suitable diffeomorphism, but the latter acts non-

trivially on the boundary, where the timeshift is conjugate to the ADM mass. It thus appears

that in order for the algebra to be invariant under these large gauge transformations, it is

necessary to adjoin the ADM mass, which is dual to hR (or hL). This led [34] to remark that,

counterintuitively, including gravity makes entanglement entropy better defined in quantum

gravity than in quantum field theory, due to the transition from type III to II above. However,

one of the lessons of the present work is that gravity is not intrinsically involved in general. As

mentioned previously, the crossed product is ultimately just a means of enlarging the algebra

in such a way as to encode some dynamics, i.e., invariance under some group action. In AdS,

one desires invariance under large gauge transformations, so it is indeed natural to adjoin

gravity, i.e., the ADM mass. But in the case of Rindler space (discussed in subsec. 3.1) one

wants invariance under Lorentz boosts; and in the case of an open ball in flat space, or an

entanglement wedge in AdS (discussed in subsec. 3.2 and sec. 4, respectively), one wants

invariance under modular time evolution. In all these cases, one adjoins the corresponding

generator, but the physical interpretation differs in each, and the source of the simplification

inherent in the reduction from type III to type II is not intrinsically gravitational per se.

As alluded above, since A is a type III1 von Neumann algebra, the crossed product

algebra Â is type II∞ [38]. This is exciting, since von Neumann entropy is ill-defined for

11We emphasize however that since the decomposition (2.5) is purely formal, T +X ̸= HR as an operator.

Even if we manage to construct suitably normalized charges HL, HR, the algebra under consideration is still

type III and hence does not factorize.
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type III algebras, but can be defined for algebras of type II, and hence the crossed product

construction is a promising means of defining entropy in quantum field theory free of the

usual pathologies.12 Indeed, it was shown in [27] how to define an entropy for states in the

Hilbert space corresponding to Â, which amounts to defining a trace on Â. Let Ψ ∈ H be a

state in the original Hilbert space corresponding to A, and g(X) be an everywhere-positive

function in L2(R). Then the algebra Â acts on

Ĥ := H⊗ L2(R) . (2.6)

Since we are interested in the case where X corresponds to some Hamiltonian, there should

be no mixing between these factors. Accordingly, we will restrict our analysis to separable

states, which may be written in the form

Ψ̂ := Ψ⊗ g(X)1/2 ∈ Ĥ , (2.7)

where the square root is chosen for later convenience.13 Then for some â ∈ Â, there exists a

trace defined as [27]

Tr â = ⟨Ψ̂|âK−1|Ψ̂⟩ =
∫ ∞

−∞
dX eX⟨Ψ|â|Ψ⟩ , (2.8)

where

K := e−(T+X)g(T +X) ∈ Â , (2.9)

and the second equality of (2.8) as well as the form of the entropy below rely on the fact

that the modular Hamiltonian annihilates the vacuum state, i.e., T |Ψ⟩ = 0. From the form of

(2.8), we can then identify K as the density matrix for the state Ψ̂. To see this, observe that

replacing â 7→ âK recovers the standard formula for the expectation value of an operator â

in the state ρ
Ψ̂
= K:

Tr ρ
Ψ̂
â = ⟨Ψ̂|â|Ψ̂⟩ , (2.10)

and that this satisfies the normalization condition Tr ρ
Ψ̂
= 1. Note however that the trace is

not defined for all elements â, which is here regarded as a functional of X. For example, if

â ∈ A ⊂ Â, then the integral clearly diverges. The von Neumann entropy of the state Ψ̂ is

then [27]

S(K) = −TrK lnK =

∫ ∞

−∞
dX g(X)(X − ln g(X)) , (2.11)

up to an additive, state-independent constant. The latter arises from the freedom to shift

X 7→ X + c for an arbitrary c ∈ R. In the case where X is a Hamiltonian, this amounts

to a phase change at the level of the dynamics, but is not a unitary transformation of the

12Of course, the study of entanglement entropy in QFT is a rich and highly developed subject, but the

technically invalid use of type I reasoning relies on ad hoc regularization schemes, and is ultimately responsible

for the black hole information paradox [26, 27].
13As will become clear below, the second factor in (2.6) corresponds to the modular charge that we adjoin to

the original algebra; the function g will then gain an interpretation as the wavefunction determining quantum

fluctuations in the modular charge.
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density matrix and hence leads to a change in the entropy. In the next sections, we will see

that the von Neumann entropy of the crossed product algebra is the generalized entropy of

the corresponding subregion.

For the sake of completeness, we note that there may also exist other conserved charges

depending on the symmetries of the theory. Suppose these charges span a Lie algebra g with

associated Lie group G. Then, it was argued in [31] that the resultant algebra is again the

crossed product of A by G. Unlike the modular group, one expects gauge groups in quantum

gravity to be compact [43–45], and the crossed product of a type III factor by a compact

group is of the same type, and so does not qualitatively change the discussion. The extra

charges will simply be included in the new type II algebra, allowing for contributions to

the generalized entropy arising from objects like electric charge and angular momentum as

consistent with the first law of black hole thermodynamics.

3 Generalized entropy of subregions

Here we detail the construction of the algebras, and the corresponding generalized entropies,

for two basic examples: a generic QFT in Rindler space, and the domain of dependence

of an open ball in flat space CFT. The former serves as a fundamental example relating

entanglement entropy to properties of horizons, while the latter will be useful when studying

subregions in AdS/CFT in sec. 4.

3.1 Rindler space

In this subsection, we consider an arbitrary type III1 QFT14 in Rindler space in D = d + 1

dimensions, with the metric

ds2 = e2aξ(−dη2 + dξ2) + dΩ2
d−1 , (3.1)

where Rindler coordinates (η, ξ) are related to Minkowski coordinates (t, x) via the following

hyperbolic transformation:

t =
1

a
eaξ sinh aη , x =

1

a
eaξ cosh aη , (3.2)

and a > 0 is a constant that parametrizes the acceleration. This is a classic example in the

study of QFT in curved spacetime, which illustrates fundamental properties of horizons. In

particular, taking the Minkowski representation to be in the vacuum state, it is a standard

result that a Rindler observer will nonetheless detect particles with a thermal spectrum at

temperature [46]

β−1 =
a

2π
. (3.3)

14The remarkable result of [6], which we employ below, is that the modular flow in Rindler space is purely

geometric. Consequently, our results apply for any QFT, free or interacting, in any dimension.
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Note that at the horizon (x = t), a → ∞, so the temperature appears to diverge. The thermal

spectrum implies that the Rindler horizon has an associated entropy, which can be computed

via the classic Euclidean method of Gibbons and Hawking [47] to yield [48]

SR =
A

4G
, (3.4)

where the subscript R denotes the right Rindler wedge. In this expression, the area A is an

integral over the horizon, so that the total entropy is infinite, but the entropy per unit area

can be well-defined.15

Here, we show that the methods of [27] reproduce the leading-order contribution (3.4) as

well as the subleading contribution due to thermal fluctuations in the canonical ensemble.16

The latter are not captured by the Euclidean approach mentioned above, since this computes

the entropy relative to the flat-space background, so the fluctuations of the matter content

are subtracted away. As discussed in [49], these fluctuations lead to a universal logarithmic

correction that arises in all thermodynamic systems in the canonical ensemble, including black

holes. To our knowledge however, they have not been explicitly addressed in the context of

Rindler horizons.

Denote the algebra of observables in the right Rindler wedge by AR, and that in the left

by AL. Clearly, AL = A′
R, and by von Neumann’s double commutant theorem, A′

L = AR.

The modular Hamiltonian H was first found by Bisognano and Wichmann [6] to be related

the Lorentz boost generator L, which one can express as an integral of the stress tensor over

the t = 0 Cauchy slice:

L =

∫
t=0

dxxT00 . (3.5)

The modular Hamiltonian for Rindler space is simply related to the boost generator by

H = 2πL , (3.6)

where the factor of β = 2π is the inverse temperature of the Unruh effect; see for example

[50] for further exposition.17 Note that H acts on both the algebra AR and the commutant

AL; formally, one often writes

H = HR −HL , (3.7)

where HR,L correspond to the one-sided Lorentz boosts. Intuitively, the modular Hamiltonian

(3.5) evolves the t = 0 Cauchy slice upwards on the right and downwards on the left, but

evolving with only HR or HL would result in a kink at the origin, so the latter do not

15The integral is performed over the codimension-2 surface parametrized by dΩ2
d−1. In 1+1 dimensions, this

is just a point, and the area vanishes; in this case the logarithmic corrections discussed below are the leading

contribution to the entropy.
16We work semi-classically, so that the canonical ensemble in asymptotically flat space is well-defined. This

is not true for gravitational systems in asymptotically flat space, since black holes have negative specific heat.
17Note that some authors, including Witten and collaborators, absorb the factor of 2π into the definition of

H; in particular, the modular Hamiltonian ĥ in [34] is in fact the Lorentz boost L in our notation.
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generate an automorphism of the algebra. The fact that the one-sided charges HR, HL

generate singular states reflects the fact that evolution with only one of these operators in

the type III algebra is pathological, insofar as they cannot be used to generate well-defined

states in the corresponding algebras AR, AL. In this sense, the point of the crossed product

construction is that suitably normalized versions of these one-sided charges do belong to the

type II algebras, and can be used to describe dynamics. One way to obtain well-defined

operators is by simply subtracting the average energy,

HR − ⟨HR⟩ , (3.8)

and similarly for HL; see [27, 34] for further discussion of this issue. Note that the expectation

value in this expression is purely formal, as it represents the energy in the type III theory,

where the trace is not defined.

This subtraction scheme for the operator normalization was used in [27, 34] and related

works.18 While it provides a clean one-sided charge, it has the severe disadvantage of eliminat-

ing the vacuum contribution in the eventual generalized entropy formula. This is problematic

since, as discussed in more detail in subsec. 4.2, this is the leading area contribution defined

self-consistently by the definition of the subregion for the corresponding state.19 As a result,

previous works (with the exception of [42], who utilize covariant phase space methods, cf.

the discussion below (3.13)) resort to a slightly dubious argument adapted from Wall [51]

involving the notion of von Neumann entropy (in the type III theory) to recover an area term

for an “excited state.” Concretely, this scheme would yield zero for the area contribution

from the Rindler horizon, in contradiction to the known result above.

However, recall from sec. 2 that there is an inherent ambiguity in the entropy due to the

freedom to shift X → X + c. In particular, this shift may be infinite, and indeed in [34] it

diverges as G → 0. Since any c-number is in the commutant of A by definition, we are free to

absorb the vev into this constant, and instead work directly with HR,L. The essential point

is that one should not use the subtraction scheme (3.8), which has zero expectation value.

As we shall see, this allows us to obtain the correct area contribution in the vacuum state

for the subregion. The contribution from the infinite energy of the vacuum then appears as

a state-independent constant in the entropy, which one ignores.

For concreteness, let us work from the perspective of the right Rindler wedge. Since the

algebra is type III1, the density matrix ρR does not exist. As discussed in sec. 2 however,

we can enlarge our algebra by adjoining the modular Hamiltonian (3.5) in such a way as to

18In the case where the algebra is a large-N gauge theory, additional care is required in the canonical

ensemble; this will be discussed in sec. 4.
19That is, the modular charge knows about all relevant excitations in the subregion by definition, since these

would affect the location of the entangling surface which defines the subalgebra under consideration. The

corresponding area contribution below is thus defined by the cyclic and separating state that sets the location

of the surface; this may be the global vacuum, or some excited state. Crucially however, one does not need to

consider relative entropy to obtain the relevant area contribution; rather, this only gives the entropy difference

for trivial excitations, which is why we put “excited states” in quotes in this paragraph. See subsec. 4.2 for

further explanation.
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obtain a type II∞ algebra that does split into a left and right factor. Hence, taking T = H

and X = HL, we obtain the crossed product algebra

ÂR = AR ⋊ R , (3.9)

whose corresponding Hilbert space is of the form (2.6). Since ÂR is a type II∞ factor, the

corresponding density matrix exists, but takes the form

ρ̂R = e−HRg(HR) , (3.10)

cf. (2.9), with T = HR −HL and X = HL.
20 As a consistency check, note that this satisfies

the normalization condition Tr ρ̂R = 1; this is not apparent from the r.h.s. of (2.8), but can

be easily verified from the intermediate form

Tr ρ̂R =

∫ ∞

−∞
dHL g(HL) = 1 , (3.11)

where we used the fact that ⟨Ψ|Ψ⟩ = 1 and g(HL)
1/2 ∈ L2(R) by construction. The entropy

(2.11) is then

S(ρ̂R) = −Tr ρ̂R ln ρ̂R

= −
∫ ∞

−∞
dHL⟨Ψ|g(HL) ln ρ̂R|Ψ⟩

=

∫ ∞

−∞
dHL⟨Ψ|g(HL) [HR − ln g(HR)] |Ψ⟩

= ⟨Ψ̂|HR|Ψ̂⟩ − ⟨Ψ̂| ln g(HR)|Ψ̂⟩ .

(3.12)

The final step is to relate the expectation value of HR to the horizon area. There are a

few different ways of seeing this. In the proof of the generalized second law by Wall [51], a

semiclassical argument is used to argue that the area of a horizon is proportional to the boost

generator thereon,

A = 8πG⟨K⟩ . (3.13)

The argument for this is reviewed in [34], where (3.12) was computed for a microcanonical

version of the eternal AdS black hole. Slightly more generally, this can be derived using

covariant phase space formalism. In particular, [52] shows that the generator of Euclidean

rotations about an entangling surface (e.g., the Rindler horizon considered here, or the ex-

tremal surfaces considered in sec. 4) is given by a quarter of the area in Planck units. Further

support for this connection comes from a topological argument in the case of Euclidean black

holes [53, 54], which relates the Einstein-Hilbert action to the Gauss-Bonnet theorem. In

brief, the idea is that the deficit angle around the horizon, treated as a cusp in R2 × Sd−1, is

canonically conjugate to the area of the Sd−1 at that point. But this is simply a rotation in

Euclidean time, which is generated by the boost operator K above. Intuitively, the relation

20We emphasize again that T + X ̸= HL, since T is really the modular Hamiltonian, cf. footnote 11.

However, the formal decomposition is convenient when considering its action on the state |Ψ̂⟩.
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(3.13) reflects the fact that the generator of the modular flow encodes properties of the hori-

zon, and in particular the entanglement structure between A and A′. This points to a further

role played by the Euclidean path integral, namely it implements the relation between the

modular Hamiltonian and the area of the entangling surface semiclassically.

In our notation, K = LR in (3.13), thus (3.12) is

S(ρ̂R) =
A

4G
− ⟨Ψ̂| ln g(HR)|Ψ̂⟩ . (3.14)

The first term is the usual contribution (3.4) to the entropy from the horizon area, while

the second term is due to thermal fluctuations in the canonical ensemble, which physically

correspond to fluctuations in the area of the surface. This second term was already recognized

by [27] as the universal contribution that arises in any thermodynamic system in the canonical

ensemble [49]. Here, it can be understood as the entropy of the type I algebra of the modular

Hamiltonian we adjoined above. That is, formally, one writes21

ρ̂ = e−K̂ , (3.15)

for some density matrix ρ̂ and generator K̂. For (3.10), this decomposes into K̂ = HR − ln g(HR),

corresponding to the two terms in (3.14). In this sense, − ln g(HR) is the generator of the

modular flow on L2(R), so the subleading contribution to the entropy arises from fluctuations

in the energy of the state.

Of course, in the case of a Rindler horizon, as well as the entangling surfaces we will

consider in sec. 4, the area is infinite and requires some renormalization, but this is simply the

IR divergence associated to the infinite extent of the surface, and is well-understood. In flat

space for example, one typically considers energy densities, while in AdS this is accomplished

with the use of a regulator.

Note that this is formally the same result obtained in [34] and related works. However,

there is a key conceptual difference stemming from our interpretation of the modular opera-

tor, namely that previous works consider the entropy of an excited state, and normalize the

modular charge so as to remove the vacuum contribution. As argued above and in subsec.

4.2 below, this is slightly strange, since any excitation sufficient to affect the location of the

entangling surface is self-consistently included in the modular charge by construction. It is

however relevant if one wishes to consider extremely light insertions that do not affect the

entangling surface (which we call trivial excitations), and we comment on this further in the

context of holography in subsec 4.2. In this case on merely obtains an extra contribution

due to the entropy difference in the type III theory. Notwithstanding this slight but impor-

tant conceptual shift, our primary goal is simply to demonstrate that the essential methods

developed in [27, 34, 35] are more general than previously believed, as the relevant operator

21In the physics literature, it is common for K̂ to be referred to as the “modular Hamiltonian”, though this

is technically incorrect when ρ is the reduced density matrix on some subregion. For this reason, we have taken

care to refer to this as the (one-sided) charge or generator, to distinguish from the true modular Hamiltonian

K̂ − K̂′.
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to adjoin to the original type III subalgebra is the modular Hamiltonian. Hence, as in these

previous works, the advancement in the present case is a direct relation of the generalized en-

tropy, including both the leading Bekenstein-Hawking area term and the subleading thermal

fluctuations, to the underlying nature of the (type II) von Neumann subalgebra. Specifically,

we have thus far considered the algebra of observables in the right Rindler wedge. In the next

subsection, we use the result of Casini, Huerta, and Myers [55] to transport this analysis to

the domain of dependence of an open ball in a CFT.

3.2 Domain of dependence of an open ball

In this subsection, we consider an open ball in Minkowski space, denoted Bd−1, whose entan-

gling surface is the codimension 2 sphere Sd−2. One can associate suitably smeared operators

to such a region to form a von Neumann algebra, which might a priori fail to capture all

operators in causal contact with the ball. However, as mentioned in the introduction, Haag

duality is known to hold for CFTs, which provides an isomorphism with the algebra on the

ball’s causal completion, which in this case is equal to the causal domain of dependence

D := (Bd−1)′′. As above, we denote the algebra of observables localized to this subregion as

A, and – for any theory obeying standard AQFT axioms – it is type III1 [9].

Since the construction of the crossed product algebra relies on the modular Hamiltonian,

we restrict our attention to cases for which the modular Hamiltonian is known. In the case

of a CFT, there exists a special conformal transformation that maps the right Rindler wedge

to D [55–57], which can be used to obtain the generator of the modular flow for the latter.

Following the notation in [55], the conformal transformation accomplishing this is

xµ =
Xµ −X2Cµ

1− 2X · C +X2C2
+ 2R2Cµ, (3.16)

where Cµ = (0,− 1
2R , 0, 0), X

µ are Rindler coordinates, and xµ are coordinates on D.22 Note

that as a consequence of this mapping, the type III (II) algebra associated to D is isomorphic

to the type III (II) algebra for the right Rindler wedge above. As reviewed in appendix

A, the generator of the modular flow for the region D is then obtained by considering the

transformation of the modular flow in the right Rindler wedge under (3.16); the result is [55]

HD = π

∫
B
dd−1x

R2 − r2

R
T 00(x) + c , (3.17)

where B denotes an integral over the ball Bd−1, T 00(x) is the traceless energy-momentum

tensor of the CFT, and c is a constant ensuring normalization of the trace. As reviewed above,

the entropy for the type II crossed product algebra will only be defined up to an additive

constant, so we may drop this henceforth.

An important fact that is usually overlooked in the physics literature is that the modular

Hamiltonian H includes contributions from both the local subregion of interest and its com-

plement. Indeed, this is the T appearing in the crossed product construction reviewed in sec.

22Note that there is a sign error in [55]; see appendix A.
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2 Thus, we also need the generator of the modular flow for D′, the domain of dependence of

all points spacelike separated from Bd−1. Fortunately, the complement of the right Rindler

wedge is the left Rindler wedge, whose Lorentz boost is the negation of the Lorentz boost for

the right region. Thus, upon applying the conformal transformation in (3.16), one finds

HD′ = −π

∫
B̄
dd−1x

R2 − r2

R
T 00(x) + C. (3.18)

where B̄ is the complement of the ball. Note that in 1 + 1 dimensions, this will be a disjoint

interval r = x1 ∈ (−∞,−R) ∪ (R,∞); the mapping of the left Rindler wedge to two disjoint

intervals occurs under (3.16) due to the discontinuity at −2R (see appendix A). Thus, the

modular Hamiltonian for any CFT in the causal domain of dependence of an open ball is23

H = HD −HD′ . (3.19)

We emphasize that since the Rindler flow is purely geometric, the flow generated by (3.19)

holds for an arbitrary CFT in the vacuum state. Intuitively, we would expect the flow in

D′ to look approximately Rindler near the causal horizons. Expanding the integrand of HD′

near r = ±R, we have

−π
R2 − r2

R
= −2π(R∓ r) +O((r ∓R)2) . (3.20)

Hence, to leading order, HD′ indeed takes the form of a Lorentz boost, with a domain of

integration shifted by ±R.

The crossed product construction then proceeds precisely as above: upon adjoining

T = H to the type III1 algebra A, we obtain a type II∞ algebra Â = A ⋊ R, whose gen-

eralized entropy is

S(ρ̂D) = ⟨Ψ̂|HD|Ψ̂⟩ − ⟨Ψ̂| ln g(HD)|Ψ̂⟩

=
A(∂D)

4G
− ⟨Ψ̂| ln g(HD)|Ψ̂⟩

(3.21)

where ρ̂D is the reduced density matrix for the crossed product subalgebra A of the region

D in the vacuum state, and ∂D is the spatial boundary of the ball Bd−1. As mentioned in

the previous subsection, adding matter would again yield an additional contribution from the

relative entropy between the excited and vacuum states [34].

As before, the leading term is the area contribution from the entangling surface, while

the subleading logarithmic term arises from thermal fluctuations. Before moving on to the

next section however, it is interesting to compare this to the case of a 1+1 dimensional CFT,

where the entanglement entropy of an interval in the vacuum has a simple expression [58, 59]

S =
c

3
log

ℓ

a
, (3.22)

23To avoid a proliferation of subscripts, we use H to refer to the modular Hamiltonian in any system, which

should be clear from context. Obviously, H in (3.19) is not the same as H in (3.7).
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where ℓ is the length of the interval, a is an ultraviolet cutoff, and c is the central charge;

see [60] for a pedagogical review. Since the entangling surface in this case is just a pair

of points, the area contribution to the generalized entropy (3.21) vanishes, so the entropy

(3.22) must be contained in the universal logarithmic term.24 However, a direct comparison

is complicated by the fact that the entropies are not computed for states in the same algebra,

since (3.21) applies to the type II∞ crossed product algebra obtained by adjoining the modular

Hamiltonian, while (3.22) should apply to the original type III1 algebra in the presence of

a cutoff.25 Additionally, as discussed in the previous subsection, the logarithmic term in

the crossed product construction can be thought of as the generator associated to the type I

algebra L2(R). The fluctuations in the horizon area could physically be caused by fluctuations

in the bulk matter fields, but we have not done a calculation that would support this. It would

be interesting to make this connection explicit, but we leave this for future work.

We note that in recent work [42], compact subregions were associated to type II1 factors,

whereas the algebra of the compact ball considered here is type II∞. The reason for the

discrepancy is that [42] impose a positivity condition on the auxiliary observer they adjoin

to the original type III1 factor. In contrast, we have adjoined the modular charge, which

is a field-theoretic operator. Negative energy for such operators is a subtle issue, and has

led to renewed interest in quantum energy inequalities; see, e.g., [61, 62] for reviews. Said

differently, while it is reasonable to impose positivity on a quantum mechanical observer, it

would be unnatural to project out half the modular group, which as we have emphasized is

the canonical outer automorphism on the algebra.

To summarize, we use the well-known fact that the Rindler wedge in d+1 dimensions is

conformally related to the domain of dependence of a ball Bd−1 to construct a type II sub-

algebra of observables Â for any CFT in the vacuum by adjoining the modular Hamiltonian

(3.19). The generalized entropy for states of the form (2.7) can then be computed using the

method introduced in [27]. In addition to further generalizing the crossed product construc-

tion, this particular example plays a central role in AdS/CFT as the domain of dependence

of a subregion of the boundary theory, which is dual to the entanglement wedge in the bulk.

This is the application to which we turn in the next section.

4 Subregions in AdS/CFT

Given the importance of entanglement-based probes in AdS/CFT, it is of fundamental in-

terest to understand the entropy associated to certain localized subregions in holography. In

particular, given a spacelike interval on the boundary CFT, whose domain of dependence is

the region D discussed in subsec. 3.2, the bulk dual of D is the entanglement wedge, defined

as the causal completion of the region bounded by the bulk extremal surface anchored at the

24This term is universal insofar as it does not depend on the CFT state, only on the state g
1
2 (HD) ∈ L2(R)

of the new Hilbert space upon which the crossed product algebra acts. In this sense, it is universal for the

original type III1 subalgebra, but not for the type II∞ subalgebra.
25We say “should apply” because strictly speaking, the density matrix is not well-defined for type III algebras.
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boundary of the interval. A core tenet of AdS/CFT, called subregion-subregion duality, is

that the physics contained within the entanglement wedge can be reconstructed within the

boundary causal diamond D. In algebraic language, this implies that the local subalgebra in

the entanglement wedge must be dual to the boundary algebra of D.26

For the purposes of understanding entanglement entropy however, this is not sufficient,

as the local algebra of the entanglement wedge is still of type III. Thus, in this subsection, we

discuss the application of the crossed product construction to quantum field theories localized

to subregions in AdS. The distinction between this exposition and the previous section is

that one can analyze the construction from both the boundary and bulk perspectives due to

holography, and in particular, we assume we have a conformal field theory with an SU(N)

gauge group localized to the boundary of AdS. We are interested in algebras of observables

AB restricted to a boundary subregion D, and the algebra of observables Ab localized to the

dual region in the bulk.

Before proceeding with the application of the crossed product construction, let us discuss

the dual region in more detail. A question that immediately arises, and which generated

significant activity in the years following the seminal work of Ryu and Takayanagi [23] (see

for example [24, 25, 66–70]), is whether the appropriate bulk dual of D is the entanglement

wedge or the causal wedge. While this question has been settled in favour of the former,

it is illuminating to cast this in algebraic language, which provides a more fundamental

explanation for the utility of quantum error correcting codes in bulk reconstruction [28, 63].

In the boundary, the type III1 algebra of observables AB localized to some subregion B

(taken to be D above) consists of suitably smeared single-trace operators.27 This is dual to

the algebra Ab of suitably smeared bulk operators in some region b.28 There are a priori

two obvious candidates for b: the causal wedge, defined by the bulk domain of dependence of

null rays fired into the bulk from the boundary causal diamond, or the entanglement wedge,

defined as the causal completion of the codimension 1 bulk subregion bounded by the extremal

surface and homologous to the boundary subregion. For a single region B in the vacuum state,

the causal and entanglement wedges coincide. In simple cases, bulk operators in b can then

be represented in terms of an integral over the boundary region via the HKLL prescription

[71, 72]. However, for excited states, or disjoint intervals, the causal and entanglement wedges

are generically different: the entanglement wedge will generically have access to more of the

AdS spacetime, which implies that the operator content may differ in the two regions. The

question is then which of these is dual to the region B on the boundary, i.e., what is the bulk

dual of AB?

26This was recently popularized under the name “subalgebra-subregion duality” in [63], though the duality of

the bulk and boundary von Neumann algebras was previously stated in this context in [28], and was implicitly

assumed in earlier work on modular flow [64, 65].
27Note that as we are considering subregions of the full spacetime, the associated algebra is type III at

N → ∞ regardless of whether we are above or below the Hawking-Page transition.
28For concreteness, we are considering bulk regions b that do not penetrate the horizons of any AdS black

holes, in which case AB consists of light CFT operators dual to exterior fields in the bulk algebra Ab [28].
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In the context of bulk reconstruction, one typically considers causally complete regions

in the boundary—for example, the causal diamond of a given spacelike interval. Since, as

mentioned previously, Haag duality holds for any boundary subalgebra AB in the CFT, this

implies that AB = AB′′ . The duality between bulk and boundary subalgebras then suggests

that the corresponding bulk subalgebra should satisfy this as well, i.e., Ab = Ab′′ . This is

trivially satisfied if b is also causally complete, i.e., b = b′′. While this is technically a suffi-

cient rather than necessary condition, it is the most natural from the holographic perspective

above.29 The causal wedge, however, is not causally complete. This is a consequence of

the fact that the conformal boundary is timelike rather than spacelike, which implies that

there are technically no Cauchy surfaces in AdS since null rays can always propagate around

any spacelike surface at infinity [73]. Thus, if we demand the same relations between al-

gebras/subregions and their commutants on both sides of the duality, then the type III1
subalgebra Ab dual to the boundary algebra AB cannot be the algebra of the causal wedge.

Of course, one could argue that this technicality has an equally technical fix: simply take

the causal completion of the bulk causal wedge. And in fact, in vacuum, this is precisely the

entanglement wedge. To see why the causal completion of the causal wedge cannot be the

bulk dual in general however, consider the case where the boundary region B consists of (the

causal domain of dependence of) two disjoint intervals in the vacuum state. Provided the

total spacelike extent of these two intervals is less than half the boundary, the bulk dual b

will consist of two disjoint regions as shown in the left panel of fig. 1. When the spacelike

extent exceeds half the boundary however, there is a discontinuous change in the bulk due to

a switchover in which of the two sets of possible entangling surfaces becomes minimal [74].

The bulk dual b after the switchover is illustrated in the right panel of fig. 1. Note that

the causal wedge does not undergo a switchover, since it is not defined by any extremality

condition. In this case, the question of whether to use the causal or entanglement wedge has

profound consequences, since only in the latter case can we reconstruct the operator in the

center of the bulk (indicated by the black dot) in AB.

The key observation is that modular theory gives a natural isomorphism between AB and

A′
B. Furthermore, by Haag duality, A′

B = AB′ . The same isomorphism holds for the bulk

algebras Ab and A′
b = Ab′ . Therefore, the duality between the bulk and boundary algebras

must be symmetric under the exchange of B (b) and B′ (b′). But as illustrated in fig. 1, if

b consists of the two blue wedges, then the complement b′ is the single connected region in

white, which implies that after the switchover, b must be the single connected region in blue.

Thus, in order for subregion-subregion duality to respect the isomorphism of the associated

von Neumann algebras with their commutants, the bulk dual b must undergo the switchover

effect, which rules out the (causal completion of the) causal wedge. Simply put, the bulk dual

of the boundary subregion must obey Haag duality, and the causal wedge does not.

While the above suffices to rule out the causal wedge as the bulk dual of B on purely

29That is, given Haag duality, b = b′′ immediately implies Ab = Ab′′ , but the converse does not necessarily

hold. By “natural”, we mean that this ensures the same relations between algebras resp. subregions and their

commutants resp. complements on both sides of the holographic dictionary.
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A

A
Figure 1. The bulk algebra Ab is shown in blue, while the commutant A′

b = Ab′ is shown in white

The dotted lines show two possible sets of entangling surfaces, which exchange dominance when their

areas become equal, leading to the switchover effect. Figure taken from [74].

algebraic grounds, we have not addressed the possibility for some third option distinct from

both the causal and entanglement wedges. This is due to the fact that the area of a non-

extremal surface30 is not gauge-invariant [65]. That is, the action of diffeomorphisms along

the entangling surface must trivialize, which happens only if the surface is extremal [75]. This

implies that b must be the entanglement wedge. Note that if we consider the full boundary as

in [34], the modular group is simply time translations of the CFT, which are diffeomorphisms

in the bulk.

In the remainder of this section, we consider three important cases: a single region in

vacuum AdS (described by AdS-Rindler), an excited state, and disjoint boundary subregions.

In the case of AdS-Rindler, the entanglement and (causal completion of the) causal wedges

coincide, reflecting the fact that the modular flow is geometric. As mentioned above however,

for an excited state or disjoint regions, the distinction is essential, as the entanglement wedge

is larger and, in the case of disjoint regions, exhibits the switchover effect.

4.1 AdS-Rindler

Consider the causal diamond B = D of a spherical subregion in the boundary CFT, whose

dual bulk subregion b is the entanglement wedge anchored to the boundary of the sphere.

In the vacuum state, b is equivalent to the causal completion of the causal wedge formed by

sending null rays into the bulk from the boundary domain of dependence B. While the size of

the bulk wedge will of course depend on the size of the boundary interval, any causal wedge is

related to an AdS-Rindler wedge by the isometries of AdS. Hence, without loss of generality,

30When the causal and entanglement wedges differ, the causal surface is not extremal. It would be interesting

to understand the implications of this from the algebraic perspective; e.g., what is the bulk subregion obtainable

from acting with the entanglement wedge modular flow on only the causal wedge, and how does it compare to

the causal completion of the latter?

– 19 –



we may consider the spacelike extent of B to be exactly half the boundary, so that b is half

the AdS-Rindler spacetime; see for example [76, 77]. The metric for the latter may be written

[78]

ds2 = −(ρ2 − 1)dτ2 +
dρ2

ρ2 − 1
+ ρ2dH2

d−2 , (4.1)

where ρ > 1, τ ∈ R, and dH2
d−2 is the metric on the hyperbolic ball. The conformal transfor-

mations on the boundary region are in one-to-one correspondence with isometries of AdS, and

the associated conserved charges may be expressed in terms of an integral over the boundary

stress tensor as [27, 79]

H =

∫
Tµνχ

µdV ν , (4.2)

where χµ is the boundary conformal Killing vector, and dV ν is an infinitesimal volume element

of the boundary CFT. While we have written this in terms of CFT quantities, it is also the

generator of the corresponding isometry in the bulk, which will be denoted h. We emphasize

however that as an expression for the modular Hamiltonian, (4.2) holds only for a single

connected region in vacuum, where the flow is geometric.31 As discussed above, for excited

states, or disjoint regions whose total area is more than half the boundary, the bulk modular

Hamiltonian cannot be written as a simple AdS-Rindler boost, since this generates flows in

the causal rather than entanglement wedge. In this subsection however, the two coincide, so

H takes the form of (4.2).

Formally, one would like to decompose (4.2) over the region B (b) and its complement

B′ (b′) as

H = HB −HB′ , (4.3)

cf. (3.7) and (3.19). However, in the present case of a large-N gauge theory, the one-sided

charges HB and HB′ are not necessarily well-defined. This was recently explained in [27]

in the context of the TFD (see also [31]), in which we have two copies of the CFT denoted

right (R) and left (L). As reviewed in sec. 2, in that case B=R and B′ =L, and H is the

generator of time translation on both sides. Since H annihilates the vacuum state, it does

not belong to either AR or AL, but generates an outer automorphism of both algebras. Above

the Hawking-Page transition however, the one-sided charges HR and HL are not well-defined

because they exhibit fluctuations that scale like N2,

⟨H2
B⟩c = ⟨H2

B⟩ − ⟨HB⟩2 ∼ N2 , (4.4)

where ⟨. . .⟩c denotes the connected correlator; similarly for B′. This problematic scaling is

connected with the type III algebra of the boundary CFT that emerges at the Hawking-Page

transition, when the type I theory at lower temperatures undergoes a deconfining phase tran-

sition [22, 29]. The bulk reflection of this fact is that the TFD is dual to the eternal AdS black

31In the absence of gravitational dressing, this was proven in [80]. Since dressing ensures diffeomorphism

invariance in the bulk, the algebraic argument for the entanglement wedge above still applies perturbatively

in 1/N ; see below. The Killing field generating the geometric flow in the bulk reduces to χµ on the boundary,

hence the formal equivalence of H and h.
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hole, which does not factorize into a right and left copy due to the infinite entanglement across

the horizon, and consequently the corresponding bulk charges hR, hL are not well-defined as

operators. Said differently, evolving with these Hamiltonians would generate singular states

at the bifurcation surface.

In the present work, we take B to be a subregion of the boundary CFT. Conceptually,

since local subalgebras in quantum field theory are always of type III1, our analysis applies

regardless of whether this CFT is a factor of the TFD32 or vacuum CFT dual to empty AdS.

Concretely however, we will work in vacuum where the AdS-Rindler decomposition above

may be simply written down. The modular Hamiltonian H, which acts on both the algebra

AB and its commutant AB′ , is well-defined since it annihilates the vacuum state. At large-N

however, the one-sided charges appearing on the right-hand side of (4.3) will again exhibit

fluctuations that scale like N2, and hence are not well-defined. Note that the fluctuations

at large-N are distinct from the fluctuations in the canonical ensemble responsible for the

universal logarithmic term discussed above. The latter may be understood from the fact that

the local charges HB, HB′ do not annihilate the local vacuum state within their respective

regions, and hence may exhibit fluctuations corresponding to fluctuations of the location of

the horizon, and hence of the area thereof; see [79] for a recent analysis. In contrast, the

fluctuations (4.4) are analogous to the fact that in quantum statistical mechanics at finite

temperature, thermal fluctuations diverge as the volume of the region goes to infinity. Since

the volume of the entanglement wedge for any subregion in AdS is still infinite, the local

charge HB therein will exhibit these pathological fluctuations even for CFTs in the vacuum

state.

Note that this was not an issue in sec. 3, since we were ultimately considering subregions

in the Minkowski vacuum at zero temperature, and our CFT was not taken to be a large-

N gauge theory. While the Rindler decomposition is superficially similar to the TFD, the

temperature is proportional to the acceleration of a Rindler observer and vanishes at spatial

infinity. Therefore, there are no thermal fluctuations at infinity, so the only variance is due to

fluctuations in the location of the horizon, which are captured by the subleading logarithmic

term discussed above.

The most obvious solution to this problem was discussed in [27], which is to normalize

the charge relative to its average by N ,

U
?
:=

1

N
(HB − ⟨HB⟩) . (4.5)

This cancels the explicit N -dependence, so that U has a well-defined large-N limit. However,

as in the case of asymptotically flat space considered in the previous section, this subtraction

renormalization scheme again suffers from the issue that it removes the area contribution of

interest, cf. the discussion below (3.8). Unlike the previous case however, the main issue is

32Technically, this will only be true if the region in question is sufficiently small so that the bulk wedge is

not deformed by the black hole. Vacuum is then understood to mean that there are no excitations in the TFD

state.
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the large-N limit, not the UV divergence per se. That is, recall from the general prescription

in sec. 2 that we require an operator X ∈ A′
B. In [27], X was taken to be (4.5) with B → B′,

which is well-defined as N → ∞. Also recall however that there is an inherent ambiguity

X + c in the crossed product construction, manifesting in an additive constant c in the final

expression for the generalized entropy. In analogy with our flat space renormalization above,

we may therefore absorb ⟨HB⟩/N into c, and work with

U :=
HB

N
. (4.6)

We note that this may be a very unwise choice of normalization if one wishes to do anything

so practical as compute scattering amplitudes in the large-N gauge theory, since ⟨U⟩ ∼ N .

However, as explained above, it is important that we retain the vacuum expectation value

of the modular charge for the region, so we must in any case use some renormalization

scheme other than (4.5). The choice (4.6) simply shifts the entropy by the total energy,

which scales like N .33 In other words, one may choose whether to absorb this factor into

the renormalization of U , or into the result for the entropy; but the former removes the area

contribution of interest, so we choose the latter.

In the strict large-N limit, U is central, since it commutes with any element of the region

B. That is, for any A ∈ AB,

[U,A] =
1

N
[HB, A] = − i

N
∂tA , (4.7)

which vanishes at N → ∞. Consequently, U commutes with AB, and the dynamics are trivial,

so if we adjoin U to the type III algebra AB, we obtain a simple tensor product

ÃB := AB ⊗ AU , (4.8)

where AU is the abelian algebra of bounded functions of U . Incidentally, the reason we have

not used a subscript B on the operator U is that the same operator may be adjoined to the

commutant via

ÃB′ := AB′ ⊗ AU , (4.9)

so that ÃB and ÃB′ share the central generator U .34 In this case however, the algebras are

still type III, and the entropy remains ill-defined.

As shown in [27] for the TFD, the nature of these algebras radically changes if one works

perturbatively in N , since the generator U is no longer central as one backs away from the

large-N limit. The same is true for the subregions considered here. Recalling the general

prescription in sec. 2, we wish to adjoin HB/N to the algebra of the region B. At finite

N , this is a non-central element of AB, and therefore generates an inner rather than outer

33We note that the constant c also diverges as G → 0 in [34]. In this case, we may give this divergence a

natural interpretation as the total energy associated with N → ∞ degrees of freedom.
34That U is the same in both algebras follows from the fact that for any U ′ := HB′/N , the difference

U ′ − U = H/N → 0 as N → ∞. See [27] for more detailed discussion.
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automorphism of the algebra. Therefore, we instead take T = H/N (which does generate an

outer automorphism), and X = HB′/N (which belongs to the commutant, since H/N ̸= 0 at

finite N). We may then adjoin T +X to AB to obtain the crossed product algebra35

ÂB = AB ⋊ AT+X , (4.10)

which is type II∞. Note that this effectively adjoins U , so that ÂB is the algebra of the

region B together with its associated modular flow. As in [27] however, this description is

only perturbative in 1/N ; in particular, it reduces to a type I algebra for integer N .

While we have discussed this procedure for the boundary subregionB, subregion-subregion

duality implies that the bulk dual of ÂB is the type II crossed product algebra Âb, constructed

precisely as above by adjoining the bulk modular Hamiltonian h/N to the initially type III

algebra Ab of the entanglement wedge b. In the case of vacuum, the entanglement wedge is

isometric to AdS-Rindler, with the generator of the flow given by (4.2).

This implies that at least for the class of separable states discussed in sec. 2, one may

define density matrices ρ̂b for this new type II algebra of the entanglement wedge, whose

entropy is

S(ρ̂b) = ⟨Ψ̂|hb|Ψ̂⟩ − ⟨Ψ̂| ln g(hb)|Ψ̂⟩

=
A(Σ)

4G
− ⟨Ψ̂| ln g(hb)|Ψ̂⟩ ,

(4.11)

where A(Σ) is the area of the entangling surface, in this case the AdS-Rindler horizon. See

[79] for a recent discussion of the relation ⟨hb⟩ = A(Σ)/4G for AdS-Rindler. Of course, as

mentioned in the previous section, the area of the entangling surface is infinite due to the

infinite distance to the horizon. However, this divergence is reasonably well-understood, and

can be regulated with an IR cutoff, which is dual to the UV cutoff on the boundary. Indeed,

this is analogous to the exchange of IR/UV cutoffs in the mapping from the Rindler wedge

to the ball-shaped region in the CFT discussed in subsec. A; see for example [55, 81]. Thus,

while these familiar divergences still remain, the crossed product construction allows one to

define density matrices and traces for a large class of operators which would not be possible

in the original type III1 algebra of the subregion. It would be interesting to have a description

of theories that is free of divergences completely, which presumably would connect with the

type I algebras appearing for certain black holes in string theory. In those cases, the entropy

can be tied to an explicit counting of the quantum gravitational microstates making up the

black hole, while in the present case it is a measure of ignorance of what lies beyond the

entangling surface.

We note that the algebra of operators in AdS-Rindler in the large-N limit has been dis-

cussed very recently in this context in [82]. The main conceptual distinction is our emphasis

that this construction relies on adjoining the modular Hamiltonian to the algebra of the en-

tanglement wedge, and hence in principle applies in complete generality, though as mentioned

35Note that the component AT+X was simply denoted AR in sections 2 and 3, but we have explicitly indicated

that this consists of bounded functions of T +X here to avoid confusion with the commutant below.
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above the expression (4.2) only holds for the simple case when the entanglement and causal

wedges coincide. At a technical level, [82] is primarily concerned with the properties of the

type III algebra Ab, and also discusses the regulation of the infinite area surface in AdS men-

tioned in the previous paragraph, while we are primarily interested in the construction of the

type II crossed product algebra and the associated generalized entropy.

In summary, adjoining the (suitably normalized) modular Hamiltonian to the subalgebra

of observables in the entanglement wedge reduces the algebra to type II perturbatively in

1/N , and similarly for the corresponding boundary subalgebra in the large-N gauge theory.

In the vacuum state, where the flow is geometric, the modular Hamiltonian admits a local

expression in terms of the AdS-Rindler boost generator (4.2). However, the basic construction

still holds away from vacuum, when the entanglement and causal wedges no longer coincide.

In the next two subsections, we comment on the cases in which this occurs, namely excited

states and disjoint regions on the boundary.

4.2 Excited states

In the previous subsection, we considered the crossed product algebra for an arbitrary en-

tanglement wedge in the vacuum state, which is isometric to the AdS-Rindler wedge. Away

from vacuum however, the causal and entanglement wedges will differ, since the presence of

matter shifts the extremal surface further into the bulk. In the boundary, the lack of gravity

means that the causal diamond D will remain geometrically unchanged, but the form of the

modular Hamiltonian will reflect the excited state in the CFT. The latter scenario has been

considered by [83] (see also [84]), for states in AB of the form

ρB = ρB,0 + δρ , (4.12)

where ρB,0 is the density matrix for the region B in the vacuum state, and δρ is a perturbation

representing the excitation due to the action of some primary operators. Of course, for the

type III algebra B, none of these objects exist, so this expansion must be considered purely

formal. However, we could consider states in ÂB of the form

ρ̂B = ρ̂B,0 + δρ̂ , (4.13)

where ρ̂B,0 is the vacuum state of the type II algebra constructed in the previous subsection,

and δρ̂ is a perturbation caused by the action of a primary operator on AB (which acts trivially

on L2(R)).36 Formally, we would then expect the analysis of [83] to go through unchanged.

In particular, their central result is that the generator of the modular flow for the excited

state of B is given by

KB = KB,0 +
∞∑
n=1

(−1)nδKn , (4.14)

36Note that what we are calling ρ̂B,0 here was called ρ̂B in the previous subsection, but we have again

overloaded the notation to avoid cluttering the manuscript with excessive subscripts.
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whereKB,0 is the one-sided charge for vacuum state reduced to the region, and the corrections

δKn are given explicitly in [83]. This expression is again purely formal, since the modular

Hamiltonian has support on both the region and the complement,

K = KB −KB′ , (4.15)

where we again assume Haag duality. Note that this is not equal to (4.2), and that the

causal (i.e., AdS-Rindler) wedge is not preserved under the modular flow generated by K.

Additionally, if the CFT is a large-N gauge theory, then additional care is needed to ensure a

well-defined limit as N → ∞. Conceptually however, the analysis in the previous subsection

still applies. If the perturbative analysis above holds, it would enable one to express the

entropy of the region as in (4.11), with additional subleading corrections from the sum over

δKn.

However, we emphasize that in any case, the area term A(Σ) in (4.11) is the area of the

entangling surface that defines the region. By the quantum extremal surface prescription [24],

or by the more abstract algebraic arguments given above, this is determined self-consistently

for a given background state, including all matter contributions which backreact on the ge-

ometry and hence change the location of the surface. Thus, if one considers an entanglement

wedge in the global AdS vacuum, A(Σ) will be the area of the surface in vacuum; if one con-

siders an entanglement wedge in some highly excited state, then A(Σ) will be the (generically

different) area of the deformed entangling surface in that state; see fig. 2.37 The existence of

an expression like (4.14) would merely allow one to write the latter in terms of a perturbation

about the former. This is the reason we put “excited state” in quotes below (3.8), since the

state in which the modular charge is defined is by construction the cyclic and separating state

(i.e., the “vacuum”) for the algebra Ab. We illustrate this in fig. 2

From this perspective, the fact that the generalized entropy of excited states was the

primary object of consideration in previous works is slightly strange, since the area is fixed

by the subregion, i.e., by the cyclic and separating (vacuum) state for the subalgebra. This

is perhaps an artefact of the use of the subtraction scheme to normalize the modular charge,

which removes the vacuum contribution, leading to the argument from relative entropy men-

tioned above. One could of course consider trivial excitations around the vacuum state, i.e.,

those that have no impact on the location or shape of the entangling surface, but any sig-

nificant excitation must necessarily correspond to a different subregion and hence a different

subalgebra.38 Nonetheless, suppose one wishes to consider the entropy of such an insertion,

such that the area A(Σ) is unchanged. Then this will introduce a difference in type III von

Neumann entropies between the two states in the expression for the generalized entropy, and

this difference is well-defined.
37The reader may wonder how the duality between bulk and boundary algebras is maintained for the case

when bulk region is enlarged. The answer is that when we speak of the algebra of observables here, we have

in mind the GNS representation of the abstract algebra in a particular state (as a linear functional in the

abstract algebra, as opposed to a vector in a particular Hilbert space). The abstract algebra does not change

when moving to an excited state, but the Hilbert-space representations Ψ and Φ may differ.
38Generically, one will simply be an inclusion of the other.
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Figure 2. Restricting to a subregion B on the boundary, the algebras of observables in the bulk

are illustrated relative to a particular state in the Hilbert space. Here Ψ represents the global AdS

vacuum, and Φ some non-trivial excited state (e.g., a black hole deep in the bulk, or some collection

of matter fields). The backreaction due to the excited state deforms the entangling surface deeper

into the bulk, so that the algebra AΦ is an inclusion of AΨ. Thus, considering the entropy of an

excited state in the crossed product construction is formally identical to considering the entropy of

the vacuum state, since in either case the expectation value of the modular charge returns the correct

area contribution. Only in the case of trivial excitations, e.g., very light insertions of operators in AΨ

or AΦ which do not alter the location of the corresponding entangling surfaces, does it make sense

to consider “excited states” via the relative entropy, in which case we show that this simply gives an

additional contribution from the difference in type III entropies.

To see this, let us recall part of the argument from Wall [51], namely the relationship

between the relative entropy and von Neumann entropy. This was not proven, insofar as it

assumes a suitable renormalization scheme for the modular Hamiltonian and von Neumann

entropy in the type III algebra. However, it can be applied more rigorously to the type II

system, in which these objects are well-defined. Accordingly, let Φ̂ denote a trivially excited

state relative to the type II vacuum Ψ̂. Again, by trivially excited, we mean that it does not

change the area of the extremal surface used in defining the region, and by extension the local

vacuum state. (Note that the state denoted Φ in fig. 2 is not a trivial excitation, and is not

the state Φ discussed here.) Then the relative entropy may be written

S(Φ̂||Ψ̂) = −S(Φ̂)− tr(ρ
Φ̂
ln ρ

Ψ̂
)

= −S(Φ̂)− ⟨Φ̂| ln ρ
Ψ̂
|Φ̂⟩

= −S(Φ̂) + ⟨Φ̂|βK|Φ̂⟩ − ⟨Φ̂| ln g(K)|Φ̂⟩ ,

(4.16)

and therefore,

S(Φ̂) = β⟨K⟩
Φ̂
− S(Φ̂||Ψ̂)− ⟨ln g(K)⟩

Φ̂
, (4.17)
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where K is the modular charge for the state Ψ̂, i.e.,

ρ
Ψ̂
= e−βKg(K) . (4.18)

Note that since these are type II expressions, each individual term is well-defined. Since the

ln g term is the universal contribution discussed above, we suppress it henceforth.

Suppose now we take the expression from eqn. (42) in [51] for the relative entropy of

states in the type III theory as a difference in free energies,

S(Φ||Ψ) = β⟨K⟩Φ − SΦ − β⟨K⟩Ψ + SΨ . (4.19)

Näıvely, this expression is purely formal, since the von Neumann entropies on the right-hand

side are not defined. However, the particular difference that appears here is in fact UV

finite. One way to see this is to realize that relative entropy is well-defined even in type III

theories, and is in fact equal to the relative entropy of the corresponding type II states, i.e.,

S(Φ||Ψ) = S(Φ̂||Ψ̂). Hence, substituting (4.19) into (4.17), we obtain

S(Φ̂) = β⟨K⟩Ψ + SΦ − SΨ − ⟨ln g(K)⟩
Φ̂
, (4.20)

where we used the fact that the expectation value of the modular charge agrees for both type

III and type II states, i.e.,

⟨Ψ̂|K|Ψ̂⟩ =
∫ ∞

−∞
dK ′ g(K ′)⟨Ψ|K|Ψ⟩ = ⟨Ψ|K|Ψ⟩ , (4.21)

where we used the fact that g1/2 ∈ L2(R), cf. (3.11). Of course, the derivation above is

more convoluted than necessary for the sake of connecting with familiar expressions in the

literature: since Φ here is a trivial excitation in the algebra AΨ, ⟨K⟩Φ = ⟨K⟩Ψ. One can thus

consider the right-hand side of (4.19) to be simply the difference in entropies, and the first

terms on the right-hand sides of (4.17) and (4.20) are identical.

Thus we see that for small excitations in our subalgebra, the generalized entropy picks

up a bulk contribution given by the difference in von Neumann entropies of the excited and

vacuum states. Additionally, since the left-hand side and the first term of the right-hand

side of (4.20) are well-defined, the combination of type III quantities S(Φ) − S(Ψ) must be

well-defined as well. We emphasize again however that the excitation does not give a separate

area term, since this is derived from the state of the algebra localized to the subregion.

4.3 Disjoint boundary subregions

The other case in which the casual and entanglement wedges are distinct, even in the vacuum

state, is if the boundary region B consists of disjoint regions Bi,

B =

n⊔
i=1

Bi , (4.22)
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such that the spatial extent of all Bi collectively exceeds half the boundary. As discussed

above, the reason for this is that the entanglement wedge exhibits the switchover effect, but

the causal wedge does not; see fig. 1.

For concreteness, consider the case n=2. Formally, one may write the generator for the

modular flow of B = B1
⊔
B2 as [85]

K = K1 +K2 −K12 , (4.23)

where Ki is the generator for Bi, and K12 is a non-local contribution related to the mutual

information39

I(B1, B2) ≥
(⟨O1O2⟩ − ⟨O1⟩⟨O2⟩)2

2||O1||2||O2||2
, (4.24)

where Oi is a bounded operator with support in Bi, and || · || is the operator norm. In this

expression, the expectation value is computed in the state ρB (or rather, ρ̂B). Näıvely, we

would expect that for disjoint regions, we could formally decompose the state as

ρB = ρ1 ⊗ 12 + 11 ⊗ ρ2 , (4.25)

in which case

⟨O1O2⟩ = ⟨O1⟩1⟨O2⟩2 , (4.26)

and hence the mutual information vanishes. This suggests that, below the switchover point

K = K1 +K2 , (4.27)

which reflects the fact that, in the bulk, the two entanglement wedges are spacelike separated,

so the respective modular flows should be given by the independent vacuum or excited state

expressions above; this is illustrated in the left panel of fig. 1.

Above the switchover point however, the bulk entanglement wedges merge into the single

connected region shown in the right panel of fig. 1. In this case, the mixing of bulk operators

implies that the boundary factorization implicit in (4.26) cannot hold without breaking the

duality between the bulk and boundary subalgebras. We are thus lead to the conjecture that

the CFT dual of the switchover in the bulk is the non-vanishing of the mutual information40

between the disjoint boundary subregions. In this case, K12 will take a finite value, thereby

lowering the area contribution A(Σ)/4 to the entropy from K, as must happen from the bulk

perspective, since the maximum entropy occurs when B1
⊔

B2 encompasses exactly half the

boundary (in the vacuum state).

The above picture is a slight oversimplification, because the algebra may contain bilocal

operators with support in both subregions. However, we would still expect that below the

39This expression for the mutual information follows from Pinkser’s inequality and the definition

I(A,B) := S(ρAB |ρA ⊗ ρB).
40The mutual information is upper bounded by the entanglement of purification. The latter is conjectured

to be dual to the entanglement wedge cross-section, which exhibits similar behavior to the mutual information

in the context of the entanglement wedge phase transition [86].

– 28 –



switchover point, the modular flow of such operators does not mix between B1 and B2. Indeed,

a more operational diagnostic of this switchover in the boundary are based on the intuition

that after the switchover, the boundary modular flows should mix operators between the two

disjoint subregions. For example, take two operators O1 localized to the entanglement wedge

dual to the boundary subregion B1, and O2 localized to the entanglement wedge dual to B2.

Below the switchover point,

[O1,O2] = 0 . (4.28)

Now act on both operators with the modular Hamiltonian for AB, and let s parametrize the

resulting modular flow. Then there should exist a critical value of s0 at which41

[O1(s0),O2(s0)] ̸= 0 , (4.29)

indicating that the modular flow has transported the support of the operator O2 into the

interior region covered after the switchover, cf. fig. 1. Again however, this will not necessarily

be true for all operators, and hence it is an interesting open question to find appropriate

operators in the CFT that are sensitive to the breakdown of geometricity of the flow in the

bulk. It is interesting to speculate that there may be a connection between the sensitivity

to non-geometricity of the modular flow and exponential complexity of boundary operators,

since in some sense the newly accessible region in the entanglement wedge after the switchover

resembles the black hole interior from the perspective of the causal wedge.

5 Discussion

In this work, we have shown that the crossed product construction introduced for the TFD

in [27], and shortly thereafter applied at the level of the global type III algebra of particular

theories in [34–36], can be applied to in principle arbitrary subregions of quantum field theories

by adjoining the appropriate modular Hamiltonian. This allows one to associate a type II

algebra of observables to local spacetime regions (which are otherwise of type III), admitting a

trace and therefore a well-defined notion of entropy. In this sense, the construction provides a

refinement of the association of observable algebras to spacetime regions that forms the basis

of the Haag-Kaster axioms, in the sense that it considers the type III algebra together with

its modular automorphism group. The von Neumann entropy of the crossed product algebra

is naturally associated to the generalized entropy of the subregion in which it localizes.

The simplest example is that of Rindler space, where the modular Hamiltonian is the

Lorentz boost generator for both the left and right wedges. Adjoining the modular Hamilto-

nian to the algebra in this case strengthens the connection between modular time and horizon

entropy encoded in the KMS condition. If the QFT in question is a CFT, then the Rindler

wedge may be conformally mapped to an open ball in asymptotically flat space, which allows

41This is superficially similar to the critical value identified in [29] indicating the existence of the horizon

in the TFD. However, the modular Hamiltonian does not evolve operators beyond the horizon, so this cannot

actually be seen with a consistent choice of sign for the modular inclusions of the exterior algebras [28, 87].
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us to immediately repeat the analysis in the latter case. This lays the groundwork for the

application to holography, since the causal diamond of an open ball in the boundary CFT is

dual to the entanglement wedge in bulk AdS space. In all cases, one obtains a well-defined

formula for the von Neumann entropy of the subsystem, which reproduces the leading area

term due to entanglement across the horizon or extremal surface, as well as the subleading

logarithmic term due to thermal fluctuations.

Additionally, we have provided a simple but novel argument for the fact that the en-

tanglement wedge is the appropriate bulk dual of a boundary subregion.42 This relies on

the duality between the bulk and boundary von Neumann algebras associated to the region,

initially employed in the holographic context in [28] (inspired in large part by earlier work by

Papadodimas and Raju, Jafferis, and others [64, 65, 90]) and recently popularized in [63] (see

also [80]). In particular, modular theory provides a natural isomorphism between the algebra

of a subregion A and its commutant A′, which provides a foundational explanation for the

switchover effect that characterizes bulk extremal surfaces. In the presence of gravitational

degrees of freedom, not all subregions are viable for the definition of gauge-invariant algebras

of observables, but subregions bounded by extremal surfaces are. While it seems obvious that

the minimality requirement imposed on the selection of the entangling surface in the litera-

ture follows automatically, we are not aware of an argument that would prevent a scenario

in which the minimal surface is in fact not consistent with the algebraic isomorphism, which

would therefore select a different, non-minimal surface as the appropriate demarcation of the

bulk region. It would be very interesting to explore the role of the isomorphism constraint

in more detail, as well as the connections with mutual information discussed in the previous

section.

The algebraic approach also provides a basis for a more thorough treatment of the gen-

eralized second law of thermodynamics. As remarked previously, the natural entropy on the

crossed product algebras coincides with the generalized entropy of the underlying subregion.

Given an inclusion of such algebras arising from a subregion inclusion, the generalized sec-

ond law follows from the simple fact that the entropy cannot decrease under restriction to

a subalgebra as remarked speculatively in [35] and proven for the type III case under the

assumption of some suitable renormalization scheme in [51]. Our extension of this formalism

to arbitrary subregions is also exciting in the context of modular inclusions in holography.

These were originally introduced by Wiesbrock [91] as a means towards understanding the

physical interpretation of the modular operator and modular conjugation in Tomita-Takesaki

theory, and were first applied to AdS/CFT in the particular case of a double-trace deforma-

tion of the TFD in [28], where it was proposed that modular inclusions may provide a useful

means of probing the black hole interior. Several years later, this idea was developed in detail

in [63], which also highlighted the emergent type III1 factor in the boundary CFT above the

Hawking-Page transition.43 We hope to revisit this topic in the context of the type II crossed

42For related discussions of von Neumann algebras associated to holographic subregions, see [88, 89].
43The type III nature of these algebras was assumed in [28] based on the idea of subregion-subregion duality

discussed here, but no argument was given for the specific case when the subregion consists of the entire
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product algebras in future work.

While the notion of modular flow has appeared in the AdS/CFT literature before (see

for example [64, 65, 92]), most works have used the term “modular Hamiltonian” to mean

K = − ln ρ for an arbitrary reduced density matrix ρ. As we have emphasized, this is

not technically correct, as the modular Hamiltonian has support on both the region and its

commutant, and furthermore cannot be factorized for the type III theories of greatest interest.

Nonetheless, these and other works provided important advancements in understanding the

relation between entropy and area in holography. In particular, a diverse body of work (for

a criminally short sample, see [74, 93, 94]) seems to suggest that the bulk spacetime emerges

from entanglement in the boundary theory, encapsulated in the phrase “it from qubit”.44

Attempting to understand this however will require going beyond the current approach, which

is based on the application of type I reasoning to type III systems, in particular assuming

the existence of a density matrix and a trace. As some authors have pointed out [17, 26, 28],

this is problematic for a variety of reasons, and many of the most vexing puzzles in quantum

gravity – such as the emergence of spacetime or the black hole information paradox – will

almost certainly require a more fundamental treatment of these issues. The recent interest

in the application of ideas from operator algebras and in particular the crossed product

construction represents an extremely exciting development towards a deeper understanding

of entanglement in quantum field theories and holography in particular, and we look forward

to future work in this direction.
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A Mapping the Rindler wedge to an open ball

The map from the right Rindler wedge to an open ball in a CFT (3.16) was used by [55]

to determine the modular Hamiltonian (3.19) for the domain of dependence D of the latter.

Since this map is fundamental to our results, and is used in the main text to also map the

left Rindler wedge to D′, we review it here, and elaborate on some aspects left implicit in the

original paper. We also note that the exposition in (version 2 of) [55] contains a sign error:

the shift vector Cµ, defined below their (2.11), should instead read

Cµ = (0, − 1

2R
, 0, . . . , 0) . (A.1)

boundary. See however [32].
44This is a modern version of the phrase “it from bit” coined by Wheeler in [95].
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Figure 3. Plot of the µ=1 component of the SCT (3.16) with C1 = − 1
2R . We have set R = 1 for

visualization purposes. The horizontal axis is the original Rindler coordinate X1, and the vertical axis

is the transformed coordinate x1. Note that the entire right Rindler wedge, represented by the region

X1 > 0, is mapped to the interval −R < x1 < R (indicated by the gray horizonal lines), while the

discontinuity at X1 = −2R splits the left Rindler wedge over the complement.

A simple way to see this is as follows: a special conformal transformation (SCT) maps

Minkowski coordinates Xµ to [96]

xµ =
Xµ − CµX2

1− 2C ·X + C2X2
, (A.2)

and can be equivalently expressed as an inversion, then a translation by −Cµ, followed by

another inversion:
xµ

x2
=

Xµ

X2
− Cµ . (A.3)

Now, specifying to 1+1 dimensions for illustrative purposes, consider the point Xµ = (0, 2R).

Had we chosen Cµ = (0, 1
2R) as in [55], then under the SCT above, the spatial component X1

would be inverted to 1
2R , then shifted to 0, and finally inverted to ∞. This is unavoidable:

there will always be a singluarity at 1
C1 . However, this implies that the transformation (2.20)

in [55] cannot possibly map the right Rindler wedge to the ball with radius R. The solution

is of course to shift the singularity into the left Rindler wedge, which is accomplished by

choosing C1 = − 1
2R . In this case, the point X1 = ∞ is inverted to 0, shifted to 1

2R , and then

inverted to 2R. The final shift by 2R2Cµ in (3.16) then reduces this to R, ensuring that the

entire right wedge is mapped to the ball. See fig. 3 for an illustration in 1 + 1 dimensions.

This sign error propagates though some of the subsequent expressions of [55]; in partic-

ular, the corrected version of their (2.13) reads

x±(s) = R
(x± ±R) + e2πs(x± ∓R)

(R± x±) + e2πs(R∓ x±)
. (A.4)
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and the infinitesimal shift of the temporal x0 and transverse r coordinates in their (2.18)

becomes

δx0 = 2π
r2 −R2

2R
δs , δr = 0 . (A.5)

However, their final result for the modular operator in (2.20) is nonetheless correct. To verify

this, let us review the core argument in [55]. Denoting the unitary operator that generates

the modular flow in the diamond region by UD(s) = eisHD , the action on spinless primary

fields in the CFT is given by

UD(s)ϕ(x[s0])UD(−s) = Ω(x[s0])
∆Ω(x[s0 + s])−∆ϕ(x[s0 + s]) , (A.6)

cf. (2.17) in [55], where x[s0] indicates that the position is considered a function of the flow

parameter s, starting at s0. We then consider the action of an infinitesimal flow on the surface

x0 = 0. As argued in [55], the shift in the conformal prefactor Ω vanishes to linear order in

δs. Therefore, the transformed modular flow induces the following infinitesimal change in the

fields:

ϕ(x[s0 + s]) ≈ ϕ(x[s0] + s∂sx[s0]) ≈ ϕ(x[s0]) + s∂sx[s0]∂xϕ(x[s0])) . (A.7)

Since, by (A.5) the linear variation in the transverse directions vanishes, we need only consider

the variation in the temporal direction x0. From the definition of UD(s) above, HD is the

generator of this transformation, which acts by conjugation on the fields:

U(s)ϕ(x)U(−s) = eisHDϕ(x)e−isHD = ϕ(x) + is[HD, ϕ(x)] +O(s2) . (A.8)

Comparing the linear order terms in (A.7) and (A.8), we thus identify

[HD, ϕ(x)] = −i∂sx
0 ∂0ϕ(x) = 2πi

R2 − r2

2R
∂0ϕ(x) , (A.9)

where in the second step we have used (A.5), and we have suppressed the dependence of xµ

on s0 for compactness. Let us now take the form of the modular operator given by [55] as an

ansatz,45

HD = 2π

∫
V
ddx

R2 − r2

2R
T 00(x) + c , (A.10)

where c is some constant to fix the normalization of the trace,46 and V denotes the interior

45Note that we use the modern convention in which the spacetime dimension is D = d+1, while in [55] the

spacetime dimension is denoted d.
46Since the trace in the type II theories of interest are only defined up to a constant rescaling, we simply

drop the constant. It is relevant however in comparing different derivations of this expression. In particular,

[55] work with the traceless stress tensor for a massless scalar field, which is

Tµν = ∂µϕ∂νϕ− 1

2
gµν(∂ϕ)

2 +
D − 2

4(D − 1)
(gµν□ϕ2 − ∂µ∂νϕ

2) . (A.11)

One can verify that T µ
µ = 0 on-shell. In contrast, [57] instead use the usual stress tensor which includes only

the first two terms. Consequently the result of the latter for the generator of the modular flow contains an

extra term relative to the expression (A.10).
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of the ball. Substituting (A.10) into the commutator, we have

[HD, ϕ(x)] = 2π

∫
V
ddy

R2 − r2

2R
[T 00(y), ϕ(x)] . (A.12)

Now, recall that the stress tensor is the conserved current associated to translation symmetry;

by Noether’s theorem, we may write this as

Tµν =
δL

δ(∂µϕ)
∂νϕ− ηµνL , (A.13)

where the metric is ηµν = diag(−1, 1, . . . , 1). Thus,

[T 00(y), ϕ(x)] =

[
ϕ(x),

δL
δ(∂0ϕ)

∂0ϕ(y)− L
]
= iδ(x− y)∂0ϕ(x) , (A.14)

where we used the canonical commutation relation[
ϕ(x),

δL
δ(∂0ϕ)

]
= iδ(x− y) . (A.15)

Substituting (A.14) into (A.12) then yields

[HD, ϕ(x)] = 2πi
R2 − r2

2R
∂0ϕ(x) , (A.16)

which is (A.9), as desired.
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