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Multipole symmetries are of interest in multiple contexts, from the study of fracton phases, to nonergodic
quantum dynamics, to the exploration of new hydrodynamic universality classes. However, prior explorations
have focused on continuum systems or hypercubic lattices. In this work, we systematically explore multipole
symmetries on arbitrary crystal lattices. We explain how, given a crystal structure (specified by a space group and
the occupied Wyckoft positions), one may systematically construct all consistent multipole groups. We focus on
two-dimensional crystal structures for simplicity, although our methods are general and extend straightforwardly
to three dimensions. We classify the possible multipole groups on all two-dimensional Bravais lattices, and on
the kagome and breathing kagome crystal structures to illustrate the procedure on general crystal lattices. Using

Wyckoft positions, we provide an in-principle classification of all possible multipole groups in any space group.

We explain how, given a valid multipole group, one may construct an effective Hamiltonian and a low-energy
field theory. We then explore the physical consequences, beginning by generalizing certain results originally
obtained on hypercubic lattices to arbitrary crystal structures. Next, we identify two seemingly novel phenomena,
including an emergent, robust subsystem symmetry on the triangular lattice, and an exact multipolar symmetry on
the breathing kagome lattice that does not include conservation of charge (monopole), but instead conserves a
vector charge. This makes clear that there is new physics to be found by exploring the consequences of multipolar
symmetries on arbitrary lattices, and this work provides the map for the exploration thereof, as well as guiding
the search for emergent multipolar symmetries and the attendant exotic phenomena in real materials based on
nonhypercubic lattices.
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exotic phenomenology of fractons (for reviews, see Refs. [2—4]).
Subsequently, new field theories with fractonic excitations and
general multipolar symmetry groups were written down and
systematized [5, 6]. The new thermodynamic phases enabled
by such symmetries and their spontaneous breaking remain
topics of active exploration [7—11]. In a parallel develop-
ment, it was realized in Ref. [12] that imposing multipole
symmetries on quantum dynamics could give rise to ergod-
icity breaking. This was later explained in terms of Hilbert
space shattering/fragmentation [13—15], a phenomenon that
has been observed experimentally [16, 17], which could be
harnessed for both quantum memories [13] and metrology [18],
and which has been undergoing intensive exploration [19-33].
In a third development, it was realized in Refs. [34, 35] that
fractonic symmetries could lead to new hydrodynamic univer-
sality classes. This has initiated yet another line of research
exploring novel hydrodynamics with multipolar symmetries
[20, 36—44]. Common to all these distinct research programs
is the central role of multipole symmetries.

Prior explorations of multipole symmetries have largely been
limited to either systems in the continuum or on hypercubic
lattices. It is worth noting that formulating the problem in the
continuum introduces certain pathologies — for instance, the
dipoles and multipoles are not quantized and there appear a
continuous infinity of particle types and superselection sectors.
How to properly define the problem in the continuum is a
program of ongoing research [45]. In practice, most works im-
plicitly assume an underlying lattice. When lattice symmetries
are treated seriously, the problem is almost always formulated
on a square or cubic lattice, with rare exceptions (e.g., [46]).
However, given the wide range of crystal structures, it is natural
to wonder what happens if we formulate the problem on an arbi-
trary crystal structure that is not a hypercubic lattice. Multipole
symmetries are not purely internal, and mix with spatial trans-
formations [6], so the extension to arbitrary lattices is decidedly
nontrivial. As a simple example to illustrate this nontriviality,
let us work in one dimension and imagine imposing dipole
conservation, but not monopole conservation. This automati-
cally implies that the theory must lack translation invariance
— the dipole moment is defined with respect to an origin, and
monopole charge may be freely added or removed at that origin
without changing the dipole moment. Conversely, if we wish to
retain translation symmetry, and conserve dipole moment, then
we must also conserve monopole moment (charge). What hap-
pens if we move up from one dimension to higher dimensional
lattices? How does the set of multipole symmetries that can
be consistently imposed depend on the choice of lattice? Are
there qualitatively new phenomena that arise once we move
away from continuum systems or hypercubic lattices? These
questions remain largely open, and could provide routes to the
design of new fracton phases on non-hypercubic lattices, to
the realization of new kinds of nonergodic dynamics, and to
the identification of new hydrodynamic universality classes.
They would also guide our search for such phenomena in real
materials — since while multipolar symmetries may emerge in
the low-energy description of a real material, which multipolar
symmetries emerge would depend on the crystal structure of
the material, which may not be hypercubic.

In this work, we undertake a systematic exploration of
multipole symmetries on arbitrary lattices. We explain how,
given a space group symmetry and a set of occupied Wyckoff
positions (which together determine the crystal structure), one
may systematically construct all possible consistent multipole
symmetry groups to any desired order. While we work in
two dimensions for simplicity, the methods we develop are
general and should extend to three (or higher) dimensions
mutatis mutandis. For all two-dimensional Bravais lattices, we
exhaustively classify all possible consistent multipole groups
at order n = 1 (dipole), n = 2 (quadrupole), n = 3 (octupole)
and n = 4. We explain how the classification may be extended
beyond Bravais lattices to deal with bases and nonsymmorphic
symmetries, thereby allowing us to access arbitrary wallpaper
groups. We also explain that the space group itself is not
sufficient to fully specify the problem — one needs the full
crystal structure, which also involves knowledge of the occupied
Wyckoff positions. We illustrate the general framework by an
explicit computation of the consistent multipole groups up
to order n = 2 on the kagome and breathing kagome crystal
structures. This gives an in-principle classification of all
possible multipole groups in any space group.

While the first part of this manuscript is essentially mathe-
matical in nature, classifying the possible consistent multipole
groups on various crystal structures, the second part of this
manuscript discusses the physical consequences. We begin
by discussing how knowledge of the multipole group may be
used to write down effective low-energy field theories, and how
these may be discretized to yield effective Hamiltonians on
the lattice in question. We then discuss how this framework
may be used to generalize certain results originally obtained on
hypercubic lattices. For instance, we present a general under-
standing of a minimal set of symmetries that must be imposed
to yield localization on arbitrary crystal lattices, generalizing
the results of Ref. [30, 31]. Then we discuss two seemingly
novel phenomena that arise when we move beyond hypercubic
lattices (a) an emergent robust subsystem symmetry arising on
the triangular lattice, and (b) an unusual situation arising on
breathing kagome, where one can obtain multipolar conserva-
tion laws without conservation of monopole charge, but while
retaining translation symmetry (and also an emergent vector
conserved charge). These two examples are not exhaustive,
but illustrate that new physics can arise when one generalizes
away from hypercubic lattices. The systematic exploration of
new physics arising from multipole symmetries on arbitrary
crystal structures therefore promises to be a fertile territory for
exploration, and this manuscript provides the map.

This manuscript is structured as follows. We start by in-
troducing the methodology for deriving multipole groups that
are compatible with the space group of the lattice in Sec. II.
For readers not interested in the technical details, we begin
this section by presenting an intuitive overview of the general
procedure. We then apply the formalism to the five Bravais
lattices in two dimensions in Sec. II B, and to generic wallpaper
groups in Sec. II C, where a number of additional complexities
arise. The second half of the manuscript is concerned with
exploring the consequences of the multipole groups found in
Sec. II. First, we describe how to construct local Hamiltonians



that are invariant under space group operations and conserve
multipole moments belonging to a particular multipole group
in Sec. III. Then, in Sec. IV, we extend some classic results
derived on hypercubic lattices to arbitrary crystal structures,
and also present two examples of interesting phenomena that
can arise when one goes beyond simple hypercubic lattices.
We close with a discussion of our results in Sec. V. Finally,
some clarification on notation. Throughout the manuscript,
we use the physics convention for the dihedral group: Dy, is
the group of symmetries of a regular M-gon. Similarly, our
notation for the irreducible representations (irreps) of Dy is
set out in Appendix A.

II. FORMALISM FOR DERIVING LATTICE MULTIPOLE
GROUPS

The goal of this section is to build a procedure that algorith-
mically determines the constraints that space group symmetries
place on lattice multipole groups. More precisely, suppose the
multipole group contains a particular polynomial shift symme-
try £. Then we wish to determine: what additional polynomial
shift symmetries must appear in the multipole group in order
to preserve the space group symmetry?

We will first describe the general procedure. Then, we will
implement it for all five Bravais lattices in 2D, explaining
several details and subtleties that arise in the different examples.
Finally, we will explain through examples several important
concepts that appear when classifying multipole groups on a
crystalline lattice with a basis. Using Wyckoff positions, we
will give an in-principle classification of all possible multipole
groups in any space group.

A. General procedure

The input to our procedure is a space group S, its action on
a given basis of the crystalline lattice £, and a nonnegative
integer n. The output is a list of all multipole groups M
compatible with the space group S (in the sense the quotient of
M by its subgroup of pure polynomial shift symmetries is S)
that contain polynomial shift symmetries of degree at most n.

We place a scalar field ¢;(r) at each basis location in the
crystalline lattice. Here i labels a basis element of £, and,
depending on the physics, r may either be the position of a
lattice site or a basis site; we will discuss the distinction in
Sec. IIC3. In what follows, we assume for simplicity that,
given an element s € S, the field transforms as

i (1) > oy (s(1)) (1)

where s(i) is some permutation of the lattice basis elements and
s(r) is some action on the spatial coordinates. More generally,
the field ¢ need not transform as a scalar under space group
operations. This more general case is easily incorporated into
the formalism; we give an example in which the field transforms
as vector and discuss some consequences in Appendix B. Under

an infinitesimal polynomial shift symmetry £, we have

$i(r) 5 41 () + Afi(r) . @)

where the f;(r) are a collection of polynomials that we assume
to have degree at most n, and A is the symmetry parameter. A
symmetry under such a polynomial shift implies conservation
of the corresponding multipole moment. We demand that the
set of polynomial shift symmetries be closed under the action
of the space group — a defining property of the multipole group
[6]. Commuting s through the polynomial shift symmetry, we
see that if £ is in M, then M must also contain

¢i(r) = ¢i(r) + A (fsi) (s(x)) = fi (1)) . 3

Given £, then, we must find its orbit under the space group.
While this problem is well-posed, the space group has infinite
order, although it is finitely generated (e.g., there are an infinite
number of symmetry translations, but they are all generated
by a finite set of basis vectors), and the classification problem
becomes awkward!. However, in general, space group elements
act on spatial coordinates as

s(r) = Myr + tg 4)

where My is a matrix acting on the components of r and tg
is some constant vector. Therefore, if we replace s(r) with a
modified transformation § that acts as

§(r) = Mr, )

that is, we completely drop the translation, then applying
this transformation to homogeneous polynomial of degree k
produces another homogeneous polynomial of degree k. We
can therefore sort the set of homogeneous polynomials f;(r)
into irreps of the finite group generated by the transformations

£ S £ G, ©6)

which is a straightforward task that can be done algorithmically.
There are several ways to accomplish this using standard group-
theoretic methods; see Appendix A for a numerical method
using character theory and an analytical method using Clebsch-
Gordon coefficients for discrete groups.

We call the group of modified transformations the “extended
point group”’; the reason for the terminology is that this group
evidently contains the point group but, for a non-symmorphic
symmetry group, is in general larger than the point group. The
extended point group is in fact isomorphic to the quotient S/T,
where T C S is the set of translations, but the extended point
group is implemented slightly differently because it discards

! The basic technical problem is the following. Consider the vector space
spanned by monomials, equipped with the natural inner product where dif-
ferent monomials are orthogonal. Then translations do not act as orthogonal
operators on that vector space. We would thus be forced to consider non-
orthogonal representations of the space group, which is a more challenging
problem than the representation theory considered in this paper.
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FIG. 1. Illustration of the five Bravais lattices in two spatial dimensions.
The lattice translation vectors a; and a; are denoted by black arrows,
which make an angle y with one another. (a) Monoclinic, with
point group Cy, (b), (c) orthorhombic, with point group D5 [in (c),
2|ay| cosyx = |aj[; alternatively, there exists rectangular unit cell that
is not primitive], (d) square, with point group D4, and (e) triangular
(y = /3), with point group Dg.

both integer and fractional translations.

This does not yet solve the problem, because under a true
space group operation (including translations), a representation
of degree k will generically produce terms of all lower degrees.
However, the terms of degree k will stay within the representa-
tion we found earlier because translations only produce terms of
degree less than k. Hence, under a true space group operation,
the representations of degree k “mix” with representations of
degree less than k, but do not mix with other representations of
degree k. In fact, we show in Appendix C that for each repre-
sentation of degree k, we may take an infinitesimal translation
by ts, which produces homogeneous polynomials of degree
k — 1 only. By iterating this procedure on all representations
of degree less than &, we find the full set of polynomials that
appear under these translation operations.

To summarize, we sort homogeneous polynomials into irreps
of the extended point group (6), and then see how they “mix”
under the translation piece of each space group element. Under
(true) space group transformations, an element £ of a fixed irrep
produces other elements of its irrep and linear combinations
of its “descendant” irreps. If £ € M, then the entire irrep to
which £ belongs, and all of the descendants of that irrep, must
appear in M as well.

This procedure can be generalized to the case where £ is an
arbitrary linear combination of elements from different irreps
of the extended point group. We will see in the context of
various examples that this generalization can be subtle.

Before proceeding to examples, we comment that, for con-
venience, we have assumed that the multipole group contains
polynomial shift symmetry for scalar fields, but the approach
would work equally well for, say, spins, e.g., rotating

S$(r) — €Sz G (p)i5:(0)F(r) 7

where f(r) is some polynomial. We will elaborate further on
this context in Sec. IIT A.
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FIG. 2. Mixing of monomials under lattice translations for the
monoclinic and orthorhombic Bravais lattice types. Every arrow
means that some (infinitesimal) translation acting on the monomial of
higher degree generates the monomial(s) of lower degree. That is, if a
particular monomial is included in the multipole group, compatibility
with space group operations requires the multipole group to contain
all lower-order monomials that can be reached by following an arrow
from the original monomial. Linear combinations of degenerate irreps
must be dealt with separately, as described in the main text.

B. Bravais lattices

When working with Bravais lattices, there is no basis index
iin, e.g., Eq. (I). As a result, the procedure outlined above
becomes straightforward. Extended point group operations (6)
are exactly point group operations, and so we just need to
sort homogeneous polynomials into irreps of the point group
P. The “mixing” of irreps then comes from translations by
lattice vectors. We will find the possible multipole groups
compatible with all five Bravais lattices in two dimensions
(depicted in Fig. 1), starting with the lattice that possesses the
fewest symmetries. As we increase the size of the symmetry
group, various additional complexities will appear; while the
formalism will remain unchanged, we will highlight some
subtleties in its implementation.

1. Monoclinic

We begin with the monoclinic Bravais lattice [Fig. 1(a)],
whose point group is C,, with generator (x,y) <> (—x,—y). In
crystallographic notation, which will be used throughout the
paper, the space group is p2. By inspection, each monomial
x"y"™ (with m,n > 0) of even degree forms a trivial irrep of
C, and each monomial of odd degree forms the nontrivial
one-dimensional irrep of C,.

After sorting polynomials into irreps of the point group,
we must determine what constraints translations put on the
multipole group. Suppose that we include x™y" in the multipole
group for a given pair m, n. As shown in Appendix C, we
must also include shift symmetries obtained by infinitesimal
translations of x""y" along the lattice directions. Since there
are two linearly independent translations and polynomial shift
symmetries can have any real (not just integer) coefficients, it
suffices to choose the translations to be along x and y (denoted
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FIG. 3. Mixing of irreps of the point group D4 by translation symmetry
for the square lattice. Every arrow means that some (infinitesimal)
translation acting on the polynomial(s) of higher degree generates the
polynomial(s) of lower degree. All multipole groups that contain a
polynomial of degree n > 2 must also include both components of
dipole, and charge. The two gray regions at order three indicate that
there are two alternative bases for cubic polynomial shift symmetries.
The representations of the polynomials under the point group are given
in Table I.

T and T, respectively), even if the discrete lattice translations
are not orthogonal. Hence, including x'y" requires us to
include x™'y" (if m > 0) and x"y*~! (if n > 0) in the
multipole group.

Iterating this procedure, we find that including x"~!y" in
the multipole group requires x”~2y" (if m > 1) and x~!y*~!
(if n > 0) to appear in the multipole group as well. Each irrep
of degree k therefore has a set of “descendants” of degree
k — 1, and the descendants have their own descendants, and so
on. We can organize this information into a graphical tree-like
structure, presented in Fig. 2. The meaning is that if we include
any one monomial in M, then all of its descendants (i.e., any
monomial that can be reached by following a series of arrows
starting at the original monomial) must also appear in M.

We now address an important subtlety. Each irrep of the
point group is highly degenerate, in the sense that any linear
combination of even- (or odd-) degree monomials also forms
an irrep of Cp. This is unimportant if we include in M a linear
combination of polynomials transforming under different irreps;
in that case, we have to include both polynomials or neither
in the multipole group. For example, including x* + 3xy? as a
generator in M also forces us to include x*—3xy? since one term
is odd under rotations and one term is even. The polynomials
{x* + 3xy%, x* — 3xy?} span the same set of polynomials as
{x*,3xy?}, so we can just include both monomials. To ensure
the multipole group is closed under translations, we should
then include the descendants of both monomials.

However, if we include a linear combination of two identical
representations, we may only need to include corresponding
linear combinations of the descendants. For example, x3y + x>
only forces us to include the span of {3x%y+y>, x> +3xy°} (and

lower-degree descendants), not the span of {x3, y°, 3x%y, 3xy°}.
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FIG. 4. Mixing of irreps of the point group D¢ by translation symmetry
for the triangular lattice. Every arrow means that some (infinitesimal)
translation acting on the polynomial(s) of higher degree generates the
polynomial(s) of lower degree. As for the square lattice, all multipole
groups that contain a polynomial of degree n > 2 must also include
both components of dipole, and charge. The representations of the
polynomials under the point group are given in Table II.

The tree in Fig. 2 is therefore still useful for finding the possible
multipole groups, but one must be careful when including
linear combinations of polynomials transforming under the
same irrep of the (extended) point group.

2. Orthorhombic

Next, we consider Bravais lattices of orthorhombic type, for
which the point group is D, [Figs. 1(b), (c)]. For simplicity
we choose coordinates so that the point group is generated by
reflections about the y- and x-axes. Again, each monomial
forms an irrep of the point group. Choosing the generating
mirror of D5 to send iy <> —y, the monomial x” " forms the 1D
irrep A(_1)n+m (~1ym where the notation is set in Appendix A;
to briefly summarize, the first index is the eigenvalue under
two-fold rotations [i.e., (x,y) < (—x,—y)] and the second
index is the eigenvalue under the generating mirror.

For the rectangular Bravais lattice (space group pmm), the
monomial x™y" transforms by x*~!y"* (provided m > 0) under
T, and xy"~! (provided n > 0) under T,. For the rhombic Bra-
vais lattice (space group cmm), the monomial x™y" transforms
by x™~ !y under T and a linear combination of x™~ !y and
x™My"~! (again, assuming m, n > 0) under translations parallel
to the other lattice direction. In both of these Bravais lattices,
including xy" in the multipole group requires both x*~ 1y
and x™y"~! to appear in the multipole group as well. Hence,
the same sets of polynomial shift symmetries are allowed in
the multipole group as in the monoclinic Bravais lattice. We
note, however, that there are now four one-dimensional irreps
for the orthorhombic lattices. At a given order, there are hence
fewer irrep degeneracies that need to be taken into account
when considering mixing of irreps under translations than for
the monoclinic Bravais lattice.



3. Square

The square lattice’s point group is D4 [Fig. 1(d)], and its
space group is p4m. In contrast to the lower-symmetry Bravais
lattices, sorting the square lattice polynomials into irreps from
first principles requires the use of systematic methods like those
in Appendix A. See Table I for the representations under the
point group. Mixing of these polynomials under translations is
depicted in Fig. 3.

Here, we find a further subtlety in dealing with degenerate
representations. The four independent cubic polynomials
sort into two copies of the two-dimensional representation E;
of D4. Under translation, the quartic polynomial A__ irrep
x3y + i’ x mixes with the cubic E; irrep {x* + 3xy2, y° + 3x%y},
while the quartic A,_ irrep x>y — y’x mixes with the cubic E;
irrep {x* - 3xy%, > — 3x%y}. The two degenerate E, irreps
{x3+3x12, y* +3x%y} and {x* - 3xy%, y* — 3x%y} span all cubic
polynomial shift symmetries, so it seems natural to make a tree
structure like Fig. 2 using these two E irreps as a basis for the
cubic polynomial shift symmetries.

However, the quartic A, irrep x* + y* mixes with {x°, ;°},
which also transforms as the E| irrep of D4. We do not need
to include another cubic irrep of D4. But the irrep {x°, 7} is
a linear combination of the irreps {x> + 3xy?, y* + 3x%y} and
{x* = 3xy%, y® - 3x%y}. So the translation mixing here does
not respect the simple tree structure we attempted to make.

The conclusion here is that when there are degenerate irreps
of a given degree, there is not generally a “canonical” choice
of basis for those irreps for which a tree structure like Fig. 2 is
unambiguous. For a given set of polynomials that we wish to
include in M, compatibility with the space group symmetry
requires us to find the “tree” of descendants and include them
in M, which is a well-posed problem that can be solved
algorithmically. However, that descendant information cannot
be neatly encoded for all choices of polynomials into a tree of
the sort shown in Fig. 2, because different “arrows” in the tree
may require different basis choices. One can check that, in the
present case, it is not possible to build such a tree, which is why
Fig. 3 contains two equivalent bases shown in the shaded circles.
Note, for example, that if both x* + y* and x>y + y/°x are in the
multipole group, then the former forces us to include {x3, y°}
and the latter forces us to include {x* +3xy?, y> + 3x*y}, which
do span all cubic polynomials. However, including only one of
these quartic polynomials in the multipole group only requires
us to include one E| irrep of cubic polynomials, not all cubic
polynomials.

4. Triangular

The final Bravais lattice to consider is the triangular lattice.
The point group is D¢ [Fig. 1(e)] and the space group is p6m.
There is no additional subtlety compared to the square lattice.
See Table II for the results, along with Fig. 4 for the translation
mixing tree.

FIG. 5. Kagome lattice with space group p6m. A, B, and C
sublattices are labeled in red, blue, and green, respectively, but the
sites are identical. The generating mirror, which is chosen to send
Xx — —x, is denoted by the double gray line. The lattice translation
vectors a; and aj are denoted by the black arrows.

C. Beyond Bravais: Wallpaper groups

In the presence of a basis for the lattice, several things
change compared to a pure Bravais lattice. First, the space
group can be any of the 17 wallpaper groups. Second, space
group symmetries can in general permute basis sites. Finally,
polynomial shift symmetries do not in general need to act in
the same way on each basis site. The interaction of all of these
features leads to significant changes in the possible multipole
groups. We will now give a few physically interesting or
physically motivated examples which illustrate some key points
about multipole groups. In particular, we give examples to
illustrate the following facts:

1. The set of allowed multipole groups does not depend
only on the space group, and instead depends on the
details of the action of the space group on the lattice
basis. Using the concept of Wyckoff positions, this action
can be classified; we will give a procedure to generate
this classification in principle, but will not perform the
explicit classification for all 17 wallpaper groups.

2. In the presence of a basis, some multipolar symmetry
groups may look very unnatural (particularly those gen-
erated by inhomogeneous polynomials), but are actually
well-motivated in certain physical contexts.

3. The extended point group may in general be larger than
the point group, specifically when the wallpaper group
is non-symmorphic.

1. Multipole groups are not a function of space group alone

The kagome and triangular lattices both have space group
p6bm?. One might reasonably ask if the allowed multipole
groups on the kagome and triangular lattices are “the same.”

2 The honeycomb lattice also has space group p6m, but we choose to work
with the kagome lattice because the results are more generic.



TABLE I. Polynomials up to degree n = 4 and their representations under the point group D4 of the square lattice. The irrep labels A, and E
are defined explicitly in Appendix A. The descendants of each polynomial under translation mixing are also listed.

Polynomial(s) Irrep Descendants Polynomial(s) Irrep Descendants
n=0 n=3
1 Ay .y B -y
(Fy.y’x}  E Pyt - gty
n=1 n=4
{x, y} E, 1 x4+y4 Ay {x37y3}
n=2 M-yt AL {x*, v}
X2+ At {x,y} By +yix A__ (3 +3x2, 7 + 3x%y)
X -y Ay {x.y} Sy-yx A {x> = 3xy?, y? - 3x%y}
xy A {x,y} >y A {x*y, y*x}

TABLE II. Polynomials up to degree n = 4 and their representations under the point group Dg of the triangular lattice. We choose the generating
mirror r to send y — —y. The irrep labels A, and Ej are defined explicitly in Appendix A. The descendants of each polynomial under

translation mixing are also listed.

Polynomial(s) Irrep  Descendants Polynomial(s) Irrep Descendants
n=0 n=3
1 Ay x3 = 3xy? A, & -y 2y}
n=1 y? - 3x%y A__  {x* =2 2xy}
{x,y} E; 1 3 +x2, 3 +x%y) E; X2+, (%% - 2 2y}
n=2 n=4
X +y? Aw  {xy} o2 +y*)? Ay {7 +xy% yP + X7y}
(- 2xy} Ep {x.y} {x* =y 25y + ’x)} E>  all cubic

203y - yPx),xt+yt —6x2? By

X3 =3xy%, P - 3x%y

The naive answer is immediately “no,” simply because there
are more polynomial shift symmetries for the kagome lattice
than the triangular lattice; on the kagome lattice, one can choose
an independent polynomial shift symmetry on each of the three
sublattices, whereas there is only one choice of polynomial
on the triangular lattice. However, the same argument holds
for three layers of the triangular lattice, and it is obvious that
one can simply choose an allowed triangular lattice multipole
group on each of the layers independently (with the space
group operations acting simultaneously on all layers). We
claim that the kagome lattice does not have this property; there
are allowed multipole groups that are fundamentally distinct
from all triangular lattice multipole groups. To show this, we
classify multipole groups on the kagome lattice.

The wallpaper group p6m is generated by four operations:
a six-fold rotation C (we are slightly overloading the letter C,
which also labels the C site in the lattice basis; the meaning
should be clear from context), areflection r, and two translations
T\ and T,. With the sublattices labeled as in Fig. 5, space group
operations act as

pa(r) |[dc(Mcr) #a(r) ¢p(M,r)
C{¢p(r) = pa(Mcr), r1¢p(r) =16a(M,r) (8)

¢c(r) ¢p(Mcr) ¢c(r) ¢c(M,r)
Tipa(r) = pa(r+t;) 9)

where the six-fold-rotation and reflection matrices, M and
M, respectively, and the two translation vectors, are given by

;-7 -1.0
Mc = N Mr:(o 1) (10)
2 2
t=a(,0), t=a(%1) an

with a the lattice constant. The point group is Dg, the sym-
metries of a regular hexagon. The polynomial shift symmetry
irreps of the point group are given in Table III, and the transla-
tion dependences are shown in Fig. 6.

Indeed, every triangular lattice multipole group has a corre-
sponding kagome lattice multipole group, which acts identically
on all three sublattices. However, even constant polynomials
show new features. There are constant polynomials that form a
2D representation of the point group, which cannot happen on
the triangular lattice or several copies of the triangular lattice.
There are therefore only four possible multipole groups with
only constant polynomial shift symmetries on the kagome lat-
tice; there are independent choices of whether to include each of
the two irreps, but those are the only possibilities. Compare this
to three copies of the triangular lattice, where any constant shift
f = (a,b,c)T is a polynomial shift symmetry consistent with
the space group. Physically, this is very interesting; including
{vx, vy} but not vy means that conserving a vector charge but
not the total scalar charge is consistent with the point group



TABLE III. Polynomials up to degree n = 2 and their representations under the point group Dg of the kagome lattice. We choose the generating
mirror r to send x — —x, and use the notation vy = (1,1, DT v, = %(\/5, -3, 0)T, and vy = %(—1, -1,2)T. For the breathing kagome
lattice (for which the point group is D3), the irrep labels are modified according to Eq. (16), but the polynomials and their descendants remain

unmodified.
Polynomial(s) Irrep  Descendants Polynomial(s) Irrep  Descendants
n=0 n=2
Uo Ay (xz + y2)00 Ay {x, y}vo
{stvy} E2 {zx!/, (xz _y2)}l)0 E2 {X, l/}UO
n=1
XUy + Yvy A_, {vx, vy} —(x2 =), + 2xyvy A {yvx + xvy, x05 — Yoy}
Yux — XUy A__ {vx, vy} (x% - yz)vy + 2xyvy Ay {yvx +xvy, x0x — Yoy}
{x, y}vo E| o {vx, —vy}(x2 +1%) E; all linear
{yvx +xvy, {(2xyv, + (x% = P)vy, (x% = P)v, + 2xyvy,
: E Uy, U Y X E Yy X
XUx — Yoy} ! (o, vy} —2xyvx + (x? = y*)vy} 2 —(x? = yP)ox + 2xyvy
) ) 2 ) {vg, vy} (@2 + 4?) —(a? — y*)vg + 2ayv,
;3{72215[} Ull(JC2 + y2> j;:gii j; ((Z _ Zz));;’} ’ ’ (172 — yz)vy + 2zyv,
vo{z,y} TV + YUy YUg — TV {Zug”jyf}y}
TV, — YUy
g {va, vy}

FIG. 6. Mixing of irreps by translational symmetry for the kagome (and breathing kagome) lattice(s). Every arrow means that some (infinitesimal)
translation acting on the polynomial(s) of higher degree generates the polynomial(s) of lower degree. Unlike previous trees, there exist two
disjoint hierarchical structures. Physically, this means that there exist valid multipole groups that do not include total charge. The shorthand
vo= (1,1, D7, 0 = %(\/3, 3,07, and vy = %(—1, —1,2)7 is used for the vectors that span the three-dimensional space that corresponds to
the sublattice index. The representations of the polynomials under the point group are given in Table III.

symmetry. We discuss the physical implications of this fact
further in Sec. IV D. Similarly, the “dependency tree” in Fig. 6
does not decouple into multiple copies of the triangular lattice
tree.

We conclude that, while the kagome lattice admits multipole
groups identical to those of the triangular Bravais lattice, it
also allows multipole groups that are fundamentally different
from any multipole group on the Bravais lattice. The allowed
multipole groups are therefore not simply a function of the
space group.

2. A classification procedure

We saw above that the way that space group symmetries
permute different basis sites in the lattice can substantially
change the structure of the multipole group, and so the space
group alone does not determine the allowed multipole groups.
For a given space group, any set of basis sites can be decom-
posed into sets of independent, decoupled symmetry orbits;
each orbit type is called a Wyckoff position, and the number
of atoms in the orbit is called the multiplicity of the Wyckoft

position. Wyckoff positions have been classified exhaustively
for all space groups in both 2D and 3D [47-52]. Since space
group operations never mix lattice sites with different Wyckoft
positions, one can independently choose allowed polynomial
shift symmetries for each Wyckoff position.

Given a crystalline lattice, then, we can classify all possible
multipole groups as follows. First, identify the space group
of the crystalline lattice. Then, decompose the set of atoms
in the unit cell into distinct Wyckoff positions. Next, for each
Wyckoff position, compute the allowed multipole groups as
we did above. A multipole group is generated by the space
group operations and various polynomial shift symmetries
that transform as direct sums of irreps of the extended point
group, one summand per Wyckoff position. If a polynomial
shift symmetry appears in M, so must its “descendants” under
translations, which will be direct sums of the descendants of
each individual irrep summand.

Given a Wyckoff position, the problem of sorting polynomial
shift symmetries into irreps of the extended point group can
be broken down further. First, one can determine the irrep of
the extended point group formed by the permutation action of
the space group on the basis sites. This is purely geometric



information determined completely by the Wyckoff position.
Second, one can take pure polynomials, without any reference to
the Wyckoff position, and sort them into irreps of the extended
point group. Finally, the irreps obtained in the prior two steps
are combined using the Clebsch-Gordon coefficients of the
extended point group; see Appendix A for details.

As an example of the above procedure, we can consider the
classification problem for the wallpaper group pm. Assuming,
without loss of generality, that the point group D; = Z; is
generated by reflections x < —x, there are three Wyckoff
positions, shown in Fig. 7a. Wyckoff position a is an atom
placed at (0, y) for any y. Wyckoff position b is an atom at
(1/2,y) for any y. Wyckoff position ¢ consists of a pair of
atoms at (+x, y) for any y (here, x is interpreted modulo the
lattice constant in the x direction).

For atoms on either the a and b Wyckoff positions, polyno-
mial shift symmetries do not permute basis sites within the
unit cell. The multipole group classification for these atoms
can be read off by inspection. The monomial x™y" forms a
trivial (resp. nontrivial) irrep of Z; if m is even (resp. odd), and
translations mix irreps in the same way as Fig. 2.

For atoms on a ¢ Wyckoff position, the point group operation
r interchanges the two basis elements, that is,

da(r) ¢p(M,r)
’ (¢B<r>) - (¢A<Mrr>) ' (12)

It is straightforward to see that irreps of the point group are
given by transformations

[oate) = (oato) e a3

withvg = (1, DT and v = (1, =1)T. The irrep is trivial if m +k
is even and nontrivial if m + k is odd. Note that the permutation
action on the basis sites is a direct sum of a trivial irrep vy
and a nontrivial irrep vy, so the polynomial shift symmetries
are just the (tensor) product of one of these vy and the irrep
formed by polynomials x”y" in the spatial coordinates. The
corresponding Clebsch-Gordon coefficients are trivial because
the irreps involved are all one-dimensional.

For a generic arrangement of atoms with space group pm,
then, we choose a set of polynomial shift symmetries that we
wish to include. Each shift symmetry should be decomposed
into a linear combination of direct sums of irreps of the extended
point group, with one (possibly zero) summand in the direct
sum for each Wyckoff position in the lattice. The complete
symmetry orbit of the original polynomial shift symmetries
then follows from the symmetry orbit and translation mixing
of each direct summand.

For example, suppose we have atoms at Wyckoft position a
(call the corresponding field ¢(#)) and Wyckoff position ¢ (call

the corresponding fields qﬁf:g). We could choose to include
the shift symmetry that transforms the a Wyckoff position by
x%y (trivial irrep of Z,) and transforms the ¢ Wyckoff position

by Ayv; (nontrivial irrep of Z;), where A is some constant with

S

(@ (b)

FIG. 7. Left: An example of a lattice belonging to the space group
pm. Axes of reflection are denoted by the double gray lines. The
labels a, b, and ¢ correspond to the three types of Wyckoff position,
with multiplicities one, one, and two, respectively. Right: A lattice
with space group pg. The dashed gray lines represent axes of glide
reflection since the two types of lattice site are (only) mapped onto
one another under the mirror x + —x (supposing they were spatially
coincident). The solid gray lines represent lattice translations, which
are parallel to the x- and y-axes.

dimensions of length?:

¢ (r) o @)\ [xy
6O =] [+] ay |- (14)
o' m) \oy’m) \—ay

Under a mirror (as shown in Fig. 7a)

x%y x%y
r| Ay |- |-Ay], 15)
~Ay Ay

since the first entry forms a trivial irrep of Z; and the last two en-
tries form a nontrivial irrep of Z,. Hence, the multipole group
must also contain (x2y, —Ay, Ay)”. We know the translation
descendants of each irrep (x*y on the a Wyckoff position de-
scends to xy, x, y, | and yv; on the ¢ Wyckoff position descends
to v1), but we must translate both irreps simultaneously to get
the descendants of the combination. Namely, (xz, +A,F)7T
are descendants, but (x2,0,0)7 is not a descendant.

We comment that the difference between the triangular,
multi-layer triangular, honeycomb, and kagome lattices are
exactly which Wyckoff positions are occupied; all of them have
space group p6m. According to the nomenclature in the Bilbao
crystallographic server [48-50], the triangular lattice consists
of an atom at the a Wyckoft position, and the multi-layer
triangular lattice consists of multiple atoms at the a Wyckoff
position. The honeycomb lattice has atoms in the b Wyckoff
position (which has multiplicity two), and the kagome lattice
has atoms in the ¢ Wyckoff position (multiplicity three). Space
group p6bm also has two multiplicity-six Wyckoff positions,
occupying one of which would generate the ruby lattice, and a
multiplicity-12 Wyckoff position; the classification procedure
for these Wyckoft positions using the techniques developed
herein is straightforward but tedious.



FIG. 8. Breathing kagome lattice, which belongs to the space group
p3m1. The A, B, and C sublattices are labeled in red, blue, and green,
respectively, but the sites are identical. The generating mirror, which
is chosen to send x — —x, is denoted by the double gray line. The
lattice translation vectors a; and a, are denoted by the black arrows.
The Cj3 rotation center to which each basis site is associated is depicted
by a solid black circle. The zoomed circular inset illustrates the three
vectors 6; that connect Bravais sites to basis sites.

3. Scope of the classification and physical interpretation of
symmetries

There is an important subtlety in the notation when we write
Eq. (2). In the absence of basis sites, there is no 7 index, and in
the continuum, it is physically sensible to restrict our attention
to continuous f(r). On the lattice, however, there is no a
priori physical reason to restrict to continuous f;(r). Rather
than writing something like Eq. (2), we could instead consider
shift symmetries where the field in question is shifted by an
arbitrary number chosen independently at each basis site. This
is the most general possibility, but attempting to classify such
functions in any useful way is beyond the scope of this paper.

One natural way to restrict our attention to polynomial shift
symmetries is to imagine defining a polynomial shift symmetry
f(r) on the entire plane (without reference to basis sites), and
then defining a shift symmetry on the lattice by restricting the
domain of f(r) to r that belong to the crystalline lattice. This
is a completely reasonable possibility, and it is included in our
formalism. However, one could also define one polynomial
fi(r) per basis site, and then defining a shift symmetry on the
lattice by restricting the domain of f;(r) to those r that are an
ith basis element. The latter is the approach we take in this
paper because it is more general; for a generic lattice with two
basis elements A and B, one could not obtain, e.g., f4(r) =x
and fp(r) = y by restricting the same finite-order polynomial
to both the A and B sublattices.

This subtlety in notation can sometimes obscure the physical
meaning of certain multipolar symmetries. As an example
which will become relevant in Sec. IV D, we consider the
classification of multipole groups on the breathing kagome
lattice, shown in Fig. 8. The breathing kagome lattice has space
group p3m1, with point group D3. The allowed multipole
groups for the breathing kagome lattice are almost identical to
those for the kagome lattice. One can check that the table for
breathing kagome can be obtained from Table III by simply
replacing the irrep labels:

Eio|p, = E1

Ao’,v = A+,V (16)

D3
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with identical translation mixing. The only difference in the
allowed multipole groups is that some irreps that are non-
degenerate on the kagome lattice become degenerate on the
breathing kagome lattice, which allows us to take linear com-
binations of these newly degenerate irreps without including
both individual irreps. For example, (x> + y*)vy transforms
as Ai4 on both the kagome and breathing kagome lattice,
while xv, + yv, transforms as A_, on kagome and A, on
breathing kagome. On the kagome lattice, then, including
(x +y%)vo + (xvx +yvy) forces both (x? +y?)vg and (xvx +yvy)
to appear in the multipole group, along with their descendants
{x, y}vo, vo, and {vy, v, }. However, on the breathing kagome
lattice, (x> + y?)vg + (xvy + yvy) transforms trivially under the
point group, so only its descendants {2xuvg + v, 2yvg + vy} and
vp need to appear in the multipole group.
Now consider the following polynomial shift symmetry:

da(r) da(r)\ [x—84-%
¢p(r) | = |op(r) |+|x-0p-% (17)
¢c(r) ¢c(r)) \x-0c-X%

where §; is the displacement of the ith basis site from an
associated Bravais lattice site, as shown in Fig. 8, and the §;
transform as vectors under symmetry operations. This shift
symmetry is not, a priori, obviously physically meaningful.
However, by inspection we can see that this amounts to shifting
each field by R - X, where R is the closest Bravais lattice site.
Physically, the presence of this symmetry means that the x
component of the total dipole moment is conserved, where each
field’s charge is weighted by the closest Bravais lattice site’s
position instead of the physical position of the charge itself.
One situation where this is physically meaningful is as follows.
Imagine placing a spin-3/2 f-like electron at the center of each
small triangle and a localized d electron at each vertex of the
breathing kagome lattice. With a strong Ising-like interaction
between the d and f electrons of the sort

R Al N ) (18)

on each triangle, one could imagine that the f electron’s spin
is equal to the sum of the surrounding d electron spins. When
allowing d electrons to weakly interact between triangles, the
symmetry Eq. (17) means that (a component of) the dipole
moment associated to the f electrons is conserved.

4. Nonsymmorphic symmetries

When the space group is nonsymmorphic, namely when
the space group is not a direct product of a point group and
translations, the extended point group becomes distinct from
the point group.

As an example, consider the space group pg, generated by
translations and a glide consisting of reflection about the x-axis
(without loss of generality) combined with a half-translation.
An example lattice and its symmetries is given in Fig. 7b, where
the two types of lattice site are assumed to transform into each
other under reflections about the x-axis only.



Using the same formalism and applying a glide, we obtain

a8 > g (Gx+ L@ +a)) (19

where G = diag(1, —1). Now there is a nontrivial matrix acting
on the coordinates rather than simply a translation. The same
formalism as earlier applies, but now instead of finding irreps
of the point group, we should find irreps of the extended point
group Z,, which is generated by the transformation

éa,B(X) = ¢p,4 (GX). (20)

This extended point group is isomorphic as a group to S/T
where S is the space groupand T C S is the subgroup consisting
of pure translations.

It is not hard to check that the irreps of the extended point
group are X"y vy, where vy = (1, (=1)X)T with k =0, 1. The
irrep is trivial if n+k is even and nontrivial if n+k is odd. After
incorporating translations, it is straightforward to check that
including x"y" vy in the multipole group forces us to include
x™ y" v for any 0 < m’ < m, 0 < n’ < n. These irreps
form two decoupled copies of the tree in Fig. 2, one for each
vx. The formalism we have developed is therefore capable of
constructing the allowed multipole groups to any desired order
on any lattice.

III. CONSTRUCTING MODELS

Given a crystalline multipole group M, one would generally
wish to construct models, both in the continuum and on the
lattice, with M symmetry in order to study the effect of these
exotic symmetries on interesting properties like their dynamics.
In fact, as we will describe shortly, there is reason to expect that
some multipolar symmetries, particularly when the multipole
group is sub-maximal, can lead to highly interesting conse-
quences like a sub-extensive number of emergent conserved
quantities at long wavelengths. Such models are also of interest
to guide the search for emergent multipolar symmetries in real
materials. In this section we explain how one may construct
effective Hamiltonians and field theories given a multipolar
group M.

A. Spin models

We can also view the polynomials that comprise the multi-
pole groups M that we have constructed as corresponding to
conserved multipole moments of a local charge density. The
construction of the multipole group ensures that we are able
to write down Hamiltonians that are invariant under the space
group of the lattice and conserve these multipole moments.
Specifically, given spin-S degrees of freedom living on the sites
of a lattice £, we would like to construct tranlation invariant
Hamiltonians that conserve the multipole moments

Olf1=>) f(r)SE, 21)

iel
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of the local “charge density” S’f for all polynomials f(r)
belonging to the multipole group M. As we discussed in
Sec. I C 3, in the presence of a basis, the weighting function
f(r) corresponds to an in-principle independent multipole
moment on each basis site.

We now describe a systematic way to construct local Hamil-
tonians that conserve the moments (21) (with further details
provided in Appendix D). The Hamiltonians are composed of
local “gates” fix, and their Hermitian conjugates. Gates are
labeled by the index a (there may be more than one type of
gate compatible with the imposed conservation laws) and are
centered on x (which may or may not coincide with one of
the basis sites). Hamiltonians built from such gates take the
general form

A= Z ga(i’\lxar + il)}(a) > (22)
X, a

where the g, are coupling constants. The gates ftm are local,
acting on spins belonging to a ‘cluster’ of spins C C L by
incrementing or decrementing the z component of the spins by
integers n,(d) in the vicinity of position x:

. R Ina (80|
S ng (6;
o D i (23)
ieC

We will work exclusively with clusters of strictly finite support.
This generic gate structure, or a specific variant thereof, has
previously been utilized in Refs. [14, 30, 36, 42, 43] to construct
Hamiltonians that conserve various moments of Sf When
evaluating the time evolution of the charges (21) through their
Heisenberg equation of motion, ié,Q[f] = [Q[f],ﬁ], the
coefficients n, (8) that define the gate effect a discrete derivative
D, acting on the function f. Importantly, the charge Q[ f]
will be a conserved quantity if the derivative D, annihilates
f for all x, with this property being preserved under arbitrary
perturbations (or operator insertions in fix,, see Appendix D)
that are diagonal in the S’f basis. Hence, we can systematically
construct Hamiltonians of the form (22) that conserve a finite
list of multipole moments f(r) that form a multipole group M
by identifying the possible discrete derivatives, specified by
{nq(6;)}, that annihilate all f(r), i.e., Do f = 0. Producing
a Hamiltonian that is invariant under the space group from a
given discrete derivative requires an extra step: One must find
the orbit of the discrete derivative under the action of the space
group and include all such operators as “gates” in Eq. (22) with
equal weight g, (all such operators generated in this manner
from a valid discrete derivative are guaranteed to annihilate all
polynomials belonging to the multipole group). In this way,
space group operations will then just permute the gates, leaving
H unchanged.

1. Constructing discrete derivatives

For a given multipole group, there are two handles that we
can use to constrain the search for possible discrete derivatives:
(i) the local Hilbert space dimension through the spin, S, and



(ii) the size (and shape) of the cluster C. The size of the spin
directly constrains the maximum absolute integer change in $ <
to be < 28, while reducing the size of the cluster C reduces
the dimension of the parameter space for the search; the total
number of gates within a region of size |C| is (25 + 1)1,

For convenience, we arrange the integers that define the gate
into a ‘vector’ |ng), where 0 < |nq| < 2S. In this language, a
judicious choice of origin® allows us to write the action of the
discrete derivative as

(Daf)(0) = 3 F(6)na() = (flna) =0,  (24)

ieC

while the group status of M ensures that (D, f)(x) will vanish
for all x. Equation (24) therefore states that any gate that is
compatible with all conservation laws, specified by the integer
vector |ny), must be orthogonal to all vectors |f) € RIC!
corresponding to polynomials that belong to the multipole
group. To touch base with continuum derivative notation
natural for field theoretic treatments, we can find the continuum
derivative to which D, coarse grains by writing

(Dag)(x) = D na(8)g(x+6:)

ieC

L |
=212 E(;)(x"‘my’"lna)az“’”ag’g<x) (25)

n m=0

where, in the second line, we performed a Taylor expansion
of the infinitely differentiable function ¢g(x) and replaced the
sum over sites in the cluster with an inner product according
to Eq. (24). Hence, to find the overlap of D, with continuum
derivatives of the form {9/, one simply has to evaluate
the overlap between the vector |n,) that defines the discrete
derivative and the vectorized monomial x™'y" (weighted by the
appropriate combinatorial factor). Note that the reverse process
— finding discrete derivatives from continuum derivatives — will
not in general produce valid discrete derivatives that annihilate
all f. This failure can occur when the multipole group is
sub-maximal and a derivative of order m, strictly less than the
maximum polynomial degree n, annihilates all polynomials
belonging to M. Requiring that the discrete derivative coarse
grains to the order-m derivative does not constrain its overlap
with derivatives of order £ > m. This spurious overlap with
derivatives of order ¢ can then prevent the order-¢ polynomials
from being annihilated by the discrete derivative. Indeed,
this subtlety will be responsible for the interesting physical
consequences that we discuss in Sec. IV. One should therefore
always solve Eq. (24) in order to find the correct discrete
derivative operators.

3 The group property of the multipole group allows us to shift the ‘origin’
at will: If (f|ng) = 0forall f € M, then Yjecc f(r;i +t)ng(r;) =0
for all t since f(r; +t) will generate a linear combination of polynomials
belonging to M.
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IV.  PHYSICAL CONSEQUENCES

We have explained how the possible multipolar groups con-
sistent with lattice symmetries may be constructed on arbitrary
lattices. We now illustrate the power of the above formalism
by exploring some physical consequences of multipolar sym-
metries. To this end, we pick one striking phenomenon that
has previously been discussed, and generalize it to arbitrary
crystal lattices, and also identify two remarkable phenomena
that have not previously been discussed, as far as we are aware,
but which we encounter when we explore multipolar groups
on triangular and breathing kagome lattices respectively. A
common theme in many of these discussions is the emergence
of a (generally sub-extensive) set of conserved quantities at suf-
ficiently long wavelengths for certain sub-maximal multipole
groups. We work in the continuum to motivate the existence
of these conserved quantities, and then identify examples with
analogous behavior on lattices that host degrees of freedom
with strictly finite local Hilbert space dimensions, subject to
locality requirements.

A. General considerations — emergent symmetries

Given a scalar field ¢ (for simplicity) subject to some poly-
nomial shift symmetries, the field ¢ can only appear in a
symmetry-respecting Lagrangian as D, ¢, where D, is some
derivative operator that obeys

Daf(x) =0 (26)

for all polynomials f(x) in the multipole group. The notation
D, is reserved for continuum derivatives, in order to distin-
guish them from their discrete counterparts D,. Consider a
multipole group whose highest-degree polynomials are degree
n; then any D, of order (n + 1) or higher will solve the above
equation. However, if the multipole group is sub-maximal,
there may exist some D, of order m < n that annihilate all
polynomials belonging to the group. As we will see, in some
cases it may happen that the lowest-order D, annihilate ad-
ditional polynomials g(x) that are not in the multipole group,
although higher-order solutions will generally not annihilate the
additional polynomials. In this case, the additional polynomials
lead to additional quantities

Qlg] = / Pxg(0p (), @7)

where p(x) is the density operator of the scalar field, which are
(emergently) conserved at long wavelengths.

One of the simplest examples of this phenomenon is a theory
on the square lattice (see Sec. II B 3) that exhibits the following
polynomial shift symmetries (see Ref. [43]):

f(X) € {l’x’ Y, Xy, xz_yz}' (28)

This is a valid multipole group; the polynomials x> — 2 and 2xy
form distinct one-dimensional irreps of the point group D4 (A_4
and A__, respectively), and translation invariance requires that



charge and both components of dipole are also conserved (see
the hierarchy in Fig. 3). While this list of functions is annihilated
by any third-order generalized derivative, all functions are also
annihilated by the two-dimensional Laplacian V> = 62 + 8;,
which is second order in derivatives and the only such operator.
However, we may immediately observe that any harmonic
function g(x), i.e., Vg = 0, will also be annihilated by the
lowest-order generalized derivative V2. Each such harmonic
function ¢ defines a quasi-conserved quantity via Eq. (27).
This infinite family of conservation laws is broken by higher-
order, dangerously irrelevant derivative corrections that cease
to annihilate the harmonic functions.

B. Localization in discrete Laplacian models

It was recently shown in Ref. [30] that if the dynamics on
a generic lattice is given entirely by certain “discrete Lapla-
cian” operators*, then the system exhibits strong fragmentation
leading to localization [13, 14]. In our language, such gates
are of the form n4(0) = z and ngz(6) = —1 for all vectors
6 that connect a site to its z nearest neighbors (and the gate
with the signs of nz flipped). We will see examples of these
gates momentarily. Using the formalism developed thus far,
we are able to write down minimal valid multipole groups
for which discrete Laplacians are the smallest allowed gates.
Therefore, if the gate sizes are restricted to be the size of the
discrete Laplacian and smaller, these symmetries are sufficient
to enforce strong shattering/fragmentation in two dimensions.
We illustrate this by explicitly working out the minimal nec-
essary multipole group on the square and triangular lattices,
although our formalism could obviously be extended to ob-
tain the minimal sufficient multipole group on any lattice, in
arbitrary dimensions.

1. Square lattice

For the square lattice, the minimal set of conserved multipole
moments that is required to give rise to localization and is
compatible with space group symmetry is:

f(r):{l,x, Y, XY, x2_y2}’ (29)

which produces the discrete Laplacian gate

)
900. (30)
)

as the unique solution with smallest range. In (30), the color
of a site denotes the sign of n(9;), and the integer determines
|n(8;)|, the combination of which determines the gate through

4 While Ref. [30] does not require two dimensions or a translation-invariant
lattice, we will specialize to crystal structures that satisfy these requirements
in the discussion that follows.
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Eq. (23). Since xy and x*> — y? transform as one-dimensional
irreps of D4, we are able to remove just one of them whilst
maintaining a valid multipole group. However, removing xy
allows gates that correspond to discretizations of 92 and 65

separately. On the other hand, removing x> — y> permits lattice
discretizations of dd,, which can be discretized on the sites
that surround a single plaquette, permitting operators with
smaller range. The linear-order polynomials are not required
to eliminate the undesired gates, but are required by translation
symmetry.

2. Triangular lattice

On the triangular lattice, the set of multipole moments (29)
is insufficient to fully constrain the gate of smallest range to
be uniquely determined; instead, there are two D3-symmetric
solutions with n(0) = z/2. This can be remedied by including
an additional polynomial in the multipole group:

f(r)=A{1, x, y, xy, X - yz, - 3xy2} , 31

which leads to the desired discrete Laplacian gate

(1 N )
0900 (32)
(1 ) )

as the unique solution. The polynomial y* — 3x?y can also
be included in the multipole group (31) without changing the
fundamental solution (32). If > — 3x%y is instead the only
third-order polynomial in the multipole group, then the allowed
gates are no longer unique; the same two solutions are permitted
as for the set of multipole moments in Eq. (29).

C. Subsystem symmetries in 2D from O (1) symmetries

We now discuss the first of the apparently new phenomena
that we discover by applying our formalism, in this case to
particular multipole groups on the triangular lattice. In partic-
ular, we find that, for certain choices of the multipole group
M, all gates up to a certain size — parametrized by discrete
derivatives — will additionally conserve (nonorthogonal) sub-
system symmetries along lines of the triangular lattice. In this
way, if we restrict the support of the possible gates, a finite list
of conserved multipole moments on the triangular lattice will
give rise to a much stronger emergent subsystem symmetry,
involving an O (L) number of emergent conserved quantities
for a lattice of linear dimension L.

We begin by considering the fourth-order polynomial
f(x) = (x* + y*)?, which transforms according to the triv-
ial representation, A.,, of the point group D¢ (see Table II).
The ‘descendant’ polynomials of lower order £ < 4 that must
additionally be included for M to be closed can be found in
Fig. 4. We further suppose that the third-order polynomial
f(x) = y® — 3x%y, which again transforms according to a
one-dimensional irrep (A_,), is included in M. Note that the



addition of this extra polynomial does not require any new de-
scendants beyond those already included. Hence, our multipole
group can be summarized as

£(x) € {(x* +y*)* + descendants, y° — 3x>y} . (33)

Despite the highest-order polynomial being of degree four, we
are able to find a unique third-order derivative that annihilates
all polynomials: D; = 93 — 36x6§. If we had not included
f(x) = y? = 3x%y in M, we would additionally be able to
introduce a second third-order derivative, D, = 63 - 36)%6!/.
We note in passing that the operator D) also naturally appears in
the context of hydrodynamics in the presence of the point group
D3, since it may be written compactly as D = A;0;0,0k,
with A; j the third-order D3-invariant tensor [53, 54].

At the level of continuum derivatives, the operator D; on
its own annihilates a much larger family of functions than
those belonging to M. This can be illustrated by acting on
functions e’®X, we observe that D acts multiplicatively as
oc ky(ky+ \/gky)(kx - \/§ky). That is, any linear combination
of oscillatory functions that satisfy ky = 0 or k. = i\/gky (.e.,
those that do not vary parallel to the triangular lattice directions,
e ore, ¥ \/gey, respectively) will be annihilated by D;. This
leads to the same conservation laws as a subsystem symmetry:
since D will annihilate §(y) and analogous functions for the
other two lattice directions, charge is conserved along every
line that is parallel to each of the three lattice directions.

1. Lattice Hamiltonian

On the lattice, we can systematically construct discrete
derivatives according to the procedure outlined in Sec. IITA 1.
We will restrict our attention to regions of the triangular lattice
constructed by finding all sites contained within a circle of
radius €. The origin will be arbitrary, but circles centered on
sites will generate Dg-symmetric clusters while those centered
on triangular plaquettes will generate D3-symmetric clusters,
etc. Further, we will examine the most highly constrained case
corresponding to minimal on-site Hilbert space dimension:
spin-1/2 degrees of freedom. Subject to these constraints,
the solution with the smallest range is unique and consists of
spin raising and lowering operators acting around a hexagon
(€ =1 + €, with € a positive infinitesimal):

X
DiI~@0@. (34)
- X

where the red sites (say) correspond to spin raising operators,
S'*, and the blue sites to $~. We omit the integer labels utilized
in the gates (30) and (32) since we are working with spin-1/2
degrees of freedom. Hence, if (x, 1), ..., (X, 6) label the spins
around a hexagon surrounding a lattice site X in a counter-
clockwise direction [the colored sites in (34)], we have the
“ring-exchange” gate

hx = SI,1§;2§;,3§;,4§;,5§;6 ’ (35)
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centered on sites, an interaction that is commonly found in
the context of frustrated magnetism [55, 56]. The discrete
derivative operator in Eq. (34), like the continuum derivative
to which it coarse grains (D = 83 — 36x(9§), conserves charge
along lines. From (34), we observe that 3¢, n1(6;) = 0 for all
lines 7 that are parallel to the three triangular lattice directions.
Therefore, for every closed line connecting sites of the triangular
lattice that is parallel to one of the lattice directions, there exists
a corresponding conserved charge. For a lattice of L X L
primitive unit cells (see Fig. 1), there are 3L such conserved
charges, although not all of these are independent. Hence,
the behavior of the discrete derivatives mirrors that of the
continuum derivatives: in the discrete (continuous) case, the
operator that annihilates all polynomial moments with smallest
range (with fewest derivatives) conserves charge along lines
parallel to lattice directions.

We may now enlarge the radius of the circle to look for
discrete derivatives that annihilate the moments in (33) with
larger range. Clearly, if the enlarged region includes multiple
hexagons of the form (34), we can form valid discrete derivatives
by taking linear combinations of the motif in (34) (as long as
the resulting coefficients all satisfy the constraint |n,(r)| < 1).
For instance, the operator

can be formed by taking a linear combination of solutions (34)
on the central three sites forming an ‘up’ triangle, and will
exhibit precisely the same conservation laws as (34). As a
result, to find derivatives that do not preserve the constraint,
we should restrict our search to operators that do not belong
to the span of derivative operators of the form (34). The first
such operator appears at the radius ¢ satisfying 2¢ = V19 + €:

which ceases to conserve charge along lattice directions that are
not parallel to x. Note that derivative operators belonging to
the orbit of (36) under symmetry operations will also be valid
solutions. Further note that we present the derivative operator
with the smallest support by adding or subtracting operators of
the form (34). The operator in (36) coarse grains to the fourth-
order continuum derivative o dy (9, —3059,). While the exact
conservation law is broken at the lattice scale by gates such
as (36), in the long-wavelength limit, the subsystem-symmetry-
breaking gates are less relevant and lead to an infrared (IR)
description in which subsystem symmetry is broken only by
higher-order, dangerously irrelevant corrections.

, (36)

While we originally discovered this emergent subsystem
symmetry on the triangular lattice, it turns out that an analogous



scenario can also obtain on the square lattice. If we work on
the square lattice, with spin-1/2 degrees of freedom, and
conserve x2" + y>" or {x>"*1, ;?"*1} for even and odd orders,
respectively, then these polynomials (and their descendants)
are all annihilated by d.d,, which has subsystem symmetry
along lines. The gate of minimal size that is compatible with
the chosen multipolar symmetries is then just ring exchange
around a square plaquette, the consequences of which were
discussed in detail in Ref. [24]. Similar to the triangular lattice,
there exist gates analogous to (36) that break the microscopic
subsystem symmetry, but in principle we could always add
additional multipolar conservation laws to forbid the smaller
subsystem-symmetry-breaking gates, thereby ensuring that the
smallest gate that breaks subsystem symmetry is larger than
any desired size.

2.  Haar-random circuits

To test our prediction that subsystem symmetry emerges at
sufficiently long length and time scales, we perform simulations
of Haar-random circuits that preserve the relevant conserved
quantities (33). In particular, we work with Haar-random gates
that are large enough for subsystem symmetry to be broken at
the microscopic level, i.e., such that gates analogous to (36) are
included. For two-point correlation functions, we perform the
Haar average exactly, which gives rise to an effective stochastic
automaton dynamics that can be simulated efficiently [scaling
as poly(L)] for large systems (similar mappings exist for other
quantities evaluated in Haar-random circuits, see, e.g., Refs. [57—
60]). The mapping to automaton dynamics is outlined in detail
in Appendix E. To summarize briefly, the Haar-random circuit
is mapped to automaton dynamics that permits a/l symmetry-
allowed transitions (with equal probability) within a local region
defined by the gate applied at each step.

As shown in Ref. [35], the Ward identity for charge conser-
vation on the triangular lattice in the presence of subsystem
symmetry along lattice directions is

6tp + 61 0263] =0 y (37)
where the scalar current J is related to the charge density p via
the constitutive relation J = —10,9,03p at leading order, and
the derivatives 9y, 02, and 95 are directed along the three trian-
gular lattice directions. Equation (37) gives rise to the highly
anisotropic decay rate I'(k) = k% cos?(36)/16, for density
modulations of wave vector k, with (k, 6) the polar coordinates
of k. That is, the decay rate I'(k) has flat directions along
0 = 1/6 + nm/3 (arising directly from subsystem symmetry)
and scales with the sixth power of k. The Ward identity (37)
straightforwardly determines the correlation function of S’f
through

(82(r;1)8%(0;0)) =~ 5S(S + 1)§ > ekTe T (38)

k

where the sum is over wavevectors k compatible with the peri-
odic boundary conditions, and the overline denotes an average

15

0.050
10
. 0.025 =
= 2
< 0 * 0.000 =
< i
-~ ~
—0.025 ¢
—10
—0.050
Haar Theory
—10 0 10

x/(An)V/S

FIG. 9. Comparison between the autocorrelation function C,(r;?) =
(§%(r;1)8§%(0; 0)) obtained for a Haar-random circuit that conserves
the multipole moments (33) (left) and the corresponding hydrodynamic
prediction (38) (right). The correlation function is evaluated using an
effective classical automaton evolution that allows us to reach large
systems and times. The spatial profile is illustrated at a fixed time,
1 =5 x 103, for a system of linear size L = 512.

over circuit geometries and of the gates over the circular unitary
ensemble (CUE), i.e., a Haar average. The function (38) is con-
trasted with the output of the Haar-random circuit simulations
in Fig. 9, which exhibit excellent agreement. There is just one
free parameter: the phenomenological subdiffusion constant
A. In the thermodynamic limit, we find from (38) that C,(r; )
decays slowly with distance as |r| 12 forr parallel to one of the
three triangular lattice directions, leading to distinctive sharp
features that are reproduced by the numerical simulations. The
coincidence of the theoretical prediction (38) and the random
quantum circuit result verifies that the late-time behavior of
correlation functions under generic dynamics that conserves
the moments in (33) is governed by an equation of motion that
exhibits subsystem symmetry. That is, even though there is
generically no subsystem symmetry at the microscopic level, it
nevertheless emerges at late times and long wavelengths if we
conserve the O (1) list of multipole moments in Eq. (33).

3. Discussion

It is known that sub-maximal multipole groups can exhibit
additional emergent conservation laws leading to unexpectedly
slow dynamics controlled by dangerously irrelevant perturba-
tions. The U(1) generalization of Haah’s code is a central
example of this [43]. Our formalism can be used to construct
many more models exhibiting such exotic physics on arbitrary
lattices. We have illustrated this by a particularly striking
construction, where imposition of a finite number of multipole
moments on the triangular lattice leads to a robust emergent
subsystem symmetry broken only by gates acting on twenty
four or more sites (a similar construction can retrospectively
be performed on the square lattice). If we limit the range of
the gates such that the subsystem symmetry becomes exact
(albeit accidental), then we get the exotic lattice consequences
discussed in Ref. [24], including, for example, finite thickness



‘shields’ that disconnect the system. If we allow for terms in the
Hamiltonian with arbitrary range, then the subsystem symmetry
is eventually broken, but the subsystem symmetry breaking
perturbations are irrelevant such that long wavelength hydro-
dynamic behavior is still consistent with subsystem symmetry
(unless we specifically examine relaxation of subsystem symme-
try charges, in which case it will be controlled by dangerously
irrelevant perturbations).

The constructions we present herein are interesting for mul-
tiple reasons. Firstly, of course, there is the exotic quantum
dynamics and hydrodynamics discussed above. Next, Haah’s
code is a particularly interesting example of a fracton phase [61—
65], which continues to challenge several emerging paradigms
(see, e.g., Refs. [66—68]). The U(1) generalization of Haah’s
code appears to inherit its exotic properties from a sub-maximal
multipole group. We have provided a route to the construction
of a multitude of sub-maximal multipole groups on arbitrary
lattices. Going back from U(1) to Z, might then provide a
whole family of models analogous to Haah’s code, opening a
new chapter for the field. Finally, subsystem symmetry itself is
of interest [45, 69—74], but is extremely unlikely to arise exactly
in a microscopic Hamiltonian. We have provided a general
construction for how subsystem symmetry may be emergently
obtained from a finite number of conservation laws, which may
also be useful for uncovering subsystem symmetries in real
materials.

D. Vector conserved quantities

In Sec. I C 3 we identified multipole groups for the breathing
kagome lattice (Fig. 8) that did not require conservation of
the z component of total magnetization }}; §f (i.e., did not
require conservation of monopole charge). Here, we show that
these multipolar conservation laws instead produce an emergent
two-component vector conserved charge density, and that the
smallest lattice derivatives additionally conserve moments of
this vector density related to holomorphic complex functions.

Consider the following list of multipole moments, which,
according to Table III, generate a valid multipole group on the
breathing kagome lattice:

fa(r) € {vx, Vy, XsUx = Ysly, X0y + y(;vx} , 39)

where xs = x — 0,, with 6, shorthand for the sublattice-
dependent vector shift that appears in Eq. (17) (analogously
for ys). While the list of multipole moments in Eq. (39)
looks somewhat unnatural, we are able to rewrite all position
dependence of the polynomials in terms of the nearest Bravais
lattice sites as

fa(R) € {vx, vy, Rxvx = Ryvy, Ryvy +Ryvx} , (40)

where R corresponds to the position of the Cj rotation center
associated with the three sites (see Fig. 8), which are labeled
by the index a. That is, when evaluating multipole moments,
sites are weighted according to the position of the rotation
center to which they are associated. This point is discussed in
further detail and motivated physically in Sec. I C 3. Unlike
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the examples considered thus far, this multipole group does not
require conservation of total charge, which would correspond
to conserving the moment specified by f, = vp = (1,1, 1)7. In
what follows, it will be convenient to introduce the following
set of unit basis vectors {e(®)} for the triangular lattice

el = (+‘/7§, %), e? = (—‘/g, %), e = 0,-1). @1

Since the three vectors are related to one another by Cj rotations,
they satisfy 3, e(®) = 0. Note that this choice permits us to
rewrite the conservation laws in terms of a two-component
quantity Fi(R) via f;(R) = e]({a)Fk (R). In terms of Fi(R),
the conservation laws are simplified to

e () (5 () o

Recall that the functions f (R) define conserved charges via
Q[f] = Zr.a fa(R)S - Rewriting these conserved charges
in terms of Fj (R), we have

O[F] = > Fr(R)pr(R), (43)
R,k

where we have introduced the operators i (R) = e]({a)ﬁlz{ a

which live on the Bravais lattice site R. The conservation laws
in (39) and (40) therefore imply that, while the total scalar
charge Q[l] =R S’f{ﬂ is not conserved, it is nevertheless
possible to define an operator g (R) living on Bravais lattice
sites with four conserved multipole moments:

Sa®), SIR-HM®), SIRxHPR).  (@44)
R R R

This follows from substituting (42) into (43). For convenience,
we defined the two-dimensional cross product as the z compo-
nent of the conventional three-dimensional cross product. Note
that gy (R) indeed transforms as a vector under point group op-
erations. Specifically, C3 rotations, under which gy +— Ciepe,
since three-fold rotations permute the spins associated to a
given Bravais site (Cy is the rotation matrix for 8 = 27/3),
and the generating mirror x — —x, under which g, +— —p,
and g, = py.

As shown in Sec. III A, we can construct lattice Hamiltoni-
ans that satisfy these conservation laws by finding (discrete)
derivatives that annihilate the list of conserved functions in
Eq. (39) [or, equivalently, Eq. (42)]. While any second-order
derivative will annihilate the polynomials in Eq. (42), there also
exists a particular solution composed of first-order derivatives.
Namely, the derivative operators (dx, —0,) and (0, 0x) will
also annihilate all moments Fi(R). However, these lowest-
order derivatives additionally conserve a much larger family of
functions beyond the finite list in Eq. (42). Any two-component
function gy (r) that satisfies

—0xgx +0ygy, =0 (45a)

0ygx +0xgy =0 (45b)



will be annihilated by the first-order derivative operators that
we have identified. These equations are simply the Cauchy-
Riemann equations whose solutions define the holomorphic
functions. Hence, any holomorphic function will be annihilated
by the pair of first-order derivatives (dx, —0d,) and (9, dx). In
particular, the conserved first-order moments g R- p(R) and
>R R X p(R) appearing in Eq. (42) correspond to the holo-
morphic functions ¢g(z) = z and ¢(z) = iz, respectively, where
the x (y) component is recovered from the real (imaginary)
part of the complex-valued function g(z). More generally,
the first-order derivatives will annihilate all functions spanned
by ¢g(z) = z" and g(z) = iz" for n € Ny. Such holomorphic
conserved charges also arise in the context of hydrodynamics
in the presence of a triangular point group when the current
tensor transforms in the vector representation of D3 [53].

1. Lattice Hamiltonian

To put the theory on a lattice comprised of spin-1/2 degrees of
freedom, we are tasked with finding discrete derivatives defined
by a set of integer coefficients n, (6) satisfying |ny(8)| < 1
that annihilate the list of functions in Eq. (39). Explicitly, for
a cluster C composed of Bravais sites R and basis sites a, we
require that (D o f)(X) = Ziec Naq; (Ai) fa; (X+A;) = 0, where
A; is the displacement between the Bravais site associated with
the site 7 and the center of the cluster x (see Appendix D
for further details). As before, we will consider clusters
defined by finding all sites contained within a circle of radius €.
Considering first a single ‘down’ triangle, we find the solution

e

D 0 o ’ (46)
which adds or subtracts charge from the three sites associ-
ated to a given Bravais lattice site. The derivatives can also
be expressed in terms of their action on discrete F;(R) via
(Daf)(X) = Zrec.a €y naa(A)Fi(x + Ar), where the in-
dex I labels the Bravais lattice sites (we assume that the
cluster C encompasses all a associated with each included
Bravais site). We may therefore define the discrete derivative
(DoF)(x) = Sicc fiak (A1) Fr(x+Aj), ie., we define a set of
coefficients 7,1 (A) = X4 e]({a)n(m(A) which are associated to
Bravais lattice sites (the coefficients /i, may no longer be inte-
ger valued). Note that the gate D¢ in (46) leaves p; unchanged
since the basis vectors e(*) sum to zero (equivalently, Dy is the
trivial derivative operator with 7i,; = 0). Next, we enlarge our
search to include regions of that lattice that include up to three
‘down’ triangles. We find nontrivial solutions centered on both
‘up’ triangles and on hexagonal plaquettes

@ @
Dy ~ (47)

The gates related to (47) by Cs rotations are also valid solutions,
which allows us to construct a Hamiltonian that is invariant
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under the space group. Up to these symmetry-equivalent
solutions [and addition or subtraction of the solution in (46)],
the gates in (47) are unique, although considering clusters of
increasing size will eventually yield solutions that are linearly
independent from (46) and (47). Upon coarse graining, the
derivative operators D and D, become precisely the operator
(0x, —0dy) identified previously, i.e.,

- 1
Dy ~ E (\/go “ > ooa) - \/T:;(ax’_ay) (483)
- 1
Dy~ («/50 g °e°) - B(0,.-0,)  (@48b)

where the sites depicted now correspond to the triangular
Bravais lattice formed by the centers of ‘down’ triangles. Their
Cs-rotated variants coarse grain to a linear combination of
(0x,—0y) and (8, 0x). Hence, as shown in Appendix D, the
equations that define which functions are conserved by the
Hamiltonian are precisely discrete versions of the Cauchy-
Riemann equations (45), whose long-wavelength solutions will
give rise to (approximate) holomorphic conserved charges. In
a similar manner to Sec. IV C, even allowing for terms in the
Hamiltonian with arbitrary range, the derivative operators that
break holomorphic charge conservation are irrelevant. As a
result, long-wavelength relaxation is determined by an equation
of motion that preserves the holomorphic charges discussed
herein.

2. Discussion

We have identified an exotic and (as far as we know) hitherto
unknown possibility — a conserved multipole group that does
not conserve monopole charge — and have identified a concrete
realization on the breathing kagome lattice. We have pointed
out that this multipole group conserves an emergent vector
charge, plus all holomorphic functions of this vector charge.
This constitutes a new and exotic class of problem, for which
exploration of the thermodynamics and dynamics promises to
be a particularly interesting challenge for future work. It also
provides a ‘proof of principle’ of qualitatively new physics that
is only accessible on non-hypercubic lattices, and thus can only
be accessed through our formalism, or something analogous.

V. CONCLUSIONS

We have presented an algorithmic procedure by means of
which one may construct all consistent conserved multipole
groups to any desired order on arbitrary crystal lattices, and
may further construct the minimal continuum field theory and
lattice Hamiltonian consistent with said conservation laws.
The procedure for constructing consistent multipole groups is
as follows: given a space group, compute the extended point
group and sort polynomials in the spatial coordinates into irreps.
Then, for each Wyckoff position, decompose the permutation
action of the extended point group on the basis sites into irreps.
Using Clebsch-Gordon coefficients, combine the above irreps



into irreps of the full extended point group. Finally, compute
the translation mixing. This method is dimension- and lattice-
independent, and can thus be applied to arbitrary crystal lattices.
As such, it provides a complete in principle classification of the
multipolar problem on arbitrary lattices. The procedure is labor
intensive, so we have only carried it out for a representative set of
lattices in two dimensions (all two dimensional Bravais lattices,
plus kagome and breathing kagome). However, extension to,
e.g., all 230 space groups in three spatial dimensions would be
straightforward, albeit tedious. An explicit classification for all
known crystal structures would be a worthwhile challenge for
future work.

We have explored some interesting physical consequences
using our construction. As a warmup, we have identified the
minimal set of symmetries required to get localization from
strong fragmentation on the square and triangular lattices re-
spectively (using a method that could be generalized to any
lattice). We have also identified two phenomena that do not
appear to have been appreciated before. One involves an emer-
gent subsystem symmetry arising from imposition of a finite
number of multipolar conservation laws. The second new
phenomenon has no known analog on hypercubic lattices what-
soever — it turns out that on the breathing kagome lattice, one
can define a consistent multipole group that does not include
monopole. Thus, one can write down consistent translation in-
variant Hamiltonians that conserve certain multipole moments
of charge, but do not conserve total charge itself! Nevertheless,
these models do conserve an emergent ‘vector’ charge, as well
as all holomorphic functions thereof. This constitutes a striking
and novel scenario, deserving of more detailed exploration in
future work.

Our formalism opens up new directions for multiple lines
of research. At the most basic level, it provides a guide to the
construction of new fracton models on non-hypercubic lattices.>
Particularly interesting, it allows us a way to identify consistent
sub-maximal multipole groups. Given that the sub-maximal
group appears to be the ‘secret ingredient’ that endows Haah’s
[U(1)] code with its uniquely exotic properties, it offers a route
to the construction of a whole family of models analogous
to Haah’s code, on lattices other than cubic. Haah’s code is
the least well understood fracton model, challenging many
paradigms [66—68], and construction of a family of models
analogous to Haah’s code might open up new directions for
research into fracton phases. Given that Haah’s code has
interesting properties as a quantum memory [75, 76], such
models may also be useful for quantum information. On
another front, subsystem symmetries are of considerable current
interest [45, 69—71], but given that subsystem symmetries
involve infinitely many conservation laws, it is not clear how
such symmetries could arise in nature. We have provided
constructions through which imposition of a finite number of
multipolar conservation laws can lead to the emergence of
subsystem symmetry, which could help guide the search for
realizations of subsystem symmetries in nature. (It should be

5 Strictly, construction of a fracton model requires identification of a consistent
multipole group followed by gauging of the polynomial shift part thereof.
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noted, however, that multipolar symmetries other than dipolar
are already challenging to realize, as discussed in Ref. [13]).
On a third front, our explorations have led us to discover
new phenomena that have no known analog on (hyper)cubic
lattices — for instance the possibility of having systems that
do not conserve charge, but do conserve certain multipolar
moments of charge. This opens a new direction for the study of
fracton phases and associated phenomena on general lattices,
and demonstrates that there is qualitatively new physics to be
found. And finally, our work can guide the search for fracton
physics and associated phenomena in real materials — many
of which are not based on square or cubic lattices. Note that
crisp experimental diagnostics for fracton phases have been
identified in Refs. [77-79].

Finally, we have thus far limited ourselves to systems where
all symmetries of the Hamiltonian are preserved. It would be
very interesting to examine spontaneous symmetry breaking of
crystalline multipole groups. Either the space group part or the
polynomial shift part of the symmetry could be broken, and the
interplay between discrete spatial symmetries and continuous
polynomial shift symmetries could lead to interesting effects.
One could even consider exotic possibilities like breaking a spa-
tial symmetry and a polynomial shift symmetry but preserving
the product. An exploration of such exotic symmetry breaking
phenomena is an(other) interesting challenge for future work.
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Appendix A: Group theory

Since our results rely heavily on sorting polynomials into
irreps of finite groups, such as Dy, we briefly list their irreps
and summarize the notation that we use to denote them.

A.1. Irreducible representations of Dy

Let r denote reflection through a fixed symmetry axis of an M-
gon, and let C denote a rotation through an angle 6, = 27/ M
about the center of the M-gon. The group Djs can then be
written as

Dy =(C,r|C” =r*=LrCr=C""). (A
The irreps of Djs depend on whether M is even or odd. For
even M, there are four one-dimensional irreps and M /2 — 1
two-dimensional irreps. We use the following notation for the



four one-dimensional irreps:
Agy(C)=0, Agy(r) =V, (A.2)

with o, v € {1, —1}. The two-dimensional irreps are indexed
by aninteger k = 1, ..., M /2 — 1, and are denoted

coskfpy —sinkfy (10
sin k@ cogkgM)aEk(r)—(O 1). (A.3)

When M is instead odd, the two one-dimensional irreps A_,
and A__ are removed, leaving the two irreps A4+ and A4 _.

Ei(C) =

A.2. Sorting polynomials into irreps

There are two algorithmic ways to sort polynomial shift
symmetries into irreps of the extended point group. The first
method is a simple one to perform on a computer. Fix a Wyckoft
position of multiplicity w. By construction, each extended
point group operation maps a collection of w homogeneous
polynomials of degree n to another collection of homogeneous
polynomials of degree n, so we may restrict our attention to
the case where all basis sites transform via a homogeneous
polynomial of degree n. The set of all such transformations is
spanned by the transformations f;(r) = 6; ;,x™y" ™™ forall iy =
1,2,...,wandm =0, 1,...,n. Viewing these transformations
as abasis |ig, m) for the set of polynomial shift symmetries under
consideration, it is easy to compute directly how extended point
group operations act on these transformations. For example,
for n = 2 on the honeycomb lattice, rotations take

2 0
cl|1,2)=C = 2
2 (0) (3x+ %)
1 V3 3
=—12,2)+—2,1)+=2,0 A4

J2D+ S 2D+2.0) (A4
This gives us a matrix representation of each extended point
group operation. Given such a matrix representation M (g)
for g € G, where G is the group in question, and given the
characters y,(g) where ¢ labels a representation of G, one can
construct the projector P, onto the representation ¢ via the

formula

1

Pr=—
|G

> xe(gM(g). (A.5)

geG

The eigenvectors of this projector with eigenvalue 1 are a
basis for the polynomials which transform under the given
representation €. One can then convert this into any convenient
basis.

The second method is analytical and uses the Clebsch-
Gordon coeflicients of the extended point group. First, one
can decompose the polynomials {x, y} into irreps of the pure
coordinate transformations r — sr. All higher-order polyno-

19

mials are formed as (tensor) products of some of these irreps
with themselves; using Clebsch-Gordon coefficients, one can
decompose those tensor products into irreps of these pure coor-
dinate transformations. For example, under the extended point
group Dy, {x, y} forms the two-dimensional representation E|.
Hence quadratic polynomials all appear in the tensor product
EiQE| = A ®A_®A_,®A__. Using the Clebsch-Gordon
coefficients, we find that the A, representation is X2+ yz, the
A__ representation is 2xy, the A_, representation is x> — y?,
and the A,_ representation is O (and thus not present). This
procedure can then be iterated; cubic polynomials are formed
from (tensor) products of the linear polynomials and quadratic
polynomials, and so on. A similar, related approach is to restrict
polynomial representations of O(2) to representations of D,
via “branching rules” [80, 81].

This is the complete classification procedure if the lattice is
a Bravais lattice. In the presence of a basis, we notice that the
permutation action of the extended point group on the fields,
and in particular on each Wyckoff position, also produces a (not
necessarily irreducible) representation of the extended point
group. This representation is also the representation formed
by constant polynomial shift symmetries (since the coordinate
transformation does nothing to constant shift symmetries) and
can be decomposed straightforwardly into irreps, potentially
using the projector method as above. The overall action of
the extended point group on the fields is the tensor product
of this permutation action with the action of pure coordinate
transformations. Hence the decomposition into irreps consists
of choosing a permutation irrep (i.e., constant polynomial shift
symmetry), tensoring with a coordinate transformation irrep
(i.e., a polynomial), and using Clebsch-Gordon coefficients to
decompose the tensor product into irreps. For example, on
the honeycomb lattice the permutation action is represented as
the A+ @ A__ representation of D¢, where the A, represents
sublattice-even shift symmetries and A__ represents sublattice-
odd symmetries. Hence, each irrep of the extended point group
is just the tensor product of the irreps formed by pure polynomi-
als (which are identical to those of the triangular lattice) with
one of these permutation irreps. Since the permutation irreps
are all 1D, the Clebsch-Gordon coefficients are very simple.

A.3. Clebsch-Gordon coefficients for D,

For convenience, we list the Clebsch-Gordon coeflicients for
Dy in the reflection eigenbasis. One derivation is given in
Ref. [82] in the rotation eigenbasis. We make a notation change
for this appendix; instead of referring to the one-dimensional
irreps of Dys as Ay, we will refer to them as A, , for
u=0,M/2, where u = 0 corresponds to o =+l and u = M /2
corresponds to o = —1. This notation makes several of the
Clebsch-Gordon coefficients significantly simpler.

We first give the rules for which representations appear in
the tensor product:



Ay ® A = Ay
Auy ®E = Ep = E_(uapr)
Ag,+ © Ag,- @ Epy

Ey®Ey =

EIH'II' ® Eﬂ—ﬂ’

The Clebsch-Gordon coefficients themselves are only non-
trivial when at least one representation involved is 2D. We
label the basis for a 2D irrep E,, as |u; +) where the generating
Mirror r acts as

rlpsE) =) . (A9)

Suppose the 1D irrep A, ,, acts on the 1D vector space spanned
by |A,,»). Then the coefficients for A, , ® E,; are,

(A.10a)
(A.10b)

l+p's+) =1Au,) ® ', v)
|,u +,u,;_> = |Ay,v> ® I/"t/’ -v)

Before giving the coeflicients for E, ® E,/, we recall that
E, = E_,; in the formulas that follow, we take the convention
u’ > 0 and yu takes whatever sign is appropriate to produce the
value of u + p’ in question. When considering E,, ® E,, one
generally must consider both p and —u to obtain all possible
irreps in the product. For E, ® E,, we have

|Apsp v) = \/% (s ) ® |5 v) —vsgn(u) [pus =) ® |15 —v))
(A11)
when y and p’ satisfy p + p’ € {0, 2}, and

I+ 3v) = 5 (s4) @ 1’5 v) = vsen(u) | =) @ 1’5 v)
(A.12)

Appendix B: Vector charge theory

In the main text, we assume that the fields in question
transform as scalars under space group operations. This need
not be the case; here, we show how the multipole group
classification problem is modified if the field is not a scalar. In
particular, this is necessary to produce a multipole symmetry
group that, when gauged, produces the (2+1)D symmetric
tensor vector charge theory [1, 83, 84] with Gauss’ Law

61-El-j =pj- (Bl)

Suppose that we have a square lattice with two sites per unit
cell, one on each bond of the square lattice. We call the fields
on the x/y-directed bonds ¢/, (r). Take the space group to
be p4m, with point group D4, and we assume that the fields

Ao+ ® Ao,- ® Aprjo,e ® Apryo, -
AM/2,+ @b AM/Q’, (&) El-l—ll’
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(A.6)
(A7)
p=p g,
’ M -
u = =7 if M even,
p+p =% andp# ', A8
else.
[
transform under point group operations as
. ¢x(r) N ¢y(MCr)
©: (%(r)) (—¢x<Mcr>) (B-22)
. ¢x(r) N _¢X(Mrr)
r (%(r)) ( 6,(M,1) ) (B.25)

where C is a four-fold rotation, and the generating mirror r
sends x <> —x. The minus signs on the field are the new,
crucial ingredient; we have assumed that ¢; transforms like a
vector under D4. The constant polynomial shift symmetries
(1,0)T and (0, 1)” now transform as the 2D irrep E; of Dy;
the only way to conserve total charge while staying consistent
with the space group is to conserve a vector-valued charge,
where the components are the ¢ charge and ¢, charge. This
is indeed a conserved charge of the vector charge theory,
as expected, and it is quite different from the case where
the fields are simply permuted under point group operations.
At degree one, the polynomial shift symmetries in question
are all one dimensional; labeling representations of D4 as in
Appendix A, they are (x, ~5)7 (Ass), (5, 5)7 (A-y), (5,)7
(A,_), and (y,—x)T (A__). Choosing the multipole group
to be generated by (y,-x)”, (1,0)7, and (0,1)7 (the first
set of polynomials generates the latter two via translations)
produces the usual vector charge theory, which conserves the
corresponding charges f d’r (r x p), and f d’rp.

Appendix C: Discrete vs continuous translations

Given some vector of polynomials f;(r) in the multipole
group, consider performing any discrete translation that could
appear as part of a space group operation:

fi(r) = fi(r+¢ta;) (C.1)

where a; is a lattice translation (that may in general depend
on i) and ¢ is any integer that represents the number of times
the discrete translation in question is being performed. We
require that f;(r + €a;) is also in the multipole group for every
¢ in order to have a closed multipole group. Listing out these
polynomials is in general very tedious, as they will generally
contain monomials of all degrees less than the degree of f;(r)
(call this degree n). We claim that the collection of polynomials
spanned by f; (r + ¢a;) for all ¢ is the same as the collection of
polynomials spanned by the procedure discussed in the main



text, namely where we formally take £ infinitesimal, generate a
collection of polynomials of degree n — 1, and then repeat the
process for the newly generated polynomials.

Without loss of generality, let a; be oriented along the x-axis;
for a general direction, all partial derivatives may be replaced
by directional derivatives. The power series expansion of a
polynomial f of finite degree yields

f@+€m)=§2(€ﬁnhéif@y

g oxJ

(C.2)

The highest term 7 is the maximum power of x appearing in
f, which is, of course, bounded from above by the degree of
f. Observe that 8/ f/dx/ always contains a term involving
x"~Jyk (for some fixed power k) but never any terms involving
a larger power of x. Therefore, the n + 1 polynomials 87 f/9x/
are linearly independent as elements of the vector space of
polynomials over R. We claim that this set of 7+ 1 polynomials
spans the same subspace as the set of f(r + €a;) for all integer
€. Equation (C.2) immediately shows that the span of the
latter set is contained in the span of the former. To see the
other way around, consider the n + 1 polynomials given by
¢ =1,2,...,n+ 1. Writing these polynomials in the basis
given by 0/ f /0x/, we obtain a set of vectors

L 12 e
12! 2 ... on
(C.3)

L e ) (na1? e (1)

This is a Vandermonde matrix with nonzero determinant since
no two of its rows are equal. Therefore, it is invertible; its
inverse is therefore a basis transformation that expresses the
0k f/0x/ as a linear combination of the f(r + fa;) with our
chosen values of ¢, so the span of the derivatives is contained
in the span of the translates. In particular, d f /dx is in the span
of the translates. By symmetry, 0 f/dy is as well.

We summarize the above argument as follows: given a lattice
translation a;, the directional derivative (a; - V)7 f; for all j span
the same space of polynomials as the translates f;(r + £a;) for
all £. It remains to show that given another lattice translation a;,
the mixed derivatives (a; - V)/ (a; - V) f; spans the same space
of polynomials as f;(r + {a; + ma}). We can simply repeat
the above argument, but applied to (a; - V)k f;. Then we can
conclude that (a; - V)/ (a) -V)k £; spans the same polynomials as
(a; - V)* f;(r+(a;). Applying the same argument again, we see
that the latter spans the same polynomials as f;(r + fa; + may),
as desired.

Appendix D: From discrete derivatives to spin Hamiltonians

D.1. Bravais lattice

Consider a given discrete derivative D, on a Bravais lat-
tice defined by its action on discrete functions (D, f)(x) =
Siec na(0;) f(x+8;). The real coeflicients n,(6;) are asso-
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ciated with site 7, which is displaced by §; from the center of
the cluster of sites C (which we take to be X ;¢ 6;). Note that
x, the displacement of the center of the cluster, might not be
centered on sites of the Bravais lattice (e.g., X may correspond
to the plaquettes or the bonds of the lattice). The positions Xx+6;
always correspond to Bravais lattice sites, however. Suppose
that the coefficients n,(8) are all integer valued (perhaps by
removing a common factor). If the integer-valued coefficients
satisfy |ny(8)| < 28, we can then define a Hamiltonian using
the discrete derivative D , acting on spin-S degrees of freedom:

A= e+ hiy, (D.1)
X

where we have defined the local “gate” fix,, associated to the
discrete derivative D, acting on the sites belonging to the
cluster C centered on X

7 as a(0;
e = [ (S
ieC

Ina(60)]
) . (D.2)

The sign of the coefficients, sgn(ny(8)) € {+,0,—} (where
sgn0 = 0), determine whether the site § in the cluster is
associated to a spin raising or lowering operator. Turning
the problem around, given spin-S degrees of freedom, the
restriction |n4(d)| < 28 can impose strong constraints on
the discrete derivatives that form valid Hamiltonians. In the
most highly constrained case — spin-1/2 degrees of freedom —
permitted derivative operators must satisfy n, € {-1,0, 1} only.
The utility of the construction in (D.1) is that the Hamiltonian
conserves the moments of “charge” defined by functions f
that are annihilated by the discrete derivative D ,. Explicitly,
consider the putatively conserved operator Q[ f], parameterized
by the function f(r)

QLf1 =2, f(S;, (D3)

r

which corresponds to the f(r) moment of the local “charge
density” 82, with total charge Q[1] = 3, 87 being recovered
for the unit function f(r) = 1. Making use of the commutation
relations [S‘f, (S*j_g“”)lnl] = n(;l.j(ﬁ?g"”)ln\ (n € 7) for spin-S
degrees of freedom, we find that

[Q[f1.Al= 2]

X

D nal(8)f(x+ 6») (hy = hy) (D.4a)
ieC

= > (Do f)(®)(h—hY). (D.4b)

That is, the commutator between Q[ f] and the Hamiltonian
in (D.1) composed of local gates effects a discrete derivative
on f. Hence, any function f satisfying D, f = O defines a
corresponding conserved charge 8, Q[ f] = 0. In particular,
if the coefficients ny(8) satisfy Y;ccnqe(6;) = 0, then D,
will annihilate the unit function f(r) = 1 and total charge
Q[ 1] will be conserved by dynamics generated by (D.1). Note
that the arguments can also be applied in reverse: Given a
Hamiltonian of the form (D.1), one can identify a family of
conserved charges 9[ f] by solving the equations D, f = 0.



D.2. Introducing a basis

Now consider introducing a g-spin basis at each site of the
Bravais lattice labeled by an index @ = 1, ..., g. The action of
a discrete derivative is still (D o f)(X) = Xicc na(6;) f (xX+8;),
where §; is now the displacement of the basis site i from the
center of the cluster C. However, we can alternatively index the
derivative coeflicients and the function f according to Bravais
sites and a basis index. In this case the discrete derivative may
be written

(Daf)(x) = Z Raa; (Al(i))fai (X + AI(l)) )

ieC

(D.5)

where X+ Aj ;) corresponds to the position of a Bravais site and
1(i) labels the Bravais lattice site associated to site i. That is,
the vectors A; are displacements of the Bravais sites from the
center of the cluster (now defined as >} ;¢ Ay, which is identical
to g~ Siec Aj(iy if C contains all basis sites associated with
each Bravais site). Note that this is merely a reparametrization
of the discrete function. Specifically, we are not assuming that
the function depends only on the position of the Bravais site.
For example, in the labeling scheme employed in (D.5), the
function f(r) = r> would become f,(R) = (R + 8,)%, where
d, is the vector that connects Bravais site R to basis site r,,. In
this language, the putatively conserved quantities Q[ f] now
depend on a function f,(R) that itself depends on both the
Bravais lattice site R and the index a:

Qlf1 =2 fa(R)SE - (D.6)
R,a

Again, we stress that whether f(r) is a function of r or R(r) is
a choice that is determined by the physics of the problem, but
both cases are handled by the notation in (D.6). Suppose that
the Hamiltonian now comprises multiple gates labeled by the
integer «

A= ng(ﬁxa + iljut) >

X,

(D.7)

with coupling constants g,. Repeating the calculation that led
to (D.4a), we find that the time evolution of the charge Q[ f] is
determined by

atQ s Z Ja Z Naa; (Al(i))fa,- (x+ AI(i))) (ilxa - ilia)

X, ieC
(D.8)
which implies that 9[ f]isaconserved quantity under dynamics
generated by (D.7) if all discrete derivatives annihilate the
function f,(R).

D.3. Additional symmetries

Note that the Hamiltonians in Egs. (D.1) and (D.7) possess

additional symmetries, as pointed out in, e.g., Refs. [14, 30].

For instance, the parity operator I1, = [T; ¢/™5 commutes
with the Hamiltonians (D.1) and (D.7) since I, has the effect
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of interchanging S’:f with Si‘ , i.e., ﬁxﬁff{x = 3‘?’, therefore
interchanging the gates /1y, < fzi «- We may, however, add any
perturbation that is diagonal in Sf basis to the Hamiltonian while
maintaining the conserved operators (D.3) and (D.6), since
this will not affect the commutators in Egs. (D.4a) and (D.8).
Because the discrete symmetry T, anticommutes with S’iz, it
only remains a conserved quantity if the perturbation consists
of an even number of § ¢ operators. The anticommutation of

I1, and S‘f also implies that IT, and the multipole moments

Q[ f] anticommute. Hence, if I, does commute with the
Hamiltonian, the sectors with quantum numbers {Q[ ]} and
{=QI[f]}, for all f that are conserved by H, will have precisely
the same spectrum.

D.4. More general Hamiltonians

As noted in the previous subsection, the Hamiltonians (D.1)
and (D.7) will conserve the same family of charges Q[ f] if they
are subjected to arbitrary perturbations that are diagonal in the
S’f basis. In fact, the statement is more general: even the gates

~

hxo themselves can be ‘decorated’ by operator insertions that
commute with ﬁf To illustrate this, consider a one-dimensional
lattice (with no basis) that hosts a theory conserving only
total charge X; Sf The smallest gate of the form (D.2) that

can be written down is simply il,"l = ﬁi‘ S‘;’H, which hops
‘charge’ one unit to the right. The next smallest operator of the
form (D.2) is fzi,z = §;_1.§;r+1, which hops charge two units to
the right. However, taking the product of two adjacent gates
hiyihiy = S’i’_lﬁlfﬁi’ﬁ;l differs from h;» by the operator
S':'.SAT on the central site (physically, a hop of two units to the
right cannot be exactly decomposed into two sequential hops,
since charge on the central site may interfere with the sequential

. . A+ &— . AZ
hopping process). Since §7S; commutes with S7, the operators

ili_l’l fzi,l and fzi,z effect exactly the same discrete derivative
(~ 0x) and therefore possess the same conserved quantities. As
aresult, the gates that we identify using the methods described
in the main text are ‘canonical’ in the sense that they conserve
all relevant f(x) and all such diagonal operator insertions are
absent; more complex gates can then of course be constructed
by introducing such diagonal operators.

Appendix E: Haar-random circuits and automaton dynamics

In the main text we confirmed that random circuits that
conserve the finite list of multipole moments in Eq. (33) exhibit
subsystem symmetry at long wavelengths. Here, we provide
extra details pertaining to these simulations. In particular, we
show how the Haar-random circuits can be simulated efficiently
by mapping to an effective automaton-like time evolution
controlled by a ‘transfer matrix’.

We work with spin-1/2 degrees of freedom that live on the
sites of an L X L triangular lattice satisfying periodic boundary
conditions. Acting on these degrees of freedom, we consider a
quantum circuit with a random geometry composed of Haar
random gates acting on clusters of sites. That is, rather than the



standard “brickwork™ geometry of gates, the location of each
gate is chosen at random from a uniform distribution over the
lattice (and one unit of time is defined as an extensive number
of such random gate applications). For a given cluster acting
on a region ¢, the unitary gate has the following structure

05 = ]l[®@u(t’ (E.D
a

where 7 is the region of the lattice complementary to the gate
region ¢, and u, is an n, X n, random unitary matrix. The
gate (E.1) is decomposed into blocks labeled by a according to
their symmetry quantum numbers. That is, all states |a, m o)
(wherem, = 1,...,n,) are eigenstates of the multipole charges
Q[ f] for f belonging to the multipole group, Q[ f] |, mq) =
Q[ f]|a,mgy), and have the same eigenvalues Q| f] for all f.
Since all Q[ f] are diagonal in the S’f basis, we may take the
decomposition (E.1) to be in the basis defined by product states
of the form ®; |b;), with |b;) € {|0),|1)} the eigenstates of Sf
onsite 7, i.e., § |b) = (-1) |b).

We now show how Haar-averaged two-point correlation
functions map onto stochastic automaton dynamics for operators
that are diagonal in the §f basis. The derivation is similar
to that of Ref. [60], except that we work with states rather
than vectorized operators, which makes the correspondence
with automaton dynamics more crisp. Consider an infinite
temperature two-point correlation function of the form

Cij(1) =Tr [pWH (1) 0;W(1) 0], (E.2)
where the time evolution operator W (7) is given by a product of
microscopic random unitaries (E.1), and p = 1/D is the infinite
temperature density matrix (D being the total dimension of
the many-body Hilbert space). The overline denotes ‘Haar
averaging’, i.e., averaging each block belonging to the gate (E.1)

over the unitary group U (n,) with respect to the Haar measure.

The corresponding ensemble of matrices is the circular unitary
ensemble (CUE). If the operators are diagonal in the S} basis,
it is convenient to evaluate the trace in this basis:

Cij(1) = L 2,0i(8)0; ()" W (1) Is) (s| WH (1) Is") ,
D

s,s’

(E.3)
where s and s’ represent eigenstates of ﬁf The quantity that
is averaged over in Eq. (E.3) is interpreted as the probability
that the system transitions from state s to s” after evolving the
system for a time #:

Pys(t) = [ WD) Is)[*. (E.4)

Suppose that each microscopic gate application is associated
with a time 7 (i.e., L>7 = 1 defines one unit of time). If a gate
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was applied on the region ¢ to evolve the system from time
t — T to t, then, inserting two resolutions of identity,

Pys(t) = > (5’| Ur Is1) (52| U] |s')x

C (sIWE-n) )y sIW(t-1)[s2). (ES)

Note that, since each gate is drawn from an independent
distribution, the CUE average has decomposed into two separate
averages. Since the gate (E.1) acts as the identity outside of ¢,
we immediately observe that the matrix elements enforce that
the states s; and s, must coincide in . We now perform the
average on the top line exactly using the one-fold Haar channel:

for each block, ®[A] = UAUT = d~! Tr[A]1 [85] (with d the
dimension of the random matrix U )

(s'10¢ Is1) (2| U] |s') =
1

(s1ls2)7 > o

a Na

(s2] P Is1)e (S| P Iy, , (E.6)

where the subscripts £ and £ denote the region of the lattice on
which the inner products are evaluated, and n, is the number
of states in the symmetry block @. Since the projectors can
also be chosen to be diagonal in the S’f basis, each term under
the summation vanishes if |s;), or |s;), does not belonging to
the block . If both belong to the block a, then the two states
must coincide. We can therefore eliminate s, from (E.5) and
simplify (E.6) to give

Pys(t) = D T Poys(t — 1) (E.7)
S1
where we defined the ‘transfer matrix’
1 2) 7 D ’
Tis =25 — (sI P Is) (/1P IS¢ - (E.8)

fe% a

The evolution from s — s’ can therefore be decomposed into a
sequence of such transfer matrices, each of which incorporates
the effect of a gate application. The transfer matrix (E.8) is
the state version of the operator transfer matrix derived in
Ref. [60]; it checks which block the input state belongs to and
sends it to a mixture of all other local states belonging to the
same block with uniform probability determined by the size
of the block: 1/n,. The correlation function (E.2) can then be
evaluated efficiently by performing a stochastic automaton time
evolution, where S’f eigenstates |s) are sent to other eigenstates
|s”) according to the transition probabilities determined by the
transfer matrix (E.8). To make sure that the gate (36) (which
microscopically breaks the subsystem symmetry) is included in
the circuit, we work with clusters of sites of radius ¢ satisfying
2¢ = V19 + €, centered on bonds of the lattice.
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