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Abstract

In the context of partial entanglement entropy (PEE), we study the entanglement struc-
ture of the island phases realized in several 2-dimensional holographic set-ups. The
self-encoding property of the island phase changes the way we evaluate the PEE. With
the contributions from islands taken into account, we give a generalized prescription
to construct PEE and balanced partial entanglement entropy (BPE). Here the ownerless
island region, which lies inside the island Is(AB) of A∪ B but outside Is(A)∪ Is(B), plays
a crucial role. Remarkably, we find that under different assignments for the owner-
less island, we get different BPEs, which exactly correspond to different saddles of the
entanglement wedge cross-section (EWCS) in the entanglement wedge of A ∪ B. The
assignments can be settled by choosing the one that minimizes the BPE. Furthermore,
under this assignment we study the PEE and give a geometric picture for the PEE in
holography, which is consistent with the geometric picture in the no-island phases.
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1 Introduction

In the past few decades there have been significant progress in our understanding of the
quantum information aspects of black holes, which is quite useful for our understanding of
the black hole information paradox [1]. In the context of the AdS/CFT correspondence [2],
the von Neumann entropy SA for a region A in the boundary CFT, was proposed to be dual to
the area of a minimal surface EA in the bulk AdS geometry which is homologous to A [3,4],

SA =
Area(EA)

4GN
. (1)

This relation between geometry and entanglement is the famous Ryu-Takayanagi (RT) formu-
la. This formula is further refined to the quantum extremal surface (QES) formula [5,6] with
the first order quantum correction from the bulk fields included.

In [7,8] the QES formula is applied to calculate the entanglement entropy of the Hawking
radiation for an evaporating black hole after Page time. The black hole is in a 2-dimensional
JT gravity, which is coupled to a non-gravitational CFT bath at the boundary. The new insight
is that, after the Page time, a new QES behind the horizon becomes dominant, and the region
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behind the QES is included in the entanglement wedge of the Hawking radiation. These new
insights are further refined towards the so called island formula [9–11]. The proposal of
island phase and entanglement islands not only opens a new window for us to understand
the quantum information aspects of black holes, but also introduces novel matter phases and
entanglement structures in quantum systems.

The island formula claims that, when we calculate the entanglement entropy of a region
A in the non-gravitational bath, we should consider the possibility of including a region Is(A)
inside the gravitational region and calculate the entanglement entropy in the following way,

Island f ormula I : SA =minextIs(A)

�
Area(∂ Is(A))

4GN
+ Sbulk(A∪ Is(A))

�
. (2)

More explicitly we consider all the possible island regions Is(A) and choose the one that min-
imizes the sum inside the brackets of (2). If the entanglement entropy calculated by (2) is
smaller than the one calculated in the usual way without islands, then the configuration en-
ters the island phase and (2) is the correct way to calculate the entanglement entropy. After
the Page time, the JT gravity coupled with the CFT bath enters the island phase, which pro-
duces exactly the decreasing part of the Page curve. Furthermore, the island formula has been
derived via gravitational path integrals where wormholes are allowed to join the black holes
in different copies of the configurations in the replica trick [10, 11]. Such a wormhole con-
figuration turns out to be a new saddle when calculating the partition function in the replica
manifold. Later it has been found that, the island phase can be realized in the AdS/BCFT
setup [12] in a simple way, even without a black hole. See [13–48] for more references on
recent developments on island formula in gravity and its applications.

Recently in [49], the island formula has been studied from a pure quantum information
theoretic perspective. When a quantum system is constrained in such a way that its Hilbert
space is substantially reduced and the state of a subset Is(A) is completely encoded in the
state of another subset A 1 , we call it a self-encoded system. Remarkably, in the self-encoded
systems the entanglement entropy of A should be calculated by a formula very similar to (2),
which we have called the Island formula I I [49],

Island f ormula I I : SA =
Area(∂ Is(A))

4GN
+ S̃(A∪ Is(A)) , |A〉 ⇒ |Is(A)〉 . (3)

In Island formula I I , the first term proportional to the area of the boundary of Is(A) arises
when Is(A) is settled in a gravitational background. The second term S̃(A∪ Is(A)) indicates
that the von Neumann entropy of the reduced density matrix is calculated by tracing out the
degrees of freedom in the complement of A∪ Is(A). As was pointed out in [49], since the state
of Is(A) is totally determined by the state of A, when we set boundary conditions for A to com-
pute the elements of the reduced density matrix ρA, we should simultaneously set boundary
conditions for Is(A) following the coding relation between A and Is(A). Consequently, there is
no room to trace out the degrees of freedom in Is(A) because they are not independent with
respect to A. More importantly, due to the self-encoding property, additional twist operators
emerge at the boundary of Is(A), which means gravitation is not necessary for entanglement
islands in this scenario.

From a purely quantum information perspective, the self-encoding property may be the
only plausible explanation for the emergence of entanglement islands. In [49], it was boldly

1Such confinements may be interpreted as projecting out certain states in the Hilbert space such that, for all
remaining states in the reduced Hilbert space, the state of the subregion Is(A) is determined by the state of the
subregion A via a coding relation. The simplest example could be a two-spin system in which the four-dimensional
Hilbert space H = {|00〉 , |01〉 , |10〉 , |11〉} reduces to the two-dimensional space Hreduced = {|00〉 , |11〉}, such that
the state of one spin in the reduced Hilbert space is completely determined by the state of the other spin. See [49]
for more details.
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conjectured that the two Island formulas I and I I are identical. More explicitly, this conjecture
implies that the formula I may apply to generic systems with or without gravitation, and that
in gravitational theories, the state of the entanglement island Is(A) should be encoded in the
state of the corresponding region A.

Inspired by this conjecture, a holographic CFT2 with no gravitation under a special Weyl
transformation was proposed to sustain entanglement islands in [49]. This is the Set-up 1
where we analyze its island configurations and entanglement structure. The main reason
we use this setup is that, in the effective theory description the two-point functions of twist
operators which are not symmetric with respect to the x = 0 point is also well defined in
this setup. For the readers who are not convinced by the application of the island formula to
non-gravitational systems, we emphasize that the discussion in our paper is also valid when
we couple the Weyl transformed part of the CFT to gravity (the gravitational Set-up 1). Also
in the appendix, we introduce the Set-up 2, which is a generalized version of the AdS/BCFT
setup where the non-symmetric two-point functions of twist operators can also be defined.

Given the setups, we focus on the so called entanglement wedge cross-section (EWCS) in
the gravitational dual of a boundary state in island phase and its dual quantum information
quantity. The EWCS of the entanglement wedge of two non-overlapping regions AB ≡ A∪ B
is a natural measure for the mixed state correlation between A and B. Since the measure
for mixed state correlations is also not well studied in quantum information theory, the study
of EWCS is also quite interesting from the quantum information perspective. In [50, 51],
it was proposed that the quantum information quantity corresponding to the EWCS is the
entanglement of purification, since it satisfies a similar set of inequalities as the EWCS. Since
then, a series of quantum information quantities have been proposed to be the dual of the
EWCS, which includes the entanglement negativity [52–54], the reflected entropy [55], the
“odd entropy” [56], the “differential purification” [57], the entanglement distillation [58,59].
See [60–67] for more explorations along these lines. Nevertheless, most of these quantities
are defined in terms of an optimization problem, which makes them extremely difficult to
calculate and the evidence for their correspondence to the EWCS is not enough. The reflected
entropy is defined as the entanglement entropy under a special canonical purification, hence
calculable in general quantum systems. Moreover, the correspondence between the EWCS
and the reflected entropy in island phases was explicitly studied in [68,69]

In this work we will, in particular, study the balanced partial entanglement entropy (BPE)
[70–72], which has also been proposed to be dual to the EWCS. For a purification A1B1AB
of the mixed state ρAB, the BPE is a special partial entanglement entropy (PEE) sAA1

(A) satis-
fying certain balanced conditions. The BPE is easy to calculate, as we have several powerful
prescriptions to construct the PEE [73–75] in two dimensions. Moreover, unlike the reflected
entropy and entanglement of purification which are defined on some special purifications,
the BPE can be defined in generic purifications and is claimed to be purification independent.
The purification independence and the correspondence to the EWCS for the BPE have been
tested in global and Poincaré AdS3 [71], holographic CFT2 with an arbitrary Weyl transfor-
mation [71], holographic CFT2 with gravitational anomalies [72] and BMS3 symmetric field
theories dual to 3-dimensional asymptotically flat spacetimes [71]. In particular, BPE can be
regarded as a generalization of the reflected entropy, as BPE reduces to the reflected entropy
for the particular case of canonical purification.

The main task of this paper is to study the BPE for island phase in 2-dimensional holo-
graphic theories and match it with the EWCS. This is a highly non-trivial task. Firstly, the
phase structure of the EWCS is more complicated than the entanglement entropy (or RT sur-
faces), and we need to reproduce the phase structure from the BPE, which is purely evaluated
from field theory side without any reference to the geometric picture. Secondly, in island
phase when we calculate the entanglement entropy of a certain region A, it may involve other
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degrees of freedom outside A there is an entanglement island Is(A). This essentially change
the way we calculate the entanglement entropy and PEE, hence we need to generalized the
way we construct the PEE and BPE to the scenarios with entanglement islands. We find that
the generalization involves the assignment of the contribution from the ownerless island re-
gions. For two non-overlapping regions A and B, when the entanglement island of AB is larger
than the union of the islands of A and B, i.e.

Is(AB)⊃ Is(A)∪ Is(B) , (4)

then the region Is(AB)/(Is(A)∪ Is(B)) inside Is(AB) but outside Is(A)∪ Is(B) is called the own-
erless island regions. The ownerless island regions are closely related to the so-called reflected
islands [68]. The key to calculate the BPE(A, B) correctly, is to assign the contributions from
the ownerless island regions to the right PEE. We will see that, different assignments for the
ownerless island regions correspond to different balance point for the BPE, as well as different
saddle point for the EWCS. We should choose the balance point that gives the minimal BPE or
the EWCS saddle point with the minimal area. Eventually we get the matching between the
BPE and EWCS.

This paper is organized as follows. In Sec.2, we will briefly introduce the partial entan-
glement entropy and the balanced partial entanglement entropy for usual quantum systems
without islands. Then in section 3, we give the set-ups where island configurations are re-
alised, and introduce a new concept of ownerless island regions and discuss how it changes
the way we evaluate the PEE and BPE in island phase. After taking into account the contribu-
tion from the entanglement islands and ownerless islands, we generalize the way we compute
the PEE and BPE to the scenarios with entanglement islands. In Sec.4 we give a classification
for the EWCS in island phases in two dimensions. We also provide a naive calculation for BPE
following the standard construction of the PEE and BPE in no-island phase, and find that it
does not match with the EWCS. In Sec.5, with the generalized version of the ALC proposal
(see (8)) and generalized balance requirements, we calculate the BPE for various configura-
tions in island phase. We find that under different assignments of the ownerless island regions
we get different BPEs, which correspond to different saddles of the EWCS. The minimal BPE
matches exactly with the minimal EWCS. In section 6, under the assignments for the owner-
less island that gives the minimal BPE, we evaluate the contributions sAB(A) and sAB(B) for
various configurations and find consistency with the geometric picture. At last, in section 7
we give a summary of our results, discuss the physical significance of our results and provide
an outlook for the future directions.

2 Brief introduction to PEE and BPE in non-island phase

2.1 Partial entanglement entropy

The entanglement contour is a concept in quantum information conjectured in [76], which
is a function sA(x) that describes the contribution from each site x inside a subsystem A to
the entanglement entropy of A. This can be regarded as a density function of entanglement
entropy inside A, that not only depends on the site x but also on the region A. By definition
the entanglement contour function should satisfy

SA =

∫
A

sA(x)dσx, (5)

where dσx is the infinitesimal area element of A. Later a systematic study on the partial
entanglement entropy (PEE) has been carried out in [73–75, 77]. The PEE is defined as the
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contribution from a subset α of A to the entanglement entropy SA, which can be expressed as

sA(α) =

∫
α

sA(x)dσx . (6)

The entanglement contour is a differential version of the PEE, and has been studied exten-
sively in condensed matter theory to measure the speading of entanglement under evolu-
tion [77–81]. In AdS3/CFT2, PEE correspond to bulk geodesic chords [73,82] which is a finer
correspondence between entanglement and geometry [73,74]. More details on PEE, especial-
ly a first law-like version of the entanglement contour and its role in recently proposed island
proposal can be found in [80,84].

The expression sA(α) displays the information about the contribution from the subregions,
hence is called the contribution representation of the PEE. Later it was found that the PEE can
be interpreted as an additive two-body correlation [75], and it is usually more convenient to
express it in the following form

I(α, Ā)≡ sA(α) , (7)

where Ā is the complement of A and Ā∪ A makes a pure state. We call the notation on the
left hand side the two-body-correlation representation of the PEE, while the notation on the
right hand side the contribution representations of the PEE. These two representations are
equivalent to each other in the usual quantum systems without islands.

The PEE should satisfy a set of physical requirements [75, 76] including those satisfied
by the mutual information I(A, B)2 and an additional one, the additivity property. For non-
overlapping regions A, B and C , the physical requirements for the PEE are classified in the
following:

1. Additivity: I(A, B ∪ C) = I(A, B) + I(A, C);

2. Permutation symmetry: I(A, B) = I(B, A);

3. Normalization: I(A, Ā) = SA;

4. Positivity: I(A, B)> 0;

5. Upper boundedness:I(A, B)≤min{SA, SB};
6. I(A, B) should be Invariant under local unitary transformations inside A or B;

7. Symmetry: For any symmetry transformation T under which T A= A′ and T B = B′, we
have I(A, B) = I(A′, B′).

For more details about the well (or uniquely) defined scope of the PEE and the ways to
construct the PEEs in different situations, the readers may consult [73–75, 77, 83, 85, 86].
These details are also summarized in the background introduction sections of [71, 72]. Here
we only introduce one particular proposal to construct the PEE in generic two-dimensional
theories with all the degrees of freedom settled in a unique order (for example settled on a
line or a circle), which we call the additive linear combination (ALC) proposal [73,75,77].

• The ALC proposal: Consider a region A which is partitioned in the following way,
A = αL ∪ α ∪ αR, where α is some subregion inside A and αL (αR) denotes the regions
left (right) to it. The proposal claims that:

sA(α) = I(α, Ā) =
1

2

�
SαL∪α+ Sα∪αR

− SαL
− SαR

�
. (8)

2Note that, we should not mix between the the mutual information I(A, B) and the PEE I(A, B).
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Figure 1: BPE for adjacent and disjoint intervals in CFT2 vacuum. q, q1, q2 are bal-
ance points.

The Additivity and Permutation symmetry properties of the PEE indicate that, any PEE
I(A, B) can be evaluated by the summation of all the two-point PEEs I(x,y) with x and y
located inside A and B respectively [75], i.e.

I (A, B) =

∫
A

dσx

∫
B

dσy I(x,y). (9)

Note that the two-point PEE is an intrinsic entanglement structure of the system, in the sense
that it is independent of the choice of the regions A and B.

2.2 Balanced partial entanglement

Compared to the entanglement entropy, the entanglement contour or the PEE is a finer de-
scription for the entanglement structure of a quantum system. Then it is possible to extract
other quantum information quantities from the PEE. In this paper we focus on the so-called
balanced partial entanglement entropy (BPE), which is a special PEE that satisfies certain bal-
ance conditions, and can be considered as a generalization of the reflected entropy in generic
purifications of a mixed state. The BPE was proposed in [70] and is claimed to be dual to
the EWCS. Furthermore in [71], it was proposed that the BPE captures exactly the reflected
entropy in a mixed state and is purification independent. These proposals have passed various
tests in covariant scenarios [72], holographic CFT2 with gravitational anomalies [72], CFT2
with different purifications [71] and 3-dimensional flat holography [71,87]3.

For a bipartite system HA ⊗ HB in a mixed state ρAB, one can introduce an auxiliary
system A1B1 to purify AB such that the whole system ABA1B1 is in a pure state

��ψ�, and
TrA1B1

��ψ�
ψ��= ρAB. The way we purify ρAB is highly nonunique. The BPE between A and B
is defined by

BPE(A : B) = I(A, BB1)|balanced = I(B, AA1)|balanced = sAA1
(A)|balanced , (10)

where the subscript balanced means to satisfy the balance and minimal requirements, which
are listed in the following:

1. Balance requirement: Among all possible configurations for the partition of A1B1, we
should choose the one satisfying the following condition

sAA1
(A) = sBB1

(B) or I(A, B1) = I(A1, B). (11)

3In 3-dimensional flat holography [88,89] the entanglement wedge and EWCS were studied in [90] based on
the geometric picture of the holographic entanglement entropy [91] in flat holography .
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When A and B are adjacent, (11) is enough to determine the partition of A1B1, or
equivalently, the balance point.

However, when A and B are non-adjacent (see the right panel of Fig.1), the complement
AB is disconnected and we need two partition points (see Fig.1) to divide AB. In this
case the balance requirements are generalized to two conditions

sAA1A2
(A1) = sBB1B2

(B1), sAA1A2
(A) = sBB1B2

(B), (12)

or
I(A1, BB2) = I(B1, AA2), I(A, B1B2) = I(B, A1A2) . (13)

Since SA = SB, sAA1A2
(A2) = sBB1B2

(B2) is automatically satisfied if the above two condi-
tions are satisfied.

2. Minimal requirement: Usually the configurations for the partition of A1B1 that satisfy
the balance requirement are not unique. When there are multiple balance points, one
should choose the one that minimizes BPE(A : B). Later when we mention the balance
requirements, the minimal requirement should be included.

Accordingly, for the configurations where A and B are non-adjacent, the definition of
BPE(A, B) generalizes to be

BPE(A : B) = I(A, BB1B2)|balanced = sA1AA2
(A)|balanced . (14)

Since at the balanced point I(A, B1B2) = I(A1A2, B), the BPE can also be expressed as

BPE(A : B) = I(A, B) +
(I(A, B1B2) + I(A1A2, B))|balanced

2
. (15)

Minimal crossing PEE: In the above expression for BPE, the first term is intrinsic, hence
only the second term depend on the partition. In [71] it was observed that the summation
I(A, B1B2) + I(A1A2, B), called the crossing PEE, is purification independent and minimized
at the balance point. This observation has been tested in both static [71] and covariant [72]
configurations in AdS3/CFT2. In these cases the balance requirements can be replaced by an
optimization problem, i.e. minimizing the crossing PEE. This is important because searching
for the EWCS is also an optimization problem. It is interesting that, in CFT2 when A and B
are adjacent, this minimized crossing PEE is given by a universal constant which is the lower
bound of a quantity termed the Markov gap [70,92,93].

3 Setups and the ownerless island regions

The island formula has been extensively studied in the models where a Jackiw-Teitelboim
(JT) gravity coupled to a CFT2 bath in flat background [5–8]. Combined with the braneworld
holography [94–96], the entanglement islands also emerge in an effective 2d description of
AdS/BCFT [12, 97–100]. Also, the PEE has been explored in this context; for example, the
authors of [80, 84] have studied the entanglement contour for the Hawking radiation based
on the straightforward application of the ALC proposal for PEE in island phase. In [101],
the contribution from the island Is(A) for certain region A in the Hawking radiation was also
discussed.

In this section we will first introduce two setups with island phases. Then we study the PEE
structure and their contribution to entanglement entropies in the presence of entanglement
islands, which has not been thoroughly studies before. Furthermore more, a new concept
named the ownerless island regions are introduced, which are crucial for the evaluation of
the BPE.
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3.1 Set-up1: Holographic Weyl transformed CFT

The first setup with island phase is the holographic Weyl transformed CFT2 proposed in [49].
Let us start from the vacuum state of a holographic CFT2 on a Euclidean flat space with the
metric ds2 = 1

δ2

�
dτ2+ d x2
�

4. Here δ is an infinitesimal constant representing the UV cutoff
of the boundary CFT. One may apply a Weyl transformation to the metric,

ds2 = e2φ(x)

�
dτ2+ d x2

δ2

�
. (16)

which effectively changes the cutoff scale following δ⇒ e−φ(x)δ, where φ(x) is usually nega-
tive. The entanglement entropy of a generic interval A= [a, b] in the CFT after the Weyl trans-
formation picks up additional contributions from the scalar field φ(x) as follows [71,102,103]

SA =
c

3
log
�

b− a

δ

�
+

c

6
φ(a) +

c

6
φ(b) . (17)

This formula can be achieved by performing the Weyl transformation on the two-point func-
tion of the twist operators.

Then we perform a UV cutoff dependent Weyl transformation for the x < 0 region such
that the metric in this region is proportional to the AdS2 metric,

φ(x) =

0 , if x ≥ 0 ,

− log
�

2|x |
δ

�
+κ . , if x < 0 ,

(18)

where κ is an undetermined constant. After the Weyl transformation the metric at x < 0
becomes

ds2 =
e2κ

4

�
dτ2+ d x2

x2

�
, x < 0 . (19)

Such a special Weyl transformation changes the CFT essentially, and the cutoff scale at x < 0
is no longer related to δ, rather it is characterized by the coordinate x . Note that, the scalar
field (18) is non-smooth or even discontinuous at x = 0. Since the entropy (17) only depends
on the scalar field at the endpoints, we think this is not a fatal problem as long as we do not
talk about the intervals ending on the interface at x = 0. One can also redefine the scalar field
in the neighborhood of x = 0 to retain smoothness there. This will not affect our following
discussions.

In [49], the subjection of the term |φ(x)| in the entanglement entropy formula (17) was
interpreted as putting a cutoff sphere in the AdS3 background with radius |φ(x)| and center
at (δ, x). Assuming this interpretation, we put a cutoff sphere with radius |φ(x)| for all the
points with x < 0 for the specific Weyl transformation (18). The common tangent line of all
these cutoff spheres in this case form a straight line in the AdS space (see Fig.2) which we
call the cutoff brane. As stressed in [49], in this configuration the RT surfaces are allowed
to be anchored on the cutoff brane in the sense that, the RT surfaces for symmetric intervals
[−a, a] are cut off there. This indicates that the cutoff brane plays a similar role as the end of
world (EoW) brane in the AdS/BCFT setup [12] (see the appendix for a brief introduction).
Furthermore, the parameter κ plays a similar role as the tension of the EoW brane because

4Here the overall factor 1
δ2 is inspired by AdS/CFT, where the metric is precisely the boundary metric of the

dual AdS3 geometry ds2 = ℓ2

z2 (−d t2 + d x2 + dz2) with the radius coordinate settled to be z = δ.
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the cutoff brane exactly settles at ρ = κ, where the coordinate ρ is defined in the appendix
of Ref. [49]. On the other hand, unlike the AdS/BCFT setup, here the degrees of freedom at
x < 0 still settle at the asymptotic boundary rather than on the cutoff brane, and we have not
assumed a gravitational theory on the cutoff brane. Nevertheless, later we will directly apply
the island formula (2) on this system5. See [49] for more details about this configuration.

For readers who are not convinced by applying the island formula to non-gravitational
theories, we can modify this setup accordingly. More explicitly we assume that the left-hand-
side CFT in AdS2 background is coupled to an induced gravity where the full gravity action
is produced by integrating the matter CFT degrees of freedom. Here the AdS2 background
on the left hand side is also considered as a result of performing the Weyl transformation
characterized by (18). This is just the setup introduced in the section 2 of [99], with the main
difference being that the choice of the scalar field (18) in our paper includes the new parame-
ter κ. In this setup the correlation functions of the twist operators are exactly the same as (17)
in the holographic Weyl transformed CFT2, and the holographic picture is also conjectured to
be the AdS3 with a EoW brane setted at ρ = κ [49, 99]. Although the interpretation for the
two setups could be different, the calculation for the entropy, PEE and BPE are exactly the
same. We refer this modified setup the gravitational Set-up 1.

Figure 2: Figures extracted from [49], licenced under CC-BY 4.0. When we only
consider symmetric intervals [−a, a], the common tangent surface to all the cutoff
spheres settled at ρ = κ, can be compared to the EoW brane (ρ = ρ0) in the Ad-
S/BCFT scenario. However, the RT surfaces for non-symmetric intervals will be cut
off at certain cutoff sphere behind the cutoff brane, see Fig.19.

Before we go ahead, we also provide an alternative Set-up 2 in the appendix A. This setup
is a generalized version of AdS/BCFT [9,97–99,104], where we add conformal matter to the
EoW brane in the standard AdS/BCFT setup [12]. We will focus on the typical model called
the defect extremal surface (DES) model proposed in [97], which treats the EoW brane as a
defect and assumes a defect theory living the EoW brane. The 2-dimensional effective theory
description for DES model is then described by a gravitational CFT2 on the brane coupled to a
bath CFT2 with a transparent boundary condition, where the two-point functions of the twist

5If the RT surfaces can be cut off deep inside the bulk, then new minimal saddles will arise when we apply
the replica trick in the AdS bulk following the Lewkowycz-Maldacena prescription [5]6. This is one of the main
reasons for the authors of [49] to propose that, island formula can be applied in this holographic Weyl transformed
CFT2. The second reason comes from the existence of entanglement islands in non-gravitational systems which
are self-encoded [49]. This opens a window for us to apply the island formula in this non-gravitational Weyl
transformed CFT if the self-encoding property emerges due to the Weyl transformation, despite the fact that the
previous arguments [10, 11] for entanglement islands via the replica wormholes relies on gravitation. The third
reason is that, in this setup the island formula can give a smaller entanglement entropy in certain scenarios than
the usual formula without islands, which we will see in the next subsection.
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operators for non-symmetric intervals can be defined. As in the previous setups, we get the
two-point functions of twist operators under the same Weyl transformation. In this setup, the
conformal matter on the brane in the DES model will introduce an additional defect term to
the BPE or the reflected entropy, which should be understood as the contribution from the
bulk entanglement entropy in the RT formula with quantum correction [105]. We will see
that, provided κ = ρ0 (where ρ0 is the tilt angle of the EoW brane in the DES model) the
calculations for the BPE exactly match with the reflected entropy given in [106], which is the
EWCS term plus an additional defect term that originates from the conformal matters on the
brane in the DES model.

Later in this paper, for all the figures we will contract the region behind the cutoff brane
(the gray region in Fig.2) to make them consistent with the widely used AdS/BCFT setup.

3.2 Islands in holographic Weyl transformed CFT

Let us apply the Island formula (2) to the (gravitational) Set-up 1. We consider A to be the
semi-infinite region x > a. The entanglement entropy calculated by the island formula is
given by

SR =min

¨
c

3
log

a+ a′
δ
− c

6
log

�
2a′
δ

�
+

c

6
κ

«
, (20)

where we take the region I = (−∞,−a′] as a possible choice for Is(A). One can easily check
that, when a = a′ the above expression attains its minimal value7:

SR =
c

6
log
�

2a

δ

�
+

c

6
κ , a′ = a , (21)

which is always smaller than the entanglement entropy computed through the usual tech-
niques. Similarly when we consider A to be an interval [a, b] inside the region x > 0 and
[−b′,−a′] is any possible choice of Is(A), the island formula will give8

SA =min

¨
c

3
log

a+ a′
δ

+
c

3
log

b+ b′
δ
− c

6
log

�
2a′
δ

�
− c

6
log

�
2b′
δ

�
+

c

3
κ

«
, (22)

which has the saddle point

SA =
c

6
log
�

4ab

δ2

�
+

c

3
κ , a′ = a , b′ = b . (23)

As was found in [49], the above result is smaller than the usually computed entanglement
entropy SA =

c
3

log
�

b−a
δ

�
, when

a/b < r∗ ≡ 1− 2
p

e2κ+ e4κ+ 2e2κ . (24)

In other words, for any interval [a, b] with a/b < r∗, the interval admits an island and the
entanglement entropy should be calculated through the island formula.

7Note that, in Set-up 1 the two terms in (21) are given by the Weyl transformed two-point function of twist
operators for the interval [−a, a]. In the gravitational Set-up 1 the constant term c

6
κ is interpreted as the area

term Area(X )
4G

since the gravity coupled to the left-hand-side CFT is induced by a simple partial reduction of the
AdS3 spacetime, see the appendix or [97,99] for more details.

8Here we need to assume that the entanglement entropy for two disjoint intervals in the holographic Weyl
transformed CFT exhibit similar phase transitions as the RT formula [107, 108], under certain sparseness condi-
tions on the spectrum and OPE coefficients of bulk and boundary operators and large c limit. We leave this for
future investigation.
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In the context of AdS/BCFT, we can either consider the regions with no islands or re-
gions [a, b] (b > a > 0) with reflection symmetric islands [−b,−a]. In the configurations
with islands, the entanglement entropies are calculated by the two-point functions of twist
operators settled at reflection symmetric sites. These are also well-defined in the holographic
Weyl transformed CFT2, as the RT surfaces can also anchor at the common tangent vertically.
Moreover, in holographic Weyl transformed CFT2, the Weyl transformed two-point functions
for twist operators can be generalized to the non-symmetric configurations. More explicitly,
we can set the two twist operators at −b and a with a, b > 0 and a ̸= b.

The physical interpretation for these two-point functions are not clear so far. It is quite
tempting to interpret these two-point functions as the entanglement entropies for the inter-
vals [−b, a] with no reflection symmetry. Nevertheless, in the following, we argue that this
interpretation is not correct, and we will provide a more suitable interpretation in Sec.3.4. For
b < a, although the two-point function is still computable according to the island formula I I ,
the region (0, a] determines the state of its island region [−a, 0). When we set boundary con-
ditions for (0, a], we simultaneously set boundary conditions on [−a, 0), which means we can
only trace the degrees of freedom outside [−a, a], which is a larger region covering [−b, a].
This implies that the entanglement entropy for [−b, a] with b < a is not well defined. Similar
problems arise for the region (−∞,−b]∪ [a,∞) with b > a.

The above problem does not arise in the cases with b > a, where the region [−b, 0) cov-
ers the island [−a, 0). Nevertheless, in these cases the entanglement entropy for [−b, a] is
also not well defined, due to the self-encoding property of the system, which makes the sit-
uation different from the normal systems where the degrees of freedom at different sites are
independent of each other. When we compute the reduced density matrix on [−b, a], we set
boundary conditions on [−b,−a) ∪ [−a, a] to compute the elements of the reduced density
matrix. Even though, settling down the state for the region [−b,−a) does not totally deter-
mine the state of any degrees of freedom outside [−b, a], it would in some way confine the
space of the sates for the complement (−∞,−b]∪[a,∞). Hence while tracing out the degrees
of freedom outside [−b, a], we should not go through all the states in the Hilbert space of the
complement. Another evidence is that, the entanglement entropy for the complement region
(−∞,−b]∪ [a,∞) is not well-defined in the sense that (−∞,−b] is a subregion of the island
of the region [a,∞).
3.3 The PEE structure of the island phase and the ownerless island

Previously we have introduced two representations for the PEE, i.e. the contribution repre-
sentation and the two-body-correlation representation. The contribution representation needs
the input of the region A and its subset α, while the two-body-correlation representation is
an intrinsic structure of the state which does not rely on the choices of the regions and their
subsets. As we have shown that, given a region A and one of its subsets α, we can generate
all the contributions sA(α) from I(x , y) by integration (or summation). So we can claim that
the two representations are equivalent to each other.

In island phase, the two-body-correlation structure is still an intrinsic structure of the
state, while the contribution representation changes a lot in island phase. The reason is that,
in island phase when we talk about certain region A, it also involves other degrees of freedom
(which is in the island region Is(A)) outside A when it admits an island. In this case, not only
the degrees of freedom inside A, but also those in its island contribute to SA. The self-encoding
property of the state indicates that the degrees of freedom at different sites are no longer
independent of each other, and essentially change the way we evaluate the entanglement
entropy of a region A, as well as the contribution sA(α) from the subset α. Later in this paper,
our discussion will be conducted mainly in the two-body-correlation representation, and we
will only refer to I(A, B) as a PEE.
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More explicitly, let us consider a region A which admits island. The entanglement entropy
SA is calculated by the island formula SA = S̃A∪Is(A), which is the von Neumann entropy of
the reduced density matrix ρ̃A∪Is(A) computed by tracing out the degrees of freedom outside
A∪ Is(A). This strongly indicates that, we should collect all the two-point PEEs I(x , y) with x
and y located in A∪ Is(A) and its complement separately, i.e.

SA = S̃A∪Is(A) =

∫
x∈A∪Is(A)

d x

∫
y∈A∪Is(A)

d y I(x , y) . (25)

A direct consequence is that, the normalization requirement SA = sA(A) = I(A, Ā) in the non-
island phase breaks down as the island also contributes to SA.

• In other words, the PEE between Is(A) and A∪ Is(A) should contribute to SA since the state
of Is(A) is totally determined by A and should be understood as a window through which A
can entangle with A∪ Is(A).

One can also write the above equation as

SA = I(A, A∪ Is(A)) + I(Is(A), A∪ Is(A)) , (26)

which is quite different from the normalization property SA = I(A, Ā) in non-island phase. In
the above formula (26), the region A can be either connected or disconnected9.

• We conclude that, in island phase the relation sA(α) = I(α, Ā) between the two represen-
tations as well as the ALC proposal no longer holds. When we compute the contribution
sA(α) from the two-body-correlation I(x , y), we should take into account the island con-
figuration carefully.

Now we discuss the entanglement entropy for the union of two non-overlapping regions
AB ≡ A∪B and the contribution sAB(A) and sAB(B) in terms of the PEEs in two-body-correlation
representation. These configurations have more complicated structures in the presence of
islands. In the following, we classify the island configurations of these configurations into
three classes and explicitly discuss how the island structure affects the contributions.

Class 1

In the first class, the region AB, as well as A and B, does not admit an island. In this case,
since all the regions do not involve degrees of freedom outside AB, sAB(A) and sAB(B) can be
calculated by the ALC proposal for PEE in the non-island phase,

sAB(A) =
1

2

�
SAB + SA− SB
�
= I(A, AB) ,

sAB(B) =
1

2

�
SAB + SB − SA
�
= I(B, AB) .

(27)

Class 2

In the second class, all the three regions AB, A and B admit islands and

Is(AB) = Is(A)∪ Is(B). (28)

Let us denote C ≡ AB ∪ Is(AB). In this case, the entanglement entropy SAB = I(AB∪ Is(AB), C)
has contribution I(Is(AB), C) from Is(AB). Since Is(AB) is just the union of Is(A) and Is(B),

9See also [101] for an earlier discussion of the formula (26) when A is a connected interval.
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this island contribution can be decomposed into I(Is(A), C)+I(Is(B), C), where the two terms
should be assigned to sAB(A) and sAB(B) respectively. More explicitly we have

sAB(A) =I(A, C) + I(Is(A), C) , (29)

sAB(B) =I(B, C) + I(Is(B), C) . (30)

These PEEs can be calculated by writing them as a linear combination of S̃α. For example,

sAB(A) = I(AIs(A), C) =
1

2

�
S̃AB∪Is(AB)+ S̃A∪Is(A)− S̃B∪Is(B)

�
,

sAB(B) = I(B Is(B), C) =
1

2

�
S̃AB∪Is(AB)+ S̃B∪Is(B)− S̃A∪Is(A)

�
.

(31)

According to the formula (26), it is evident that the contribution sAB(A) and sAB(B) can still be
written as the linear combination of entanglement entropies (including island contribution)
following the ALC proposal.

Class 3

In the third class, the region AB admits an island Is(AB), but Is(A)∪ Is(B) does not cover the
full Is(AB), i.e.

Is(AB)⊃ (Is(A)∪ Is(B)) . (32)

Here we do not require the two subregions A and B to admit individual islands. If A (or B)
does not admit an island, then Is(A) = ; (or Is(B) = ;) in (32). In this case, there are degrees
of freedom that belong to Is(AB) but outside Is(A) ∪ Is(B). We call these degrees of freedom
the ownerless island region and denote them as Io(AB), i.e.

Ownerless island region : Io(AB) = Is(AB)/(Is(A)∪ Is(B)) . (33)

It is also possible that neither A nor B admits islands and hence the total island Is(AB) is
ownerless. Let us again denote the complement of AB ∪ Is(AB) as

C ≡ AB ∪ Is(AB) . (34)

It is clear that the ownerless island region contributes to the entanglement entropy SAB, since

SAB = I(AB ∪ Is(AB), C) = I(Io(AB), C) + I(AB ∪ Is(A)∪ Is(B), C). (35)

However, it is not clear whether we should assign this contribution I(Io(AB), C) to sAB(A),
sAB(B) or to both of them.

The assignment for the contribution from the ownerless island region has not been dis-
cussed before. Let us divide Io(AB) into two parts

Io(AB) = Io(A)∪ Io(B) , (36)

where Io(A) is assumed to contribute to sAB(A), while Io(B) is assumed to contribute to sAB(B),
i.e.

sAB(A) =I(A∪ Is(A), C) + I(Io(A), C) , (37)

sAB(B) =I(B ∪ Is(B), C) + I(Io(B), C) . (38)

One can check that, if we naively apply the ALC proposal, then the contribution from the
ownerless island regions will be missing which results in a wrong answer. So in these cases
the ALC proposal no longer holds and we should treat the ownerless island regions carefully.
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Later we will see that different assignments will give us different BPEs which correspond
to different saddles of the EWCS. Furthermore, when we have multiple balance points, we
should choose the one that gives the minimal BPE, which helps us further determine the
decomposition of the ownerless islands. Eventually we will see that the region Io(A) ∪ Is(A)
(or Io(B)∪ Is(B)) will coincide with the so-called reflected entropy island of A (or B) defined
in [68]. For simplicity we define

Ir(A)≡ Is(A)∪ Io(A) , Ir(B)≡ Is(B)∪ Io(B) , (39)

which can be understood as a generalized version of islands when calculating contributions
from subsets with the ownerless island regions taken into account. The contributions in (37)
then can be expressed as

sAB(A) = I(A∪ Ir(A), C) , sAB(B) = I(B ∪ Ir(B), C) . (40)

3.4 The generalized ALC proposal and generalized balance requirements

In the previous subsection we have shown that for AB without any island, the contributions are
still given by the ALC proposal. When AB admits an island and no ownerless island appears,
then the ALC proposal also applies with the entanglement entropies in the linear combination
calculated by the island formula. Nevertheless, in class 3 the situation is different since Ir(A) is
not the island of A. It is impossible to write the PEE I(AIr(A), C) in terms of the entanglement
entropies of subsets. In order to explicitly compute the PEE, we need to find a way to write
the PEE in terms of other quantities that are computable.

As we have discussed, in the 2d effective field theory we can compute the two-point cor-
relation function of twist operators, when the two points are settled with reflection symmetry
the correlation function computes the entanglement entropy with islands. While when there
is no reflection symmetry the physical meaning of the two-point function is not clear due to
the self-encoding property of the system. Here we propose that these two-point functions
indeed give the PEE between the region enclosed by the two points and the complement of
this region. More explicitly, let us consider the twist operators settled at a and b (b > a) and
denote the connected region [a, b] as γ. Then, we propose the following equation:

Basic proposal 1 : I(γ, γ̄) = S̃[a,b] = S̃(−∞,a]∪[b,∞)

=
c

3
log
�

b− a

δ

�
+

c

6
φ(a) +

c

6
φ(b) .

(41)

In non-island phases, the above equation holds as both of the I(γ, γ̄) and the two-point func-
tion give the entanglement entropy of the region γ. While in island phase, the PEE I(γ, γ̄) can
be classified into the following three classes.

• When a > 0 and γ does not admit island, the two-point function gives the entanglement
of γ as in the non-island phase,

I(γ, γ̄) = Sγ. (42)

• When a =−b and b > 0, the two-point function gives the entanglement entropy for the
region A= [0, b],

I(γ, γ̄) = S̃γ = SA, (43)

where Is(A) = [−b, 0) and γ= A∪ Is(A).
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• When a ̸= −b and a < 0, I(γ, γ̄) is not the entanglement entropy of any region. By
definition it is just the integration (or summation) of two-point PEEs

I(γ, γ̄) =

∫
x∈γ

∫
y∈γ̄

I(x , y)d xd y. (44)

Although in the third class I(γ, γ̄) is not an entanglement entropy, it is also computable follow-
ing (41). This is crucial since all the PEE I(A, B) between any two non-overlapping regions,
can be written as a linear combination of the special type of PEE between a region and its
complement, i.e. I(γ, γ̄). We will see that, this linear combination of I(γ, γ̄) has the same
structure as the ALC proposal if we also denote I(γ, γ̄) as

I(γ, γ̄)≡ S̃γ ≡ S̃[a,b] . (45)

Later we will also encounter cases with disconnected γ= A∪Ir(A), where Ir(A) = [−d,−c],
A= [a, b] and a, b, c, d > 0. In these cases we propose that

Basic proposal 2 : I(AIr(A), AIr(A)) = S̃[−d,−c]∪[a,b] = S̃[−c,a]+ S̃[−d,b] . (46)

This is similar to the RT formula for disconnected intervals, which should be a result under
the large c limit. However, here we need not compare S̃[−c,a] + S̃[−d,b] with S̃[−d,−c] + S̃[a,b]
and choose the minimal one.

Note that, according to the additivity property, I(AIr(A), AIr(A)) can be written as a linear
combination of the type of PEEs I(γ, γ̄) with connected γ, which can be computed by the basic
proposal 1. Let us denote AIr(A) = E ∪ F where the interval E = [−c, a] is sandwiched by A
and Ir(A). Then we have

I(AIr(A), AIr(A)) =I(AE Ir(A), F) + I(AF Ir(A), E)− 2I(E, F)

=S̃[−d,b]+ S̃[−c,a]− 2I(E, F) ,
(47)

where we have used the basic proposal 1 in the second line. The above equation indicates
that the two basic proposals are not consistent unless I(E, F) = 0. This is possible since E
and F are separated by the region A and its generalized island Ir(A), which indicates that the
entanglement wedge for E ∪ F is disconnected. Later we will give a demonstration in support
of this statement. Therefore, the basic proposal 1 given in (41), is the only conjecture we made
in this paper to compute PEE.

Next we compute a generic PEE based on the basic proposals 1 and 2. For example, let
us consider two adjacent intervals A and B and their generalized islands (or reflected islands)
Ir(A) and Ir(B). Again we denote C = AIr(A)B Ir(B). According to the additivity property, the
PEE I(AIr(A), C) can be written as

sAB(A) =I(AIr(A), C)

=
1

2

h
I(AIr(A)B Ir(B), C) + I(AIr(A), B Ir(B)C)− I(B Ir(B), AIr(A)C)

i
=

1

2

h
S̃AIr(A)B Ir(B)+ S̃AIr(A)− S̃B Ir(B)

i
.

(48)

This is a generalization of the formula (31) with the island Is(A) and Is(B) replaced by the
reflected islands Ir(A) and Ir(B). Interestingly, the above linear combination have the same
structure as the ALC proposal (27). The only difference is that, every region appearing in the
linear combination has a generalized island companion,

Sγ⇒ S̃γ Ir(γ) . (49)
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For the non-adjacent case, we need to consider the scenarios where A is sandwiched by
two intervals A1 and A2 and compute the contribution

sA1AA2
(A) = I(AIr(A), C), (50)

where C is the complement of A1Ir(A1)AIr(A)A2Ir(A2). According to the additivity property,
we can write the contribution in the following way

sA1AA2
(A) =

1

2

h
I(AIr(A)A1Ir(A1), A2Ir(A2)C) + I(AIr(A)A2Ir(A2), A1Ir(A1)C)

− I(A2Ir(A2),I(AIr(A)A1Ir(A1)C)− I(A1Ir(A1), AIr(A)A2Ir(A2)C)
i

,
(51)

which can further be written as

sA1AA2
(A) =

1

2

h
S̃AIr(A)A1Ir(A1)+ S̃AIr(A)A2Ir(A2)− S̃A2Ir(A2)− S̃A1Ir(A1)

i
. (52)

It is evident that the above formula coincides with the ALC proposal (8) with the replacement
(49).

We call the new formulas (48) and (52) the generalized ALC proposal in the island phase.
It reduces to (8) when Ir(γ) = ;, and reduces to (31) when there is no ownerless islands, i.e.
Ir(γ) = Is(γ).

Since the way we compute the contribution is generalized for island phase, the balance
requirements should also be modified to a new version in terms of PEEs. For adjacent cases,
the generalized balanced requirement is given by

I(AIr(A), B1 Ir(B1)) = I(A1 Ir(A1), B Ir(B)). (53)

For disjoint cases, the two balanced requirements are generalized to be

I(A1Ir(A1), B Ir(B)B2Ir(B2)) =I(B1Ir(B1), AIr(A)A2Ir(A2)),

I(AIr(A), B1Ir(B1)B2Ir(B2)) =I(B Ir(B), A1Ir(A1)A2Ir(A2)).
(54)

4 Entanglement wedge cross-sections in island phase

4.1 Classification for entanglement wedge cross-sections

In this section, we turn to the BPE in island phase and check its correspondence with the
EWCS. Before we explicitly solve the balance requirements and compute the BPE, in this
section we give a classification for the EWCS of the entanglement wedge of A∪B in AdS3 bulk
with a EoW brane settled at ρ = κ. The intervals A and B are defined as

A : [b1, b2] , B : [b3, b4] , 0≤ b1 < b2 ≤ b3 < b4 . (55)

When b2 = b3 the two intervals are adjacent, while when b2 < b3 they are disjoint. For both
of the adjacent and disjoint cases, we classify the EWCS in the following.

Phase A1 and D1: Configurations when A∪ B or [b1, b4] does not admit an island.
In this phase, the entanglement wedge of AB is the same as the one in non-island phase,

as well as the EWCS ΣAB (see Fig.3). Also the area of the EWCS has been studied in [50] and
are given by,

Phase-A1 :
Area[ΣAB]

4GN
=

c

6
log

2(b2− b1)(b4− b2)
δ(b4− b1)

. (56)

Phase-D1 :
Area[ΣAB]

4GN
=

c

6
log

1+
p

x

1−px
, x =

�
b4− b3
��

b2− b1
��

b3− b1
��

b4− b2
� . (57)

17



Arxiv Version

Figure 3: Entanglement wedge cross-sections for A∪ B admitting no island.

Figure 4: Entanglement wedge cross-sections for A∪ B admitting an island.

Phase A2 and D2: Configurations where AB or [b1, b4] admits an island.
In these configurations the RT surface EAB homologous to [b1, b4] becomes disconnected10

(see Fig.4), and is decomposed in two pieces

EAB = RT (b1)∪ RT (b4) , (58)

where, for example, RT (b1) denotes the piece that emanates from x = b1 and lands at the
bulk (cutoff) brane. Note that there are three saddle points for the area of the entanglement
wedge cross-section, as one of the endpoints of ΣAB can anchor on three choices: RT (b1), the
brane, and RT (b2). One should choose the EWCS with the minimal area. Nevertheless, any
of the three choices can be the minimal one if we adjust the four parameters bi properly. So
these configurations can further be classified into three different phases for which the areas
of the EWCS have been studied in [50,106,109] and these are given by:

1. ΣAB is anchored on RT(b1), the RT surface connecting b1 and the brane:

Phase A2a :
Area[ΣAB]

4GN
=

c

6
log

b2
2 − b2

1

b1δ
. (59)

Phase D2a :
Area[ΣAB]

4GN
=

c

6
log

b2 b3− b2
1 +
p
(b2

2 − b2
1)(b

2
3 − b2

1)

b1(b3− b2)
. (60)

10Note that for disjoint A and B, the other part of the RT surface EAB homologous to [b2, b3] remains connected,
as depicted in Fig.4.
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Figure 5: A typical configuration: A = [0, b2], B = [b3,+∞] and their sandwiched
interval [b2, b3] admits no island. There is an ownerless island Io(AB) = [−b3,−b2].

2. ΣAB is anchored on the brane:

Phase A2b :
Area[ΣAB]

4GN
=

c

6
log

2b2

δ
+

c

6
κ. (61)

Phase D2b :
Area[ΣAB]

4GN
=

c

6
log

p
b3+
p

b2p
b3−
p

b2

+
c

6
κ. (62)

3. ΣAB is anchored on RT(b4):

Phase A2c :
Area[ΣAB]

4GN
=

c

6
log

b2
4 − b2

2

b4δ
. (63)

Phase D2c :
Area[ΣAB]

4GN
=

c

6
log

b2 b3− b2
4 +
p
(b2

2 − b2
4)(b

2
3 − b2

4)

b4(b3− b2)
. (64)

4. Configurations where the entanglement wedge of AB becomes disconnected, hence
EWCS disappears, i.e.

Phase D3 :
Area[ΣAB]

4GN
= 0. (65)

4.2 A naive calculation of BPE with ownerless islands

Now we show that for the configurations with ownerless islands, if we insist on applying the
ALC proposal to calculate the PEE, then the resulting BPE does not match with the EWCS. To
be specific, let us consider a typical configuration (see Fig.5) where A= [0, b2], B = [b3,+∞]
and their sandwiched interval admits no island. In this case Is(AB) covers the whole x < 0
region, and there appears an ownerless island

Io(AB) = [−b3,−b2] . (66)

The partition point x = q2 divides the sandwiched interval into A2 = [b1, q2] and B2 = [q2, b3].
As discussed earlier, the appearance of the ownerless island makes the contributions coming
from the individual entanglement entropies complicated, and the naive application of the ALC
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proposal does not suffice. If we naively apply the ALC proposal to calculate the PEE, then we
have

sAA2
(A) =

1

2
(SAA2

+ SA− SA2
) =

c

12
log

4q2 b2

(q2− b2)2
+

c

6
κ, (67)

sBB2
(B) =

1

2
(SBB2

+ SB − SB2
) =

c

12
log

4q2 b3

(b3− q2)2
+

c

6
κ. (68)

Solving the balance condition sAA2
(A) = sBB2

(B) we find

q2 =
p

b2 b3. (69)

Plugging the above q2 into the PEE, we find that the BPE is given by

BPE= sAA2
(A)|balanced =

c

6
log

2
Æp

b2 b3p
b3−
p

b2

+
c

6
κ

<
c

6
log

p
b3+
p

b2p
b3−
p

b2

+
c

6
κ=

Area[ΣAB]
4GN

.

(70)

Clearly, the BPE calculated in this way does not match with the area of the EWCS.
Let us take a deeper look at the sAA2

(A) constructed from the ALC proposal and write it in
terms of the two-body-correlation representation. We find

sAA2
(A) =

1

2
(SAA2

+ SA− SA2
)

=
1

2

h
I(AA2Is(AA2), BB2Is(BB2)) + I(AIs(A), BB2A2 Is(BB2A2))

− I(A2, AB Is(AB)∪ B2)
i

=I(AIs(A), BB2 Is(BB2)) +
1

2

�
I(Io(A2), BB2Is(BB2)∪ A)− I(A2, Io(A))

�
,

(71)

where we used the additivity of the PEE and Is(AB) = Is(A)Is(B)Io(A)Io(B). This result does
not look like a contribution from A to the entropy SAA2

in any sense. The contribution from
the ownerless island is not properly taken into account.

Here we give a glimpse of the correct way to calculate sAA2
(A) when the ownerless island

regions appear. At first we decompose the islands Is(AA2) and Is(BB2) in the following way

Is(AA2) = Is(A)∪ Io(A) , Is(BB2) = Is(B)∪ Io(B) , (72)

where the ownerless island regions are assigned to sAA2
(A) and sBB2

(B) respectively and are
chosen to be

Io(B) = [−b3,−q2], Io(A) = [−q2,−b2]. (73)

The above ownerless island regions Io(A) and Io(B) are determined by the balance require-
ment that gives the minimal BPE. This will be explained in the later sections. Then using the
generalized ALC formula, we have

sAA2
(A) =

1

2

h
S̃AIs(A)Io(A)A2

+ S̃AIs(A)Io(A)− S̃A2

i
=

c

6
log

p
b3+
p

b2p
b3−
p

b2

+
c

6
κ,

(74)

which exactly coincide with the EWCS. One can check that the balance requirement sAA2
(A) = sBB2

(B)
is satisfied by choosing (73).
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Figure 6: The geometric picture for the BPE in Phase A1 and D1. In this case, the
partition point x = q1 is settled either in the region x < b1 (including the island
region x < 0) or the region x > b4.

5 Balanced partial entanglement in island phases

In this section we consider the BPE in island phase and their correspondence with the EWCS.
Compared with the non-island phase, the phase space for the EWCS in island phase is more
complicated as there are more saddles. Also there are new phase transitions for the EWCS.
These indicate that the phase space of the BPE should also be more complicated, and checking
its correspondence with the EWCS becomes more challenging in island phase.

For each configuration, there are different ways to assign the contribution from the own-
erless island region. We consider all the possible assignments of the ownerless island region
and subsequently solve the balance requirements for each assignment. For all the solutions we
compute the corresponding BPEs, and choose the minimal one if there are multiple solutions
to the balance requirements. Remarkably we find that, the BPEs calculated under different
assignments of the ownerless island regions exactly correspond to the different saddles of the
EWCS. Also the minimal BPE identically matches the minimal EWCS and hence the correspon-
dence between the BPE and the EWCS holds in island phase. In the following we conduct the
analysis for the BPE in all the configurations we have classified in the previous section.

5.1 AB with no island

Let us first consider phases-A1 where A and B are adjacent and A∪ B admits no island. In this
case none of A and B or A∪B admit islands or their generalized counterparts and therefore no
degrees of freedom outside AB contribute to the mixed state correlation between A and B. Let
us divide the complement of AB into A1∪B1 with the partition point x = q1 (see the left panel
in Fig.6). Note that, in this case the island region x < 0 is included in A1B1. Based on this
partition in phase-A1, the balance requirement is the same as (11) in no-island phase, where

I(A, BB1) =
1

2
[I(AA1, BB1) + I(A, BB1A1)− I(A1, BB1A)] =

c

6
log
(b2− q1)(b2− b1)

δ(b1− q1)
, (75)

I(B, AA1) =
1

2
[I(AA1, BB1) + I(B, AA1B1)− I(B1, AA1B)] =

c

6
log
(b2− q1)(b4− b2)

δ(b4− q1)
. (76)

Solving the balance condition I(A, BB1) = I(B, AA1) we find a unique solution

q1 =
2b1 b4− b1 b2− b2 b4

b1+ b4− 2b2
. (77)

The corresponding BPE is given by

BPE(A : B) = I(A, BB1)|balanced =
c

6
log

2(b2− b1)(b4− b2)
δ(b4− b1)

, (78)
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which is exactly the area of EWCS given in (56).
For phase-D1, there are two partition points q1 and q2 which divide the complement of

AB into four regions A1B1 ∪A2B2 (see the right panel in Fig.6). Also in this case AB admits no
island. Using the two-body-correlation representation we have

I(A, BB1B2) =
1

2
[I(A1A, A2BB1B2)− I(A1, AA2BB1B2) + I(A2A, A1BB1B2)− I(A2, AA1BB1B2)]

=
c

6
log
(b2− q1)(q2− b1)
(b1− q1)(q2− b2)

,

(79)

I(B, AA1A2) =
1

2
[I(B1B, B2AA2A1)− I(B1, BB2AA2A1) + I(B2B, B1AA2A1)− I(B2, BB1AA2A1)]

=
c

6
log
(b3− q1)(b4− q2)
(b4− q1)(b3− q2)

.

(80)

and

I(A2, BB1B2) =
1

2
[I(A1AA2, BB1B2)− I(A1A, A2BB1B2) + I(A2, A1ABB1B2)]

=
c

6
log
(q2− q1)(q2− b2)
δ(b2− q1)

,
(81)

I(B2, AA1A2) =
1

2
[I(B1BB2, AA2A1)− I(B1B, B2AA2A1) + I(B2, B1BAA2A1)]

=
c

6
log
(q2− q1)(b3− q2)
δ(b3− q1)

.
(82)

Solving the two balance conditions I(A, BB1B2) = I(A, BB1B2) and I(A2, BB1B2) = I(B2, AA1A2),
we determine the two partition points as follows

q1 =
b1 b4− b2 b3−pY

b4− b3− b2+ b1
, q2 =

b1 b4− b2 b3+
p

Y

b4− b3− b2+ b1
,

Y ≡(b1− b2)(b1− b3)(b2− b4)(b3− b4). (83)

Then the BPE may be computed by substituting the above balanced partition points into the
corresponding PEE as follows

BPE(A : B) = I(A, BB1B2)|balanced =
c

6
log

1+
p

x

1−px
, x =

�
b4− b3
��

b2− b1
��

b3− b1
��

b4− b2
� , (84)

which is also identical to the area of EWCS (57).
Before we go ahead, we would like to comment on the BPE calculated via the contribution

representation in this case. For example, in Phase A1 we can calculate sAA1
(A) and sBB1

(B) and
then apply the balance requirement sAA1

(A) = sBB1
(B) to determine q1. One can start from

some b2 close to b1 such that the AA1 also admits no island. In this case the island Is(BB1)
covers the whole x < 0 region and there is a ownerless island region Io(BB1) = [−b4, q] for
BB1. We can find a solution for the balance requirement when we assign the ownerless island
region to B1 such that Ir(B1) = (−∞, 0) and Ir(B) = ;. Remarkably, the balance point and
BPE calculated in this way coincide with our previous results.
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Figure 7: Phase-A2a: Ir(A) = ;, Ir(B) = Is(AB) = [−b4,−b1].

However, when b2 goes farther from b1, the balance solution without any island for AA1
no longer exists, hence we should consider the AA1 admitting island. As a result we have
Ir(A1) ̸= ;. In this case no matter how we assign the contributions from the ownerless island
regions Io(AA1) and Io(BB1), the solutions to the balance requirements do not exist. So our
previous results are the unique solution to the balance requirements. This is also consistent
with the observation that, the EWCS is not a portion of the RT surface for any AA1 which
admits island. Therefore, we may conclude that the two-body-correlation representation of
the balance requirements includes partition configurations that cannot be described by the
contribution representation.

5.2 Adjacent AB with island

In this subsection, we consider the phase-A2 where A = [b1, b2] and B = [b2, b4] and A∪ B
has an entanglement island. Here the regions A or B individually may or may not admit their
own islands. We consider the following three configurations with given assignments for the
ownerless island region Io(AB):

1. A2a: Ir(A) = ;, Ir(B) = [−b4,−b1],

2. A2b: Ir(A) = [−q,−b1], Ir(B) = [−b4,−q],

3. A2c: Ir(A) = [−b4,−b1], Ir(B) = ;.
Note that, there are configurations with I r(A) ⊂ Is(A) (or I r(B) ⊂ Is(B)) when Is(A) ̸= ;
(or Is(B) ̸= ;) for certain choice of q. If we take these configurations seriously and solve
the balance requirements to get a BPE, then we get the result for the no-island phase. Al-
so this BPE will not be the minimal one. For simplicity, we only consider the cases with
Is(A) ⊂ I r(A), Is(B) ⊂ I r(B) by properly choosing the partition point x = −q. Nevertheless,
as we will see, these extra configurations can not give the minimal BPE. In the following,
we will systematically solve the balance requirements for each assignment and obtain the
corresponding BPE.

5.2.1 Phase-A2a

For Ir(A) = ; and Ir(B) = [−b4,−b1], there is no island contribution to A and all of the island
Is(AB) contributes to B. Let us assume that the partition point q1 lies at 0< q1 < b1 such that

23



Arxiv Version

A1 = [q1, b1], B1 = [0, q1] ∪ [b4,∞). Furthermore we assume AA1 does not admit an island
and hence A1 also does not receive any island contribution, i.e.

Ir(A1) = ; , Ir(B1) = [−b1, 0]∪ (−∞,−b4] . (85)

The schematics of the setup is depicted in Fig.7. In this configuration we compute the follow-
ing two PEEs via the generalized ALC proposal

I(A, BIr(B)∪ B1Ir(B1)) =
1

2

h
S̃AA1

+ S̃A− S̃A1

i
=

1

2
(S̃[q1,b2]+ S̃[b1,b2]− S̃[q1,b1])

=
c

6
log
(b2− q1)(b2− b1)

δ(b1− q1)
,

(86)

and

I(BIr(B), AA1) =
1

2

h
S̃BIr(B)B1Ir(B1)+ S̃BIr(B)− S̃B1Ir(B1)

i
=

1

2
(S̃[q1,b2]+ S̃[−b4,−b1]∪[b2,b4]− S̃[−∞,−b4]∪[−b1,q1]∪[b4,∞])

=
c

6
log
(b2− q1)(b2+ b1)
(q1+ b1)δ

.

(87)

In (87) we have used the basic proposal 2 to obtain,

S̃[−b4,−b1]∪[b2,b4] = S̃[−b1,b2]+ S̃[−b4,b4] , (88)

S̃[−∞,−b4]∪[−b1,q1]∪[b4,∞] = S̃[−b4,−b1]∪[q1,b4] = S̃[−b1,q1]+ S̃[−b4,b4] . (89)

Solving the balance condition I(A, BIr(B)∪B1Ir(B1)) = I(BIr(B), AA1), we find the condition

q1 =
b2

1

b2
. (90)

Plugging q1 = b2
1/b2 back in (86) or (87), we immediately find the BPE as follows

BPE(A, B) = I(A, BIr(B)∪ B1Ir(B1))|balanced =
c

6
log

b2
2 − b2

1

b1δ
. (91)

This result coincide with the area of the EWCS saddle in (59).
One can then consider the possibility that AA1 admits an island. In this case Ir(A1) ̸= ;

and we should consider other configurations of Ir(A1) and Ir(B1). Nevertheless, the solution
to the balance requirement does not exist in such a configuration. So the result (91) is the
only solution for the configurations A2a.

5.2.2 Phase-A2b

In this case, as depicted in Fig.8, we have the generalized islands Ir(A) = [−q,−b1] and
Ir(B) = [−b4,−q], where x = −q is the partition point of Is(AB) = Ir(A)∪ Ir(B). Also we can
choose

A1 = [0, b1] , B1 = [b4,∞] . (92)

In this configuration, we have Is(A1)∪ Is(B1) = Is(A1B1), hence there are no ownerless island
regions for A1B1 and

Ir(A1) = Is(A1) = [−b1, 0) , Ir(B1) = Is(B1) = [−∞,−b4] . (93)
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Figure 8: Phase-A2b: Ir(A) = [−q,−b1], Ir(B) = [−b4,−q].

Then we calculate the following PEEs via the generalized ALC proposal

I(AIr(A), BIr(B)B1Ir(B1)) =
1

2

h
S̃AIr(A)A1Ir(A1)+ S̃AIr(A)− S̃A1Ir(A1)

i
=

1

2

h
S̃[−q,b2]+ S̃[−q,−b1]∪[b1,b2]− S̃[−b1,b1]

i
=S̃[−q,b2],

I(BIr(B), AIr(A)A1Ir(A1)) =
1

2

h
S̃BIr(B)B1Ir(B1)+ S̃BIr(B)− S̃B1Ir(B1)

i
=

1

2

h
S̃[−q,b2]+ S̃[−b4,−q]∪[b2,b4]− S̃[−b4,b4]

i
=S̃[−q,b2].

(94)

It is interesting that the balance requirement

I(AIr(A), BIr(B)B1Ir(B1)) = I(BIr(B), AIr(A)A1Ir(A1)) (95)

is satisfied for all the choice of q if b1 < q < b4. Since different choices of q give us dif-
ferent BPE, we should choose the minimal one according to the minimal requirement. More
explicitly we choose the q that satisfy

∂qS̃[−q,b2] = ∂q

�
c

3
log
�

b2+ q

δ

�
+

c

6
(κ− log

2q

δ
)
�
= 0 , (96)

which has a simple solution,

q = b2, (97)

The choice q = b2 gives the expected minimal BPE

BPE(A, B) = S̃[−q,b2]|minimal =
c

6
log

2b2

δ
+

c

6
κ, (98)

which coincide with the EWCS saddle (61) that is anchored on the EoW brane.

25



Arxiv Version

Figure 9: Another possible configuration for the phase-A2b: Ir(A1) = [−b1,−q1],
Ir(B1) = [−q1, 0]∪ (−∞,−b4].

5.2.3 The vanishing PEE in island phase

One can also consider other configurations for the phase A2b, for example where a portion of
A1 is transferred to B1 compared with the previous configuration (see Fig.9),

A1 = [q1, b1] , B1 = [0, q1]∪ [b4,∞] . (99)

If A1 admit island, i.e. q1 ≤ r∗b1, then we have

Ir(A1) = Is(A1) = [−b1,−q1] , Ir(B1) = Is(B1) = [−q1, 0]∪ [−∞,−b4] . (100)

In these configurations, we may also set q = b2 such that Ir(A) and Ir(B) are not changed.
Subsequently, we find that the PEEs are given by

I(AIr(A), BIr(B)B1Ir(B1)) =
1

2

h
S̃AIr(A)A1Ir(A1)+ S̃AIr(A)− S̃A1Ir(A1)

i
=

1

2

h
S̃[−b2,q1]∪[q1,b2]+ S̃[−b2,−b1]∪[b1,b2]− S̃[−b1,−q1]∪[q1,b1]

i
=S̃[−b2,b2] ,

I(BIr(B), AIr(A)A1Ir(A1)) =
1

2

h
S̃BIr(B)B1Ir(B1)+ S̃BIr(B)− S̃B1Ir(B1)

i
=

1

2

h
S̃[q1,b3]∪[−b3,−q1]+ S̃[−b4,−b2]∪[b2,b4]− S̃[q1,b4]∪[−b4,−q1]

i
=S̃[−b2,b2] .

(101)
It is obvious that, such kind of configurations with q = b2 and A1 admitting an island satisfy

the balance requirements and give the same BPE as in (98). This means that the balance point
that gives the minimal BPE is highly non-unique. In other words, it does not change the BPE
whether we assign the region E = [−q1, q1] to A1Ir(A1) or B1Ir(B1), which indicates that the
PEE between the regions E and AIr(A)BIr(B) is zero,

I(E, ABIr(AB)) = 0 . (102)

Note that, when q = b2 the configurations has reflection symmetry and there is no ownerless
islands. Also the calculation only involves entanglement entropies for regions with islands,
hence the results do not rely on the two basic proposals (41) and (46). This is important as it
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Figure 10: Phase-A2c: Ir(A) = Is(AB) = [−b4,−b1], Ir(B) = ;.

indicates that the vanishing PEE (102) can be derived independently from the basic proposals
for PEE.

Furthermore, we can take the limit b4→∞ and denote F = ABIr(AB) = [−∞,−b1]∪[b1,∞].
Under this limit, the configuration is always in Phase-A2b with a proper choice for b2, and the
equation (102) still holds. So we can make the following generic statement:

• For any region E and F which is separated by a region A and its (generalized) island
Ir(A), we have

I(E, F) = 0 , (103)

which is crucial for us to derive (46) from (41). According to the additivity and positivity
properties, the PEE between any subsets of E and F also vanishes.

5.2.4 Phase-A2c

For the assignment Ir(A) = [−b4,−b1] and Ir(B) = ;, the analysis is symmetric to the case
of Phase-A2a in the exchange of A and B. In this case, assuming that BB1 does not admit an
island, we should solve the balance requirement I(AIr(A), BB1) = I(B, AIr(A)A1Ir(A1). We can
find a solution satisfying both the balance requirement and the minimal requirement, which
gives the partition point x = q1 > b4 as follows,

q1 =
b2

4

b2
. (104)

The BPE in this case is given by

BPE(A : B) =
c

6
log

b2
4 − b2

2

b4δ
, (105)

which exactly matches with the EWCS saddle (63) that is anchored on the piece of the RT
surface EAB emanating from x = b4.

5.2.5 Minimizing the BPE in Phase-A2

Now we compare the three BPEs in the phase-A2, which correspond to the three saddle EWC-
Ss, and choose the minimal one. When we computed the BPE in Phase-A2a, we assumed that
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AA1 does not admit an island and hence have not considered the possibility that there may be
balance points when AA1 admits island. Here we can exclude this possibility by showing that
when the Phase-A2a gives smaller BPE than the Phase-A2b, AA1 should not admit island. A
similar statement also applies to BB1 in Phase-A2c.

In the case of phase-A2a, we know A does not admit an island and hence b1/b2 > r∗.
Since the solution q1 = b2

1/b2 can be written as

q1

b1
=

b1

b2
> r∗, (106)

we conclude that A1 also does not admit an island. Nevertheless the assumption that AA1 does
not admit island may not be satisfied. Now we compare the BPE in Phase A2a and A2b, and
find that the critical point between these two phases is

b1 = (
p

1+ e2κ− eκ)b2 =
p

r∗b2 . (107)

When b2 < b1/
p

r∗ the Phase-A2a gives smaller BPE, and furthermore we have

q1 = b2
1/b2 > r∗b2 , (108)

which confirms our assumption that AA1 does not admit island.
Similarly one can compare the BPE in Phase-A2b and Phase-A2c and find the critical point

to be

b2 =
p

r∗b4 . (109)

When b4 < b2/
p

r∗ the Phase-A2c gives smaller BPE, and furthermore we have

q1 = b2
4/b2 < r∗b4 , (110)

which confirms our assumption that BB1 does not admit island.
When AB admits an island, we require b1 ≤ r∗b4 and we can always find a b2 inside

(b1, b4) satisfying the following inequality

b1/
p

r∗ ≤ b2 ≤
p

r∗b4 . (111)

In other words, we can confirm that when AB admits island, there always exists a b2 such that
the BPE or EWCS is in Phase-A2b.

5.3 Disjoint AB with island

When A = [b1, b2] and B = [b3, b4] are disjoint, the EWCS ΣAB ̸= 0 only when their sand-
wiched interval [b2, b3] has no island. Let us denote the partition point inside this sandwiched
interval as x = q2 which divides [b2, b3] into A2∪B2. Similar to the adjacent phases, according
to whether Ir(A) and Ir(B) exist, we have three sub-phases:

1. D2a: Ir(A) = ;, Ir(B) = [−b4,−b1],

2. D2b: Ir(A) = [−q,−b1], Ir(B) = [−b4,−q],

3. D2c: Ir(A) = [−b4,−b1], Ir(B) = ;.
In the following, we will systematically investigate these sub-phases, solve the balance re-
quirements for each case and subsequently obtain the corresponding BPEs.
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Figure 11: Phase-D2a: Ir(A) = ; and Ir(B) ̸= ;

5.3.1 Phase-D2a

For Ir(A) = ; and Ir(B) = [−b4,−b1], we assume that AA1A2 has no island, such that we have
Ir(A1) = Ir(A2) = ;, and the two balance points q1 and q2 lie at

0< q1 < b1, b2 < q2 < b3. (112)

The island region (−∞, 0] is divided into Ir(B) = [−b4,−b1] and Ir(B1) = (−∞, b4)∪(−b1, 0].
Furthermore we have Ir(B2) = ; since A2B2 does not admit island. See Fig.11, for a schematics
of the configuration.

The balance requirements in this case are the following two equations

I(BIr(B), A1A2A) =I(A, BIr(B)B1Ir(B1)B2) ,

I(B2, A1A2A) =I(A2, BIr(B)B1Ir(B1)B2) , (113)

where the four PEEs in the above equations are calculated by:

I(BIr(B), A1A2A)

=
1

2

h
S̃BIr(B)B1Ir(B1)+ S̃BIr(B)B2

− S̃B2
− S̃B1Ir(B1)

i
=

1

2

h
S̃[q1,b3]+ S̃[−b4,−b1]∪[q2,b4]− S̃[q2,b3]− S̃(∞,−b4)∪[−b1,q1]∪(b4,∞)

i
=

c

6
log

b3− q1

b3− q2

q2+ b1

q1+ b1
,

I(A, BIr(B)B1Ir(B1)B2)

=
1

2

h
S̃AA1

+ S̃AA2
− S̃A1

− S̃A2

i
=

1

2

h
S̃[q1,b2]+ S̃[b1,q2]− S̃[q1,b1]− S̃[b2,q2]

i
=

c

6
log

b2− q1

q2− b2

q2− b1

b1− q1
,

(114)
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and
I(B2, A1A2A)

=
1

2

h
S̃BIr(B)B1Ir(B1)B2

+ S̃B2
− S̃BIr(B)B1Ir(B1)

i
=

1

2

h
S̃[q1,q2]+ S̃[q2,b3]− S̃[q1,b3]

i
=

c

6
log
(q2− q1)(b3− q2)
δ(b3− q1)

,

I(A2, BIr(B)B1Ir(B1)B2)

=
1

2

h
S̃AA1A2

+ S̃A2
− S̃AA1

i
=

1

2

h
S̃[q1,q2]+ S̃[b2,q2]− S̃[q1,b2]

i
=

c

6
log
(q2− q1)(q2− b2)
(b2− q1)δ

.

(115)

The solution to the two balance conditions are given by

q1 =
b2

1 + b2 b3

b3+ b2
−
p
(b2

2 − b2
1)(b

2
3 − b2

1)

b3+ b2
, q2 =

b2
1 + b2 b3

b3+ b2
+

p
(b2

2 − b2
1)(b

2
3 − b2

1)

b3+ b2
. (116)

The corresponding BPE(A : B) may be obtained as follows

BPE(A : B) =
c

6
log

b2 b3− b2
1 +
p
(b2

2 − b2
1)(b

2
3 − b2

1)

b1(b3− b2)
, (117)

which exactly matches with the area of EWCS in Phase D2a given in (60). Interestingly,
in the holographic geometric picture, these two balance partition points are exactly located
where the RT surface extending from the EWCS ends on the asymptotic boundary, as shown
in Fig.11.

5.3.2 Phase-D2b

In this configuration, the partition point x =−q divide the island region Is(AB) into Ir(A) = [−q,−b1]
and Ir(B) = [−b4,−q], as depicted in Fig.12. Also we have Ir(B2) = Ir(A2) = ; since A2B2
does not admit any island. Let us choose the other partition trivially as follows

A1 = [0, b1] , B1 = [b4,∞] . (118)

In this case, there are no ownerless island for A1 and B1. Thus we have Ir(A1) = (−b1, 0)
and Ir(B1) = [−∞,−b4). The balance requirements are given by the following two equations

I(BIr(B), AIr(A)A1Ir(A1)A2) = I(AIr(A), BIr(B)B1Ir(B1)B2) ,

I(B2, AIr(A)A1Ir(A1)A2) = I(A2, BIr(B)B1Ir(B1)B2) ,
(119)
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Figure 12: Phase-D2b: Ir(A) ̸= ; and Ir(B) ̸= ;

where the four PEEs in the above equations are calculated as follows

I(BIr(B), AIr(A)A1Ir(A1)A2)

=
1

2
[S̃BIr(B)B1Ir(B1)+ S̃B2BIr(B)− S̃B2

− S̃B1Ir(B1)]

=
1

2
(S̃[−∞,−q]∪[b3,+∞]+ S̃[−b4,−q]∪[q2,b4]− S̃[q2,b3]− S̃[−∞,−b4]∪[b4,+∞])

=
c

6
log
(b3+ q)(q+ q2)

2q(b3− q2)
+

c

6
κ,

I(AIr(A), BIr(B)B1Ir(B1)B2)

=
1

2
[S̃AIr(A)A1Ir(A1)+ S̃A2AIr(A)− S̃A1Ir(A1)− S̃A2

]

=
1

2
(S̃[−q,b2]+ S̃[−q,−b1]∪[b1,q2]− S̃[−b1,b1]− S̃[b2,q2])

=
c

6
log
(b2+ q)(q2+ q)

2q(q2− b2)
+

c

6
κ,

(120)

and
I(B2, AIr(A)A1Ir(A1)A2)

=
1

2
[S̃BB1Ir(BB1)B2

+ S̃B2
− S̃BB1Ir(BB1)]

=
1

2
(S̃[−∞,−q]∪[q2,∞]+ S̃[q2,b3]− S̃[−∞,−q]∪[b3,+∞])

=
c

6
log
(q2+ q)(b3− q2)
δ(b3+ q)

,

I(A2, BIr(B)B1Ir(B1)B2)

=
1

2
[S̃AIr(A)A1Ir(A1)A2

+ S̃A2
− S̃AIr(A)A1Ir(A1)]

=
1

2
(S̃[−q,q2]+ S̃[b2,q2]− S̃[−q,b2])

=
c

6
log
(q2+ q)(q2− b2)
δ(b2+ q)

.

(121)
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Figure 13: Phase-D2c: Ir(A) ̸= ; and Ir(B) = ;

Similar to the adjacent cases, here the above two balance conditions coincide and are given
by

b3+ q

b3− q2
=

b2+ q

q2− b2
. (122)

This means that there are infinite number of solutions to the balance requirements. Again,
combining the balance requirements with the minimal requirement, the balance point should
further satisfy the following extremal condition,

∂q[I(BIr(B), AIr(A)A1Ir(A1)A2)] = ∂q

�
c

6
log
(b3+ q)(q+ q2)

2q(b3− q2)
+

c

6
κ

�
= 0. (123)

Solving these constraints, we arrive at

q = q2 =
p

b2 b3. (124)

Then the BPE for this phase is given by

BPE(A : B) =
c

6
log

p
b3+
p

b2p
b3−
p

b2

+
c

6
κ. (125)

which coincides with the area of EWCS in Phase D2b (62).
Similar to the Phase-A2b, we can transfer a portion, for example [−q1, q1] of A1Ir(A1) to

B1Ir(B1) as long as A1 admit island. In such configurations the BPE is the same as the above
result.

5.3.3 Phase-D2c

For Ir(A) = [−b4,−b1], Ir(B) = ;, the configuration is symmetric to Phase-D2a in the ex-
change of A and B (see Fig.13). Following the same arguments as in phase-D2a, we arrive at
two balance points

q1 =
b2

4 + b2 b3

b3+ b2
+

p
(b2

2 − b2
4)(b

2
3 − b2

4)

b3+ b2
, q2 =

b2
4 + b2 b3

b3+ b2
−
p
(b2

2 − b2
4)(b

2
3 − b2

4)

b3+ b2
, (126)

and the corresponding BPE(A : B) is given by

BPE(A : B) =
c

6
log

b2 b3− b2
4 +
p
(b2

2 − b2
4)(b

2
3 − b2

4)

b4(b3− b2)
, (127)

which matches with the area of the EWCS given in (64), for the Phase D2c.
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5.3.4 Minimizing the BPE in Phase-D2

Now we compare the above three BPEs, which correspond to the three saddle EWCS, and
choose the minimal one.

The critical point between phase-D2a and phase-D2b is given by

f (b1, b2, b3)≡ c

6
log

�
b3 b2− b2

1 +
Æ�

b2
3 − b2

1

��
b2

2 − b2
1

��2
b2

1

�p
b3+
p

b2

�4 =
c

3
κ. (128)

When f < c
3
κ, phase-D2a gives the smaller BPE. Now we show that in this case, A1AA2 does

not admit an island. Let us compare the entanglement entropy for A1AA2 in island and no-
island saddles,

Sno−island
�
A1AA2
�− Sisland
�
A1AA2
�
=

c

6
log

�
q2− q1
�2

4q1q2
− c

3
κ

=
c

6
log

�
b2

2 − b2
1

��
b2

3 − b2
1

�
b2

1

�
b2+ b3
�2 − c

3
κ

≡ g(b1, b2, b3)− c

3
κ.

(129)

Note that the difference

g(b1, b2, b3)− f (b1, b2, b3) =
c

6
log

(b2
3 − b2

1)(b
2
2 − b2

1)(
p

b2+
p

b3)4

(b2+ b3)2
�

b3 b2− b2
1 +
Æ�

b2
3 − b2

1

��
b2

2 − b2
1

��2
(130)

increases as b2→ b3 and thus we have

g(b1, b2, b3)− f (b1, b2, b3)< g(b1, b3, b3)− f (b1, b3, b3) = 0, (131)

that is, g(b1, b2, b3) is always smaller than f (b1, b2, b3). Then we arrive at the condition

Sno−island
�
A1AA2
�− Sisland
�
A1AA2
�
< f (b1, b2, b3)− c

3
κ < 0, (132)

which confirms our assumption that A1AA2 does not admit an island.
Similarly, by comparing the BPEs between phase-D2b and phase-D2c, we draw the con-

clusion that phase-D2c gives the smaller BPE when

c

6
log

�
b3 b2− b2

4 +
Æ�

b2
3 − b2

4

��
b2

2 − b2
4

��2
b2

4

�p
b3+
p

b2

�4 <
c

3
κ. (133)

Following the same argument, we could confirm that B1BB2 does not admit an island when
phase-D2c gives the smaller BPE.

5.4 Disjoint AB with disconnected entanglement wedge

In the island phase, the EWCS of the entanglement wedge EAB disappears as the entanglement
wedge becomes disconnected. This happens when the interval sandwiched between A and B
admits its own island. This immediately indicates that I(A, B) = 0. Nevertheless, this is not
a sufficient condition for BPE(A : B) = 0 as the BPE is defined as the PEE I(A, B1BB2) at the
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Figure 14: The disconnected phase for the entanglement wedge of AB. In this case,
the interval A2B2 sandwiched between A and B admits an island. Top panel : when
A and B do not have islands; Bottom panel : when A and B both have islands.
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balance point. Since the BPE is non-negative, we can prove the correspondence between the
BPE and EWCS in this case by finding a configuration where the BPE vanishes.

Let us consider the configuration depicted in Fig.14, where A2B2 admits island. In this
case, according to our discussion in Sec.5.2.5 one can always find a partition point q2 such
that A2B2 is in Phase-A2b, hence we can choose

Ir(A2) = [−q2,−b2] , Ir(B2) = [−b3,−q2] . (134)

Also in this case we have chosen

A1 = [0, b1], B1 = [b4,∞] . (135)

When A admits island we set

Ir(A) = Is(A) = [−b2,−b1] , Ir(A1) = Is(A1) = [−b1, 0) , (136)

otherwise we set

Ir(A) = ; , Ir(A1) = [−b2, 0) . (137)

Also we apply a similar prescription to set Ir(B) and Ir(B1).
According to our discussion for the Phase-A2b, the balance requirement

I(A2Ir(A2), B2BB1Ir(B1BB2)) = I(B2Ir(B2), A2AA1Ir(A1AA2)) , (138)

is always satisfied, and

I(A2Ir(A2), B2BB1Ir(B1BB2)) = BPE(A2 : B2) =
c

6
log

2q2

δ
+

c

6
κ. (139)

Then we test the other balance requirement

I(AIr(A), B2BB1Ir(B1BB2)) = I(BIr(B), A2AA1Ir(A1AA2)) . (140)

Let us first consider the cases where both of A and B do not admit island and hence Ir(A) = Ir(B) = ;.
We find that

I(A, B2BB1Ir(B1BB2)) =
1

2

h
S̃AA2Ir(A2)+ S̃A1Ir(A1)A2

− S̃A1Ir(A1)− S̃A2Ir(A2)

i
=

1

2

�
S̃[−q2,−b2]∪[b1,q2]+ S̃[−b2,b2]− S̃[−b2,b1]− S̃[−q2,−b2]∪[b2,q2]

�
=0 ,

I(B, A2AA1Ir(A1AA2)) =
1

2

h
S̃BB2Ir(B2)+ S̃B1Ir(B1)B2

− S̃B1Ir(B1)− S̃B2Ir(B2)

i
=

1

2

�
S̃[−b3,−q2]∪[q2,b4]+ S̃[−b3,b3]− S̃[−b3,b4]− S̃[−b3,−q2]∪[q2,b3]

�
=0 ,

(141)

where we have used the basic proposal 2. It is obvious that the second balance requirement is
also satisfied. Hence the BPE between A and B vanishes,

BPE(A : B) = 0 . (142)

Since the BPE should be non-negative, the above BPE is the minimal one. One can further
check the cases where A or B admits island and get the same vanishing BPE. Then the vanish-
ing BPE exactly matches to the vanishing EWCS.
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5.5 BPE from minimizing the crossing PEE

The crossing PEE at the balance point has been shown to be minimal in vacuum CFTs [71].
Now we show that this also holds in the island phase. We pick phase-A2a and phase-D2a as
examples.

For phase-A2a, the crossing PEEs are given by

I(A, B1Ir(B1)) =
1

2

�
S̃AA1

+ S̃ABIr(B)− S̃A1
− S̃B Ir(B)

�
=

1

2

�
S̃[q1,b2]+ S̃[−b4,−b1]∪[b1,b4]− S̃[q1,b1]− S̃[−b4,−b1]∪[b2,b4]

�
=

c

6
log
�

2b1(b2− q1)
(b1+ b2)(b1− q1)

�
,

(143)

and

I(B Ir(B), A1) =
1

2

�
S̃B Ir(B)∪B1 Ir(B1)+ S̃ABIr(B)− S̃A− S̃B1Ir(B1)

�
=

1

2

�
S̃(−∞,q1]∪[b2,∞)+ S̃[−b4,−b1]∪[b1,b4]− S̃[b1,b2]− S̃[−b1,q1]∪(−∞,−b4,]∪[b4,∞)

�
=

c

6
log
�

2b1(b2− q1)
(b2− b1)(b1+ q1)

�
.

(144)
Then the total crossing PEE is

1

2

h
I(A, B1Ir(B1)) + I(B Ir(B), A1)

i
=

c

12
log

�
4b2

1(b2− q1)2

(b2
2 − b2

1)(b
2
1 − q2

1)

�
. (145)

One easily finds that the extremal points q1 for the crossing PEE are

q1 = b2
1/b2 and q1 = b2. (146)

Since 0 < q1 < b1, we have q1 = b2
1/b2 as the point that minimizes the total crossing PEE.

This is exactly the balanced point and the minimized total crossing PEE is given byh
I(A, B1Ir(B1)) + I(B Ir(B), A1)

i���
minimal

=
c

3
log2, (147)

which may be identified as the lower bound of Markov gap h(A : B) [109]. In non-island phase
for adjacent intervals, the non-crossing PEE part in BPE exactly coincides with half the mutual
information so that the crossing PEE part in BPE gives the Markov gap [71]. However, in
island phase, the non-crossing PEE part in BPE is never equal to half the mutual information.
For phase-A2a, we have the non-crossing PEE

I(A, B Ir(B)) =
1

2

�
S̃A+ S̃B1Ir(B1)A1A)− S̃B1Ir(B1)A1

�
=

1

2

�
S̃[b1,b2]+ S̃[−∞,−b4]∪[−b1,b2]∪[b4,∞]− S̃[−∞,−b4]∪[−b1,b1]∪[b4,∞]

�
=

c

6
log
�

b2− b1

δ

b1+ b2

2b1

�
,

(148)

while half of the mutual information is given by

1

2
I(A : B) =

1

2
(SA+ SB − SAB)

=
1

2
(S̃A+ S̃B Is(B)− S̃AB Is(AB))

=
c

6
log

 b2− b1

δ

È
b2

b1

 .
(149)
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Thus the crossing PEE for phase-A2a should not exactly give the Markov gap.
Now we consider an example of disjoint phases, namely the phase-D2a. The crossing PEEs

in this phase are given by

I(A, B1Ir(B1)) =
1

2

�
S̃AA1

+ S̃AA2B2BIr(B)− S̃A1
− S̃A2B2B Ir(B)

�
=

1

2

�
S̃[q1,b2]+ S̃[−b4,−b1]∪[b1,b4]− S̃[q1,b1]− S̃[−b4,−b1]∪[b2,b4]

�
=

c

6
log

2b1(b2− q1)
(b1+ b2)(b1− q1)

,

I(A, B2) =
1

2

�
S̃AA2

+ S̃BIr(B)B1Ir(B1)A1A− S̃A2
− S̃BIr(B)B1Ir(B1)A1

�
=

1

2

�
S̃[b1,q2]+ S̃[b2,b3]− S̃[b2,q2]− S̃[b1,b3]

�
=

c

6
log
(b3− b2)(q2− b1)
(b3− b1)(q2− b2)

,

I(BIr(B), A1) =
1

2

�
S̃AA2B2BIr(B)+ S̃BIr(B)B1Ir(B1)− S̃AA2B2

− S̃B1Ir(B1)

�
=

1

2

�
S̃[−b4,−b1]∪[b1,b4]+ S̃[q1,b3]− S̃[b1,b3]− S̃[−∞,−b4]∪[−b1,q1]∪[b4,∞]

�
=

c

6
log

2b1(b3− q1)
(b1+ q1)(b3− b1)

,

I(BIr(B), A2) =
1

2

�
S̃B2BIr(B)+ S̃BIr(B)B1Ir(B1)A1A− S̃B2

− S̃B1Ir(B1)A1A

�
=

1

2

�
S̃[−b4,−b1]∪[q2,b4]+ S̃[b2,b3]− S̃[q2,b3]− S̃[−b4,−b1]∪[b2,b4]

�
=

c

6
log
(q2+ b1)(b3− b2)
(b1+ b2)(b3− q2)

.

(150)

Then the total crossing PEE is

I(A, B1Ir(B1)) + I(A, B2) + I(BIr(B), A1) + I(BIr(B), A2)

=
c

6
log

�
4b2

1(b3− b2)2(q2
2 − b2

1)(b2− q1)(b3− q1)

(b2+ b1)2(b3− b1)2(b2
1 − q2

1)(q2− b2)(b3− q2)

�
.

(151)

Again, one may find that the total crossing PEE is minimized at the points

q1 =
b2

1 + b2 b3

b3+ b2
−
p
(b2

2 − b2
1)(b

2
3 − b2

1)

b3+ b2
, q2 =

b2
1 + b2 b3

b3+ b2
+

p
(b2

2 − b2
1)(b

2
3 − b2

1)

b3+ b2
, (152)

which are exactly the balance points.

6 Partial entanglement entropy and its geometric picture in island
phase

In this section, we calculate the contributions to various PEEs via the generalized ALC formula
under the assignment of the ownerless island that gives the minimal BPE. We will see that the
contributions sAB(A) and sAB(B) correspond to the two portions of the RT surface of AB, which
are divided by the point at which the EWCS ΣAB anchors on the RT surface EAB.
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Figure 15: The correspondence between the geodesic chords (orange lines) on
RT(A∪ B) and the PEE A to AB for phase-A2.

6.1 Adjacent AB with island

When BPE for phase-A2a minimizes, we have Ir(A) = ; and Ir(B) = [−b4,−b1] and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃A− S̃B Ir(B))

=
1

2
(S̃[−b4,−b1]∪[b1,b4]+ S̃[b1,b2]− S̃[−b4,−b1]∪[b2,b4])

=
c

6
log

2b1(b2− b1)
δ(b2+ b1)

.

(153)

This is just the area of the geodesic chord (see the orange line in Fig.15) on RT(b1), which is
determined by the EWCS ΣAB.

When BPE for phase-A2b minimizes, we have Ir(A) = [−b2,−b1], Ir(B) = [−b4,−b2] and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃AIr(A)− S̃B Ir(B)),

=
1

2
(S̃[−b4,−b1]∪[b1,b4]+ S̃[−b2,−b1]∪[b1,b2]− S̃[−b4,−b2]∪[b2,b4])

=
c

6
log

2b1

δ
+

c

6
κ,

(154)

which is just the area of RT(b1).
When BPE for phase-A2c minimizes, we have Ir(A) = [−b4,−b1], Ir(B) = ; and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃AIr(A)− S̃B)

=
1

2
(S̃[−b4,−b1]∪[b1,b4]+ S̃[−b4,−b1]∪[b1,b2]− S̃[b2,b4])

=
�

c

6
log

2b1

δ
+

c

6
κ

�
+
�

c

6
log

b4+ b2

b4− b2
+

c

6
κ

�
,

(155)

where the first term is the area of RT(b1) and the second term is the area of the geodesic
chord (see the orange lines in Fig.15) on RT(b4), which is determined by the EWCS ΣAB.

6.2 Disjoint AB with island

When BPE for phase-D2a minimizes, we have Ir(A) = ; and Ir(B) = [−b4,−b1] and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃A− S̃B Ir(B))

=
1

2
(S̃[−b4,−b1]∪[b1,b2]∪[b3,b4]+ S̃[b1,b2]− S̃[−b4,−b1]∪[b3,b4])

=
c

6
log

2b1(b3− b2)(b2− b1)
δ2(b3+ b1)

,

(156)
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Figure 16: The correspondence between the geodesic chords (orange lines) on
RT(A∪ B) and the PEE A to AB for phase-D2.

which can be further rewritten as

sAB(A) =
c

6
log

2b1(q2− b1)
(b1+ q2)δ

+
c

6
log
(b3− b2)(q2− b2)
(b3− q2)δ

, (157)

with the balance point q2 given by

q2 =
b2

1 + b2 b3+
p
(b2

2 − b2
1)(b

2
3 − b2

1)

b3+ b2
. (158)

The two terms in eq.(157) are just the areas of the geodesic chords (see the orange lines in
the left panel of Fig.16) on RT(b1) and the RT surface of the sandwiched interval [b2, b3],
respectively and they are determined by the EWCS ΣAB.

When BPE for phase-D2b minimizes, we have Ir(A) = [−q2,−b1], Ir(B) = [−b4,−q2] and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃AIr(A)− S̃B Ir(B)),

=
1

2
(S̃[−b4,−b1]∪[b1,b2]∪[b3,b4]+ S̃[−q2,−b1]∪[b1,b2]− S̃[−b4,−q2]∪[b3,b4])

=
�

c

6
log

2b1

δ
+

c

6
κ

�
+

c

6
log
(b3− b2)(b2+ q2)
(b3+ q2)δ

,

(159)

where q2 =
p

b2 b3. The first term is just the area of RT(b1) and the second term is the area
of the geodesic chord (see the orange lines in the middle panel of Fig.16) on the RT surface
associated with the sandwiched interval [b2, b3], which is also determined by the EWCS ΣAB.

When BPE for phase-D2c minimizes, we have Ir(A) = [−b4,−b1], Ir(B) = ; and

sAB(A) =
1

2
(S̃AIr(A)B Ir(B)+ S̃AIr(A)− S̃B)

=
1

2
(S̃[−b4,−b1]∪[b1,b2]∪[b3,b4]+ S̃[−b4,−b1]∪[b1,b2]− S̃[b3,b4])

=
c

6
log

2b1(b3− b2)(b2+ b4)
δ2(b4− b3)

+
c

3
κ,

(160)

which can be further written as

sAB(A) =
�

c

6
log

2b1

δ
+

c

6
κ

�
+
�

c

6
log
�

q2+ b4

b4− q2

�
+

c

6
κ

�
+

c

6
log
(b3− b2)(q2− b2)
(b3− q2)δ

,

(161)
with the balance point given by

q2 =
b2

4 + b2 b3−
p
(b2

2 − b2
4)(b

2
3 − b2

4)

b3+ b2
. (162)
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The first term in eq.(161) is just the area of RT(b1), the second and the third term in (161) are
the areas of the geodesic chords (see the orange lines in the right panel of Fig.16) on RT(b4)
and the RT surface of the sandwiched interval [b2, b3], respectively and they are determined
by the EWCS ΣAB.

7 Discussion

In this paper, we have explored the entanglement structure in the island phase in the context
of partial entanglement entropy. Despite several primitive attempts [80,84,101], this remains
quite an unexplored aspect of entanglement islands. Based on the claim [49] that a system
in island phase has self-encoding property, we conclude that calculating the entanglement en-
tropy of a region A involves the degrees of freedom in the island Is(A), which is outside this
region. This property essentially changes the way we evaluate the contribution to entangle-
ment entropy SA from subsets in A. Firstly, the island Is(A) should be understood as a window
through which A can entangle with degrees of freedom outside A∪ Is(A). Secondly, when we
consider the contribution from a subregion α, we should also include the contribution from
Is(α), or the generalized (or reflected) island Ir(α) if there are ownerless island regions. With
the island contributions taken into account, we find a generalized version of the ALC proposal
to construct the PEE and a generalized version of the balance requirement to define the BPE
in the island phase.

For configurations without ownerless islands, the assignments of the island regions to the
subsets is clear with no ambiguity. Nevertheless, in configurations with ownerless island re-
gions, there is no intrinsic rule to clarify these assignments. For any choice of the assignment,
we can solve the generalized balance requirements and calculate the BPE. Remarkably we
find that, the BPEs for different assignments of the ownerless island correspond to different
saddles of the EWCS. Then it is natural to choose the assignment that gives the minimal BPE.
Furthermore, with the assignment of ownerless island settled, we calculate the contributions
sAB(A) and sAB(B) and explore their geometric picture, which is consistent with the geometric
picture in non-island phase.

Our results are based on several proposals for the island phases which are summarized in
the following11.

• As in the no-island phases, the PEE structure of the island phase is also described by the
two-point PEEs I(x , y) which is unaffected by how we divide the system.

• When we consider any type of correlation between two spacelike separated regions A
and B, we should also take into account the contributions from their island regions as
well as from the ownerless islands.

• The basic proposal 1 relates an arbitrary two-point function for the twist operators in
the 2d effective field theory to the PEE between the region enclosed by the two points
and its complement.

In this paper we mentioned the self-encoding property [49] of the island phase several times.
This property gives us the guidelines on how one should take into account the contribution
from the island regions when we study correlations between spacelike separated regions.
Also, it helps us better understand the physical meaning of the two-point functions of the
twist operators in the Weyl transformed CFT2.

11If we consdider the holographic Weyl transformed CFT2 of Set-up 1, then we should further assume that the
island formula applies to this non-gravitational toy model [49].
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The physical meaning of this paper is multifaceted. On one hand, our results give a non-
trivial test to the correspondence between the BPE and the EWCS, and to the purification
independence of the BPE. On the other hand, they indicate that the above listed proposals
are highly consistent. These proposals not only give a finer description for the entanglement
structure of the island phases, but also generalize the concept of entanglement islands to the
context of non-gravitational systems. Testing and proving the above proposals or conjectures
from other perspectives will be important future directions.

Using the PEE structure to study unitary evolution of gravitational theories, especially the
black hole evaporation, will be quite interesting. This has been partially explored in [80,84],
where they calculated the entanglement contour function for the radiation region following
the ALC proposal12 and find that there are vanishing PEEs for certain regions. According
to [80] this is a reflection of the protection of bulk island regions against erasures of the
boundary state. It will be very interesting to take a deeper look at this problem in the future.

The BPE and EWCS are closely related to the reflected entropy. In holographic setups,
evidence is given in [55] for the correspondence between the EWCS and the reflected entropy.
Also in [70] it was shown that the BPE in the canonical purification reduces to the reflected
entropy as the reflection symmetry in the canonical purification automatically satisfies the
balance requirements. In other words, the reflection symmetry in the canonical purification
is just the balance requirements. Nevertheless, searching for the EWCS is an optimization
problem which is quite different from the balance requirements. Hence, it is reasonable to
believe that the EWCS is dual to some quantum information quantity which is defined under
optimization, rather than the reflected entropy or BPE. Moreover, an explicit example has
been provided in [110], where the reflected entropy is not monotonically decreasing under
partial trace. This indicates that the reflected entropy is not a physical measure of mixed-state
correlations. Given the proposal that the BPE is a generalization of the reflected entropy to
generic purifications, this criticism also applies to the BPE.

Here we give some clarification on why the BPE is related to an optimization problem,
and why the study on the BPE and the reflected entropy is still important. In [55] the double
copy of an entanglement wedge glued along the RT surface is given as a case of canonical
purification in holography. Let us consider a generic mixed state AB and its canonical purifi-
cation ABA1B1. In these configurations the balance requirement, i.e. the reflection symmetry
with respect to the RT surface EAB of AB, requires EAA1

to be normal to EAB. Such a normal
relation is usually a necessary condition for the solution of an optimization problem. Then it
is tempting to believe that, the solutions to the balance requirements beyond the canonical
purification configurations also characterize the saddle points of this optimization problem.
If we find all the saddle points, we should choose the one that gives the minimized value.
In other words we propose that, solving the balance requirements happens to solve the opti-
mization problem in many configurations. In this paper we encounter many examples where
the number of the solutions to the balance requirements are multiple or even infinite; they
correspond to different saddle points of the EWCS. And the minimal BPE exactly matches
with the minimal EWCS. These observations give us clues to relate the BPE to an optimization
problem, and a through demonstration of this statement will an important future direction.

A more important clue comes from [71, 72] and Sec.5.5 in this paper, where the authors
find that the minimization of the crossing PEE, which is a pure optimization problem, coin-
cides with the computation of BPE, as well as the EWCS. This observation has passed several
non-trivial test, hence indicates that the minimized crossing PEE would be a more appro-
priate quantum information quantity that corresponds to the EWCS in holography. Also the
minimized crossing PEE can be defined in non-holographic configurations. It is important

12As was pointed out by our results, the ALC proposal should be modified in island phases. So the results
in [80,84] need further consideration.
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to address that the minimization of the crossing PEE is a priori independent of the balance
requirements, hence it is possible that the BPE and the minimized crossing PEE are not e-
quivalent in general. It is also possible that the minimized crossing PEE is monotonically
decreasing under partial trace in general while the reflected entropy or BPE is not. We leave
this for future investigations.

A Setup2: A generalized version of AdS/BCFT

In the appendix, we study the BPE in the setup of a generalized model of AdS3/BCFT2 [9,97–
99, 104], where the theory on the left-hand-side x < 0 couples to gravity, so we can directly
apply the island formula (2). However, in the standard AdS3/BCFT2 correspondence [12]
only symmetric two-point functions for the twist operators are well-defined in the effective
description. The purpose of our generalization is to allow the evaluation of the non-symmetric
two-point functions for twist operators. This maybe achieved by adding additional matter
fields on the EoW brane such that, the theory on the brane is no longer just the gravity dual of
the boundary point of the BCFT. It maybe more appropriate to describe the 2d effective theory
picture as a gravitational CFT2 coupled to a bath CFT2 with a transparent boundary condition.
In the following we will focus on a specific model namely the defect extremal surface (DES)
model proposed in [97].

A.1 A brief review of AdS3/BCFT2 and the DES model

The holographic dual of a CFT2 with a boundary (BCFT) is proposed to be an AdS3 spacetime
with a co-dimension one brane where Neumann boundary condition is imposed [12]. The
action of the bulk spacetime is given by

IAdS =
1

16πGN

∫
N

d3 x
p−g(R− 2Λ)+

1

8πGN

∫
Q

d2 x
p
−h(K − T ), (163)

where N and Q denotes the bulk and the brane, respectively. T is the tension of the brane,
which determines its location in the bulk. Working in the coordinates

ds2 = dρ2+ ℓ2 cosh2 ρ

ℓ

−dt2+ dw2

w2 (164)

=
ℓ2

z2

�−dt2+ dy2+ dz2
�

, (165)

where ℓ is the radius of AdS3, the brane is settled at

ρ = ρ0 , (166)

where ρ0 is determined by the tension T = 1
ℓ

tanh ρ0

ℓ
. Note that, in the Set-up 1 the cutoff

brane in the bulk is settled at ρ = κ [49], which means the two setups coincide provided
κ = ρ0. The polar coordinate θ is related to ρ via (cosθ)−1 = cosh

�
ρ/ℓ
�
. We see that the

brane is orthogonal to the boundary, namely θ (ρ0) = 0, iff T = 0. Turning on the tension or
adding other matter on the brane moves θ(ρ0) away from zero. For an interval A = [0, L]
containing the boundary of BCFT, the entanglement entropy of A is also calculated by the RT
formula [12]

SA =
Area[γA]

4GN
=

c

6
log

2L

δ
+

c

6
arctanh(sinθ0), (167)

where the second term c
6
arctanh(sinθ0) is the boundary entropy for BCFT.

42



Arxiv Version

Figure 17: This figure is extracted from [109]. 2d effective theory description for
DES model through the partial reduction for W1 and holographic duality for W2.

The DES model proposed in [97] considers conformal matters (for example a defect theo-
ry) living on the brane, and correspondingly the action has an additional term for the confor-
mal matter,

IAdS =
1

16πGN

∫
N

d3 x
p−g(R− 2Λ)+

1

8πGN

∫
Q

d2 x
p
−h(K − T ) + ICFT,Q. (168)

The field equation or equivalently the Neumann boundary condition on the brane is

Kab − (K − T )hab = 8πGNχhab , (169)

where hab is the induced metric on the brane. In the above equation χ characterizes the CFT
matter and is related to its central charge c′. Then the central charge c′ for matters on the
brane is determined by solving (169) and

c′ = 2cosh2 ρ0

ℓ

�
tanh

ρ0

ℓ
− ℓT
�

c, (170)

where c = 3ℓ
2GN

is the central charge of the CFT dual to the bulk W2 wedge. In the following,

we choose the tension T such that c′ = c as in [97].
The 2d effective description for the DES model can be obtained by partial dimensional

reduction. Let us decompose the bulk into two parts W1 and W2 along the (imaginary) sur-
face Q′ with (t, x , y) = (t, 0, y) (see Fig.17 for illustration). Then, we perform the Randall-
Sundrum reduction along ρ direction on W1 to obtain a 2d topological gravity theory plus
CFT matter living on the brane. The gravity on the brane is purely induced from the reduction
of the W1 bulk region. The CFT2 bath is obtained as the dual to the W2 wedge. Ultimately, one
arrives at the 2d effective description for DES model, a 2d topological gravity + CFT defect
matter living on the brane coupled with flat CFT bath along the x = 0 surface.

From the AdS3 bulk perspective, according to the RT-like DES proposal [97], the entan-
glement entropy for a BCFT interval A= [0, L] is given by the area of the RT surface Γ, which
connects the boundary point x = L and the brane, plus the defect term

SA =
Area(Γ)

4GN
+ Sdefect

=
c

6
log

2L

δ
+

c

6
arctanh(sinθ0) +

c

6
log

�
2ℓ

δy cosθ0

�
,

(171)

where δy is the UV regulator on the brane. The defect term is calculate by the one-point
function of the twist operator on the brane,

Sdefect =
c

6
log

�
2ℓ

δy cosθ0

�
. (172)
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.. b.

−a

.

Γab

Figure 18: The blue curve denotes the geodesic Γab connecting the point at the
boundary x = b and the point y =−a on the brane in DES setup.

It should be understood as the bulk semi-classical entanglement entropy in the RT formula
with quantum correction [6,105].

From the 2-dimensional effective field theory perspective, we can apply the island formula
to calculate the entanglement entropy. For example, the entanglement entropy for an interval
[0, L] can be calculated by minimizing the generalized entropy

Sgen([−a, L]) =Sarea (−a) + S̃[−a,L], (173)

where S̃[y1,y2] is the effective entropy of CFT matters in this 2d perspective [8,11],

S̃[y1,y2] =
c

6
log

 ��y1− y2

��2
δy1
δy2
Ω
�

y1, ȳ1
�
Ω
�

y2, ȳ2
� , ds2 = Ω−2d yd ȳ , (174)

with

Ω(y) =


��� y cosθ0

ℓ

��� , for y < 0 on the brane,

1, for y > 0 on the flat CFT.
(175)

It is easy to see that the formula (174) is also a Weyl transformed two-point function13 of the
CFT, similar to (17). The area term is given by [97]

Sarea =
1

4Gbrane
N

=
ρ0

4GN
=

c

6
arctanh
�
sinθ0
�

. (176)

It is easy to find that, the generalized entropy is minimized at a = L, and the result exactly
agrees with eq.(171).

A.2 Calculations of BPE

Let us first calculate the PEE in the 2d effective description of the DES model. For a connected
interval γ = [−a, b] where a, b > 0 and the points x < 0 lives on the brane, the PEE is given
by

I(γ, γ̄) =Sgen([−a, b]) = Sarea (−a) + S̃[−a,b]

=
c

6
arctanh
�
sinθ0
�
+

c

6
log

(b+ a)2l

a cosθ0δδy
.

(177)

13Note that, the Weyl factor Ω(y) in this case is also non-smooth at the interface y = 0.
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When a = b, eq.(177) becomes

I(γ, γ̄) =
c

6
log

2b

δ
+

c

6
arctanh
�
sinθ0
�
+

c

6
log

2l

δy cosθ0
. (178)

This is just the I(γ, γ̄) with γ = [−b, b] in the Set-up 1, plus the additional defect term
contributed from the conformal matter. Note that, when a > b, I(γ, γ̄) differs from the length
of the bulk geodesic Γab connecting the boundary point x = b and the point y = −a on the
brane (see Fig.18), plus the defect term. Specifically,

Area(Γab)
4GN

+ Sdefect =
c

6
log

�
b2+ a2+ 2ab sinθ0

a cosθ0δ

�
+

c

6
log

2l

δy cosθ0

̸= c

6
log

�
(b2+ a2+ 2ab)(1+ sinθ0)

2a cosθ0δ

�
+

c

6
log

2l

δy cosθ0

=I(γ, γ̄).

(179)

This also happens in the Set-up 1. For the interval γ= [−a, b] with a ̸= b in Weyl transformed
CFT, its RT surface is cutoff at the cutoff surface, rather than the cutoff brane (see Fig.19).

������������

−a b

Figure 19: For the interval γ = [−a, b] with a > b in Weyl transformed CFT, the
corresponding RT surface (the solid blue curve) extends behind the cutoff brane.

Now we calculate the BPE in DES model for typical configuration (see Fig.5). For A= [0, b2]
and B = [b3,+∞], the generalized islands are given by Ir(A) = [−q,−b2] and Ir(B) = [−b3,−q],
where x = −q is the partition point of Is(AB) = Ir(A)∪ Ir(B). On the other hand, the balance
point q2 divides the sandwiched interval between A and B into A2 ∪ B2 with A2 = [b2, q2] and
B2 = [q2, b3]. Now we solve the balance condition I(BIr(B), AIr(A)A2) = I(AIr(A), BIr(B)B2).

45



Arxiv Version

Using the generalized ALC formula and eq.(177), we get

I(BIr(B), A2AIr(A)) =
1

2
[S̃BIr(B)+ S̃B2BIr(B)− S̃B2

]

=
1

2
(S̃[−∞,−q]∪[b3,+∞]+ S̃[−∞,−q]∪[q2,+∞]− S̃[q2,b3])

=
c

6
log

(b3+ q)(q+ q2)l
q(b3− q2) cosθ0δy

+
c

6
arctanh
�
sinθ0
�

,

I(AIr(A), BIr(B)B2) =
1

2
[S̃AIr(A)+ S̃A2AIr(A)− S̃A2

]

=
1

2
(S̃[−q,b2]+ S̃[−q,q2]− S̃[b2,q2])

=
c

6
log

(b2+ q)(q2+ q)l
q(q2− b2) cosθ0δy

+
c

6
arctanh
�
sinθ0
�

.

(180)

Then the balance condition is given by

b3+ q

b3− q2
=

b2+ q

q2− b2
. (181)

Combining the balance requirement with the minimal requirement, that is,

∂q[I(BIr(B), A2AIr(A))] = ∂q

�
c

6
log

(b3+ q)(q+ q2)l
q(b3− q2) cosθ0δy

+
c

6
arctanh
�
sinθ0
��
= 0, (182)

we arrive at
q = q2 =
p

b2 b3. (183)

Note that the balance point is exactly the same as the one obtained in the Weyl transformed
CFT model. Finally, the BPE is given by

BPE(A : B) =I(BIr(B), A2AIr(A))

=
c

6
log

p
b3+
p

b2p
b3−
p

b2

+
c

6
arctanh
�
sinθ0
�
+

c

6
log

2l

δy cosθ0

=
Area(ΣAB)

4GN
+ Sdefect ,

(184)

which is exactly the reflected entropy caculated in [106]. Although the way we choose the
Weyl transformation is different in these two setups, the calculation and results are essentially
the same.
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