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Abstract

Quantum computers are expected to give major speed-ups for the simulation of quantum
systems. In this work, we present quantum gates that simulate the colour part of the inter-
actions of quarks and gluons in perturbative quantum chromodynamics (QCD). As a �rst
application, we implement these circuits on a simulated noiseless quantum computer and
use them to calculate colour factors for various examples of Feynman diagrams. This work
constitutes a �rst key step towards a quantum simulation of generic scattering processes in
perturbative QCD.
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1 Introduction

Quantum computing is of widespread interest because it o�ers exponential or polynomial speedups
for a variety of problems ranging from prime factorisation [1] to unstructured searching [2]. A
natural use of quantum computers is the simulation of other quantum systems, with well-known
applications in computational chemistry [3, 4] and condensed matter physics [5, 6].

Recent years have seen proposed applications of quantum computers to lattice-based Quan-
tum Field Theory (QFT) simulations (see Refs. [7, 8] and references therein) including the
simulation of Quantum Chromodynamics (QCD), the theory describing the fundamental inter-
actions of quarks and gluons. Lattice QCD is well-suited to studying the lower-energy (sub-GeV)
behaviour of QCD, but the rapid increase in computational cost with lattice size makes lattice
QCD exceedingly challenging to use for simulating collisions at the shortest length scales probed
in high-energy colliders such as the Large Hadron Collider (LHC). At these energies, the QCD
coupling constant αs becomes small, and so perturbative calculations become the method of
choice.

The use of quantum computers to simulate hard scattering processes in perturbative QCD
has largely remained unexplored to date. This may be in part because the aims of perturbative
QFT calculations di�er from the aims of most quantum simulations: most quantum simulations
(including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary)
evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the
(Hermitian, but not unitary) transition matrix describing the scattering of speci�ed external
states and hence study the production or decay of elementary particles.

A method to simulate generic perturbative QCD processes on a quantum computer is still
missing but is desirable for several reasons. Firstly, perturbative QCD calculations require the
evaluation�and quantum coherent combination�of contributions from many unobservable in-
termediate states, which makes such calculations natural candidates to bene�t from the ability
of quantum computers to manipulate superpositions of quantum states. Secondly, this ability
also means quantum simulations could be well-suited to performing calculations with full inter-
ference e�ects for processes with high-multiplicity �nal states. Thirdly, a quantum simulation of
generic perturbative QCD processes could improve the speed and precision of perturbative QCD
predictions by exploiting speedups provided by known quantum algorithms such as quantum
amplitude estimation [9�12].

The object of this article is to take steps towards using quantum computers to simulate
generic perturbative QCD processes. Calculations in perturbative QCD can be performed by
summing contributions from Feynman diagrams. Each contribution can be factorised into a
colour part and a kinematic part. The colour part is simpler to compute than the kinematic
part, and indeed there exist e�cient programs [13�18] for calculating colour factors on a classical
computer. Nonetheless, the colour part still presents some of the generic challenges of simulating
perturbative QCD processes on a quantum computer. For example, the quantum gates that form
a quantum computer must always be unitary whereas the Feynman rules (colour and kinematic
parts alike) describing components of a Feynman diagram are not generally unitary. This means
the colour parts provide a useful simpli�ed setup with which to begin developing a framework
for the quantum computation of Feynman diagrams, and they will therefore be the focus of the
present work.

The main results in this article are two quantum gates, Q and G, which represent the colour
part of the Feynman rules describing the quark-gluon and the triple-gluon interaction vertices,
respectively. To implement these gates, we introduce the new concept of a unitarisation register
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U , which enables the simulation of the non-unitary interactions of quarks and gluons.1 As an
example of the use of Q and G, we use the Qiskit [24] quantum-computing framework to build
quantum circuits that calculate the colour factors of various Feynman diagrams. This is by no
means the only use case for Q and G; they could also be used, for example, to simulate emissions,
absorption, and exchanges of quarks and gluons, either in a scattering amplitude or in a parton
shower. These quantum circuits could also form a component of a quantum Monte Carlo program
which, as highlighted in Ref. [25], would o�er a quadratic speedup for the calculation of cross
sections.

Finally, let us mention that this work forms part of a broader exploration of quantum-
technology applications in high-energy physics (see e.g. existing reviews [7, 8, 26, 27] and ref-
erences therein). While most of that exploration has focused on the experimental side of high-
energy physics, the last few years have also seen the emergence of applications on various topics
in high-energy theory. These range from parton distribution functions (PDFs) [28, 29] to ampli-
tudes [30�34], e�ective �eld theory [35], cross-section computations [25], parton showers [30, 36�
38], and event generation [38�40].

This article is organised as follows: sec. 2 begins with a high-level overview of the use of our
quantum circuits to calculate the colour factor for a simple Feynman diagram (sec. 2.1). The rest
of sec. 2 provides details of the methods and algorithms employed. In particular, sec. 2.2 explains
the functioning of the unitarisation register mentioned above, and sec. 2.3 presents the quantum
circuits implementing quark and gluon interactions. In sec. 3, we generalise our methods to
simulate more complicated processes and validate this by using a simulated noiseless quantum
computer to calculate colour factors for various Feynman diagrams. Finally, sec. 4 contains a
summary of our �ndings and concluding remarks. In Appendix A, a few miscellaneous quantum
gates related to the calculation of traces are presented.

2 Methods

2.1 Illustrative example

The main results in this article are two quantum gates, Q and G, which simulate, respectively,
the colour factors T aij of the quark-gluon vertex and fabc of the triple-gluon vertex. We defer a
description of the explicit construction of Q and G to sec. 2.3. As we will see in sec. 3, these gates
can be used to calculate the colour factor of any Feynman diagram. In the present section, we
will illustrate how our method works by applying it to calculate the colour factor of the simple
example Feynman diagram shown on the left-hand side of �g. 1.

In general, any Feynman diagrams involving quark-gluon or gluon-gluon interactions will
carry colour information from the SU(3) symmetry group of QCD. When squaring the diagrams
to obtain the cross section, the colour algebra has to be carried out, resulting in so-called colour
factors. The latter contain a generator T a for each quark-gluon vertex and a structure constant

1While the use of ancillary qubits to enforce unitarity is by now well established with methods such as block

encoding [19�22] or qubitisation [23], to the best of our knowledge our implementation is original and has the
advantage of allowing multiple independent non-unitary operations to be carried out sequentially while only
requiring a small number of ancilla qubits, as will be explained in sec. 2.2.

3



i i

g

U

q

q̃

Rg Q Q R−1
g

Rq R−1
q

Figure 1: Example Feynman diagram (left) and a graphical representation of its corresponding circuit
(right).

fabc for each triple-gluon vertex.2 In the present example, the colour factor reads

C =
∑

a∈{1,...,8}
i,j,k∈{1,2,3}

T aijT
a
jkδik, (1)

where

T a =
1

2
λa (2)

and λa are the Gell-Mann matrices:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

(3)

This colour factor can be computed using the quantum circuit shown on the right-hand side
of �g. 1, whose workings will now be explained. The circuit contains several qubits, which we
combine into groups called registers. Each register r is initially in some reference state |Ω〉r.3
In this particular example, there is a gluon register, labelled g, and a pair of quark registers,
labelled q and q̃. In general there will be a gluon register for each gluon in a Feynman diagram,
and a pair of quark registers for each quark line in the diagram. We will see that the state
of the q register is altered by the simulated emission and absorption of gluons, while the q̃
register is left una�ected and serves only to help implement the δik term in eq. (1). Each quark
register is made of 2 qubits, with the states |00〉 , |01〉 , |10〉 representing the Nc = 3 quark colours
|1〉 , |2〉 , |3〉, while the state |11〉 is unused. The gluon register is composed of 3 qubits, whose
8 states |000〉 , |001〉 , . . . , |111〉 represent the N2

c − 1 = 8 colours |1〉 , |2〉 , . . . , |8〉 of the gluon.
There is also a unitarisation register, labelled U , whose purpose will be explained in section 2.2.
The initial state of the circuit is thus |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U .

2More references and information on colour algebra can be found in Refs. [41, 42].
3In practice, in this work we always choose |Ω〉r to be the state where each qubit of r is in the state |0〉.
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First, a gate Rg is applied to the gluon register to put it into an equal superposition of colour
states. A detailed de�nition of Rg will be given in Appendix A and its e�ect reads as follows:

Rg |Ω〉g =
8∑

a=1

1√
8
|a〉g . (4)

The gate Rq (also to be de�ned in Appendix A) is now applied to the quark registers with the
following e�ect:

Rq |Ω〉q |Ω〉q̃ =

3∑

k=1

1√
3
|k〉q |k〉q̃ . (5)

Thus, after applying the Rg and Rq gates, the quantum computer is in the state

1√
24

8∑

a=1

3∑

k=1

|a〉g |k〉q |k〉q̃ |Ω〉U . (6)

Next, the Q gate is applied to the g and q registers. Q represents the quark-gluon interaction
and is designed (see sec. 2.3.1) such that for a gluon colour basis state |a〉g and quark colour
basis state |k〉q, where a ∈ {1, . . . , 8} and k ∈ {1, 2, 3}, the following equation holds:

Q |a〉g |k〉q |Ω〉U =
3∑

j=1

T ajk |a〉g |j〉q |Ω〉U + (terms orthogonal to |Ω〉U ) . (7)

Note that Q does not act on the q̃ register. The linearity of quantum gates ensures that Q models
the quark-gluon interaction correctly even if the quark or gluon registers are in superpositions of
colour basis states or are entangled with other registers. Thus, after applying the Q gate once,
the quantum computer is in the state

1√
24

∑

a∈{1,...,8}
j,k∈{1,2,3}

T ajk |a〉g |j〉q |k〉q̃ |Ω〉U + (terms orthogonal to |Ω〉U ) . (8)

The Q gate is now applied a second time to the g and q registers, to simulate the second quark-
gluon vertex. This puts the quantum computer into the state

1√
24

∑

a∈{1,...,8}
i,j,k∈{1,2,3}

T aijT
a
jk |a〉g |i〉q |k〉q̃ |Ω〉U + (terms orthogonal to |Ω〉U ) . (9)

Since Rg is unitary, one can see by inverting eq. (4) that R−1
g acting on any state

∑8
a=1 ca |a〉g

of the gluon register would produce the state

R−1
g

8∑

a=1

ca |a〉g =

(
1√
8

8∑

a=1

ca

)
|Ω〉g +

(
terms orthogonal to |Ω〉g

)
. (10)

Similarly, it can be seen by inverting eq. (5) that R−1
q acting on any state

∑
i,k∈{1,2,3} cik |i〉q |k〉q̃

of the q and q̃ registers would produce the state

R−1
q

∑

i,k∈{1,2,3}

cik |i〉q |k〉q̃ =

(
1√
3

3∑

i=1

cii

)
|Ω〉q |Ω〉q̃ +

(
terms orthogonal to |Ω〉q |Ω〉q̃

)
. (11)
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Therefore, taking the state produced in eq. (9) and applying the gates R−1
g and R−1

q , the state
of the quantum circuit becomes

1

24




∑

a∈{1,...,8}
i,j∈{1,2,3}

T aijT
a
ji


 |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U +

(
terms orthogonal to |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U

)
. (12)

Thus, in the �nal quantum state (12) of the quantum circuit, the colour trace (1) to be computed
is found encoded in the coe�cient of the reference state |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U . As we will now
discuss, this circuitry can either be used as part of a higher-level algorithm, or the information
in the output state (12) can be extracted directly.

A simple way to verify this result is to perform many independent runs of the circuit, where
after each run the �nal state of all the registers is measured and then reset to the initial state
|Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U . One can then count the number of runs where the �nal state is measured
to be |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U , and compare against the prediction of eq. (12) which is that for each

run the measurement of the �nal state will yield |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U with probability C2
242

, where

C was de�ned in eq. (1).4 We note that this measurement strategy, while relatively simple
to understand, is only being presented as a transparent way to verify that the state (12) is
correctly produced. More advanced methods exist for examining, measuring, and exploiting
quantum states. For example, Quantum Amplitude Estimation [9�12] could be employed in
order to achieve a quadratic improvement in speed. Alternatively, to go beyond calculating the
colour factor of a single Feynman diagram, the output (12) of the circuit can be directly used
as a component of a future algorithm, such as one that calculates the kinematic factors and
then sums over Feynman diagrams, or one that performs Monte Carlo integration to compute
cross-sections.

Although not required for this simple example Feynman diagram, let us mention that in
addition to the Q gate used above, we have also designed a gate G which represents triple-gluon
interactions. The detailed de�nition of G will be given in sec. 2.3.2, but for now we will simply
note that, similarly to eq. (7), G has been designed to act on 3 gluon registers (g1, g2, and g3)
and U such that

G |a〉g1 |b〉g2 |c〉g3 |Ω〉U = fabc |a〉g1 |b〉g2 |c〉g3 |Ω〉U + (terms orthogonal to |Ω〉U ) , (13)

where fabc are the SU(3) structure constants mentioned above. Note that to avoid arti�cially
distinguishing between �emitted� and �emitter� gluons, we have a separate register for each of
the 3 gluons at a triple-gluon vertex and so the G gate in eq. (13) only rescales the amplitude
(projected onto |Ω〉U ) by fabc, without rotating the gluon colour states. In contrast, the q register
represents an entire quark line, whose state (projected onto |Ω〉U ) is rotated by the Q gate at
each interaction. Note also that we do not construct a speci�c gate for the four-gluon vertex
since that vertex can decomposed into a linear combination of products of three-gluon vertices,
each product having an independent kinematic coe�cient.

This concludes our example computation of a colour trace. In sec. 3, we will generalise this to
calculate the colour traces of more complicated processes. Before that, however, we will describe
the details that we have so far deferred: in sec. 2.2 we will describe the purpose and functioning
of the unitarisation register U , and in sec. 2.3 we will present the explicit construction of the Q
and G gates.

4Such a veri�cation will not yield information about the complex phase of the trace, but that can be obtained
by instead implementing the well-known Hadamard test [43].
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2.2 Unitarisation register

To simulate perturbative QCD processes, we would like to construct quantum gates for the 8
linear operators

|j〉q →
∑

i

T aij |i〉q (14)

and the (diagonal) linear operator

|a〉g1 |b〉g2 |c〉g3 → fabc |a〉g1 |b〉g2 |c〉g3 , (15)

where q is a quark register and g1 , g2 , g3 are gluon registers. However, quantum gates can only
be constructed for unitary operators. A linear operator is unitary if and only if the rows of its
matrix representation are orthonormal. The matrix representations of eqs. (14) and (15) consist
of rows which are mutually orthogonal but not necessarily of unit norm5; indeed, many rows are
zero. In this section we will present a way to circumvent this problem.

Let L be a linear operator acting on a Hilbert space H1. If L is non-unitary, it cannot be
implemented as a quantum circuit. The Gell-Mann matrices in eq. (3) are examples of such
non-unitary operations. However, it may still be possible to de�ne a unitary operator L̂ acting
on a larger Hilbert space H1 ⊗ HU such that for some state |Ω〉U ∈ HU and for any states
|χ1〉 , |χ2〉 ∈ H1 the following equation holds:

〈Ω|U 〈χ2|L̂|χ1〉 |Ω〉U = 〈χ2|L|χ1〉 . (16)

Clearly, there are many ways to achieve eq. (16), each with di�erent advantages. In this
work, we have sought a way that �rstly allows multiple independent non-unitary operations to
be performed sequentially, secondly keeps the size of HU small, and thirdly maintains quantum
coherence without intermediate measurements so that these circuits can be used as building
blocks in a higher-level algorithm. Speci�cally, regardless of the complexity of the Feynman
diagram, we introduce a single additional register U , whose size is small: it contains NU =
dlog2(NV + 1)e qubits, where NV is the number of vertices in the Feynman diagram. More
generally, NV would be the number of non-unitary operations to be performed. We call U the
unitarisation register, and denote its 2NU basis states |k〉U with k ∈ {0, . . . , 2NU − 1}. Later in
this section we will de�ne two gates A and B(α), where α ∈ C and |α|2 ≤ 1, which are designed
to act on U in the following way:

B(α)A |k〉 =





α |0〉+
√

1− |α|2 |1〉 if k = 0

|k + 1〉 if 0 < k < 2NU − 1√
1− |α|2 |0〉 − α |1〉 if k = 2NU − 1.

(17)

The state |0〉U is special and we interchangeably denote it as |Ω〉U . Equation (17) implies two
key properties: �rstly,

〈Ω|UB(α)A|Ω〉U = α (18)

and secondly, we can apply the A and B gates6 repeatedly up to 2NU − 1 times and obtain

〈Ω|U
Nops∏

i=1

{B(αi)A} |Ω〉U =

Nops∏

i=1

αi, (19)

5Helpfully for what follows later, the factor of 1
2
in eq. (2) ensures that all rows have norm ≤ 1.

6It will turn out that B(0) = 1, and so the separation of the A and B(α) gates will allow the B(α) gate to be
omitted if α = 0.
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where the number of operations Nops ≤ 2NU − 1.
For a given operator L, our general strategy for implementing an operator L̂ which satis�es

eq. (16) comprises two steps. One step is to act on H1 with a unitary operator whose rows di�er
from the rows of L by only a (row-dependent) normalisation. The other step is to act on H1⊗HU
with controlled7 versions of the A and B(α) gates in a way that, thanks to eq. (18), corrects for
the normalisation changes.8 Equation (16) follows as a direct consequence of these two steps. To
apply a sequence of non-unitary operations, we simply repeat these two steps. In general, this
will place U into a superposition of states, with the component proportional to |Ω〉U containing
the information of interest due to eq. (16). Since the step acting on H1 does not a�ect U , and
the step acting on H1⊗HU only increments the state of U by at most 1 according to eq. (17) and
never decrements it as long as k < 2NU − 1, it can be seen that the two steps can be repeated up
to 2NU − 1 times before the unitarisation register over�ows. Therefore, as desired, the required
size of U is small: it is logarithmic in the number of sequential non-unitary operations that we
wish to perform. Furthermore, our unitarisation strategy maintains the quantum coherence of
states produced by non-unitary operations, thus allowing the circuits in this paper to be used
as building blocks for higher-level algorithms. The explicit implementation of eq. (16) for the
linear operators in eqs. (14) and (15) is left to sec. 2.3. In the remainder of this section, we will
introduce notation for controlled quantum gates, and then give explicit de�nitions for the A and
B(α) gates.

For convenience, let us de�ne some notation for controlled quantum gates, which will be used
in this section and the next one. For any quantum gate, a controlled version of it can loosely
be understood as applying that gate to one register, designated as the target register, if one
or more other registers, designated as the control registers, are in a particular speci�ed state.
For example, as we will see in sec. 2.3.1, the Q gate implements the quark-gluon interaction by
applying a rotation which is targeted at the quark register, with the choice of rotation controlled
by the state of the gluon register. More precisely, let U (not to be confused with U) be any
quantum gate acting on a Hilbert space Htrgt and let |ψ〉 be a normalised state in another
Hilbert space Hctrl. Then we de�ne the |ψ〉-controlled-U gate C|ψ〉 [U ] acting on the Hilbert
space Hctrl ⊗Htrgt as follows:

C|ψ〉 [U ] = |ψ〉 〈ψ| ⊗ U + (1Hctrl
− |ψ〉 〈ψ|)⊗ 1Htrgt . (20)

Here 1Hi is the identity operator acting on the Hilbert space Hi. In the context of eq. (20) we
will call the qubits represented by Hctrl the control qubits, and call the qubits represented by
Htrgt the target qubits. Equation (20) implies in particular that for any state |φ〉 ∈ Htrgt,

C|ψ〉 [U ] {|ψ〉 ⊗ |φ〉} = |ψ〉 ⊗ U |φ〉 (21)

and furthermore that given any state |ψ′〉 ∈ Hctrl satisfying 〈ψ′|ψ〉 = 0,

C|ψ〉 [U ] {|ψ′〉 ⊗ |φ〉} = |ψ′〉 ⊗ |φ〉 . (22)

In this article, any controlled gate C|ψ〉 [U ] will be depicted in the manner shown in �g. 2. In
our Qiskit program, the function qiskit.extensions.UnitaryGate.control has been used to
implement eq. (20).

7to be explained shortly
8By applying suitable rotations, our method could be extended to apply to cases where the rows of L are not

mutually orthogonal, but that is beyond the scope of this article.
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|ψ⟩

U

Figure 2: Graphical representation of |ψ〉-controlled-U gate C|ψ〉 [U ] de�ned in eq. (20). Here, |ψ〉 is any
speci�ed state of the upper register, and U is any operator de�ned on Hilbert space of the lower register.

Let us proceed by de�ning the well-known increment operator (see for example Refs. [44, 45]),
which we denote A and which is depicted in �g. 3. Formally, the gate can be de�ned as follows.
Let X be the Pauli-X single-qubit gate:

X =

(
0 1
1 0

)
. (23)

Let Xn be the gate C|1 . . . 1︸ ︷︷ ︸
n−1

〉[X] acting on the �rst n qubits of the unitarisation register, with

qubits 1 through n− 1 serving as control qubits and qubit n serving as target qubit. Let A1 be
the Pauli-X gate acting on qubit 1, and de�ne recursively9 for n > 1:

An = An−1Xn. (24)

For a unitarisation register with NU qubits, the increment operator of �g. 3 can now be formally
de�ned as A = ANU . Interpreting each basis state of the unitarisation register as a binary

representation of a number |k =
∑NU

i=1 ui2
i−1〉, where un ∈ {0, 1} is the state of the nth qubit, it

can be veri�ed that
A |k〉U = |k + 1 (mod 2NU )〉U ∀k. (25)

In this article, A should be assumed to always act on the unitarisation register.

A

=

q1

q2

qNU

Figure 3: Graphical representation of the circuit for the A operator, which increments the unitarisation
register U . Here, ⊕ represents the Pauli-X gate and |q1〉 , . . . , |qNU 〉 are the qubits that form U .

Next let us de�ne a single-qubit gate

B1(α) =

(√
1− |α|2 α

−α
√

1− |α|2
)
, (26)

9One sometimes encounters [45] a di�erent (but equivalent) recursive de�nition, which involves a controlled-
An−1 gate, but we have chosen not to adopt it here.
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B1(α)q1

q2

qNU

B(α)

=

Figure 4: Graphical representation of the circuit for the partial-decrement operator B(α) de�ned for-
mally in eq. (27).

which should be understood to always act on qubit 1 of the unitarisation register.
We now de�ne a partial-decrement operator B(α) as follows:

B(α) = C|0 . . . 0︸ ︷︷ ︸
NU � 1

〉[B1(α)], (27)

which should be understood to act on the unitarisation register with qubits 2 through NU serving
as control qubits and qubit 1 serving as target qubit, as shown in �g. 4. The desired behaviour
of the A and B(α) gates shown in eq. (17) follows immediately from eqs. (25�27).

This concludes our explanation of the unitarisation register U and the A and B(α) gates. We
will now proceed to use them to implement eq. (16) for the quark-gluon (14) and triple-gluon (15)
interactions.

2.3 Construction of interaction gates

In this section, we will give details of the construction of the Q and G gates which simulate
quark-gluon and triple-gluon interactions, respectively. As mentioned earlier, 2-qubit registers
are used to represent the Nc = 3 colour states of a quark as |00〉, |01〉, and |10〉. Note that the
|11〉 state of each quark register is unused: all operators O acting on a quark register satisfy
〈11|O|11〉 = 1, which means the last row and last column of the 4 × 4 matrix representing O
are both (0 0 0 1), ensuring that the register never enters the |11〉 state. For brevity we will
omit the fourth row and fourth column when representing these operators as matrices.

2.3.1 Quark-gluon interaction gate Q

We wish to construct a gateQ which will implement the quark-gluon interaction. This interaction
is described by the non-unitary operator shown in eq. (14), and we therefore wish unitarise it�
see eq. (16)�by constructing a suitable L̂ for it. Following the general strategy explained in
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sec. 2.2, we start by de�ning the following unitary matrices λa:

λ1 =




0 1 0
1 0 0
0 0 1


 , λ2 =




0 −i 0
i 0 0
0 0 1


 , λ3 =




1 0 0
0 −1 0
0 0 1


 ,

λ4 =




0 0 1
0 1 0
1 0 0


 , λ5 =




0 0 −i
0 1 0
i 0 0


 , λ6 =




1 0 0
0 0 1
0 1 0


 ,

λ7 =




1 0 0
0 0 −i
0 i 0


 , λ8 =




1 0 0
0 1 0
0 0 1


 .

(28)

It can be observed that these matrices are similar to the Gell-Mann matrices eq. (3) but have
been adjusted to make them unitary, and therefore implementable as quantum gates acting on
a 3-state quark register. We combine the λa gates into a new gate Λ acting on a gluon register
g and quark register q in the following way

Λ =

[
8∏

a=1

C|a〉g
[
λa
]
]
, (29)

where g serves as control register and q serves as target register, as shown in �g. 5. Thus,
depending on the colour a of the gluon register, Λ applies the gate λa to the quark register.

Λ =

8∏

a=1

g |a〉

q λa

Figure 5: Graphical representation of the circuit of the Λ gate de�ned in eq. (29).

We proceed to construct the quark-gluon interaction gate Q, which is based on Λ but uses
A and B gates to account for the di�erences between the matrices λa and λa, as well as for
the factor of 1

2 in eq. (2). In brief, the Q gate will increment U using the A gate and then
conditionally decrement it again using B gates, before �nally applying the Λ gate to the state
thus produced. More formally, as depicted in �g. 6, the Q gate is de�ned to act on the state

Q

=

Λ

M

A

g

q

U

Figure 6: Graphical representation of the circuit of the quark gate Q de�ned in eq. (30).
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|Ψ〉g⊗ q⊗U of any gluon register g, any quark register q, and the unitarisation-register U in the
following way:

Q |Ψ〉g⊗ q⊗U = (Λ⊗ 1U )M(1g ⊗ 1q ⊗A) |Ψ〉g⊗ q⊗U , (30)

where
M =

∏

a,i : µ(a,i)6=0

C|a〉g |i〉q [B (µ(a, i))] , (31)

and

µ(a, i) =





1
2 if

(
λa
)
ij
− (λa)ij = 0 ∀j

1
2
√

3
if a = 8 and i ∈ {1, 2}

−1√
3

if a = 8 and i = 3

0 otherwise.

(32)

A graphical representation of the operator M is shown in �g. 7.

M

=
∏

a,i:µ(a,i)6=0

g |a〉

q |i〉

U B(µ(a, i))

Figure 7: Graphical representation of the circuit of the M operator de�ned in eq. (31).

The de�nitions of λa and µ(a, i) in eqs. (28) and (32) have been chosen so that the following
equation holds

µ(a, i)λa |i〉 =
1

2
λa |i〉 , (33)

where the λa are de�ned in eq. (3) and the factor of 1
2 originates from eq. (2). Note that since

the control states in eq. (31) are mutually orthogonal, applying M does not decrement the state
of U by more than 1. By using the properties of U in eq. (18) and the de�nitions of Q, M , and
Λ in eqs. (29�31), it can be seen that if |ψ1〉 = |a〉g |k〉q |Ω〉U and |ψ2〉 = |b〉g |l〉q |Ω〉U then

〈ψ2|Q|ψ1〉 = 〈b|a〉 〈l|12λa|k〉 . (34)

The desired property of Q shown in eq. (7) follows immediately from this. Thus, a sequence of
emissions and absorptions of gluons by a quark line can be simulated on a quantum computer
by chaining a corresponding sequence of Q gates.

2.3.2 Triple-gluon interaction gate G

We shall now proceed to the description of a quantum gate for the triple-gluon interaction. This
interaction is described by the non-unitary operator shown in eq. (15), and so we wish to unitarise
it�see eq. (16)�by �nding a suitable L̂ for it, following the general strategy explained in sec. 2.2.
In contrast to the quark-gluon operator (14), the triple-gluon operator (15) is diagonal and so

12



its corresponding L̂ operator, which we call G, can be constructed using only A and controlled
B(α) gates.

We de�ne the gate G acting on any state |Ψ〉g1⊗ g2⊗ g3⊗U of gluon registers g1, g2, and g3,
and the unitarisation register U in the following way:

G |Ψ〉g1⊗ g2⊗ g3⊗U = G′A |Ψ〉g1⊗ g2⊗ g3⊗U , (35)

where

G′ |Ψ〉g1⊗ g2⊗ g3⊗U =


 ∏

a,b,c : fabc 6=0

C|a〉|b〉|c〉

[
B
(
fabc

)]

 |Ψ〉g1⊗ g2⊗ g3⊗U . (36)

The gates G and G′ are illustrated in �gs. 8 and 9, respectively.

G
=

g1

g2

g3

U

G′

A

Figure 8: Graphical representation of the gluon gate G de�ned in eq. (35).

G′ =
∏

a,b,c:fabc ̸=0

g1

g2

g3

U

|a⟩

|b⟩

|c⟩

B(fabc)

Figure 9: Graphical representation of the circuit of the G′ gate de�ned in eq. (36).

One sees that in eq. (36), by de�nition (20) of the control gate, each factor C|a〉|b〉|c〉
[
B
(
fabc

)]

appliesB(fabc) to the unitarisation register if the three gluons have colours a, b, c respectively, and
leaves the unitarisation register unchanged if the gluons are in a state orthogonal to |a〉g1 |b〉g2 |c〉g3 .
As was seen for the M gate in the previous section, applying the G′ gate does not decrement the
state of U by more than 1, since the control states in eq. (36) are mutually orthogonal. Since
B(0) = 1 and C|a〉|b〉|c〉 [1] = 1, the product in eq. (36) does not need to include any cases where

fabc = 0. By using the property shown in eq. (18) and the de�nitions of G and G′ in eqs. (35)
and (36), it can be veri�ed that eq. (13) indeed holds.

Hence, a triple-gluon interaction can be implemented by applying the gate G to the corre-
sponding gluon registers. It can be observed that the gates G and Q do not rotate the states
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of the gluon registers and so in diagrams where several triple-gluon interactions are present, the
corresponding G gates can be applied in any order.

3 Results

In this section, the method introduced in sec. 2.1 will be generalised to simulate�and calculate
colour factors for�arbitrary Feynman diagrams.

Let ng be the number of gluons in the diagram and let nq be the number of quark lines in
the diagram. The quantum circuit to be constructed will contain gluon registers, quark registers,
and a unitarisation register. There are ng gluon registers, each with 3 qubits. There are nq pairs
of quark registers, each pair comprising 2 registers labelled q and q̃, with 2 qubits per register.
The unitarisation register has NU = dlog2(NV + 1)e qubits, where NV is the number of vertices
in the Feynman diagram. The procedure for calculating colour factors is as follows:

1. Initialise each register r into the state |Ω〉r.

2. Apply Rg, as in eq. (4), to each gluon register separately.

3. For each quark line, apply Rq to the corresponding pair of quark registers, q and q̃, as in
eq. (5).

4. For each quark-gluon interaction vertex, apply a Q gate to the quark register q and gluon
register g that correspond to the quark and gluon at that vertex. The corresponding q̃
register does not participate here.

5. For each triple-gluon interaction, apply a G gate to the 3 corresponding gluon registers.

6. Apply an R−1
g gate to each gluon register.

7. For each quark line, apply an R−1
q gate to the corresponding pair of quark registers, q

and q̃.

In the above procedure, steps 4 and 5 simulate the evolution of the colour states of the particles
in the Feynman diagram, while the remaining steps serve to perform the trace over the colours.
Note that the Q gates corresponding to a given quark line must be applied in the order in which
the corresponding interactions appear on that quark line in the Feynman diagram. Apart from
this, there is no restriction on the ordering of the Q and G gates.

Analogously to the result in sec. 2.1, it follows from the Feynman rules and from eqs. (7),
(13), and (19) that after step 7 the colour factor C of the Feynman diagram will be found encoded
in the �nal state of the quantum computer, which is

1

N C |Ω〉all + (terms orthogonal to |Ω〉all) , (37)

where N = N
nq
c

(
N2
c − 1

)ng and

|Ω〉all =

( ng∏

m=1

|Ω〉gm

)( nq∏

l=1

|Ω〉ql |Ω〉q̃l

)
|Ω〉U . (38)

As explained in sec. 2.1, the result in eq. (37) can be veri�ed by repeatedly running the
circuit and counting the number of times it is measured10 to be in the state |Ω〉all, optionally

10The measurements are performed in the computational basis.
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Diagram Analytical Numerical

i i

CFN = 4 3.9988± 0.0012

i i
CF

2N = 16
3 5.331± 0.010

i i

CF
2 = 2

3 0.673± 0.010

a a

N(N2 − 1) = 24 23.95± 0.03

i i

j j

(N2−1)
4 = 2 2.00± 0.03

i i

j j

0 0.0+0.5
−0.0

i i

CFN
2

2 = 6 5.92± 0.08

Table 1: Colour factors for example Feynman diagrams. The �rst column depicts the Feynman dia-
grams, with indices on external legs indicating identical colours. The central column states the analytical
result for the colour factor. The last column displays the numerical result for each colour factor obtained
using 100 million runs of the simulated quantum circuit, along with the associated statistical uncertainty.

15



in conjunction with Hadamard testing (to retain phase information) and Quantum Amplitude
Estimation (to obtain a quadratic speedup). Alternatively, the output (37) of the circuit can be
directly used as a component of a future algorithm, such as one that calculates the kinematic
factors and then sums over Feynman diagrams, or one that performs Monte Carlo integration to
compute cross-sections. Since the output (37) is a quantum state, once combined with the corre-
sponding kinematic factor it would be well-suited to future work which calculates the quantum
interference of multiple diagrams, possibly by implementing a quantum-computing equivalent of
the recursive algorithms [46] that are widely used in modern classical calculations.

To validate the methods and circuits described in this article, we have implemented them
in a program named QColour written in Python using the IBM Qiskit package.11 Using
QColour we have built quantum circuits to simulate several Feynman diagrams shown in
Table 1. For each Feynman diagram, the corresponding circuit was run 108 times on a simulated
noiseless quantum computer and the number NΩ of times the output state was measured to
be |Ω〉all was counted. It follows from eq. (37) that NΩ is binomially distributed as NΩ ∼
B
(

108,
( C
N
)2)

. We therefore infer the absolute value of the colour factor to be

|C| = N
√
NΩ

108
, (39)

with a statistical uncertainty that can be estimated using the Wilson score interval [47]. As can
be seen from Table 1, the colour factors obtained using the simulated quantum circuits are fully
consistent with the colour factors calculated analytically.

It may be observed that the fractional uncertainty in the inferred colour factors increases with
the complexity of the diagram, but we emphasise again that the measurement strategy employed
here is only intended as a transparent way to verify that the circuits correctly produce the
state (37). As mentioned above and in sec. 2.1, more sophisticated strategies can be employed
to examine, measure, and exploit this quantum state, and the state can furthermore be used
in a higher-level algorithm rather than being immediately measured. Therefore, while more
complicated scattering processes are always likely to have higher computational costs (as in
classical Monte Carlo calculations), the examples in Table 1 should not be taken as providing a
conclusive indication of the scaling rate.

4 Conclusion

The simulation of quantum systems is a �agship application of quantum computers, with expec-
tations for polynomial or exponential speed-ups over classical computers. In this article, �rst
steps were taken towards a quantum simulation of generic perturbative QCD processes. In par-
ticular, quantum circuits were designed to simulate the colour parts of the interactions of quarks
and gluons. In order to do so, the concept of a unitarisation register was devised to enable a
unitary quantum-circuit implementation of the non-unitary Gell-Mann matrices λa and structure
constants fabc that describe the interaction vertices in Feynman diagrams. It was shown that
these quantum circuits can be used to simulate the colour parts of arbitrary Feynman diagrams.
Furthermore, these circuits were implemented on a simulated noiseless quantum computer using
the Qiskit framework, and colour factors were hence calculated for various examples of Feyn-
man diagrams. It is to be emphasised that besides enabling the calculation of colour factors, the

11For this implementation, we have used Qiskit version 0.36.1.
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quantum circuits presented in this work can in the future be directly used as components of a
full quantum simulation of scattering amplitudes.

The work presented here opens several directions for future exploration. Following the present
simulation of the colour parts of Feynman diagrams, a natural extension of this work is the
simulation of the kinematic parts, since the unitarisation register devised here would also be
particularly useful there. Simulating the kinematic parts will require appropriate ways to han-
dle the much larger Hilbert spaces resulting from the continuous nature of kinematic variables.
This is likely to require many more qubits than the colour parts do, but since colliders like the
LHC probe energy scales that are several orders of magnitude higher than ΛQCD, we expect
that the number of qubits required for simulating the kinematic parts can still be competitive
against the requirements of lattice-based quantum-computer simulations of the same processes.
Another natural extension is to explore the quantum-coherent interference of the contributions
from multiple Feynman diagrams, a task to which quantum computers are naturally well-suited.
Furthermore, it would also be interesting to explore the application of the quantum circuits from
this work to perform calculations with full quantum correlations for high-multiplicity processes
that are currently described using parton showers. Finally, although the present work is aimed
at error-corrected quantum computers that are envisaged for the medium term, it would mean-
while be interesting to test these circuits against the noise characteristics of speci�c near-term
hardware devices, and then perform custom adaptations (in hardware and software) to mitigate
against the noise and its e�ects. In the long term, all these aspects can be combined with quan-
tum algorithms known to have quadratic (or better) speedups, such as quantum Monte Carlo
simulations, and then implemented on future physical quantum computers. This would provide
signi�cant improvements in the speed and possibly the reach of perturbative QCD calculations.
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A Miscellaneous gates

In this Appendix we give explicit de�nitions for the gates Rg and Rq. Both of these gates are
used in sec. 2.1 and sec. 3. We also provide a circuit diagram for the Λ gate that was de�ned in
eq. (29).

The Rg gate is composed of a Hadamard gate H acting on each qubit of the gluon register.
Since H satis�es H−1 = H, it follows that R−1

g = Rg. Its graphical representation is provided
in �g. 10.

Rg =

H

H

H

Figure 10: Graphical representation of the circuit of the Rg gate.
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The Rq gate is de�ned by the circuit shown in �g. 11 and is composed of two controlled-X
gates and a 2-qubit gate R de�ned as follows:

R =




√
1
3

√
1
2

√
1
6 0√

1
3 −

√
1
2

√
1
6 0√

1
3 0

√
2
3 0

0 0 0 1



. (40)

The inverse R−1
q of Rq is easily constructed by reversing the order of the 3 gates in �g. 11 and

replacing R by its transpose RT .

Rq =

Rq

q̃

Figure 11: Graphical representation of the circuit of the Rq gate.

Finally, the explicit form of the Λ gate in terms of basic gates can be found in �g. 12. The
matrices λa are given in eq. (28), and should be understood to be 4×4 dimensional as explained at
the start of sec. 2.3. The M gate is constructed in a similar fashion, and comprises 17 controlled
gates corresponding to the 17 combinations of a and i for which µ(a, i) is non-zero according
to eq. (32). However, since µ takes one of only 4 di�erent values, we expect that M could be
constructed with fewer controlled operations by choosing a suitable encoding of a and i into
qubits.

Λ =

g

q λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Figure 12: Explicit graphical representation of the circuit of the Λ gate de�ned in eq. (29). White and
black circles represent controlled operations with control states |0〉 and |1〉, respectively.
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