Universal relations in flat band superconducting bipartite lattices

G. Bouzerar* and M. Thumin
Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
(Dated: August 17, 2023)

Unconventional flat band (FB) superconductivity, as observed in van der Waals heterostructures,
could open promising avenues towards high-T. materials. Indeed, in FBs, pairings and superfluid
weight scale linearly with the interaction parameter, such an unusual behaviour justifies strategies
to promote FB engineering. Bipartite lattices (BLs) which naturally host FBs could be particu-
larly interesting candidates. By revealing a hidden symmetry of the quasi-particle eigenstates, we
demonstrate that pairings and superfluid weight obey universal relations in BLs. Remarkably, these
general properties are insensitive to disorder as long as the bipartite character is protected.

Over the past decade, one witnesses a growing interest
for a family of emerging materials: the flat band (FB)
systems [1-5]. In FB compounds, the kinetic energy be-
ing quenched, the electron-electron interaction energy is
the unique relevant energy scale giving access to strongly
correlated physics. FBs are found at the origin of an un-
conventional form of superconductivity (SC) of interband
nature. In FBs, superfluid weight (SFW) and critical
temperature scale linearly with the effective interaction
amplitude |U| [6-8] which contrasts with the dramatic
e~ 1/((Er)IUD gcaling in standard BCS theory. Recently,
it has been shown that the Bogoliubov de Gennes (BdG)
approach is astonishingly quantitatively accurate in de-
scribing SC in FBs. Surprisingly, the agreement revealed
between exact methods and BdG concerns systems where
quantum fluctuations are the strongest: one-dimensional
systems such as the sawtooth chain, the Creutz ladder
and other FB system. The SFW obtained with BdG
and that calculated with density matrix renormalization
group (DMRG) were found to agree impressively [9].

In the framework of the attractive Hubbard model
(AHM) in bipartite lattices (BLs) and within BdG the-
ory, we demonstrate universal sum-rules and other rela-
tions that pairings and SF'W obey in half-filled and par-
tially filled FB systems. Some of the relations proved
here in a general context have been established for pecu-
liar two dimensional BLs assuming uniform pairings in
each sublattice [8, 10]. For the sake of concreteness, all
the properties that will be proved are illustrated in the
Supplemental Material [11] on a typical two dimensional
BL. Finally, in this work, we restrict ourself to 7' = 0.
BLs consist in two sublattices A and B, with respectively
A 4 and Ap orbitals per cell where A = {A;, As,, ..., Ar, }
and B = {By, Ba, ..., Ba, }- In the absence of interaction,
the spectrum consists exactly in Ny, = Ap — A4 FBs lo-
cated at E = 0 and 2 A4 dispersives bands (DBs) being
symmetric because of chiral symmetry. The total num-
ber of orbitals per cell is defined as A = Ag + A 4. Here,
Ap > A4 is assumed. The AHM reads,
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I, J are cell indices, A; (resp. Bj;) labels the orbital in
A (resp. B). t%Bj are the hoppings between orbitals in

A and B only. chl , creates an electron of spin o, in the

orbital ), of the I-th cell and #isy,» = c}y, ,¢/y, , With
A = A,B. |U| is the strength of the electron-electron
interaction and p is the chemical potential.

Within BdG theory, pairings and occupations are
calculated self-consistently considering a paramagnetic
ground-state, (Axt)o = (Any)o = 3na, where (...)g
means thermal average. The BAG Hamiltonian reads,
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nally, CL>\7U is the Fourier transform (FT) of c;r/\ya and,
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hap is the FT of the tight-binding term in Eq. (1),
VA = |2ﬂ diag(nx, , mays oy iy, ); With A = A, B and the
pairing matrix is,

. { AA
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AN = diag(Ai‘,A%‘,...,Aﬁk), where A} =
—|U|<é])\h¢é[)\“T>0 with A = A,B At half ﬁlhng
(0 = —|U|/2), the density being uniform [12] the
diagonal blocks in Eq.(3) vanish. Here, we assume time
reversal symmetry, hence pairings can be taken real.
In what follows, for any |U|, the pairings are real and



positive.

Hidden symmetry in the BdG eigenstates.- Let us
define positive (respectively negative) eigenstates those
with positive (respectively negative) energy. Consider
|U) = (Ju),|v))! an eigenstate of energy FE, where
[u) = (Ja),[b))" and |v) = (la),|b))". Ia) and |a)
(respectively |b) and |b)) are column of length A4
(respectively Apg).

Lemma 1: Positive (respectively negative) eigen-
states can be split into two subsets Sy and S_, where,
W) € Syelv) = (la),—[b)", and [V) € S_&lv) =
(—Ja), b)), A
Proof: At half-filling Hpy¢ is invariant under particle-
hole (PH) transformation which reads,

¢f ¢
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Hence, |¥) = ([a),|b),]a),[b)! = |v,) =
(la), —[b), [a), —[b))". PH symmetry implies

|U;) = e|U), leading to ¥ = +1. Thus, we are

left with two possibilities: (1) |¥) € S; or (2) |¥) € S_

corresponding respectively to ¢ = 0 and ¢ = 7. Notice

that, if (W) € Sy has energy E, then the eigenstate

U|\IJ+> € S_ has energy —F, since UHBngT —Hpae
0 1,

where U = LiA 0 ]

We proceed further and demonstrate a second lemma
that is crucial for what follows.

Lemma 2: For any |U| # 0, S_ (respectively Sy )

consists exactly in Ap (respectively Aa) eigenstates of
positive or zero energy and A (respectively Ag) eigen-
states of strictly negative energy.
Proof: For what follows, for a given square matrix M,
we define In(M) = (n,,n,) where n,, is the number of
strictly negative eigenvalues and n, that of the positive
or zero eigenvalues. Now, consider |¢5) = (Jus), [v3))! a
QP eigenstate of energy E? in Sy (s = £), using Eq.(2)
one finds,

Holup) = Elus), (6)

where the A x A matrices are,
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For infinitesimal |U|, apply a degenerate perturbation
theory to the Ny, FB cigenstates of H* ljuj=0 which
have weight on B orbitals only. The projection of AB
in the FB eigenspace being positive definite, it implies
that the energy shift of each FB eigenstates of H*t is
strictly negative, and strictly positive for those of H.
In other words, it means that In(H~) = (Ax,Ap) and

In(’)':{"') = (AB,AA).

Now, assume, there exist a peculiar value |U,| such that
for |U| < |U.|, In(H™) = (Aa,Ap) and In(HT) =
(Ap,A4), and for |U| > |U,|, In(H+) = (Ap—1,Ax+1)
and In(H~) = (Aa + 1,Ap —1). At |U., H~ and
HT have at least an eigenstate with zero energy, lug) =
(|lag), |bg))t, s = 4. From Eq.(7) and for s = +,

(AP + 1l 5 (A" T hap)bg) =0,
laf) = —(AY)Lhap|by). 8)

A# > 0 has been used. AP +BLB(AA)*1BAB is the sum
of a positive definite matrix and positive semi definite
one, their sum is positive definite and hence zero cannot
be an eigenvalue, |bd) = [0]5, and |aj) = [0]s, where
|0] v is the column vector with N zeros. The same proof
applies for |ug ). This proves the second lemma.

Pairing sum rule in half-filled bipartite lattices.- We
focus on the negative eigenstates of Hpac. We define
|¢5,) where n = 1,....,Ap the normalized eigenstates
in &; and similarly [¢5_) where m = 1,....,A4 those

in S_. We write [¢5,) = (Ju)f), |v;))" and |v55,_) =
(|u),s v ). At T = 0, pairings are given by,
N |U| <A < <16 <
A} = = (SoWEIOx ) + D 10N 45) ), (9)
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where Oy, = éaor, LGyt A= A, Band | = 1,...,A5, n
runs over 1,...,Ap, and m over 1,...,A4, N, being the
number of cells. Eq.(9) leads to,

n=Ap m=Aa
U] _
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AB = F( S-S b, 2). (10)
k,n=1 k,m=1

The eigenstates beeing normalized, one finally finds the
sum-rule,

ZA}B—ZA;“:7(AB_AA), (11)
=1 =1

A similar expression has been obtained recently in Ref.[1]
where uniform pairings are assumed, A = A4 for any
7 in A and Af = Ap for any j in B. This hypothesis
allows great simplifications in the calculations but does
not correspond in general (inequivalent orbitals) to the
true self-consistent BAG solution. In our general proof,
the crucial step is the introduction of a hidden symme-
try which splits the BdG eigenstates in two subsets Sy
and S_. We now show some general properties which
result from this. Using Eq.(10), for any j in B, AJB <
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ilarly, for any i, one finds A# < ‘—12]'
If (AY), A = A, B, denote the average of the pairings on
each sublattice, then,

1
UI((AP) —(A%) = i —(F1 = F»), (12)
where F} = Ni Z Z |chr 2 and F, =
i k,], kz n
Z (o —&-— Z la, |2, with r = AB > 1. Eigen-

k,j,m k i,m
states being normalized, implies F} > TB and Fr < TB
which demonstrates,

(Ap) = (Aa). (13)
Combining this equation and Eq.(3) gives,
(AB>2T—1. (14)
|U| 2r
For instance, in the stub lattice (r = 2), recently it has
been found numerically that the lower bound of ‘Aﬁ*) is

0.25 which coincides exactly with -1 [14].

Pairings in partially filled flat bands.-Partially filled
FBs for which ¢ = —|U|/2, correspond to electron den-
sity v varying between v,,;, = 2A4 and vye, = 2Ap.
For the half-filled case we introduce 7 = A4 + Ag. To
calculate the pairings for v < v < Vpnge, we use the
pseudo-spin SU(2) symmetry of the AHM in BLs [4-6],
which is a form of rotation invariance in particle-hole
space. The AHM is re-expressed,
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The components of the pseudo-spin operator read,
ch\l = NACIN CIN L (16)
[;\L = 77,\6},\Z7¢5§A1,T7 (17)
~ 1 .
T]Z)\L = 7(1*71[)\1)7 (18)

2
nx = 1 (respectively —1) if A = A (respectively B). These
operators obey the usual commutation relations of spin
operators. In partially filled FBs, the last term (right
side) in Eq.(15) vanishes and,[H,T*] = [H,T7] = 0,
where T = D rIA=AB T, is the total pseudo-spin oper-
ator. The Hamiltonian has pseudospin SU(2) symmetry.
(T1,)o is cell independent and,

H Bdq 1s invariant under any identical rotation of the
pseudo-spins. We consider R, (6) the rotation of angle 0
around the y-axis,

[a,m} Ry lcos(9/2)ép\m —nasin(0/2)el, |

. (20
CIxn,l cos(9/2)61,\l,¢+n>\sin(9/2)é}>\m (20)

Let us assume that the self-consistent solution for v = o
is known. The expectation value of the corresponding
pseudo-spins reads,

AN

= A

_ T3, = Moy

T, = TV =0 |- (21)
75 =0

Ty and T vanish since (i) the pairings are taken real
and (ii) because of the uniform density theorem [12]. Ap-
plying R, (¢) to the pseudo-spins leads to a BAG solution
corresponding to a partial filling of the FBs,

A} = A} cos(6), (22)
A)\
=1+ 277,\@ sin(0). (23)

The corresponding filling factor is,
v(0) =7 +sin(0)(Ap — Aa). (24)

We emphasize that Eq.(3) has been used. Hence, 6 = /2
corresponds to the fully filled FBs, i.e. v = vpq, while
0 = —m /2 to empty FBs or v = v,;,,. Combining Eq.(22)
and Eq.(24), one obtains,

AA = Af‘f(u), (25)
1+2m|?]| 1~ 2(0), (26)

where
f0) = ——2 S0 tmin) e — ). (20)

Vmaz — Vmin

Similar expressions have been derived in Ref.[1], where a
uniform pairing is forced on the orbitals on the dominant
lattice. Our proof is general, without restriction on the
pairings, and requires only that the sum-rule given in
Eq.(3) has been proved.

The superfluid weight in partially filled FBs.- Here, we
derive a general relationship between D? in partially filled
FBs and that of half-filled BL. The SFW is defined as

[27 3]a

2
D; = 1 9°9(q) ,
Z\[C 8q§ q=0

(28)

Q(q) is the grand-potential and ¢ mimics the effect of a
vector potential, introduced by a standard Peierls sub-
stitution.



Recently, it has been argued that when the quantum
metric (QM) [20, 21] associated to FBs is not minimal,
corrections should be included in Eq .(6) [1]. Contrary to
Dy, the QM which measures the typical spreading of the
FB eigenstates is a quantity which depends on the orbital
positions. However, for any BL, one can always find the
orbital positions which minimize the QM, therefore, for
which Eq.(6) is correct. It generally corresponds to the
most symmetrical positions of the orbitals within the cell.
Following Refs.[22] and [23] leads to,

) 2 JZLL"YL
DMZFZE<,E>’ (29)
¢ k,mn =" m
where JI™ = [(U5[V,[02) 2 — (U5 [TV, |¥5)[%, with
= diag(iAXA, —iAXA) and V = diag(2°, ©°). The ve-

locity operator along the u-direction is 172 = —g,}:o where
"
- h
RO = [? AB}
hyg O

To avoid confusion due to multiple indices, we intro-
duce here the notation |U>) = (|a>),[b),]a.,), b))
for the eigenstates with positive energy E., similarly
U) = (Jag), b)), as), |bs))t for those with negative
energy E<. Thus, we ignore whether these states belong
to ST. The eigenstates for v =  are specified by simply
replacing n — On and m — Om.

Assuming the eigenstates known for v = v, D} in
partially filled FBs is obtained using the pseudospin
SU(2) symmetry of the Hamiltonian. Recall that the
quasi particle eigenvalues are invariant under the pseudo-
spin rotation. From Eq.(20) the rotated eigenstates are,
[65) = Ug W5, (similarly [97,) = Ug| W) where,

c 0s O
- 0 ¢c 0 —s
Ue_—sOcO’ (30)
0 s0 ¢

with ¢ = cos(6/2) and s = sin(6/2). The matrix elements
in Eq.(29) are given by,

(U TPV[07) = (UG, | U-6IPV,Us¥5,,),  (31)

where p = 0 or 1. |ag,) = enlag,) and |bg,) = —€n b,
where €, = 1 (respectively —1) if |5, ) € ST (respec-
tively € S7). We proceed similarly with |¥g ) and get,

Onm

JIZLm = |C<7>|29n7na (32)

where gm = ((1—€n6m)c+ (€n+€m)s)? — (1+€,6,)% and
can be simplified and gives,

Jm = —denem|Cs7 | cos?(6). (33)

Onm

Using Eq.(24), we then end up with,

D;,(v) = f*(v)D; (). (34)

In partially filled FBs, Dj always has a universal
parabolic shape and vanishes for v = v,,;, and V-
To derive Eq.(7), one needs Eq.(3). Note that Eq.(33)
indicates that the contributions to D;(v) originating
from pairs of eigenstates in the same subspace ST or
S~ are positive, while they are negative in the other case.

Effects of disorder.- We have previously considered
clean systems. An interesting question is: What is the
impact of disorder that preserves the bipartite character
of the lattice such as random hoppings or introduction of
vacancies? Translation invariance being broken, Hpac
must be diagonalized in real space. The number of zero
energy eigenstates is Ng—o = [N — N4| where N is
the total number of orbitals A = A, B. In the clean case,
our proofs are based on Lemma 1 and Lemma 2, which
remain valid in the single cell made up of M4 A-orbitals
and N B-orbitals. Thus, in the disordered half-filled
BL, Eq.(3) becomes,

STV IR S PV
ZA;B—ZA?=7|NB—NA|’ (35)
j=1 i=1

where i (respectively j) runs now over the whole sublat-
tice A (respectively B). In addition, Eq.(25) and Eq.(7)
which give the filling dependence of the pairings and the
SFW are valid as well.

Notice that BCS wavefunction being the exact ground-
state in BL hosting isolated FBs when |U| is smaller than
the gap [24], implies as well the exactness of our results
in this limit. Thus, it would be of great interest to con-
firm this statement from exact methods such as DMRG,
a reliable and well suited tool for quasi one-dimensional
systems.

To conclude, using a hidden symmetry of the BdG
eigenstates, we have rigourously demonstrated that in
bipartite lattices the pairings and the SFW obey univer-
sal relations. Furthermore, these general properties are
shown to hold in disordered systems as long as the bi-
partite character of the lattice is conserved. Our findings
could have an important impact in the search of novel
families of compounds exhibiting unconventional FB su-
perconductivity.
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SUPPLEMENTAL MATERIAL

The purpose of this supplemental material is to illus-
trate the sum-rules and other relations demonstrated in
the general context of bipartite lattices (BLs) where flat
bands (FBs) are either half-filled or partially filled. The
prototype of two dimensional BL considered here, we will
designate it by L-lattice, is shown in Fig.1. The L-lattice
consists in two sublattices .4 and B which contain re-
spectively A4 = 3 and Ag = 5 orbitals per unit cell,
where A = {Al, AQ, Ag} and B = {Bl, BQ, veny B5} . In the
absence of electron-electron interaction, the one-particle
spectrum consists exactly in Ny, = Ap — Ay = 2 FBs
with energy Ey, = 0 and 2A 4 = 6 symmetric dispersives
bands (chirality).

Bl A, B2

Figure 1. (Color online) Prototype of two-dimensional bipar-
tite lattice (£), with Ay = 3 atoms of type A and Ap = 5
atoms of type B per unit cell (shaded area). The hoppings
are restricted to nearest neighbors only, they are all equal, set
to 1. The single particle Hamiltonian has two degenerate flat
bands.

Symmetry in the Hp,: eigenstates

It has been shown in the main text, that eigenstates of
the Bogoliubov de Gennes Hamiltonian Hpgs as given
in Eq.(2) in the article, can be divided into two sub-
sets S and S_ which are defined in what follows. Con-
sider a normalized eigenstate of Hpag, |V) = (|u), [v))*
of energy E, where |u) = (|a),|b)) and |v) = (|a), |b))*.
The columns |a) and |a) (respectively |b) and |b)) are of
length A4 (respectively Ag),

V) € 81« |a) = [a), [b) = —[b), (1)
V) €S- < |a) = —[a), [b) = [b). (2)

For a given value of the electron-electron interaction |U],
here we have chosen |U| = 3, Fig.2 depicts the QP dis-
persions with negative energy in the half-filled £—lattice
and along the I'M direction in the Brillouin zone. Un-
ambiguously, for any value of the momentum k, the spec-
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Figure 2. (Color online) Negative part of the quasiparticle
dispersions in the (1, 1)-direction for the half-filled BL £ as
depicted in Fig.1. The green (respectively blue) line corre-
sponds to QP eigenstates in S+ (respectively S_). There are
Aa = 3 bands in S— and Agp = 5 in S;. Here, the on-site
interaction parameter |U| = 3, the conclusion is the same for
any |U]|.

trum consists in A4 = 3 eigenstates in S_ and Ag =5
eigenstates in Sy

Sum rule for the pairings in half-filled bipartite
lattices

In the main text of the article we it has been
rigourously proved that, in any half-filled bipartite lat-
tice the pairings obey the following sum-rule,

U
=y Ar= %'(AB

As an illustration, in Fig.3, the pairings for each orbital
are plotted as a function of |U] in the half-filled £L-lattice.
For obvious symmetry reasons (see Fig.1), one finds that
AB = AB and AL = AB. As it can be clearly seen, for
any |U|, Eq.(3) is exactly fulfilled.

If we define the average value of the pairing on both
sublattices by (A,) where A = A, B. For any |U|, we
have shown in the main text that,

(Ap) = (Ax), (4)

and found as well a lower bound for the average value of
the pairings on B-sublattice,

<AB> > r—1

oy = 2r "’
where r = A /A 4 has been introduced.
In the case of the half-filled L-lattice, Fig.3 clearly shows
that (Ag) > (A4) for any |U|. According to Eq.(5), in
the present case, one expects that (Ag) > 0.2|U|. This
is indeed in perfect agreement with the results depicted
in Fig.3. More precisely, the lower bound is found to

coincide exactly with aéﬁf?

—Aa). (3)

(5)

U=0

Figure 3. (Color online) Pairings (divided by |U]|) as a func-
tion of |U| for the half-filled BL depicted in Fig.1. The open
circles (respectively squares) are the average values of the
pairings on sublattice A (respectively B). The horizontal

Ap
black line corresponds to fap/|U| where fap = %(Z A}B —
j=1

Aa
> oah.
=1

The superfluid weight in partially filled FBs

In the main text we have proved a general relation-
ship between the superfluid weight (SFW) Dj; in par-
tially filled FBs and that of the half-filled lattice. The
SFW is defined as [2, 3],

2
O T ®
c q, 'a=0
Q(q) is the grand-potential and ¢ mimics the effect of a
vector potential, introduced by a standard Peierls sub-
stitution in the hopping terms in the BdG Hamiltonian.
First, we have carefully checked in the case of the L-
lattice that (i) the corrections to Eq .(6) as discussed in
Ref.[1] are vanishing and (ii) the quantum metric asso-
ciated to the FBs is minimal for the geometry depicted
in Fig.1. Using the pseudo-spin SU(2) symmetry of the
Hamiltonian for p = —|U|/2 [4-6], it has been shown in
the main text that,

D;,(v) = f*(v)D;, (), (7)

where the filling dependent function is,

W) = Vi) s~ 1) (8)

max min
Thus, the SFW for partially filled FBs always has a uni-
versal parabolic shape and DZ(I/) vanishes for v = vp,in
and v = Vyqee. These fillings correspond respectively to
empty FBs for which v = v,5,, = 2A 4 = 6 and fully filled
FBs where v = v = 2Ap = 10. As an illustration,
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Figure 4. (Color online)Superfluid weight D} as a function of
the electron filling in the L-lattice. The densities correspond
to partially filled FBs where the chemical potential is p =
—|U|/2. The electron interaction parameter is |[U| = 1. The
symbols are the numerical data and the continuous line is the
analytical expression as discussed in the main text and given

by Eq.(7).

Fig.4 depicts D3 (v) as a function of v in the L-lattice.
As it is clearly seen, the agreement between the numeri-
cal data and the analytical expression given in Eq.(7) is
excellent.

The impact of the disorder: the case of randomly
distributed vacancies.

|Uj=1x=0.05

Figure 5. (Color online) Distribution of the pairings Pa(A)
in both sublattices (A = A, B) for the disordered L-lattice.
The concentration of randomly distributed vacancies, x is the
ratio between the number of vacancies and that of orbitals in
the pristine system which here contains A = 8 x 202 orbitals.
The system is half-filled and |U| = 1. For more visibility the
probability distribution P4(A) has been multiplied by 1/4.
The vertical dashed lines are the value of the pairings in the
clean system.

In our manuscript, it has been shown that in the case
of disorder that conserves the bipartite character of the
lattice the sum-rules and other relations established in
the case of clean systems still hold. Here, our puropose
is to illustrate this feature. We consider the impact of
vacancies randomly distributed in the £—lattice. In the
case of disordered half-filled system, it has been argued
in the main text that Eq.(3) becomes,

SV S IVIN 4
SoAP - A= TN N4l ()
j=1 i=1

where i (respectively j) runs now over the whole sub-
lattice A (respectively B), and N4 (resp. Np) are the
total number of A-orbitals (respectively B-orbitals) in
the disordered lattice.

Because of the loss of translation invariance, the cal-
culations require multiple real space diagonalizations of
the BdG Hamiltonian, until convergence in the self-
consistent loop is reached. The size of the matrices is
2N x 2N where N' = N4 + Np. For our illustration, we
have considered a system that contains about 3200 or-
bitals. In Fig.5, the pairing distribution in the disordered
half-filled £-lattice is depicted. The configuration of dis-
order corresponds to the introduction of 5% of vacancies
randomly distributed. We have checked that Eq.(9) is ex-
actly verified, as well as the relation (Ag) > (A 4) which
could be anticipated from the plot of the pairing distri-
butions. Additionally, we have checked that Eq.(5) is as

well fulfilled % > 1(1 — 1), where in the disordered

: _ N
lattice r = N—i
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