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Unconventional �at band (FB) superconductivity, as observed in van der Waals heterostructures,
could open promising avenues towards high-Tc materials. Indeed, in FBs, pairings and super�uid
weight scale linearly with the interaction parameter, such an unusual behaviour justi�es strategies
to promote FB engineering. Bipartite lattices (BLs) which naturally host FBs could be particu-
larly interesting candidates. By revealing a hidden symmetry of the quasi-particle eigenstates, we
demonstrate that pairings and super�uid weight obey universal relations in BLs. Remarkably, these
general properties are insensitive to disorder as long as the bipartite character is protected.

Over the past decade, one witnesses a growing interest
for a family of emerging materials: the �at band (FB)
systems [1�5]. In FB compounds, the kinetic energy be-
ing quenched, the electron-electron interaction energy is
the unique relevant energy scale giving access to strongly
correlated physics. FBs are found at the origin of an un-
conventional form of superconductivity (SC) of interband
nature. In FBs, super�uid weight (SFW) and critical
temperature scale linearly with the e�ective interaction
amplitude |U | [6�8] which contrasts with the dramatic
e−1/(ρ(EF )|U |) scaling in standard BCS theory. Recently,
it has been shown that the Bogoliubov de Gennes (BdG)
approach is astonishingly quantitatively accurate in de-
scribing SC in FBs. Surprisingly, the agreement revealed
between exact methods and BdG concerns systems where
quantum �uctuations are the strongest: one-dimensional
systems such as the sawtooth chain, the Creutz ladder
and other FB system. The SFW obtained with BdG
and that calculated with density matrix renormalization
group (DMRG) were found to agree impressively [9].
In the framework of the attractive Hubbard model
(AHM) in bipartite lattices (BLs) and within BdG the-
ory, we demonstrate universal sum-rules and other rela-
tions that pairings and SFW obey in half-�lled and par-
tially �lled FB systems. Some of the relations proved
here in a general context have been established for pecu-
liar two dimensional BLs assuming uniform pairings in
each sublattice [8, 10]. For the sake of concreteness, all
the properties that will be proved are illustrated in the
Supplemental Material [11] on a typical two dimensional
BL. Finally, in this work, we restrict ourself to T = 0.
BLs consist in two sublattices A and B, with respectively
ΛA and ΛB orbitals per cell whereA= {A1, A2, , ..., AΛA}
and B = {B1, B2, ..., BΛB}. In the absence of interaction,
the spectrum consists exactly in Nfb = ΛB −ΛA FBs lo-
cated at E = 0 and 2 ΛA dispersives bands (DBs) being
symmetric because of chiral symmetry. The total num-
ber of orbitals per cell is de�ned as Λ = ΛB + ΛA. Here,
ΛB > ΛA is assumed. The AHM reads,

Ĥ =
∑
Ii,Jj,σ

tIJAiBjc
†
IAi,σ

cJBj ,σ

−|U |
∑

I,l,λ=A,B

n̂Iλl,↑n̂Iλl,↓ − µN̂, (1)

I, J are cell indices, Ai (resp. Bj) labels the orbital in
A (resp. B). tIJAiBj are the hoppings between orbitals in

A and B only. c†Iλl,σ creates an electron of spin σ, in the

orbital λl of the I-th cell and n̂Iλl,σ = c†Iλl,σcIλl,σ with
λ = A,B. |U| is the strength of the electron-electron
interaction and µ is the chemical potential.
Within BdG theory, pairings and occupations are

calculated self-consistently considering a paramagnetic
ground-state, 〈n̂λ,↑〉0 = 〈n̂λ,↓〉0 = 1

2nλ, where 〈. . .〉0
means thermal average. The BdG Hamiltonian reads,

ĤBdG =
∑
k

[
Ĉ†k↑ Ĉ−k↓

] [ĥ↑k ∆̂

∆̂† −ĥ↓∗−k

][
Ĉk↑
Ĉ†−k↓

]
, (2)

the (Λ)-dimensional spinor Ĉ†kσ =
(
ĈA†
kσ, Ĉ

B†
kσ

)t
with

Ĉλ†
kσ = (ĉ†kλ1,σ

, ĉ†kλ2,σ
, ..., ĉ†kλΛλ

,σ)t where λ = A,B. Fi-

nally, c†kλ,σ is the Fourier transform (FT) of c†iλ,σ and,

ĥσk =

[
−µ1̂ΛA − V̂ A ĥAB

ĥ†AB −µ1̂ΛB − V̂ B

]
. (3)

ĥAB is the FT of the tight-binding term in Eq. (1),

V̂ λ = |U |
2 diag(nλ1 , nλ2 , ..., nλΛλ

), with λ = A,B and the
pairing matrix is,

∆̂ =

[
∆̂A 0ΛA×ΛB

0ΛB×ΛA ∆̂B

]
, (4)

∆̂λ = diag(∆λ
1 ,∆

λ
2 , ...,∆

λ
Λλ

), where ∆λ
l =

−|U |〈ĉIλl,↓ĉIλl,↑〉0 with λ = A,B. At half �lling
(µ = −|U |/2), the density being uniform [12] the
diagonal blocks in Eq.(3) vanish. Here, we assume time
reversal symmetry, hence pairings can be taken real.
In what follows, for any |U |, the pairings are real and
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positive.

Hidden symmetry in the BdG eigenstates.- Let us
de�ne positive (respectively negative) eigenstates those
with positive (respectively negative) energy. Consider
|Ψ〉 = (|u〉, |v〉)t an eigenstate of energy E, where
|u〉 = (|a〉, |b〉)t and |v〉 = (|ā〉, |b̄〉)t. |a〉 and |ā〉
(respectively |b〉 and |b̄〉) are column of length ΛA
(respectively ΛB).

Lemma 1: Positive (respectively negative) eigen-
states can be split into two subsets S+ and S−, where,
|Ψ〉 ∈ S+⇔|v〉 = (|a〉,−|b〉)t, and |Ψ〉 ∈ S−⇔|v〉 =
(−|a〉, |b〉)t.
Proof: At half-�lling ĤBdG is invariant under particle-
hole (PH) transformation which reads,[

Ĉ†A↑
Ĉ†B↓

]
PH
==⇒

[
ĈA↓
−ĈB↑

]
. (5)

Hence, |Ψ〉 = (|a〉, |b〉, |ā〉, |b̄〉)t PH⇒ |Ψ1〉 =
(|ā〉,−|b̄〉, |a〉,−|b〉)t. PH symmetry implies
|Ψ1〉 = eiϕ|Ψ〉, leading to eiϕ = ±1. Thus, we are
left with two possibilities: (1) |Ψ〉 ∈ S+ or (2) |Ψ〉 ∈ S−
corresponding respectively to ϕ = 0 and ϕ = π. Notice
that, if |Ψ+〉 ∈ S+ has energy E, then the eigenstate
Û |Ψ+〉 ∈ S− has energy −E, since ÛĤBdGÛ

† = −ĤBdG

where Û =

[
0 1̂Λ

−1̂Λ 0

]
.

We proceed further and demonstrate a second lemma
that is crucial for what follows.
Lemma 2: For any |U | 6= 0, S− (respectively S+)

consists exactly in ΛB (respectively ΛA) eigenstates of
positive or zero energy and ΛA (respectively ΛB) eigen-
states of strictly negative energy.
Proof: For what follows, for a given square matrix M̂ ,
we de�ne In(M̂) = (nm, np) where nm is the number of
strictly negative eigenvalues and np that of the positive
or zero eigenvalues. Now, consider |φsn〉 = (|usn〉, |vsn〉)t a
QP eigenstate of energy Esn in Ss (s = ±), using Eq.(2)
one �nds,

Ĥs|usn〉 = Esn|usn〉, (6)

where the Λ× Λ matrices are,

Ĥ+ =

[
∆̂A ĥAB
ĥ†AB −∆̂B

]
, Ĥ− =

[
−∆̂A ĥAB
ĥ†AB ∆̂B

]
. (7)

For in�nitesimal |U |, apply a degenerate perturbation
theory to the Nfb FB eigenstates of Ĥ±||U |=0 which

have weight on B orbitals only. The projection of ∆̂B

in the FB eigenspace being positive de�nite, it implies
that the energy shift of each FB eigenstates of Ĥ+ is
strictly negative, and strictly positive for those of Ĥ−.
In other words, it means that In(Ĥ−) = (ΛA,ΛB) and

In(Ĥ+) = (ΛB ,ΛA).
Now, assume, there exist a peculiar value |Uc| such that
for |U | < |Uc|, In(Ĥ−) = (ΛA,ΛB) and In(Ĥ+) =
(ΛB ,ΛA), and for |U | > |Uc|, In(Ĥ+) = (ΛB−1,ΛA+1)
and In(Ĥ−) = (ΛA + 1,ΛB − 1). At |Uc|, Ĥ− and
Ĥ+ have at least an eigenstate with zero energy, |us0〉 =
(|as0〉, |bs0〉)t, s = ±. From Eq.(7) and for s = +,

(∆̂B + ĥ†AB(∆̂A)−1ĥAB)|b+
0 〉 = 0,

|a+
0 〉 = −(∆̂A)−1ĥAB |b+

0 〉. (8)

∆A
i > 0 has been used. ∆̂B + ĥ†AB(∆̂A)−1ĥAB is the sum

of a positive de�nite matrix and positive semi de�nite
one, their sum is positive de�nite and hence zero cannot
be an eigenvalue, |b+

0 〉 = [0]ΛB and |a+
0 〉 = [0]ΛA where

|0]N is the column vector with N zeros. The same proof
applies for |u−0 〉. This proves the second lemma.

Pairing sum rule in half-�lled bipartite lattices.- We
focus on the negative eigenstates of ĤBdG. We de�ne
|ψ<n+〉 where n = 1, ....,ΛB the normalized eigenstates
in S+ and similarly |ψ<m−〉 where m = 1, ....,ΛA those
in S−. We write |ψ<n+〉 = (|u+

n 〉, |v+
n 〉)t and |ψ<m−〉 =

(|u−m〉, |v−m〉)t. At T = 0, pairings are given by,

∆λ
l = −|U |

Nc

(∑
k,s=n+

〈ψ<s |Ôλl |ψ<s 〉+
∑

k,s=m−

〈ψ<s |Ôλl |ψ<s 〉
)
, (9)

where Ôλl = ĉ-kλl,↓ĉkλl,↑, λ = A,B and l = 1, ...,Λλ, n
runs over 1, ...,ΛB , and m over 1, ...,ΛA, Nc being the
number of cells. Eq.(9) leads to,

∆A
i = −|U |

Nc

( n=ΛB∑
k,n=1

|a+
ni|

2 −
m=ΛA∑
k,m=1

|a−mi|
2
)
,

∆B
j =

|U |
Nc

( n=ΛB∑
k,n=1

|b+nj |
2 −

m=ΛA∑
k,m=1

|b−mj |
2
)
. (10)

The eigenstates beeing normalized, one �nally �nds the
sum-rule,

ΛB∑
j=1

∆B
j −

ΛA∑
i=1

∆A
i =

|U |
2

(ΛB − ΛA). (11)

A similar expression has been obtained recently in Ref.[1]
where uniform pairings are assumed, ∆A

i = ∆A for any
i in A and ∆B

j = ∆B for any j in B. This hypothesis
allows great simpli�cations in the calculations but does
not correspond in general (inequivalent orbitals) to the
true self-consistent BdG solution. In our general proof,
the crucial step is the introduction of a hidden symme-
try which splits the BdG eigenstates in two subsets S+

and S−. We now show some general properties which
result from this. Using Eq.(10), for any j in B, ∆B

j ≤
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|U |
Nc

(

n=ΛB∑
k,n=1

|b+nj |
2 +

m=ΛA∑
k,m=1

|b−mj |
2) = |U |〈n̂Bj ,↑〉 =

|U |
2
. Sim-

ilarly, for any i, one �nds ∆A
i ≤

|U |
2 .

If 〈∆λ〉, λ = A,B, denote the average of the pairings on
each sublattice, then,

|U |(〈∆B〉 − 〈∆A〉) =
1

ΛB
(F1 − F2), (12)

where F1 = 1
Nc

∑
k,j,n

|b+nj |
2 +

r

Nc

∑
k,i,n

|a+
ni|

2 and F2 =

1
Nc

∑
k,j,m

|b−mj |
2+

r

Nc

∑
k,i,m

|a−mi|
2, with r = ΛB

ΛA
≥ 1. Eigen-

states being normalized, implies F1 ≥ ΛB
2 and F2 ≤ ΛB

2
which demonstrates,

〈∆B〉 ≥ 〈∆A〉. (13)

Combining this equation and Eq.(3) gives,

〈∆B〉
|U |

≥ r − 1

2r
. (14)

For instance, in the stub lattice (r = 2), recently it has

been found numerically that the lower bound of 〈∆B〉
|U | is

0.25 which coincides exactly with r−1
2r [14].

Pairings in partially �lled �at bands.-Partially �lled
FBs for which µ = −|U |/2, correspond to electron den-
sity ν varying between νmin = 2ΛA and νmax = 2ΛB .
For the half-�lled case we introduce ν = ΛA + ΛB . To
calculate the pairings for νmin ≤ ν ≤ νmax, we use the
pseudo-spin SU(2) symmetry of the AHM in BLs [4�6],
which is a form of rotation invariance in particle-hole
space. The AHM is re-expressed,

Ĥ =
∑
Ii,Jj,σ

tIJAiBj ĉ
†
IAi,σ

ĉJBj ,σ −
2

3
|U |

∑
I,lλ=A,B

T̂Iλl · T̂Iλl

− (µ+ |U |/2)
∑

I,l,λ=A,B

n̂Iλl .
(15)

The components of the pseudo-spin operator read,

T̂+
Iλl

= ηλĉIλl,↑ĉIλl,↓, (16)

T̂−Iλl = ηλĉ
†
Iλl,↓ĉ

†
Iλl,↑, (17)

T̂ zIλl =
1

2
(1− n̂Iλl), (18)

ηλ = 1 (respectively−1) if λ = A (respectively B). These
operators obey the usual commutation relations of spin
operators. In partially �lled FBs, the last term (right

side) in Eq.(15) vanishes and,[Ĥ, T̂±] = [Ĥ, T̂ z] = 0,

where T̂ =
∑
I,l,λ=A,B T̂Iλl is the total pseudo-spin oper-

ator. The Hamiltonian has pseudospin SU(2) symmetry.
〈T̂Iλl〉0 is cell independent and,

〈T̂λl〉0 =

 〈T̂
x
λl
〉0 = ηλ<(

∆λ
l

|U | )

〈T̂ yλl〉0 = ηλ=(
∆λ
l

|U | )

〈T̂ zλl〉0 = 1
2 (1− nλl)

 , (19)

ĤBdG is invariant under any identical rotation of the
pseudo-spins. We consider Ry(θ) the rotation of angle θ
around the y-axis,[

ĉIλl,↑
ĉIλl,↓

]
Ry(θ)
=⇒

[
cos(θ/2)ĉIλl,↑ − ηλ sin(θ/2)ĉ†Iλl,↓
cos(θ/2)ĉIλl,↓ + ηλ sin(θ/2)ĉ†Iλl,↑

]
.(20)

Let us assume that the self-consistent solution for ν = ν̄
is known. The expectation value of the corresponding
pseudo-spins reads,

T̄λl =

T̄ xλl = ηλ
∆̄λ
l

|U |
T̄ yλl = 0
T̄ zλl = 0

 . (21)

T̄ yλl and T̄ zλl vanish since (i) the pairings are taken real
and (ii) because of the uniform density theorem [12]. Ap-
plying Ry(θ) to the pseudo-spins leads to a BdG solution
corresponding to a partial �lling of the FBs,

∆λ
l = ∆̄λ

l cos(θ), (22)

nλl = 1 + 2ηλ
∆̄λ
l

|U |
sin(θ). (23)

The corresponding �lling factor is,

ν(θ) = ν + sin(θ)(ΛB − ΛA). (24)

We emphasize that Eq.(3) has been used. Hence, θ = π/2
corresponds to the fully �lled FBs, i.e. ν = νmax while
θ = −π/2 to empty FBs or ν = νmin. Combining Eq.(22)
and Eq.(24), one obtains,

∆λ
l = ∆̄λ

l f(ν), (25)

nλl = 1 + 2ηλ
∆̄λ
l

|U |
√

1− f2(ν), (26)

where,

f(ν) =
2

νmax − νmin

√
(ν − νmin)(νmax − ν). (27)

Similar expressions have been derived in Ref.[1], where a
uniform pairing is forced on the orbitals on the dominant
lattice. Our proof is general, without restriction on the
pairings, and requires only that the sum-rule given in
Eq.(3) has been proved.
The super�uid weight in partially �lled FBs.- Here, we
derive a general relationship betweenDs in partially �lled
FBs and that of half-�lled BL. The SFW is de�ned as
[2, 3],

Ds
µ =

1

Nc

∂2Ω(q)

∂q2
µ

∣∣∣
q=0

, (28)

Ω(q) is the grand-potential and q mimics the e�ect of a
vector potential, introduced by a standard Peierls sub-
stitution.
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Recently, it has been argued that when the quantum
metric (QM) [20, 21] associated to FBs is not minimal,
corrections should be included in Eq .(6) [1]. Contrary to
Ds
µ, the QM which measures the typical spreading of the

FB eigenstates is a quantity which depends on the orbital
positions. However, for any BL, one can always �nd the
orbital positions which minimize the QM, therefore, for
which Eq.(6) is correct. It generally corresponds to the
most symmetrical positions of the orbitals within the cell.
Following Refs.[22] and [23] leads to,

Ds
µ =

2

Nc

∑
k,mn

Jnmµ
E<n − E>m

, (29)

where Jnmµ = |〈Ψ<
n |V̂µ|Ψ>

m〉|2 − |〈Ψ<
n |Γ̂V̂µ|Ψ>

m〉|2, with

Γ̂ = diag(1̂Λ×Λ,−1̂Λ×Λ) and V̂ = diag(v̂0, v̂0). The ve-

locity operator along the µ-direction is v̂0
µ = ∂ĥ0

∂kµ
where

ĥ0 =

[
0 ĥAB

ĥ†AB 0

]
.

To avoid confusion due to multiple indices, we intro-
duce here the notation |Ψ>

m〉 = (|a>m〉, |b>m〉, |ā>m〉, |b̄>m〉)t
for the eigenstates with positive energy E>m, similarly
|Ψ<
n 〉 = (|a<n 〉, |b<n 〉, |ā<n 〉, |b̄<n 〉)t for those with negative

energy E<n . Thus, we ignore whether these states belong
to S±. The eigenstates for ν = ν̄ are speci�ed by simply
replacing n→ 0n and m→ 0m.
Assuming the eigenstates known for ν = ν̄, Ds

µ in
partially �lled FBs is obtained using the pseudospin
SU(2) symmetry of the Hamiltonian. Recall that the
quasi particle eigenvalues are invariant under the pseudo-
spin rotation. From Eq.(20) the rotated eigenstates are,
|ψ<n 〉 = Ûθ|Ψ<

0n〉 (similarly |Ψ>
m〉 = Ûθ|Ψ>

0m〉) where,

Ûθ =


c 0 s 0
0 c 0 −s
−s 0 c 0
0 s 0 c

 , (30)

with c = cos(θ/2) and s = sin(θ/2). The matrix elements
in Eq.(29) are given by,

〈Ψ<
n |Γ̂pV̂µ|Ψ>

m〉 = 〈Ψ<
0n|Û−θΓ̂pV̂µÛθ|Ψ>

0m〉, (31)

where p = 0 or 1. |ā<0n〉 = εn|a<0n〉 and |b̄<0n〉 = −εn|b<0n〉
where εn = 1 (respectively −1) if |Ψ<

0n〉 ∈ S+ (respec-
tively ∈ S−). We proceed similarly with |Ψ>

0m〉 and get,

Jnmµ = |C<,>0nm|2gnm, (32)

where gnm = ((1−εnεm)c+(εn+εm)s)2−(1+εnεm)2 and

C<,>0nm = 〈a<0n|∂µĥAB |b>0m〉 + 〈b<0n|∂µĥ
†
AB |a

>
0m〉. Eq.(32)

can be simpli�ed and gives,

Jnmµ = −4εnεm|C<,>0nm|2 cos2(θ). (33)

Using Eq.(24), we then end up with,

Ds
µ(ν) = f2(ν)Ds

µ(ν̄). (34)

In partially �lled FBs, Ds
µ always has a universal

parabolic shape and vanishes for ν = νmin and νmax.
To derive Eq.(7), one needs Eq.(3). Note that Eq.(33)
indicates that the contributions to Ds

µ(ν) originating
from pairs of eigenstates in the same subspace S+ or
S− are positive, while they are negative in the other case.

E�ects of disorder.- We have previously considered
clean systems. An interesting question is: What is the
impact of disorder that preserves the bipartite character
of the lattice such as random hoppings or introduction of
vacancies? Translation invariance being broken, ĤBdG

must be diagonalized in real space. The number of zero
energy eigenstates is NE=0 = |NB − NA| where Nλ is
the total number of orbitals λ = A,B. In the clean case,
our proofs are based on Lemma 1 and Lemma 2, which
remain valid in the single cell made up of NA A-orbitals
and NB B-orbitals. Thus, in the disordered half-�lled
BL, Eq.(3) becomes,

NB∑
j=1

∆B
j −

NA∑
i=1

∆A
i =

|U |
2
|NB −NA|, (35)

where i (respectively j) runs now over the whole sublat-
tice A (respectively B). In addition, Eq.(25) and Eq.(7)
which give the �lling dependence of the pairings and the
SFW are valid as well.

Notice that BCS wavefunction being the exact ground-
state in BL hosting isolated FBs when |U | is smaller than
the gap [24], implies as well the exactness of our results
in this limit. Thus, it would be of great interest to con-
�rm this statement from exact methods such as DMRG,
a reliable and well suited tool for quasi one-dimensional
systems.

To conclude, using a hidden symmetry of the BdG
eigenstates, we have rigourously demonstrated that in
bipartite lattices the pairings and the SFW obey univer-
sal relations. Furthermore, these general properties are
shown to hold in disordered systems as long as the bi-
partite character of the lattice is conserved. Our �ndings
could have an important impact in the search of novel
families of compounds exhibiting unconventional FB su-
perconductivity.
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SUPPLEMENTAL MATERIAL

The purpose of this supplemental material is to illus-
trate the sum-rules and other relations demonstrated in
the general context of bipartite lattices (BLs) where �at
bands (FBs) are either half-�lled or partially �lled. The
prototype of two dimensional BL considered here, we will
designate it by L-lattice, is shown in Fig.1. The L-lattice
consists in two sublattices A and B which contain re-
spectively ΛA = 3 and ΛB = 5 orbitals per unit cell,
whereA = {A1, A2, A3} and B = {B1, B2, ..., B5} . In the
absence of electron-electron interaction, the one-particle
spectrum consists exactly in Nfb = ΛB − ΛA = 2 FBs
with energy Efb = 0 and 2ΛA = 6 symmetric dispersives
bands (chirality).

Figure 1. (Color online) Prototype of two-dimensional bipar-
tite lattice (L), with ΛA = 3 atoms of type A and ΛB = 5
atoms of type B per unit cell (shaded area). The hoppings
are restricted to nearest neighbors only, they are all equal, set
to 1. The single particle Hamiltonian has two degenerate �at
bands.

Symmetry in the HBdG eigenstates

It has been shown in the main text, that eigenstates of
the Bogoliubov de Gennes Hamiltonian HBdG as given
in Eq.(2) in the article, can be divided into two sub-
sets S+ and S− which are de�ned in what follows. Con-
sider a normalized eigenstate of HBdG, |Ψ〉 = (|u〉, |v〉)t
of energy E, where |u〉 = (|a〉, |b〉)t and |v〉 = (|ā〉, |b̄〉)t.
The columns |a〉 and |ā〉 (respectively |b〉 and |b̄〉) are of
length ΛA (respectively ΛB),

|Ψ〉 ∈ S+ ⇔ |ā〉 = |a〉, |b̄〉 = −|b〉, (1)

|Ψ〉 ∈ S− ⇔ |ā〉 = −|a〉, |b̄〉 = |b〉. (2)

For a given value of the electron-electron interaction |U |,
here we have chosen |U | = 3, Fig.2 depicts the QP dis-
persions with negative energy in the half-�lled L−lattice
and along the ΓM direction in the Brillouin zone. Un-
ambiguously, for any value of the momentum k, the spec-
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Figure 2. (Color online) Negative part of the quasiparticle
dispersions in the (1, 1)-direction for the half-�lled BL L as
depicted in Fig.1. The green (respectively blue) line corre-
sponds to QP eigenstates in S+ (respectively S−). There are
ΛA = 3 bands in S− and ΛB = 5 in S+. Here, the on-site
interaction parameter |U | = 3, the conclusion is the same for
any |U |.

trum consists in ΛA = 3 eigenstates in S− and ΛB = 5
eigenstates in S+.

Sum rule for the pairings in half-�lled bipartite

lattices

In the main text of the article we it has been
rigourously proved that, in any half-�lled bipartite lat-
tice the pairings obey the following sum-rule,

ΛB∑
j=1

∆B
j −

ΛA∑
i=1

∆A
i =

|U |
2

(ΛB − ΛA). (3)

As an illustration, in Fig.3, the pairings for each orbital
are plotted as a function of |U | in the half-�lled L-lattice.
For obvious symmetry reasons (see Fig.1), one �nds that
∆B

1 = ∆B
2 and ∆B

3 = ∆B
4 . As it can be clearly seen, for

any |U |, Eq.(3) is exactly ful�lled.
If we de�ne the average value of the pairing on both

sublattices by 〈∆λ〉 where λ = A,B. For any |U |, we
have shown in the main text that,

〈∆B〉 ≥ 〈∆A〉, (4)

and found as well a lower bound for the average value of
the pairings on B-sublattice,

〈∆B〉
|U |

≥ r − 1

2r
, (5)

where r = ΛB/ΛA has been introduced.
In the case of the half-�lled L-lattice, Fig.3 clearly shows
that 〈∆B〉 ≥ 〈∆A〉 for any |U |. According to Eq.(5), in
the present case, one expects that 〈∆B〉 ≥ 0.2 |U |. This
is indeed in perfect agreement with the results depicted
in Fig.3. More precisely, the lower bound is found to

coincide exactly with ∂〈∆B〉
∂|U |

∣∣∣
U=0

.
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Figure 3. (Color online) Pairings (divided by |U |) as a func-
tion of |U | for the half-�lled BL depicted in Fig.1. The open
circles (respectively squares) are the average values of the
pairings on sublattice A (respectively B). The horizontal

black line corresponds to fAB/|U | where fAB = 1
2
(

ΛB∑
j=1

∆B
j −

ΛA∑
i=1

∆A
i ).

The super�uid weight in partially �lled FBs

In the main text we have proved a general relation-
ship between the super�uid weight (SFW) Ds

µ in par-
tially �lled FBs and that of the half-�lled lattice. The
SFW is de�ned as [2, 3],

Ds
µ =

1

Nc

∂2Ω(q)

∂q2
µ

∣∣∣
q=0

, (6)

Ω(q) is the grand-potential and q mimics the e�ect of a
vector potential, introduced by a standard Peierls sub-
stitution in the hopping terms in the BdG Hamiltonian.
First, we have carefully checked in the case of the L-

lattice that (i) the corrections to Eq .(6) as discussed in
Ref.[1] are vanishing and (ii) the quantum metric asso-
ciated to the FBs is minimal for the geometry depicted
in Fig.1. Using the pseudo-spin SU(2) symmetry of the
Hamiltonian for µ = −|U |/2 [4�6], it has been shown in
the main text that,

Ds
µ(ν) = f2(ν)Ds

µ(ν̄), (7)

where the �lling dependent function is,

f(ν) =
2

νmax − νmin

√
(ν − νmin)(νmax − ν). (8)

Thus, the SFW for partially �lled FBs always has a uni-
versal parabolic shape and Ds

µ(ν) vanishes for ν = νmin
and ν = νmax. These �llings correspond respectively to
empty FBs for which ν = νmin = 2ΛA = 6 and fully �lled
FBs where ν = νmax = 2ΛB = 10. As an illustration,
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Figure 4. (Color online)Super�uid weight Ds
x as a function of

the electron �lling in the L-lattice. The densities correspond
to partially �lled FBs where the chemical potential is µ =
−|U |/2. The electron interaction parameter is |U | = 1. The
symbols are the numerical data and the continuous line is the
analytical expression as discussed in the main text and given
by Eq.(7).

Fig.4 depicts Ds
x(ν) as a function of ν in the L-lattice.

As it is clearly seen, the agreement between the numeri-
cal data and the analytical expression given in Eq.(7) is
excellent.

The impact of the disorder: the case of randomly

distributed vacancies.
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Figure 5. (Color online) Distribution of the pairings PΛ(∆)
in both sublattices (Λ = A,B) for the disordered L-lattice.
The concentration of randomly distributed vacancies, x is the
ratio between the number of vacancies and that of orbitals in
the pristine system which here contains N = 8× 202 orbitals.
The system is half-�lled and |U | = 1. For more visibility the
probability distribution PA(∆) has been multiplied by 1/4.
The vertical dashed lines are the value of the pairings in the
clean system.

In our manuscript, it has been shown that in the case
of disorder that conserves the bipartite character of the
lattice the sum-rules and other relations established in
the case of clean systems still hold. Here, our puropose
is to illustrate this feature. We consider the impact of
vacancies randomly distributed in the L−lattice. In the
case of disordered half-�lled system, it has been argued
in the main text that Eq.(3) becomes,

NB∑
j=1

∆B
j −

NA∑
i=1

∆A
i =

|U |
2
|NB −NA|, (9)

where i (respectively j) runs now over the whole sub-
lattice A (respectively B), and NA (resp. NB) are the
total number of A-orbitals (respectively B-orbitals) in
the disordered lattice.

Because of the loss of translation invariance, the cal-
culations require multiple real space diagonalizations of
the BdG Hamiltonian, until convergence in the self-
consistent loop is reached. The size of the matrices is
2N × 2N where N = NA +NB. For our illustration, we
have considered a system that contains about 3200 or-
bitals. In Fig.5, the pairing distribution in the disordered
half-�lled L-lattice is depicted. The con�guration of dis-
order corresponds to the introduction of 5% of vacancies
randomly distributed. We have checked that Eq.(9) is ex-
actly veri�ed, as well as the relation 〈∆B〉 ≥ 〈∆A〉 which
could be anticipated from the plot of the pairing distri-
butions. Additionally, we have checked that Eq.(5) is as

well ful�lled 〈∆B〉
|U | ≥

1
2 (1 − 1

r ), where in the disordered

lattice r = NB
NA

.
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