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Abstract

We show that time intervals of width ∆τ in 3-dimensional conformal field theories
(CFT3) on the Lorentzian cylinder admit an infinite dimensional symmetry enhancement
in the limit ∆τ → 0. The associated vector fields are approximate solutions to the confor-
mal Killing equations in the strip labelled by a function and a conformal Killing vector on
the sphere. An Inonu-Wigner contraction yields a set of symmetry generators obeying the
extended BMS4 algebra. We analyze the shadow stress tensor Ward identities in CFTd on
the Lorentzian cylinder with all operator insertions in infinitesimal time intervals separated
by π. We demonstrate that both the leading and subleading conformally soft graviton theo-
rems in (d−1)-dimensional celestial CFT (CCFTd−1) can be recovered from the transverse
traceless components of these Ward identities in the limit ∆τ → 0. A similar construction
allows for the leading conformally soft gluon theorem in CCFTd−1 to be recovered from
shadow current Ward identities in CFTd.
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1 Introduction

Celestial holography proposes a correspondence between theories of gravity in 4-dimensional
(4D) asymptotically flat spacetimes and conformal field theories (CFT) living on the 2D celestial
sphere at infinity [1, 2]. In particular, scattering observables in the 4D theory are computed by
correlation functions in the 2D theory, also known as celestial amplitudes,1 and are subject to a
wide range of symmetries [3–10] (see also [11] for a recent review). This correspondence appears
to be very different from other instances of holography. Most notably, it relates a bulk theory to
a boundary theory in two lower dimensions, while the bulk soft theorems imply the existence of

1Celestial amplitudes will be assumed to be defined in 2D whenever the dimension is not explicitly specified.
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towers of negative dimension operators in the celestial CFT [12], naively rendering the boundary
theory non-unitary.

On the other hand, for massless2 scattering, a simple flat space limit of holographic CFTd

correlators was found in [19] to yield (d−1)-dimensional celestial amplitudes. This suggests that
at least some of the unique features of celestial CFT should arise in a certain limit of conventional
CFT in one higher dimension. The goal of this paper is to explain how leading and subleading
conformally soft symmetries [5–8] emerge precisely in this way.

Motivated by the configuration of boundary operators for which CFT3 correlators reduce
to celestial amplitudes, we first study the symmetries of an interval on the Lorentzian cylinder
of small width ∆τ ∝ R−1 in global time. We show that in the limit R → ∞, the conformal
isometries of this strip are enhanced to an infinite dimensional symmetry parameterized by a
function and a local conformal Killing vector on a two-sphere. For finite large R (corresponding
to a strip of small, but finite width), the infinite dimensional symmetry is broken by O(R−1)
terms. We show explicitly via a procedure that mimics the Inonu-Wigner contraction [20] of the
conformal algebra to Poincaré, that the enhanced conformal isometries of the intervals around
τ = ±π

2
generate an extended BMS4 algebra to leading order at large R. Moreover, under these

symmetries, CFT3 primary operators of dimension ∆ at τ = ±π
2
+ u

R
transform as 2D primary

operators of effective dimension ∆̂ = ∆ + u∂u. ∆̂ can be diagonalized by an integral transform
with respect to u analogous to that relating Carrollian and celestial operators [21, 22].

This analysis suggests that conformally soft symmetries in 2D CCFT are generated by certain
modes of the 3D stress tensor in the strips. In the second part of the paper we show that
the shadow stress tensor Ward identities in CFTd allow one to extract both the leading and
subleading conformally soft graviton operators in CCFTd−1. We establish this by lifting the
method used in [23] to derive stress tensor Ward identities from the subleading soft graviton
theorem in arbitrary dimensions to the embedding space. This allows us to derive the shadow
stress tensor Ward identities on the Lorentzian cylinder R× Sd−1 and study their restriction to
an infinitesimal global time strip. Specifically, we find that

lim
u→0

∂uT̃ab and lim
u→0

(1− u∂u)T̃ab, (1.1)

where T̃ab is the shadow transform of the CFTd stress tensor and a, b are indices on Sd−1 become
respectively, upon subtracting the trace, the leading and subleading conformally soft gravitons
in CCFTd−1!

Our results are interesting for several reasons. Firstly, they demonstrate that celestial CFT
may not be as exotic of a theory as anticipated. On the contrary, the leading and subleading
conformally soft symmetries arise universally in a simple limit of any CFT3, irrespective of
whether or not it is holographic. In this sense, our approach is complementary to that in
[24–26] which relies on the existence of an AdS bulk dual. More generally, we find that any
CFTd contains a (d − 1)-dimensional “celestial” sector characterized by an emergent BMS-like

2It has been long known that massive and in some cases massless momentum space scattering amplitudes
can be extracted from correlation functions of unitary CFTd with holographic AdSd+1 duals in various flat
space limits [13–17]. Interestingly, it was recently shown that such CFTd 4-point correlators exhibit conjectured
properties of (d+1)-dimensional scattering amplitudes, including dispersion relations, unitarity and the Froissart
bound in a flat-space limit [18].
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symmetry.3 Secondly, our results suggest that holographic CFTd correlators encode information
about gravity in (d+ 1)-dimensional asymptotically flat spacetimes (AFS) that need not be lost
in the flat space limit. It would be extremely interesting to understand the further implications,
as well as the limitations of this approach.

This paper is organized as follows. In section 2 we review the relation between AdS Witten
diagrams and celestial amplitudes at large AdS radius. We show how each operator in an
infinitesimal time interval around τ = ±π

2
in a CFTd on the Lorentzian cylinder maps to a

continuum of operators in CCFTd−1 via an integral transform over the interval. In section 3
we generalize the relation between AdS Witten diagrams and celestial amplitudes to massless
spinning external states. In particular, we demonstrate that, at large AdS radius, spinning bulk-
to-boundary propagators in AdSd+1 with fixed dimensions become massless spinning conformal
primary wavefunctions in R1,d. In section 4 we analyze the conformal Killing equations in a
global time strip of the 3D Lorentzian cylinder of infinitesimal width ∆τ ∼ R−1. We find an
emergent infinite dimensional symmetry in the limit R → ∞ labelled by a function and a vector
field on the sphere. We show in section 4.1 that the associated vector fields reorganize into the
generators of an extended BMS4 algebra after a Inonu-Wigner-like contraction. In section 4.2
we show that CFT3 operators in the strips around τ = ±π

2
transform like conformal primary

operators in CCFT2 under these symmetries.
In section 5 we derive the conformally soft gluon and graviton theorems in CCFTd−1 as a

limit of the Ward identities of a shadow current and the stress tensor in CFTd. In sections
5.1, 5.2 we revisit the derivation of these Ward identities using the embedding space formalism.
The large-R limits of these identities are worked out in section 5.3. After projection to the
Lorentzian cylinder, we demonstrate in section 5.3.1 that the leading conformally soft gluon is
obtained from the components of the shadow current transverse to the Sd−1 at τ = π

2
. The

leading and subleading conformally soft gravitons are similarly extracted from an expansion of
the transverse traceless component of the shadow stress tensor around τ = π

2
in section 5.3.2.

We collect various technical results in the appendices.

2 Preliminaries

In this section we review how, in the large AdS radius limit, scalar AdS Witten diagrams reduce
to Feynman diagram constituents of celestial amplitudes. This result will be extended to account
for massless spinning external states, as well as exchanges of arbitrary mass and spin in section
3. Importantly, we clarify the relation between insertions of CFT operators at different global
times τ0 in a strip of width ∆τ = O(R−1) and the continuum of celestial operators corresponding
to an asymptotic state in 4D AFS.

Conformal correlation functions in CFTd are obtained by summing over all possible AdSd+1

Witten diagrams [27]. The building blocks of the latter are bulk-to-boundary and bulk-to-bulk
propagators. It will be convenient to express the bulk-to-boundary propagators in the embedding
space formalism [28, 29]. We denote points or vectors in the embedding space R2,d by capital
letters X, P , · · · . Points in bulk AdSd+1 are constrained to obey X2 := ηµνX

µXν = −R2, where

3In d > 3 the vector fields are parameterized by a function on the sphere and a CKV on Sd−1, in particular
there is no local enhancement of the latter like for d = 3.
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ηµν = (−,+, · · · ,+,−) and can be parameterized by global coordinates (τ, ρ, z⃗) as

X0(τ, ρ, z⃗) = R
sin τ

cos ρ
, Xd+1(τ, ρ, z⃗) = R

cos τ

cos ρ
, X i(τ, ρ, z⃗) = R tan ρΩi(z⃗). (2.1)

Here Ω(z⃗) ∈ Sd−1 are unit normals to the sphere parameterized by coordinates z⃗ with

Ω(z⃗) =

Å
2z1

1 + |z⃗|2
, . . . ,

2zd−1

1 + |z⃗|2
,
1− |z⃗|2

1 + |z⃗|2

ã
. (2.2)

In these coordinates the boundary is located at ρ = π
2
and boundary points correspond to null

vectors P 2 = 0, where

P (τ, z⃗) = lim
ρ→π

2

cos ρ

R
X(τ, ρ, z⃗), (2.3)

or equivalently

P 0(τ, z⃗) = sin τ, P d+1(τ, z⃗) = cos τ, P i(τ, z⃗) = Ωi(z⃗). (2.4)

The correlation functions ⟨O∆1(P1) · · · O∆n(Pn)⟩ of scalar operators O∆i
(Pi) in a holographic

CFTd can be computed by summing over AdSd+1 Witten diagrams (see [30] for a review). Moti-
vated by the relation between scattering amplitudes and AdS/Witten diagrams in the flat space
limit [15, 24, 31], a limit was proposed in [19] in which AdS/Witten diagrams reduce to celestial
amplitudes. In this prescription, boundary operators are placed at

τi = ±π

2
+

ui

R
, (2.5)

while bulk global coordinates are redefined as

τ =
t

R
, ρ =

r

R
, (2.6)

before taking R → ∞ with (t, r) fixed. One of the main observations of [19] is that to leading
order at large R, scalar bulk to boundary propagators in AdSd+1

K∆(X,P ) =
C∆

(−P ·X + iϵ)∆
, (2.7)

with C∆ a normalization constant, become proportional to R1,d conformal primary wavefunctions
[1]

φ∆(x; ηq̂) =
(iη)∆Γ(∆)

(−q̂ · x+ iηϵ)∆
. (2.8)

Here η = ±1 depending on whether the boundary operators are placed around τ = ±π
2
with the

spheres at τ = ±π
2
assumed to be antipodally related, x is a point in (d + 1)-dimensional flat

space and

q̂(z⃗) = (1,Ω(z⃗)) . (2.9)
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Analyzing the other elements of the AdS/Witten diagrams, one concludes that these reduce to
the building blocks of celestial amplitudes to leading order at large R.

The correspondence established in [19] left an important question open. A bulk scalar field
in AdS corresponds to an operator of definite dimension in CFT, while massless asymptotic
states in flat space should map to a continuum of operators of dimensions ∆ = d−1

2
+ iλ in

CCFTd−1 [32]. In contrast, according to (2.7), (2.8) the celestial amplitudes appear to simply
inherit the dimension of the primary operator in the parent CFT. We conclude this section by
explaining how one can in fact extract a continuum of operators in CCFT from the large R
expansion of (2.7).

Recall that the conformal primary wavefunctions obtained from bulk-to-boundary propaga-
tors in the large R limit depend on the position at which the CFTd operators are inserted within
the global time strip of infinitesimal width ∝ R−1. In particular,

lim
R→∞

K∆(X,P )|τp=π
2
+

u0
R

∝ 1

(t− u0 − rΩ · Ωp + iϵ)∆
+O(R−1). (2.10)

This result corresponds to an outgoing conformal primary wavefunction defined with respect to
a different origin in spacetime, namely

φ∆(x− x0; q̂) ∝
1

(−q̂ · (x− x0) + iϵ)∆
, (2.11)

where x0 = (u0, 0, 0, 0). Now note that this shift in origin can be traded for a shift in the conformal
dimension ∆ by an integral transform on u0. Specifically,∫ ∞

−∞
du0u

−∆0
0

i∆

(t− u0 − rΩ · Ωp + iϵ)∆
=

1

Γ(∆)

∫ ∞

−∞
du0u

−∆0
0

∫ ∞

0

dωω∆−1eiω(t−u0−rΩ·Ωp+iϵ)

=
2i∆−1 sin(π∆0)B(∆ +∆0 − 1, 1−∆0)

(t− rΩ · Ωp + iϵ)∆+∆0−1
, Re∆0 ∈ (0, 1),

(2.12)

where B(x, y) is the Euler beta function. Similar to calculations involving conformal primary
wavefunctions in CCFT, the integral formally converges only for ∆0 = c + iλ, with c ∈ (0, 1)
and λ ∈ R. Nevertheless the result may be analytically continued away from this line in the
complex ∆0 plane [10,33,34]. Following [32], these conformal primary wavefunctions can then be
shown to form a complete basis for asymptotic scattering states in R1,d provided that ∆0 takes
the appropriate continuum of values.

We conclude that up to an interesting normalization,4 insertions of CFTd operators at different
points in the infinitesimal global time intervals generate the expected continuum of CCFTd−1

operators. The transformation (2.12) is the same that maps operators in a Carrollian conformal

4In (2.12) we assumed that one can exchange the order of integrals over u0 and ω. It would be important,
yet beyond the scope of this paper, to study under what conditions this is allowed. It is possible that different
prescriptions will yield celestial amplitudes that differ by Poincaré invariant structures as observed for example
in [35, 36]. We thank Walker Melton and Sruthi Narayanan for a discussion on this point. It would also be
interesting to understand the precise relation between our prescription and those proposed in [37,38] based on an
AdS/dS slicing of flat space.
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field theory to celestial operators [21,22]. We will return to this in section 4.2. A complementary
approach is to keep the u0 dependence and then relate the R → ∞ limit of AdS Witten diagrams
to Carrollian correlators instead of celestial ones [39].

3 Spinning celestial amplitudes from flat space limit

We now discuss the extension of the result reviewed in the previous section to external spin-
ning operators. We analyze in turn the flat space limit of massless spinning bulk-to-boundary
propagators, spinning bulk-to-bulk propagators and vertices.

3.1 Bulk-to-boundary propagators

We start by considering the spinning bulk-to-boundary propagators for fields of dimension ∆
and spin J [29]

K∆,J
µ⃗;ν⃗ (X;P ) = C∆;J∂µ1X

A1 · · · ∂µJ
XAJ∂ν1P

B1 · · · ∂νJPBJ
I{A1;{B1(X;P ) · · · IAJ};BJ}(X;P )

(−P ·X + iϵ)∆
,

(3.1)
where

IA;B(X;P ) =
−P ·XηAB + PAXB

−P ·X + iϵ
. (3.2)

Here Ai, Bi are R2,d embedding space indices, µi run over the rescaled coordinates (t, r,Ω) defined
in (2.2), (2.6) and νi run over the boundary coordinates (u,Ω) in (2.5). ∂µi

XAi , ∂νiP
Bi hence

implement projections onto the corresponding bulk and boundary tensors respectively and {·}
denotes the symmetric traceless component. We collect some useful results on the embedding
space formalism in appendix A. C∆,J is a normalization constant [29]

C∆,J =
(J +∆− 1)Γ(∆)

2πd/2(∆− 1)Γ(∆ + 1− d
2
)R(d−1)/2−∆+J

. (3.3)

We see that spinning bulk-to-boundary propagators are obtained from the scalar ones defined in
(2.7) by dressing with the conformally covariant tensors in (3.2). It then suffices to analyze the
behavior of these tensors in the flat space limit.

Using the large R expansions

X(τ, ρ, z⃗) = (0, R) + (x, 0) +O(R−1), (3.4)

P (τi, z⃗i) = ±(q̂(z⃗i), 0)∓
(
0,

ui

R

)
+O(R−2) (3.5)

of the bulk and boundary embedding space vectors, where x = (t, rΩ(z⃗)) are Cartesian coordi-
nates and q̂ is defined in (2.9), one obtains the expansions of the projectors ∂µX

A and ∂νP
B.

From these expansions it immediately follows that

ηAB∂µX
A∂νP

B =

®
O(R−2), ν = u,

±∂aq̂µ(z⃗) +O(R−1), ν = za,
(3.6)

PAXB∂µX
A∂νP

B =

®
q̂µ(z⃗) +O(R−1), ν = u,

(∂aq̂(z⃗) · x) q̂µ(z⃗) +O(R−1), ν = za.
(3.7)
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The expansion of the conformally covariant tensors (3.2) projected onto bulk and boundary
indices follows directly from these results. We distinguish between two cases. First, when the
boundary index is ν = u we have

Iµ,u(X,P ) = ± lim
∆→0

1

∆

ï
∂µ

Å
1

(−q̂ · x± iϵ)∆

ã
+O(R−1)

ò
, (3.8)

which we recognize as the derivative of a scalar conformal primary wavefunction. Likewise, if
the boundary index is ν = za we have

Iµ,a(X,P ) = ±
ï
∂aq̂µ(z⃗) +

∂aq̂(z⃗) · x
(−q̂ · x± iϵ)

q̂µ(z⃗) +O(R−1)

ò
. (3.9)

Hence, up to normalization and a phase, the flat space limit of Iµ,a(X,P ) corresponds to the con-
formally covariant tensor used in the construction of spinning conformal primary wavefunctions
given in [40].5 Putting everything together, we conclude that general massless spinning confor-
mal primary wavefunctions are obtained from flat space limits of the spinning bulk-to-boundary
propagators (3.1) with transverse indices. Note however that the dimensionally reduced bulk to
boundary propagators have a non-vanishing trace. In order to obtain conformal primary wave-
functions in CCFTd−1 the trace has to be subtracted. For example, in the spin two case this is
implemented by applying the projector [32]

P b1b2
a1a2

≡ δb1{a1δ
b2
a2} −

1

d− 1
δa1a2δ

b1b2 . (3.10)

Finally, (3.8) implies that bulk-to-boundary propagators with time indices on the boundary
result in pure gauge conformal primary wavefunctions. We leave a better understanding of this,
as well as additional data resulting from the dimensional reduction to future work.

3.2 Bulk-to-bulk propagators and vertices

The spin J bulk-to-bulk propagator in AdSd+1 obeys the equations [29]Å
2AdS − ∆(∆− d)

R2
+

J

R2

ã
Πµ1...µJ ,ν1...νJ (X, X̄) = −gµ1{ν1 · · · g|µJ |νJ}δAdS(X, X̄), (3.11)

∇µ1Πµ1...µJ ,ν1...νJ (X, X̄) = 0. (3.12)

To take the flat space limit we assume that all of the components are in the chart (t, r,Ω), in
which the AdS metric gµν becomes the Minkowski metric ηµν to leading order at large R

gµν = ηµν +O(R−2). (3.13)

On the other hand, the Laplace operator behaves as 2AdS = 2R1,d +O(R−2) and the Dirac delta
behaves as δAdS(X, X̄) = δR1,d(x, x̄) + O(R−2) [19]. Therefore the first equation turns into the
equation for the propagator of a spin J field of mass m = lim

R→∞
∆
R

in flat space. The second

5The polarization vectors ∂aq̂ are gauge equivalent to the ones defined in [32].
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equation can be treated in the same way since gµν = ηµν + O(R−2) and the AdS covariant
derivative becomes the flat spacetime covariant derivative when R → ∞.

As a result, the bulk-to-bulk propagator must have an expansion of the form

Πµ1...µJ ,ν1...νJ (X, X̄) = Gµ1...µJ ,ν1...νJ (x, x̄) +O(R−2), (3.14)

where Gµ1...µJ ,ν1...νJ (x1, x2) is the Feynman propagator for a symmetric traceless tensor of spin J
in R1,d.

Since vertices are simply integrals over AdS which become integrals over R1,d in the flat
space limit, we conclude that AdS-Witten diagrams for spinning particles reduce to CCFTd−1

amplitudes of spinning massless particles in the flat space configuration (2.5).

4 From conformal to infinite dimensional symmetry

Consider a d-dimensional CFT on the Lorentzian cylinder with metric

ds2 = gµνdx
µdxν = −dτ 2 + dΩ2

d−1, (4.1)

where dΩ2
d−1 is the metric on the (d − 1)-sphere of unit radius. Conformal transformations

are coordinate transformations that preserve the metric up to a Weyl rescaling. Specifically,
infinitesimal conformal transformations are obtained by finding the diffeomorphisms

x
′µ = xµ + ϵµ(x) (4.2)

under which the metric transforms as

g′µν(x
′) = gµν(x) + δgµν , δgµν = σ(x)gµν(x). (4.3)

Such diffemorphisms are subject to the conformal Killing equations

∇µϵν +∇νϵµ =
2

d
∇ · ϵ(x)gµν . (4.4)

The solutions to these equations generate the conformal algebra so(d, 2) for d ≥ 3, while for
d = 2 this algebra admits a Virasoro enhancement.

The relation between celestial amplitudes on the (d − 1)-dimensional celestial sphere and
conformal correlation functions of primary operators localized to strips of infinitesimal width
∆τ ∝ 1

R
as R → ∞ suggests that, on short global time scales, d-dimensional conformal field

theories should develop an infinite dimensional symmetry. In this section we show that this is
indeed the case by analyzing the conformal Killing equations (4.4) in this limit. We specialize to
d = 3 in which case the emergent “celestial” CFT is 2-dimensional and expected to be governed
by the extended BMS symmetries of 4D asymptotically flat spacetimes (AFS) [41–44].

For d = 3, (4.1) reduces to

ds2 = −dτ 2 + 2γzz̄dzdz̄, γzz̄ =
2

(1 + zz̄)2
, (4.5)
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where we introduced stereographic coordinates (z, z̄) on the unit 2-sphere with metric γzz̄. We
would like to zoom into a region of the 3-dimensional Lorentzian cylinder of infinitesimal width
centered around a global time slice at τ0. To this end, we introduce the coordinate u defined by

τ = τ0 +
u

R
, (4.6)

in which case the metric (4.5) becomes

ds2 = −R−2du2 + 2γzz̄dzdz̄. (4.7)

The conformal Killing equations associated with (4.7) take the form

∂uϵ
u =

1

3
∇ · ϵ, (4.8)

∂uϵz + ∂zϵu = 0, (4.9)

Dz̄ϵz +Dzϵz̄ =
2

3
∇ · ϵγzz̄, Dzϵz = 0, (4.10)

where DA is the covariant derivative on the sphere and we denote indices tangent to the sphere
by A.

The last equation in (4.10) is solved by

γzz̄∂zϵ
z̄ = γzz̄∂z̄ϵ

z = 0 =⇒ ϵA = F (u)Y A(z, z̄), (4.11)

where Y A are conformal Killing vectors on the sphere. Moreover (4.8) and the first equation in
(4.10) yield6

2∂uϵ
u = F (u)D · Y =⇒ ϵu =

1

2

∫ u

du′F (u′)D · Y + f(z, z̄). (4.12)

Finally, F (u) is determined from (4.12) and (4.9). In the limit as R → ∞ we distinguish between
two cases. If D · Y = 0 we immediately find

∂uF (u) = O(R−2) =⇒ F (u) = c+O(R−2), (4.13)

where c is a constant. For future convenience we chose c = 1 which reproduces the standard
Lie algebra of rotation generators to leading order at large R. On the other hand, if D · Y ̸= 0,
taking a u derivative of (4.9) we find

∂2
uF (u)YA − F (u)∂AD · Y

2R2
= 0, (4.14)

or upon taking the divergence on the sphere,7ï
∂2
uF (u) +

1

R2
F (u)

ò
D · Y = 0. (4.16)

6Note that f(z, z̄) may depend on R. As we show later, the global translations are obtained from an Inonu-
Wigner contraction of vector fields with f(z, z̄) = R. Supertranslations may also be obtained by allowing f(z, z̄) =
Rf0(z, z̄) and directly applying (4.30) to the local generators.

7Recall that conformal Killing vectors on the sphere obey

DAD
ADBY

B = −2D · Y. (4.15)
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(4.16) is solved by
F (u) = e±i(τ0+

u
R
). (4.17)

Since we have taken a u derivative and a divergence on the sphere in order to arrive at (4.13)
and (4.17), it is important to verify whether these solutions also obey the original conformal
Killing equation (4.9). In fact (4.13), (4.17) fail to obey (4.9) away from the R → ∞ limit. For
D · Y ̸= 0

δϵ±guA = ±ie±i(τ0+
u
R
)

R
αA(z, z̄)−

∂Af(z, z̄)

R2
, αA = YA +

1

2
DA(D · Y ). (4.18)

Therefore the violation is O(R−1) for the local CKV on the sphere, while in the special case
D · Y = 0 the violation is O(R−2). The enhanced conformal Killing symmetry in the strip is
therefore broken at O(R−1). Singularities in the local CKVs on the sphere also lead to a violation
of the conformal Killing equations by contact terms.

The vector fields that preserve the metric of a 3D Lorentzian cylinder in an infinitesimal time
interval ∝ R−1 in the limit R → ∞ are hence

ϵ± =

ï
∓iR

2
F±(u)D · Y + f(z, z̄)

ò
∂u + F±(u)Y

A∂A, (4.19)

where ®
F±(u) = e±i(τ0+

u
R
), D · Y ̸= 0,

F±(u) = 1, D · Y = 0.
(4.20)

It may be interesting, yet beyond the scope of this paper, to systematically understand whether
(4.7) and (4.19) admit subleading corrections8 at large R that allow for an enhancement of
conformal symmetry in a strip of small yet finite size.

A few comments are in order. Just like the generators of the extended BMS group in 4D AFS,
the vector fields (4.19) are labelled by a function f(z, z̄) and a local conformal Killing vector
Y A(z, z̄) on the sphere. The resulting symmetry group is infinite dimensional, in contrast to the
conformal group in 3 dimensions. At first glance this may seem surprising, however we ought
to keep in mind that (4.19) are not symmetries of full 3D CFT but only of infinitesimal time
intervals.

Moreover, note that in the R → ∞ limit the metric (4.7) develops a “null direction” reflected
by the vanishing of the guu component. As such, the restriction to short global timescales shares
similarities with the Carrollian limit [45, 46]. In the next section we show how the extended
BMS4 algebra is recovered from the enhanced conformal symmetries (4.19) of the strip by a
Inonu-Wigner contraction [20].

4.1 Extended BMS4 algebra in CFT3

We now show that the extended BMS4 algebra can be extracted from the algebra generated
by the vector fields (4.19). This procedure is analogous to Inonu-Wigner contraction of the
conformal algebra to Poincaré [20].

8Unfortunately this naively appears to require coupling the boundary CFT to gravity. We thank Jan de Boer
for a discussion on this point.
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We start by noting that appropriate linear combinations of (4.19) generate an so(3, 2) algebra
for constant f(z, z̄) and Y = Y A∂A restricted to the global conformal Killing vectors of the
sphere [44],

Y12 = −i(z∂z − z̄∂z̄), Y23 = −i
z2 − 1

2
∂z + i

z̄2 − 1

2
∂z̄, Y31 = −1 + z2

2
∂z −

1 + z̄2

2
∂z̄, (4.21)

Y01 =
1− z2

2
∂z +

1− z̄2

2
∂z̄, Y02 =

i(1 + z2)

2
∂z −

i(1 + z̄2)

2
∂z̄, Y03 = −z∂z − z̄∂z̄. (4.22)

(4.21) correspond to rotations of the 2-sphere and have vanishing divergence D · Yij = 0 while
(4.22) have non-vanishing divergence

D · Y0i = −2Ωi, (4.23)

where Ω = 1
1+zz̄

(z + z̄,−i(z − z̄), 1− zz̄) is the unit normal to the sphere at (z, z̄). Specifically,
identifying

D = −iϵf=R, Jij = iϵYij
, (4.24)

Pi = iϵ+Y0i
, Ki = iϵ−Y0i

, (4.25)

we find the commutation relations [30]

[D, Jij] = 0, [D,Pi] = Pi, [D,Ki] = −Ki,

[Jij, Pk] = i(δikPj − δjkPi), [Jij, Kk] = i(δikKj − δjkKi),

[Pi, Kj] = 2i(iδijD − Jij), [Jij, Jkℓ] = i [δikJjℓ + δjℓJik − δjkJiℓ − δiℓJjk].

(4.26)

These generators can be reorganized in terms of Lorentz generators MAB of the embedding
space R2,3 9

M40 = −D, Mi4 =
Pi +Ki

2
, (4.27)

Mij = Jij, Mi0 =
Pi −Ki

2i
, i = 1, 2, 3. (4.28)

Explicit computation shows that (4.26) imply that MAB obey the so(3, 2) algebra

[MAB,MCD] = i(ηACMBD + ηBDMAC − ηBCMAD − ηADMBC) (4.29)

with η00 = η44 = −1, ηii = 1 and all other components vanishing. The Inonu-Wigner contraction
is implemented by redefining

Pµ =
1

R
M4µ, µ = 0, · · · , 3 (4.30)

and taking R → ∞ while keeping Pµ and Mµν fixed. It is straightforward to show that in
this limit, (4.26) reduce to the Poincaré algebra, with Pµ and Mµν the translation and Lorentz
generators in R1,3 respectively.

9Our conventions differ slightly from those in [15] and are simply related by exchanging the 0 and 4 directions
or equivalently shifting τ → τ + π

2 in (2.1).
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We now demonstrate that an analogous Inonu-Wigner contraction of the local vector fields
(4.19) leads to the extended BMS4 algebra ebms4. In analogy with (4.30) we define

TY = i
ϵ+Y + ϵ−Y
2R

, LY =
ϵ+Y − ϵ−Y

2
(4.31)

for arbitrary conformal Killing vector fields Y 10 and take the limit R → ∞. Setting τ0 =
π
2
+O(R−1), we find from (4.19) and (4.31)

−iTY =
1

2
D · Y ∂u +O(R−2), (4.32)

−iLY = Y A∂A +
u

2
D · Y ∂u +O(R−2). (4.33)

Together with the vector fields with Y = 0, parametrized by an arbitrary function f on the
sphere

Tf ≡ iϵf = if(z, z̄)∂u +O(R−2), (4.34)

LY generate ebms4

[Tf1 , Tf2 ] = O(R−2), (4.35)

[LY1 , LY2 ] = iL[Y1,Y2] +O(R−2), (4.36)

[Tf , LY ] =

ï
Y (f)− 1

2
(D · Y )f(z, z̄)

ò
∂u +O(R−2) = iTf ′= 1

2
(D·Y )f−Y (f) +O(R−2).(4.37)

Note that

lim
R→∞

TY = lim
R→∞

Tf= 1
2
D·Y (4.38)

which means that TY correspond to a special class of supertranslation vector fields Tf with
f = 1

2
D · Y and are hence redundant. Analogous results are obtained by expanding (4.31)

around τ0 = −π
2
. The results of this section are summarized in Figure 1.

Finally, consider the shift τ0 → τ0 + π in ϵ±Y defined in (4.19). Under this transformation,
ϵ±Y → −ϵ±Y . The same transformation can be implemented for the globally defined vector fields
by keeping τ fixed and considering instead an antipodal map on S2. Therefore, the action of LY

and TY on S2 slices of the Lorentzian cylinder separated by π in global time becomes the same
provided the slices are antipodally related. This is compatible with the observation in [19] that in
order to respect Lorentz invariance in the flat space limit of AdS Witten diagrams it is necessary
to antipodally identify the time-slices corresponding to in/out states. It further suggests that the
antipodal matching condition between I+

− and I−
+ employed in AFS [42] arises naturally in the

flat space limit proposed in [19]. Note that similar arguments led to a derivation of the matching
conditions via a resolution of i0 with hyperbolic slices [47,48].

10Note that the rotation generators with D · Y = 0 are obtained directly as Mij = Jij , hence no linear
combination is necessary.
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so(3, 2) generators local enhancement (4.19)

Poincaré ebms4

short times

Inonu−Wigner Inonu−Wigner

Figure 1: The metric of a CFTd on the Lorentzian cylinder develops an approximately null
direction over infinitesimal global time intervals ∆τ ∼ R−1. In the limit R → ∞, the conformal
Killing equations admit an infinite dimensional set of solutions parameterized by a function
on Sd−1 and a conformal Killing vector on Sd−1. In particular, for d = 3, an Inonu-Wigner
contraction in the intervals around τ = ±π

2
leads to vector fields that obey the extended BMS4

algebra.

4.2 Transformation of CFT3 primary operators in the strip

We now study the action of the conformal Killing vectors on CFT3 primary operators and show
that when restricted to global time slices, these operators transform as quasi-primary operators
in CCFT2. We work in Euclidean signature and Wick rotate at the end.

A primary operator O∆(x) of arbitrary spin transforms in some representation D : SO(3) →
GL(V ). The action action of a conformal Killing vector ϵ on such an operator is [49]

δϵO∆(x) = −
ï
(∇ · ϵ)∆

3
+ ϵµ∇µ +

i

2
∇µϵνS

µν

ò
O∆(x), (4.39)

where ∇µ is the spin covariant derivative [50] 11

∇µ = ∂µ +
i

2
ω ab
µ Sab. (4.40)

Here ω ab
µ is the torsion-free spin connection defined in terms of a vielbein eaµ

gµν = eaµe
b
νδab, (4.41)

where gµν is the 3-dimensional metric, Sab are the generators of the representation D and Sµν =
eaµe

b
νSab. Note that O∆(x) are defined to only carry internal indices. As an example, in appendix

B we demonstrate that (4.40) reduces to the standard Levi-Civita connection when acting on
Lorentz vectors. The (Wick rotated) metric (4.7) is recovered with the following choice of vielbein
eaµ

e1 =

…
γzz̄
2
(dz + dz̄), e2 = −i

…
γzz̄
2
(dz − dz̄), e3 =

du

R
. (4.42)

Taking ϵ = LY , namely

LY ≡ ϵ+Y − ϵ−Y
2

(4.43)

=
i

2
(D · Y )u∂u + iY A∂A +O(R−1), τ0 =

π

2
, (4.44)

11This agrees with the definition involving Σ in [50] upon setting Σµν = iSµν , with Sµν obeying (4.29).
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we show in appendix C that (4.39) becomes

δLY
O∆(x) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

]
O∆(x), (4.45)

where we defined the operator-valued weights

h ≡ ∆̂ + J3
2

, h̄ ≡ ∆̂− J3
2

, ∆̂ ≡ ∆+ u∂u. (4.46)

Finally given that J3 acts diagonally on a primary operator,

J3O∆ = sO∆, (4.47)

the operator-valued weights simplify to

h =
∆̂ + s

2
, h̄ =

∆̂− s

2
. (4.48)

On the other hand, note that the dilatation operator in the two-dimensional theory is not
diagonal in the basis of primary operators of the CFT3. Indeed, only operators placed at u = 0
diagonalize the two-dimensional weights (4.48). For this special case, one obtains operators
transforming like two-dimensional primary operators with respect to conformal transformations
of the slices, whose dimensions agree with those of the corresponding CFT3 operators. More
generally ∆̂ can be diagonalized by the time Mellin-like transform discussed at the level of the
bulk-to-boundary propagators in section 2, namely“O∆(z, z̄; ∆0) ≡ N(∆,∆0)

∫ ∞

−∞
du u−∆0O∆(u, z, z̄), (4.49)

where N(∆,∆0) is chosen to reproduce the standard normalization of CCFT operators. Under
this transformation we have

u∂u → ∆0 − 1 (4.50)

and therefore it follows that “O∆(z, z̄; ∆0) transforms as a two-dimensional quasi-primary operator
with weights

h =
(∆ +∆0 − 1) + s

2
, h̄ =

(∆ +∆0 − 1)− s

2
. (4.51)

The transformation of “O∆ under LY is therefore

δLY
“O∆(z, z̄; ∆0) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − sΩz) + Y z̄(∂z̄ − sΩz̄) +O(R−1)

] “O∆. (4.52)

As an example consider a CFT3 current Jµ of dimension ∆ = 2 and spin s = 1. According to

(4.52) its restriction to an equal time slice, (Ĵz, Ĵz̄), transforms under 2d conformal transforma-
tions of the slice as an operator of dimension ∆CCFT = 1+∆0 and spin s = 1. Choosing ∆0 = 0
then yields a 2D current. Likewise the stress tensor Tµν has ∆CFT = 3 and spin s = 2. In this
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case its 2D counterpart T̂ has ∆CCFT = 2 + ∆0. Therefore choosing ∆0 = 0 again yields an
operator that transforms as the stress tensor in two-dimensions. Currents in the dimensionally
reduced theory can be equivalently obtained from currents in the parent CFT3 by performing a
3D shadow transform followed by restriction to the u = 0 slice and a 2D shadow transform. It
can be easily checked that this prescription lowers the dimension of the operator by 1. This is
detailed in appendix D and motivates our calculations in the following section.

This discussion brings the proposed projection from CFTd to CCFTd−1 closer to the standard
dimensional reduction procedure. The starting point in dimensional reduction is a manifold
M × K, where K is usually taken to be compact. A field Φ in this higher-dimensional space
can be decomposed into modes that diagonalize a differential operator on K. The coefficients
in the expansion of Φ in terms of these modes are then a tower of fields Φm in M [51]. This
is analogous to what happens here. Explicitly, we start with a CFT3 on R × S2 and note that
the operator O∆(u, z, z̄) can be expanded in terms of eigenfunctions of the differential operator

u∂u in R and a continuum of modes “O∆(z, z̄; ∆0). In this case the role of K is played by the
non-compact R and therefore we obtain a continuum instead of a discrete set of fields in the
dimensionally-reduced theory on S2. Similar ideas applied to the distinct context of relating
celestial holography to holography for the continuum of AdS3/CFT2 slices of the future/past
Milne wedges of Minkowski spacetime have been put forward in [52,53]. It would be interesting
to establish a precise equivalence between these two approaches.

Finally, note that the transformation (4.49) is the same as the one recently employed in [21,22]
to relate Carrollian and celestial holography. This transformation appears here in a novel context
and we believe it deserves further study. One difference here is that the effective dimension of the
CCFT operator is not simply ∆0, but instead ∆+∆0−1. One hence has to account for the shift
by the dimension ∆ of the operator in the parent CFT3 when taking conformally soft limits for
example. The additional shift by 1 is due to the fact the CFT3 vector field (4.33) has no radial
component. In the case of superrotation vector fields in AFS this is known to induce a shift by
1 in the conformal primary dimension of on asymptotic field with respect to its action [44]. It
would be interesting to further explore how radial evolution in AFS arises from the perspective
of the flat space limit of CFT3.

We conclude this section by noting that in the case when Y is a globally defined CKV on
S2, the vector fields LY are also globally-defined on the cylinder and therefore must be linear
combinations of so(3, 2) generators. In this case, conformal symmetry of the CFT3 implies the
Ward identity

n∑
i=1

δLYi
⟨O1 · · · On⟩ = 0. (4.53)

In the large R limit this reduces to

n∑
i=1

[
DziY

zihi +Dz̄iY
z̄ih̄i + Y zi(∂zi − siΩzi) + Y z̄i(∂z̄i − siΩz̄i) +O(R−1)

]
⟨O1 · · · On⟩ = 0,

(4.54)

which corresponds to the global SL(2,C)/Z2 symmetry of the CCFT2 as expected. When Y are
not globally defined, we expect the symmetry action on the correlator (4.53) to reduce in the
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large R limit to an insertion of the CCFT2 stress tensor. In the next section we will show that
the subleading conformally soft graviton theorem in CCFT and the associated stress tensor Ward
identity follow from the flat limit of the CFT3 shadow stress tensor Ward identities. Remarkably,
the large-R expansion of the shadow stress tensor Ward identity in CFT3 allows us to also directly
recover the leading conformally soft graviton theorem.

5 CCFTd−1 conformally soft theorems from CFTd

In this section we describe how soft symmetries in CCFTd−1 emerge from the higher-dimensional
CFTd upon dimensional reduction. As a first step, we identify the operators in CFTd that
become conformally soft operators. In particular, we show that the leading conformally soft
gluon in CCFTd−1 arises in the flat limit12 from a shadow-transformed conserved current in
CFTd. Similarly, the leading and subleading conformally soft gravitons are obtained from the
CFTd stress tensor.

The relation between soft theorems in R1,d+1 and shadow stress tensor Ward identities in
CFTd was first observed in [23]. Here we combine this general correspondence with the flat
space limit to derive CCFTd−1 conserved operators (associated instead with soft theorems in
R1,d) from CFTd ones.

Particularly relevant will be the shadow transform of a spin J tensor field in CFTd which is
defined in the embedding space (see appendix A) as

Φ̃A1···AJ (P ) ≡
∫

DdY

∏
i(η

AiBi(P · Y )− Y AiPBi)

(−2P · Y )d−∆+J
ΦB1···BJ

(Y ). (5.1)

The shadow transform squares to the identity up to normalization [54]. This integral transform
maps a primary of dimension and spin (∆, J) to another primary of dimension and spin (d−∆, J).
In the remainder of this section we lift the analysis of [23] to the embedding space R1,d+1 and
evaluate shadow current and shadow stress tensor insertions

⟨J̃A(P )O1(P1) · · · On(Pn)⟩, ⟨T̃AB(P )O1(P1) · · · On(Pn)⟩. (5.2)

Our approach is therefore independent on the choice of lightcone section or conformally flat
manifold (Σ, g). In order to take the flat space limit we project and analytically continue to
CFTd on the Lorentzian cylinder. To simplify formulas we introduce the notation X for a string
of primary field insertions in correlation functions

⟨X⟩ ≡ ⟨O1(P1) · · · On(Pn)⟩. (5.3)

Since the dimensions of the leading conformally soft gluon and subleading conformally soft
gravitons are ∆ = 1 and ∆ = 0 respectively in any number of dimensions, it is perhaps to be
expected that the flat limit will lead to the corresponding conformally soft theorems. What we

12Defined here as the localization of the operator at u = 0 in a time strip τ = τ0 +
u
R of infinitesimal width. As

we show in appendix D one could also start from the time-Mellin transformed shadow current (4.49) in the strip
and take ∆0 = 1. In this paper, the flat space limit, while motivated by holography, doesn’t require the CFTd to
have a holographic dual.

16



find remarkable is that this approach also allows us to easily recover the leading conformally soft
graviton! This can be obtained by acting on the CFTd shadow stress tensor with ∂u in the strip.
We will see that in the limit R → ∞ this indeed precisely reproduces the leading conformally
soft graviton theorem in CCFTd−1.

5.1 Shadow current

Using the defining relation (5.1), the shadow transform of a spin-1 field in the embedding space
can be written as

J̃A(P ) =
1

4

∫
DdY

∂PA∂Y B log(−2P · Y )

(−2P · Y )d−∆−1
JB(Y ). (5.4)

Here we have used the following identities

∂

∂PA
log(−2P · Y ) =

YA

P · Y
,

∂

∂PA

∂

∂Y B
log(−2P · Y ) =

ηAB(P · Y )− PBYA

(P · Y )2
. (5.5)

We now consider a g-valued current where g is the Lie algebra of a Lie group G which is
a global symmetry of the CFTd. Omitting color indices and recalling that the dimension of a
current is ∆ = d− 1, (5.4) reduces to

J̃A(P ) =
1

4

∫
DdY ∂PA∂Y B log(−2P · Y )JB(Y ) (5.6)

= −1

4

∫
DdY ∂PA log(−2P · Y )∂Y BJB(Y ), (5.7)

where in the last line we have integrated by parts.13 We now invoke the Ward identity14 [28]

∂B⟨JB(Y )X⟩ =
n∑

i=1

δ(Y, Pi)Ti⟨X⟩, (5.8)

where Ti are the generators of the representation of G in which Oi transforms. It follows imme-
diately that

⟨J̃A(P )X⟩ = −1

4

n∑
i=1

(Pi)A
P · Pi

Ti⟨X⟩. (5.9)

Finally, we can project (5.9) to a particular section of the lightcone parameterized by PA(x).
In this case we find

⟨J̃µ(x)O1(x1) · · · On(xn)⟩ = −1

4

n∑
i=1

∂µP (x) · P (xi)

P (x) · P (xi)
Ti⟨O1(x1) · · · On(xn)⟩. (5.10)

13Recall that on the lightcone JB(Y ) ∼ JB(Y ) + Y Bf(Y ).
14The embedding space delta function δ(Y, Pi) is defined by

∫
DdY δ(Y, Pi) = 1.
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Equivalently, as described in appendix A we can choose a set of orthogonal polarization tensors
εAa (x) (A.7) and project the components of the shadow current to an orthogonal basis obtaining

⟨J̃a(x)O1(x1) · · · On(xn)⟩ = −1

4

n∑
i=1

εa(x) · P (xi)

P (x) · P (xi)
Ti⟨O1(x1) · · · On(xn)⟩, (5.11)

which coincides with the leading soft gluon theorem in the embedding space R1,d+1 with the soft
gluon operator given by [23] 15

Sa(x) ≡ −4J̃a(x). (5.13)

Our main result will be to demonstrate that analytic continuation to Lorentzian signature fol-
lowed by the flat limit prescription of [19] will yield the leading conformally soft gluon. The
leading and subleading conformally soft gravitons in CCFTd−1 (or equivalently the soft graviton
in R1,d) can be recovered in a similar way from the CFTd stress tensor. To show this, we first
need to generalize the embedding space analysis herein to the shadow stress tensor.

5.2 Shadow stress tensor

For a spin two field the shadow transform takes the form

T̃AB(P ) =
1

16

∫
DdY

∂PA∂Y C log(−2P · Y )∂PB∂Y D log(−2P · Y )

(−2P · Y )d−∆−2
TCD(Y ). (5.14)

For the stress tensor, ∆ = d and so

T̃AB(P ) =
1

16

∫
DdY (−2P · Y )2∂PA∂Y C log(−2P · Y )∂PB∂Y D log(−2P · Y )TCD(Y ). (5.15)

While the steps involved in the derivation of the relation between the shadow transform of the
stress tensor and the soft graviton theorem are similar to those in [23], we find it instructive to
repeat the significantly simpler calculation here in the embedding space. Integrating by parts
and using (5.5) this can be written as

T̃AB(P ) = −1

8

∫
DdY

YA

P · Y
∂Y C

{
[ηBD(P · Y )− PDYB]T

CD(Y )
}
+ (A ↔ B) (5.16)

and further evaluating the derivative with respect to Y one finds

T̃AB(P ) =
1

4

∫
DdY

YA

P · Y
ηB[CPD]T

CD(Y )

− 1

8

∫
DdY

YA

P · Y
[ηBD(P · Y )− PDYB]∂Y CTCD(Y ) + (A ↔ B), (5.17)

15Note that we normalize the shadow transform (5.1) according to [54]. This normalization differs from the
one in [23] by a factor of (−1/2)J . To see this, note that when contracted onto lightcone tensors,

1

4

ηAB(P · Y )− PBYA

(P · Y )
JB(Y ) =

1

4

ηAB(P · Y )− PBYA − YBPA

(P · Y )
JB(Y )

= − 1

2(P − Y )2

ï
ηAB − 2

(P − Y )A(P − Y )B
(P − Y )2

ò
JB(Y ).

(5.12)
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where [., .] stands for antisymmetrization. We ensured that the manifest symmetry of (5.14)
under A ↔ B is preserved upon integration by parts.

The insertions of both terms on the RHS of (5.17) in correlation functions are determined
by the uplift of the stress tensor Ward identities to the embedding space [28]. In particular, the
first line involves T [CD] whose insertions are related to the spin component SCD of the Lorentz
generators in the embedding space

⟨T [CD](Y )X⟩ = − i

2

n∑
i=1

δ(Y, Pi)SCD
i ⟨X⟩. (5.18)

We then find that inside correlation functions, the first line in (5.17) simplifies to

1

4

∫
DdY

YA

P · Y
ηB[CPD]⟨TCD(Y )X⟩ = − i

8

n∑
i=1

(Pi)APD

P · Pi

ηBCSCD
i ⟨X⟩

=
i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Si)DB⟨X⟩. (5.19)

On the other hand, the second term in (5.17) is determined by the stress tensor Ward identity

⟨∂Y CTCD(Y )X⟩ = −ηDE

n∑
i=1

δ(Y, Pi)∂PE
i
⟨X⟩. (5.20)

Using this Ward identity, insertions of the second term in (5.17) can then be shown to be related
to the orbital part of the embedding space Lorentz generators, LDB, namely

LDB ≡ −i(PD∂PB − PB∂PD). (5.21)

Specifically, we find that inside correlation functions the second term in (5.17) reduces to

−1

8

∫
DdY

YA

P · Y
[ηBD(P · Y )− PDYB]⟨∂Y CTCD(Y )X⟩ = i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Li)DB⟨X⟩. (5.22)

Combining the two contributions from equation (5.17) we find the embedding space formula for
insertions of the stress tensor in CFTd

⟨T̃AB(P )X⟩ =
i

8

n∑
i=1

(Pi)AP
D

P · Pi

[(Li)DB + (Si)DB]⟨X⟩+ (A ↔ B)

≡ i

8

n∑
i=1

(Pi)AP
D

P · Pi

(Ji)DB⟨X⟩+ (A ↔ B). (5.23)

As before, we can now project to a particular section parameterized by PA(x)

⟨T̃µν(x)X⟩ =
∂PA

∂xµ

∂PB

∂xν
⟨T̃AB(P (x))X⟩

=
i

4

n∑
i=1

∂{µP
A(x)∂ν}P

B(x)PA(xi)P
D(x)

P (x) · P (xi)
(Ji)DB⟨X⟩. (5.24)
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Alternatively, using the orthogonal set of polarization vectors εAa (A.7) to construct the spin
two tensors εAB

ab = εA{aε
B
b} and projecting to the associated orthonormal basis, we find [23]

⟨T̃ab(x)O1(x1) · · · On(xn)⟩ =
i

4

n∑
i=1

εAB
ab (x)PA(xi)P

D(x)

P (x) · P (xi)
(Ji)DB⟨O1(x1) · · · On(xn)⟩, (5.25)

which upon defining16

Gab = −4T̃ab (5.26)

we recognize as the formula for a subleading soft graviton insertion in the embedding space
R1,d+1.

5.3 Large R expansions

We now apply these results to a CFTd on the Lorentzian cylinder and show that the conformally
soft theorems in the dimensionally reduced CCFTd−1 arise naturally from the flat space limit
prescription proposed in [19]. We work with the analytic continuation to Lorentzian signature
of the Euclidean results derived in the previous sections.

Consider the embedding

P (τ, z⃗) = (sin τ,Ω(z⃗), cos τ) (5.27)

of the d-dimensional Lorentzian cylinder in R2,d with metric ηAB = (−1, 1, · · · ,−1) introduced
in section 2. Here Ω2 = 1 are unit normals to Sd−1. We also consider the polarization tensors

εa(τ, z⃗) = (za sin τ, δ
b
a,−za, za cos τ), a = 1, . . . , d− 1, (5.28)

εd(τ, z⃗) = (cos τ, 0⃗,− sin τ), (5.29)

where δba denotes a vector with vanishing components except for an entry equal to 1 at b = a.
These are such that εa · P = εd · P = 0 provided that

za =
Ωa

1 + Ωd

, a = 1, · · · d− 1. (5.30)

Moreover, εa · εb = ηab where ηdd = −1. They also enjoy the property that setting τ = π
2
+ u

R

and expanding at large R

εa = (za, δ
b
a,−za, 0) +O(R−1),

εd = (0, 0⃗,−1) +O(R−1).
(5.31)

We therefore see that εa = (ϵa, 0) +O(R−1) where ϵa are polarization vectors in R1,d [23]. In the
case of CFT3 (d = 3), it will be convenient to trade the coordinates (z1, z2) for complex coordi-
nates (z, z̄) ≡ (z1 + iz2, z1 − iz2), and ε1(τ, z⃗) and ε2(τ, z⃗) for the following linear combinations

εz(τ, z, z̄) =
1√
2
(z̄ sin τ, 1,−i,−z̄, z̄ cos τ), εz̄(τ, z, z̄) =

1√
2
(z sin τ, 1, i,−z, z cos τ). (5.32)

16Working in units where κ =
√
32πG = 2.
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In the flat space limit, (5.32) become εa = (ϵa, 0)+O(R−1) with ϵz and ϵz̄ the polarization vectors
associated respectively with positive and negative helicities in R1,3, namely

ϵz(z, z̄) =
1√
2
(z̄, 1,−i,−z̄), ϵz̄(z, z̄) =

1√
2
(z, 1, i,−z). (5.33)

For simplicity we will assume that all of the operators are placed at τ = π
2
, which holograph-

ically would amount to considering all bulk particles to be outgoing. If one of the particles is
taken to be incoming, following [19] we insert the corresponding operator at (−π

2
, z⃗A) where z⃗A

denotes the antipodal map. In that case we observe that P (−π
2
, z⃗A) = −P (π

2
, z⃗). Taking this

into account therefore produces the required sign difference in the corresponding contribution to
the leading soft graviton factor. Finally, recall that at large R and τ = π

2
+ u

R

P (τ, z⃗) = (q(z⃗), 0) +O(R−1), (5.34)

where q(z⃗) = (1,Ω(z⃗)) is a null vector in R1,d.

5.3.1 Leading conformally soft gluon theorem

Equipped with these results, consider a g-valued conserved current J in a CFTd with global
symmetry group G. Insertions of the shadow transform of this current into correlation functions
on the Lorentzian cylinder are obtained from the embedding space formula (5.11) by projecting
with the polarization tensors {εa, εd} in (5.28). Expanding at large R and using (5.31) together
with (5.34) we find

⟨Sa(x)O1(x1) · · · On(xn)⟩ =
n∑

i=1

ϵa(x) · q(xi)

q(x) · q(xi)
Ti⟨O1(x1) · · · On(xn)⟩+O(R−1), (5.35)

which reproduces the leading conformally soft gluon theorem in CCFTd−1. Note that in the
limit u → 0 the large R corrections drop out. In the particular case of CFT3 using the set of
polarizations {εz, εz̄, ε3} we find

ϵz(x) · q(xi)

q(x) · q(xi)
=

1√
2

1 + zz̄

z − zi
,

ϵz̄(x) · q(xi)

q(x) · q(xi)
=

1√
2

1 + zz̄

z̄ − z̄i
, (5.36)

and therefore we recover

⟨Sz(x)O1(x1) · · · On(xn)⟩ =
1 + zz̄√

2

n∑
i=1

Ti

z − zi
⟨O1(x1) · · · On(xn)⟩+O(R−1), (5.37)

⟨Sz̄(x)O1(x1) · · · On(xn)⟩ =
1 + zz̄√

2

n∑
i=1

Ti

z̄ − z̄i
⟨O1(x1) · · · On(xn)⟩+O(R−1), (5.38)

which are the holomorphic and antiholomorphic g-Kac-Moody Ward identities [55].
The time component of the CFT3 shadow current leads to an identity that resembles a soft

scalar theorem [56]

⟨J̃u(x)O1(x1) · · · On(xn)⟩ ∼
u

R

n∑
i=1

Ti

q(x) · q(xi)
⟨O1(x1) · · · On(xn)⟩+O(R−3). (5.39)
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Note that the leading term in (5.39) is of a different order in a large R expansion compared
to (5.37), (5.38). Such soft theorems were argued in [57, 58] to arise from conservation laws
associated with higher form symmetries in 4D AFS. From a boundary perspective, we find that
they are a simple consequence of dimensional reduction. It would be interesting yet beyond the
scope of this paper to understand the relation between these different perspectives, as well as
the role of these additional symmetries in CCFTd−1.

5.3.2 Leading and subleading conformally soft graviton theorems

Next we consider the shadow stress tensor T̃AB(P ) whose insertions are given by (5.23) or, upon
projection to the Lorentzian cylinder, by (5.25). As we show in details in Appendix E restricting
to components on a constant time slice a, b ∈ {1, . . . , d− 1}, we find in the flat limit that

∂u⟨G{ab}O1 · · · On⟩ =
n∑

i=1

ϵAB
ab (x)qA(xi)qB(xi)

q(x) · q(xi)
∂ui

⟨O1 · · · On⟩+O(R−1). (5.40)

Here ϵab is the transverse, traceless polarization tensor in R1,d. Upon switching to a basis that
diagonalizes the dilatation operator on Sd−1 via the transform (4.49), ∂ui

becomes the weight-
shifting operator e∂∆i . Note that in the limit u → 0, the large R corrections to (5.40) drop
out. We hence see that insertions of lim

u→0
∂uG{ab} reproduce the leading conformally soft graviton

theorem in R1,d with N
(0)
ab ≡ lim

u→0
∂uG{ab} the leading soft graviton operator.

Moreover, we show in Appendix E, that

(1− u∂u)⟨G{ab}O1 · · · On⟩ = i
n∑

i=1

ϵAB
ab (x)qA(xi)q

C(x)

q(x) · q(xi)
(Ji)BC⟨O1 · · · On⟩+O(R−1), (5.41)

where (Ji)BC have indices restricted to B,C < d + 1 due to ϵd+1
a = qd+1 = 0. In this case,

(Ji)BC coincide with the so(d, 2) generators whose action on conformal primary operators re-
stricted to the strip (4.7) was worked out in section 4.2. Their action hence coincides with that
of the Lorentz generators in (d + 1)-dimensional AFS, or equivalently, conformal so(d, 1) trans-
formations. Therefore insertions of lim

u→0
(1− u∂u)G{ab} reproduce the subleading conformally soft

graviton theorem in R1,d and the subleading conformally soft graviton operator is related to the
CFTd shadow stress tensor via N

(1)
ab ≡ lim

u→0
(1− u∂u)G{ab}. The constructions of the supertransla-

tion current and the stress tensor from N
(0)
ab and N

(1)
ab then follow directly from respectively [42,43]

and [44,59] .
We now specialize to CFT3. Using the large R expansions 5.31 of the polarization tensors

{εz, εz̄, ε3} we construct the transverse traceless spin 2 polarization tensors ϵab = ϵ{aϵb}. The
only non-vanishing components are ϵAB

zz = ϵAz ϵ
B
z and ϵAB

z̄z̄ = ϵAz̄ ϵ
B
z̄ . Therefore the expressions for

the leading soft factors reduce to those derived in [43],

ϵAB
zz (x)qA(xi)qB(xi)

q(x) · q(xi)
= − z̄ − z̄i

z − zi

1 + zz̄

1 + ziz̄i
, (5.42)

ϵAB
z̄z̄ (x)qA(xi)qB(xi)

q(x) · q(xi)
= −z − zi

z̄ − z̄i

1 + zz̄

1 + ziz̄i
, (5.43)
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and consequently

⟨N(0)
zz O1 · · · On⟩ = −

n∑
i=1

z̄ − z̄i
z − zi

1 + zz̄

1 + ziz̄i
∂ui

⟨O1 · · · On⟩, (5.44)

⟨N(0)
z̄z̄ O1 · · · On⟩ = −

n∑
i=1

z − zi
z̄ − z̄i

1 + zz̄

1 + ziz̄i
∂ui

⟨O1 · · · On⟩. (5.45)

Insertions of N
(1)
zz and N

(1)
z̄z̄ can be treated similarly. Relegating the complete calculation to

Appendix F, we find that

⟨N(1)
zz O1 · · · On⟩ =

n∑
i=1

ï
(z̄ − z̄i)(1 + z̄zi)

(z − zi)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

z − zi
(∂z̄i − Ωz̄iJ3)

ò
⟨O1 · · · On⟩,

⟨N(1)
z̄z̄ O1 · · · On⟩ =

n∑
i=1

ï
(z − zi)(1 + zz̄i)

(z̄ − z̄i)(1 + ziz̄i)
2hi −

(z − zi)
2

z̄ − z̄i
(∂zi − ΩziJ3)

ò
⟨O1 · · · On⟩,

(5.46)

which agrees with the formula for the subleading soft factor [44,59] with external weights (hi, hi)

and helicities J3 as defined in (4.48). Taking a two-dimensional shadow transform of N
(1)
ab as

in [59] yields the CCFT2 stress tensor.

6 Discussion

In this paper we studied the symmetries of CFT3 on the Lorentzian cylinder over short time
intervals. We showed that strips of infinitesimal width ∝ R−1 around any time-slice admit an
infinite-dimensional set of locally-defined solutions in the R → ∞ limit. These can be reorganized
into vector fields obeying the ebms4 algebra. The extended BMS4 symmetry emerges via a Inonu-
Wigner contraction which for the global subalgebra reduces to the contraction of the so(3, 2)
algebra to Poincaré. We studied the transformation properties of CFT3 primary operators in
the strip under the superrotation subalgebra of ebms4 and found that they transform as two-
dimensional conformal primaries with operator-valued effective dimensions ∆̂ = ∆ + u∂u.

The two-dimensional dilatation can be diagonalized by a time Mellin-like transform. Con-
sequently each CFT3 primary operator results in a continuum of CCFT2 primary operators of
the same spin and with dimensions ∆CCFT = ∆ + ∆0 − 1 where ∆ is the CFT3 dimension and
∆0 is the dual Mellin dimension. We showed that, inside the strip, the transverse components
T̃ab of the ∆ = 0 shadow stress tensor give rise to operators N

(0)
ab and N

(1)
ab whose insertions into

correlation functions reproduce the leading and subleading conformally soft graviton theorems.
Likewise, the transverse components J̃a of the ∆ = 1 shadow current provide an operator Sa

whose insertions reproduce the leading soft gluon theorem. As such, conformally soft theorems
and the corresponding infinite-dimensional CCFTd−1 symmetries effectively emerge from the
dimensional reduction of the CFTd.

There are several aspects of our dimensional reduction or flat space limit that we believe
deserve further investigation. The conformal Killing vectors (4.19) giving rise to the ebms4
algebra violate the conformal Killing equation at finite R. This appears to be in stark contrast
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to the asymptotic symmetries of 4D AFS that are exact and can be extended into the bulk. It
would be interesting to understand whether the symmetries can be preserved in the strip beyond
the R → ∞ limit and relate this to the emergence of a bulk radial direction from the CFT.
Interestingly, both large r corrections to the asymptotic charges in 4D AFS and corrections away
from the large AdS radius limit have been linked to loop corrections [26, 60]. It would also be
interesting to connect our enhanced conformal Killing symmetries (4.19) in the strip to the bulk
Λ-BMS algebra [61] which similarly arises, subject to certain boundary conditions, in the limit
of infinite AdS radius.

More generally, our analysis provides motivation for looking for boundary conditions in AdS
that turn on shadow operators on the boundary. These operators are dual to modes in AdS that
are in general non-normalizable near the boundary, but normalizable deep inside the bulk. This
seems consistent with the flat space limit prescription which amounts to zooming in close to the
center of AdS [24, 31], as well as proposals suggesting that flat space physics may be obtained
via a T T̄ deformation [62, 63]. It would also be interesting to understand if the whole tower of
w1+∞ currents in celestial CFT [64] can similarily arise from a limit of CFT3.

The approach we have adopted in this paper proposes a connection between CCFT and
standard CFT. In principle these ideas may allow for an understanding of how general features
of CFT, such as the existence of an associative OPE, are reflected in the dimensionally reduced
theory, potentially allowing for a better understanding of the corresponding features of CCFT.
In particular, our results suggest that the stress tensor of the reduced theory is closely related to
the stress tensor of the parent CFT, so that it may be possible to extract a CCFT central charge
from this procedure. This may shed light on previous proposals based on a hyperbolic slicing of
Minkowski spacetime [53,65,66].

Finally, the shadow transform played an important role in this analysis, since it allowed for
the construction of the soft operators from the stress tensor and current. In Lorentzian signature,
the shadow transform constructed by Wick rotating the Euclidean shadow is just one member out
of a group of transformations preserving the Casimirs of the conformal group [67]. It therefore
seems plausible that the other transforms will also play meaningful roles in the dimensionally
reduced CCFT. We hope to address some of these issues in future work.
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A Embedding space primer

A Euclidean CFTd is defined on the projective null cone in the embedding space R1,d+1 with
metric ηAB.

17 The projective null cone is parametrized by a vector P obeying

P 2 = 0, P ∼ λP, λ ̸= 0. (A.1)

Choosing a representative from each equivalence class yields a section of the lightcone Σ ⊂ R1,d+1

corresponding to a conformally flat manifold on which the CFTd is realized. The non-linear action
of the conformal group on Σ is realized through the combination of Lorentz transformations
SO(d + 1, 1) and rescalings of the null cone that preserves the chosen section. Let P (x) be an
embedding of Σ into R1,d+1. Then the metric it inherits from the ambient space is

ds2Σ = ηAB
∂PA

∂xµ

∂PB

∂xν
dxµdxν . (A.2)

A different section Σ′ embedded by P ′(x′) is related to Σ by a rescaling

P ′(x′) = ω(x)P (x). (A.3)

The metrics on the two sections Σ,Σ′ can then be shown to be related by a Weyl rescaling

ds2Σ′ = ω2(x)ds2Σ. (A.4)

We conclude that conformal maps between different conformally flat manifolds are represented
in the embedding space by Weyl rescalings and Lorentz transformations of the embeddings of
the corresponding lightcone sections (see [49] for a review).

A primary field of dimension ∆ and spin J in a CFTd on a given section can be lifted to a field
on the lightcone as follows. If ϕµ1···µJ

(x) is a spin J symmetric traceless tensor, its lift to a tensor
ΦA1···AJ

(P ) defined on the embedding space lightcone has to obey the following properties [28]

1. ΦA1···AJ
(P ) is symmetric, traceless and transverse PAiΦA1···AJ

(P ) = 0,

2. ΦA1···AJ
(P ) is defined up to terms PAi

ΛA1···Âi···AJ
(P ), where Âi denotes a missing index,

3. ΦA1···AJ
(P ) is homogenous of degree −∆: ΦA1···AJ

(ωP ) = ω−∆ΦA1···AJ
(P ).

If Σ is parameterized by P (x), ϕµ1···µJ
(x) is then recovered by the projection [28]

ϕµ1···µJ
(x) =

∂PA1

∂xµ1
· · · ∂P

AJ

∂xµJ
ΦA1···AJ

(P (x)). (A.5)

Projecting using the Jacobian of the embedding as done above reproduces the coordinate com-
ponents of the tensor field. Alternatively, we can introduce a set of polarization vectors εAa (x) in
the embedding space obeying

εa · P = 0, εa · εb = δab. (A.6)

17Lorentzian CFTd are instead lifted to R2,d.
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The pullback of εa to the section (Σ, g) can then be shown to give rise to a vielbein in (Σ, g),
namely

eaµ =
∂PA

∂xµ
εaA, εAa = eµa

∂PA

∂xµ
− (εa · q̄)qA, (A.7)

where [49]

gµν
∂PA

∂xµ

∂PB

∂xν
= ηAB + qAq̄B + qB q̄A, (A.8)

with gµν = (P+)2ηµν , q
A = PA/P+ and q̄A = −2δA−.

As a result, the symmetric, traceless combination εA1···AJ
a1···aJ = εA1

{a1 · · · ε
Aj

aJ} can be used as projec-
tors which allow us to recover the components of the tensor field with respect to the orthonormal
basis

ϕa1···aJ (x) = εA1···AJ
a1···aJ (x)ΦA1···AJ

(P (x)). (A.9)

Primary fields in more general representations of SO(d) can be handled in the same way. They
are lifted to fields in representations of SO(1, d + 1) defined on the lightcone with homogeneity
of degree −∆ which are transverse in the appropriate sense and which can be projected back
to the original representation by introducing appropriate projection matrices. These fields are
again only defined modulo terms that lie in the kernel of the projection matrices. The particular
case of Dirac spinors in several dimensions is discussed for example in [49].

It will also be useful to recall the definition of conformal integrals on the space of homogeneous
functions f(X) of degree −d on the lightcone [54]∫

DdXf(X) =
1

Vol(GL(1,R)+)

∫
dd+2Xδ(X2)f(X). (A.10)

In practice such integrals are evaluated by gauge-fixing the rescaling freedom and introducing an
appropriate Faddeev-Popov determinant.

B Properties of the spin covariant derivative

In this section we show that the spin-covariant derivative (4.40) reduces to the Levi-Civita
connection when acting on fields transforming in the vector representation of SO(3), namely if

(Sab)
c
d = −i (δcaδbd − δadδ

c
b) (B.1)

then
∇µV

ν = ∂µV
ν + Γν

µσV
σ. (B.2)

To see this we evaluate ∇µV
a where V a are the vielbein components of the vector field, and then

transform to the coordinate components ∇µV
ν . We start with

∇µV
a = ∂µV

a + ω a
µ bV

b. (B.3)
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The coordinate components are defined by

∇µV
ν ≡ eνa∇µV

a. (B.4)

Evaluating ∇µV
ν ,

∇µV
ν = eνa∂µV

a + eνaω
a

µ bV
b. (B.5)

We now transform V a = eaσV
σ on the RHS

∇µV
ν = eνa∂µ(e

a
σV

σ) + eνae
b
σω

a
µ bV

σ (B.6)

= (eνa∂µe
a
σ)V

σ + eνae
a
σ∂µV

σ + eνae
b
σω

a
µ bV

σ (B.7)

and recall that eνae
a
σ = δνσ and eνae

b
σω

a
µ b = ω ν

µ σ, where ω ν
µ σ is given by (C.6). In this case

∇µV
ν = (eνa∂µe

a
σ)V

σ + ∂µV
ν + (Γν

µσ − eνa∂µe
a
σ)V

σ. (B.8)

The terms with eνa∂µe
a
σ cancel and we are left with

∇µV
ν = ∂µV

ν + Γν
µσV

σ, (B.9)

which agrees with the Levi-Civita covariant derivative of the vector field with respect to the
coordinate components.

C Conformal Killing vector field action in the strip

The components of the rotation generators with respect to the vielbein

e1 =

…
γzz̄
2
(dz + dz̄), e2 = −i

…
γzz̄
2
(dz − dz̄), e3 =

du

R
(C.1)

are Sµν = eaµe
b
νSab. Explicitly, we find

Suz =
i

R

…
γzz̄
2
J−, (C.2)

Suz̄ = − i

R

…
γzz̄
2
J+, (C.3)

Szz̄ = iγzz̄J3, (C.4)

where
J− = S23 − iS31, J+ = S23 + iS31, J3 = S12. (C.5)

The coordinate components of the torsion-free spin connection ω σ
µ ν are given by

ω σ
µ ν = Γσ

µν − eσa∂µe
a
ν (C.6)
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and therefore, we see that its only non-vanishing components are

ω z
z z = −ω z̄

z z̄ =
1

2
Γz
zz, (C.7)

ω z̄
z̄ z̄ = −ω z

z̄ z =
1

2
Γz̄
z̄z̄, (C.8)

where

Γz
zz = − 2z̄

1 + zz̄
, Γz̄

z̄z̄ = − 2z

1 + zz̄
. (C.9)

As a result, defining

Ωz ≡ 1

2
Γz
zz, Ωz̄ ≡ −1

2
Γz̄
z̄z̄ (C.10)

we find that the spin covariant derivative of O∆ is given by

∇uO∆ = ∂uO∆, (C.11)

∇zO∆ = ∂zO∆ − ΩzJ3O∆, (C.12)

∇z̄O∆ = ∂z̄O∆ − Ωz̄J3O∆. (C.13)

Now fix τ0 =
π
2
and take ϵ = LY given by

LY ≡ ϵ+Y − ϵ−Y
2

(C.14)

=
i

2
(D · Y )u∂u + iY A∂A +O(R−1). (C.15)

We will show that δLY
O∆ reproduces the action of Y on a 2D primary operator in the large R

limit. To this end observe from (C.11)-(C.13) and (C.2)-(C.4) that for this vector field we have

∇ · LY = i
3

2
D · Y +O(R−1), (C.16)

Lµ
Y∇µO∆ = i

ï
1

2
D · Y u∂u + Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

ò
O∆,(C.17)

i

2
∇µ(LY )νS

µν =
i

2
(DzY

z −Dz̄Y
z̄)J3 +O(R−1). (C.18)

From this we immediately see that the expansion of δLY
O∆(x) is

δLY
O∆(x) = −i

[
DzY

zh+Dz̄Y
z̄h̄+ Y z(∂z − ΩzJ3) + Y z̄(∂z̄ − Ωz̄J3) +O(R−1)

]
O∆(x). (C.19)

Here we have defined the operator-valued weights

h ≡ ∆̂ + J3
2

, h̄ ≡ ∆̂− J3
2

, ∆̂ ≡ ∆+ u∂u. (C.20)

This agrees precisely with the transformation of a 2D primary operator, as given for example
in [59].
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D Shadows and dimensional reduction

In this appendix we discuss the connection between the d-dimensional shadow transform on
the cylinder and the Mellin-like transform on an infinitesimal time strip that implements the
dimensional reduction to Sd−1. All embedding space fields are assumed to obey the properties
described in appendix A. We begin by projecting the embedding space formula for the shadow
transform to a particular section. Starting from (5.1), we find

Φ̃µ1···µJ
(x) =

∏
i

∂PAi

∂xµi
Φ̃A1···AJ

(P (x))

=
∏
i

∂PAi

∂xµi

∫
DdP (y)

∏
i(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J

∏
i

ηBiCiΦC1···CJ
(P (y)),

(D.1)

where the conformal integral is gauge-fixed to a particular section Y = P (y). We now use (A.8)
to eliminate ηBiCi , noting that the q(Bi q̄Ci) contributions contract to zero, namely

Φ̃µ1···µJ
(x) =

∏
i

∂PAi

∂xµi

∫
DdP (y)

∏
i(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J

×
∏
i

gσiρi(y)
∂PBi

∂yσi

∂PCi

∂yρi
ΦC1···CJ

(P (y)) (D.2)

=

∫
DdP (y)

∏
i
∂PAi

∂xµi

∂PBi

∂yνi
(ηAiBi

P (x) · P (y)− PAi
(y)PBi

(x))

(−2P (x) · P (y))d−∆+J
Φν1···νJ (y). (D.3)

We finally observe that owing to (5.5) we can write

Φ̃µ1···µJ
(x) =

∫
ddy
»
g(y)

∏
i ∂xµi∂yνi log(−2P (x) · P (y))

(−2P (x) · P (y))d−∆
Φν1···νJ (y), (D.4)

which is the shadow transform restricted to a section of lightcone [54].
Now we consider the particular case of the cylinder section parameterized by (5.27) and

expand at large R. In this case taking x = (τ,Ω) and y = (τ ′,Ω′) we have

P (x) · P (y) = − cos(τ − τ ′) + Ω · Ω′. (D.5)

Setting τ = ±π
2
+ u

R
, expanding at large R and taking the time Mellin-like transform (4.49) we

find

Γ(∆0)

∫ ∞

−∞
duu−∆0Φ̃±

µ1···µJ
(u,Ω) = Γ(∆0)

∫ ∞

−∞
duu−∆0

×
∫

dτ ′dd−1z⃗
′
∏

i ∂xµi∂yνi log
(
±2 sin τ ′ ∓ 2 u

R
cos τ ′ − 2Ω · Ω′)

(±2 sin τ ′ ∓ 2 u
R
cos τ ′ − 2Ω · Ω′)d−∆

Φν1···νJ (y)

= −i
Γ(∆0)

Γ(d−∆)

∫ ∞

−∞
duu−∆0

∫
dτ ′dd−1z⃗

′
∫ ∞

0

dω(−iω)d−∆−1eiω(±2 sin τ ′∓2 u
R

cos τ ′−2Ω·Ω′)

× Fµ1···µi
(x, y),

(D.6)
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where
Fµ1···µi

(x, y) =
∏
i

∂xµi∂yνi log(±2 sin τ ′ − 2Ω · Ω′)Φν1···νJ (y) +O(R−1) (D.7)

and µi, νi are restricted to Ω,Ω′. We also defined

Φ±(u,Ω) ≡ Φ(±π

2
+

u

R
,Ω). (D.8)

In general,
∫
duu−∆0Φ̃ is an operator in CFTd with dimension d − ∆ + ∆0 − 1 (see section 4).

Setting ∆0 = 0 should then yield an operator of dimension d − ∆ − 1 in CCFTd−1. Note that
for ∆0 = 0, (D.6) is singular which suggests one should take a residue [5]. Indeed, the residue of
(D.6) at ∆0 = 0 reduces to∫ ∞

−∞
duΦ̃±

µ1···µJ
(u,Ω) = − 1

Γ(d−∆)

∫
dτ ′dd−1z⃗

′
∫ ∞

0

dω(−iω)d−1−∆−1R

2

∑
τ0=±π

2

δ(τ ′ − τ0)

× eiω(±2 sin τ ′−2Ω·Ω′)Fµ1···µi
(x, y)

= − i

2

R

d− 1−∆

∫
dd−1z⃗

′ ∑
α∈{0,1}

∏
i ∂xµi∂yνi log(±eiπα2− 2Ω · Ω′)

(±eiπα2− 2Ω · Ω′)d−1−∆

× Φν1···νJ (eiπα
π

2
,Ω′) +O(R0),

(D.9)

which we recognize as proportional to a linear combination of (d− 1)-dimensional shadow trans-
forms in the strips around ±π

2
. Note the appearance of a linear combination of incoming and

outgoing insertions. It may be interesting to understand this better, perhaps in relation to the
proposal of [68].

On the other hand, taking the limit at ∆0 = 1 of (D.6) and using the identity [5]

lim
ϵ→0

ϵ|x|ϵ−1 = 2δ(x), (D.10)

we find18

Res
∆0=1

Γ(∆0)

∫ ∞

−∞
duu−∆0Φ̃±

µ1···µJ
(u,Ω)= lim

ϵ→0
ϵ

∫ ∞

0

duuϵ−1
Ä
Φ̃±

µ1···µJ
(u,Ω)− eiπϵΦ̃±

µ1···µJ
(−u,Ω)

ä
∝ DiscΦ̃±

µ1···µJ
(0,Ω).

(D.11)

This is a linear combination of primary operators of dimension d −∆ with respect to both the
CFTd as the CCFTd−1. For d = 3, taking a 2D shadow then yields a combination of operators
of dimension ∆ − 1, which in the special case of the CFT3 stress tensor should reduce to the
stress tensor in the CCFT2. This linear combination is reminiscent of the construction of soft
charges in 4D AFS which involves a linear combination of operators at I+ and I−, although the
precise relation, if any, remains to be understood.

18The normalization can be obtained by a careful consideration of the iϵ prescription.
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More generally, given operators O±
∆(u,Ω) in strips around ±π

2
,

Res
∆0=1

∫ ∞

−∞
duu−∆0O±

∆(u,Ω) ∝ DiscO±
∆(0,Ω). (D.12)

Since ∆CCFT = ∆+∆0−1 we get an operator of ∆CCFT = ∆. We conclude that placing operators
at u = 0 inside a small time interval results in CCFT operators that inherit the dimensions with
respect to the parent CFT, as found in [19]. The appearance of the discontinuity remains to be
understood.

E Derivation of CCFTd−1 conformally soft theorems from

CFTd

In this appendix, we give the derivation of the leading and subleading conformally soft graviton
theorems from the higher dimensional shadow stress tensor correlator. We start by defining

S
(d)
ab =

n∑
i=1

εAa ε
B
b (x)PA(xi)P

C(x)

P (x) · P (xi)
(Ji)CB, (E.1)

so that the shadow stress tensor correlator in the CFTd becomes

⟨GabO1 · · · On⟩ = −iS
(d)
{ab}⟨O1 · · · On⟩. (E.2)

To compute the flat space limit of S
(d)
ab we expand at large R keeping the first subleading contri-

butions. To keep track of them we introduce the following notation:

P = q + δq, εa = ϵa + δϵa, a ∈ {1, . . . , d− 1}, (E.3)

where q = (q0, qi, 0) denotes the leading term in P and ϵa = (ϵ0a, ϵ
i
a, 0) the leading term in εa.

These correspond to the flat space counterparts of P and εa. δq and δϵa are the deviations from
the flat space limit and take the form

δq = (sin τ − 1, 0⃗, cos τ), δϵa = zaδq, a ∈ {1, · · · , d− 1}. (E.4)

We restrict our attention to the components of the shadow stress tensor tangent to the Sd−1 on
which the CCFT is defined, namely with a ∈ {1, · · · , d− 1}.

We need to evaluate

εa(x) · P (xi)

P (x) · P (xi)
, PA(x)εBb (x)(Ji)AB. (E.5)

The first quantity is immediate to expand and yields

εa(x) · P (xi)

P (x) · P (xi)
=

ϵa(x) · q(xi)

q(x) · q(xi)
+O(R−1). (E.6)
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For the second one we have

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB + zbq
A(x)δqB(x)(Ji)AB + δqA(x)ϵBb (x)(Ji)AB.

(E.7)

We now study the second and third terms observing that for τ = π
2
+ u

R
and large R, (Ji)A,d+1 =

iRqA(xi)∂ui
+O(1)

qA(x)δqB(x)(Ji)AB = −(sin τ − 1)qj(x)(Ji)0j + cos τq(x) · q(xi)
(
iR∂ui

+O(R0)
)
, (E.8)

δqA(x)ϵBb (x)(Ji)AB = (sin τ − 1)ϵjb(x)(Ji)0j − cos τϵb(x) · q(xi)
(
iR∂ui

+O(R0)
)
. (E.9)

As a result, we have

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB − zb(sin τ − 1)qj(x)(Ji)0j

+ zb cos τq(x) · q(xi)
(
iR∂ui

+O(R0)
)
+ (sin τ − 1)ϵjb(x)(Ji)0j

− cos τϵb(x) · q(xi)
(
iR∂ui

+O(R0)
)
. (E.10)

At this point, we can further expand at large R. In particular, we notice that the first term is
O(1) because A,B < d+ 1. For the others we write τ = π

2
+ u

R
and expand at large R to find

PA(x)εBb (x)(Ji)AB = qA(x)ϵBb (x)(Ji)AB − iuzbq(x) · q(xi)∂ui
+ iuϵb(x) · q(xi)∂ui

+O(R−1). (E.11)

Combining with (E.6) we find

S
(d)
ab =

n∑
i=1

εa(x) · P (xi)

P (x) · P (xi)
PA(x)εBb (x)(Ji)AB

=
n∑

i=1

ï
ϵa(x) · q(xi)

q(x) · q(xi)

Å
qA(x)ϵBb (x)(Ji)AB − iuzbq(x) · q(xi)∂ui

+ iuϵb(x) · q(xi)∂ui

ã
+O(R−1)

ò
.

(E.12)

Taking one derivative in u we get

∂uS
(d)
ab = i

n∑
i=1

ï
ϵa(x) · q(xi)

q(x) · q(xi)

Å
− zbq(x) · q(xi)∂ui

+ ϵb(x) · q(xi)∂ui

ã
+O(R−1)

ò
= i

n∑
i=1

ïÅ
− zbϵa(x) · q(xi)∂ui

+
ϵa(x) · q(xi)ϵb(x) · q(xi)

q(x) · q(xi)
∂ui

ã
+O(R−1)

ò
. (E.13)

Now observe that the first term is proportional to the operator
∑

i q
A(xi)∂ui

which annihilates
conformal correlators by the global conformal symmetry of the CFTd to leading order at large
R (or equivalently by momentum conservation in the flat limit). Specifically

n∑
i=1

Jj,d+1(xi)⟨X⟩ =
n∑

i=1

(
−iPj(xi)∂P d+1(xi) + iPd+1(xi)∂P j(xi) + Sj,d+1

)
⟨X⟩ = 0, j = 0, · · · d,

(E.14)
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and therefore

n∑
i=1

iqj(xi)∂ui
⟨X⟩ = 1

R

n∑
i=1

(
−iPd+1(xi)∂P j(xi) − Sj,d+1

)
⟨X⟩ = O(R−1), j = 0, · · · d. (E.15)

As such, only the second term remains

∂uS
(d)
ab = i

n∑
i=1

ï
ϵa(x) · q(xi)ϵb(x) · q(xi)

q(x) · q(xi)
∂ui

+O(R−1)

ò
, (E.16)

which coincides with the leading soft factor. Moreover, it is also clear that

(1− u∂u)S
(d)
ab =

n∑
i=1

ϵa(x) · q(xi)

q(x) · q(xi)
qA(x)ϵBb (x)(Ji)AB +O(R−1), (E.17)

where since a, b ∈ {1, . . . , d − 1} it follows that A,B ∈ {0, . . . , d} and in this range (Ji)AB act
as the R1,d Lorentz generators in the flat space limit. Finally we take the (d − 1)-dimensional

symmetric traceless component of S
(d)
ab with a, b ∈ {1, . . . , d−1} by applying the projector (3.10).

Then

ϵab ≡ ϵA{aϵ
B
b} =

1

2
[ϵAa ϵ

B
b + ϵBa ϵ

A
b ]−

ηab
d− 1

[ηcdϵAc ϵ
B
d ]. (E.18)

However, since ϵd+1
a = 0 it follows that ηcdϵAc ϵ

B
d = δcdϵAc ϵ

B
d and that ϵA{aϵ

B
b} = 0 when either A or

B are d+ 1. As a result, for a, b ∈ {1, . . . , d− 1},

ϵA{aϵ
B
b} =

1

2
[ϵAa ϵ

B
b + ϵBa ϵ

A
b ]−

δab
d− 1

[δcdϵAc ϵ
B
d ], A,B < d+ 1, (E.19)

which coincide with the symmetric traceless polarizations in R1,d. As a result, the operators
N

(0)
ab = lim

u→0
∂uG{ab} and N

(1)
ab = lim

u→0
(1 − u∂u)G{ab} play the role of leading and subleading con-

formally soft gravitons in R1,d. It is immediate to see that they have the expected dimensions
∆ = 1 and ∆ = 0 respectively.

We conclude this appendix with a comment on the timelike components of the shadow stress
tensor. For d = 3 one can construct from the u,A components of the shadow stress tensor
operators which coincide with the supertranslation currents in the dimensionally reduced theory.
This is perhaps to be expected, as conservation of the CFT3 stress tensor leads to relations among
its transverse and time components. It may be interesting to further explore these constraints
in relation to the asymptotic Einstein equations in 4D AFS.

F Subleading soft factor in CCFT2

In this appendix we calculate the subleading soft factor

(1− u∂u)S
(d)
ab =

n∑
i=1

ϵa(x) · q(xi)

q(x) · q(xi)
qA(x)ϵBb (x)(Ji)AB +O(R−1), (F.1)
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in the specific case of reduction from CFT3 to CCFT2. We need to evaluate qA(x)ϵBb (x)(Ji)AB

using the complex polarization vectors {ϵz, ϵz̄}. We recall that (Ji)AB are the so(3, 2) generators
acting on the i-th primary operator. The actions of such conformal Killing vectors and their
large R expansion have been studied in section 4.2. In particular, we note that since q4 = ϵ4b = 0,
only (Ji)AB with A,B < 4 appear. For this range of indices, we have19

JABOi = −δLYAB
Oi, A,B = 0, · · · 3, (F.2)

where LY has been defined in (4.33) and YAB are the S2 conformal Killing vectors (4.21) and
(4.22). We have computed the large R expansion of δLYAB

Oi in (4.45), which yields

(Ji)ABOi = i
(
DziY

zi
ABhi +Dz̄iY

z̄i
ABh̄i + Y zi

AB(∂zi − ΩziJ3) + Y z̄i
AB(∂z̄i − Ωz̄iJ3) +O(R−1)

)
Oi.
(F.3)

Now using the explicit parametrization of q and {ϵz, ϵz̄} it is straightforward to compute the
following contractions

qA(x)ϵBz̄ (x)YAB(zi, z̄i) = −(z − zi)
2

1 + zz̄
∂zi , (F.4)

qA(x)ϵBz (x)YAB(zi, z̄i) = −(z̄ − z̄i)
2

1 + zz̄
∂z̄i , (F.5)

from which we immediately obtain

−iqA(x)ϵBz̄ (x)(Ji)ABOi =

ï
(z − zi)(1 + zz̄i)

(1 + zz̄)(1 + ziz̄i)
2hi −

(z − zi)
2

1 + zz̄
(∂zi−ΩziJ3) +O(R−1)

ò
Oi,

−iqA(x)ϵBz (x)(Ji)ABOi =

ï
(z̄ − z̄i)(1 + z̄zi)

(1 + zz̄)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

1 + zz̄
(∂z̄i−Ωz̄iJ3) +O(R−1)

ò
Oi.

(F.6)

In turn, this means that we have

(1− u∂u)S
(3)
z̄z̄ = i

n∑
i=1

ï
(z − zi)(1 + zz̄i)

(z̄ − z̄i)(1 + ziz̄i)
2hi −

(z − zi)
2

z̄ − z̄i
(∂zi−ΩziJ3)

ò
+O(R−1), (F.7)

(1− u∂u)S
(3)
zz = i

n∑
i=1

ï
(z̄ − z̄i)(1 + z̄zi)

(z − zi)(1 + ziz̄i)
2h̄i −

(z̄ − z̄i)
2

z − zi
(∂z̄i−Ωz̄iJ3)

ò
+O(R−1), (F.8)

which take the form of the standard CCFT2 soft factors [44,59] with the operator-valued weights
(h, h̄) in place of the standard weights.

19It is possible to check by explicit computation that JAB reproduces the conformal Killing vector action by
studying its action on lightcone fields in coordinates adapted to the cylinder section. Indeed, parameterizing
the lightcone as X = (r sin τ, rΩ, r cos τ), so that the cylinder section is obtained by gauge-fixing r = 1, and
evaluating JABO∆(X), we find due to the homogeneity of O∆(X) under rescalings that −r∂rO∆ = ∆O∆. Then
(F.2) follows by straightforward computation.
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