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Abstract

We propose that 3d black holes are an ensemble of tensionless null string states. These microstates
typically have non-zero winding. We evaluate their partition function in the limit of large excitation
numbers and show that their combinatorics reproduces the Bekenstein–Hawking entropy and its
semiclassical logarithmic corrections.
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1 Introduction and motivation

Black holes and string theory have a long and intimate relationship, see [1–23] and Refs. therein.
An emblematic result by Strominger and Vafa is the microscopic origin of the Bekenstein–Hawking
(BH) entropy

S BH =
Area
4G

(1)

of certain extremal black holes [11]. The BH-law (1) is a template for falsification in quantum
gravity, given the paucity of experimental data (see e.g. Sec. 10.2 in [24]). That is why the hep-th
and gr-qc communities spent a lot of resources deriving the BH-law microscopically for more
general black holes [25–36] (see also [37] for an alternative proposal).

Despite these efforts, it is unclear how to construct stringy microstates for non-extremal black
holes, which is an obstacle to further progress in string theory and black holes since extremal black
holes are zero-temperature states that do not occur in Nature. Another slightly puzzling aspect of
(1) is its universality: For large black holes, the entropy depends only on the horizon area and not
on any details of the microstates.

A complementary approach to deriving the BH-law (1) is to focus on near-horizon symme-
tries, see e.g. [38–56]. In these derivations, the universality of the BH-law (1) and its applicability
to non-extremal black holes become more transparent, but the precise identification of the mi-
crostates typically remains obscure or requires ad-hoc input: Even when succeeding in counting
the microstates from some horizon-symmetry arguments it remains unclear what these microstates
are.

The goal of our paper is to combine both approaches and construct, based on horizon-symmetry
considerations, stringy microstates of non-extremal black holes. For technical reasons, we restrict
ourselves to three-dimensional (3d) black holes (BTZ black holes) [57].

We postulate that the string worldsheet relevant for the microscopic description of the BTZ
black hole coincides with the black hole horizon, a null hypersurface generated by some null
vector. The symmetries preserving such a null hypersurface are diffeomorphisms of the null hy-
persurface and scalings of the null vector [58,59]. In 3d, these are precisely the symmetries of the
worldsheet of a null string theory [60–66], thus motivating our postulate. Phrased more explicitly,
we propose that a 3d black hole is an ensemble of null string states. The worldsheet of these strings
may be identified with the horizon of the black hole they collectively represent.

Our main result derived from this postulate (and additional assumptions that we shall spell
out) is an explicit list of BTZ microstates in terms of null string excitations (explained below) and
proof that their number accounts for the correct BH-law (1) as well as the subleading semiclassical
corrections thereof (see [67] and Refs. therein).

Before delving into details, we present some further intuition behind our formulation. We
begin with the basic observation that the horizon of a generic black hole is a co-dimension one
null surface. We aim to replace the black hole with some closed string with a null worldsheet
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associated with this null surface. The quantization of this null string yields a collection of null
string states, which are supposed to be the microstates of the black hole.

There are a couple of important ways that the null string is specific to the black hole it de-
scribes. The first point concerns symmetries. In any effective description of a physical system,
it is crucial to preserve the appropriate set of symmetries. We shall demonstrate that the near-
horizon symmetries associated with null surfaces (such as black hole horizons) coincide with the
symmetries of the worldsheet action of tensionless null strings. The second point is that the string
generically winds around a direction in the ambient 3d spacetime. The radius of the compact
direction naturally is identified with the main macroscopic scale in the system, the radius of the
event horizon.

Our proposal entails that a black hole of a certain mass M is a coarse-grained object that arises
as an effective description of certain high-excitation sectors of this fundamental null string. The
vibrational modes of this string at a high enough level N yield the microstates of this coarse-
grained structure. Inspired by results from near-horizon physics, in particular, a matching of the
near-horizon and null string symmetries and the near-horizon first law (on which we shall elaborate
later), we relate the mass M and the level N in a specific way. This is the third point of contact
between the null string picture and the black hole picture, which then yields an explicit list of BTZ
microstates, whose combinatorics reproduces the BH entropy (1) and its logarithmic corrections.

This paper is organized as follows. In Section 2, we recap tensionless null strings. In Section
3, we review the near-horizon expansion and symmetries and match the latter with the symmetries
of tensionless null strings. In Section 4, based on tensionless null strings we define horizon strings
and build the associated physical Hilbert space. In Section 5, we provide an explicit list of all
BTZ black hole microstates, labeled by the horizon string quantum numbers: mode excitation
numbers, winding number, and momentum number. Moreover, we consider the combinatorics of
these microstates in the limit of large occupation numbers, corresponding to the large mass limit.
In Section 6, we compare the results of our combinatorial analysis with the Bekenstein–Hawking
law. In Section 7, we conclude with a discussion and an outlook.

2 Recap of tensionless null strings

The study of null strings was initiated by Schild in the 1970s [60], corresponding to a limit where
the worldsheet of the string becomes a null surface. Analogous to the massless limit of a point
particle whose worldline is null, a null string limit necessitates sending the tension of the string to
zero [62]. These tensionless null strings are the focus of this paper. The null string thus explores
the limit of string theory where the only parameter in the free theory, α′, is sent to infinity and
hence is the opposite of the point particle limit, α′ → 0, where the dynamics of a string is essen-
tially replaced by its center of mass dynamics. In the tensionless limit, the fundamental string is
floppy and can become macroscopically long.

2.1 Classical tensionless null strings

Our formulation of the tensionless null string follows [61], starting with the well-known Polyakov
action of the tensile string,

S = −
T
2

∫
dτ dσ

√
γ γab∂aXµ∂bXνGµν(X) (2)

where T ∝ 1/α′ is the string tension, γab is the worldsheet metric, and Gµν is the metric on which
the string propagates. In the tensionless null string limit, the worldsheet metric degenerates, and
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the equivalent of the Polyakov action becomes [61]

S =
κ

2

∫
dτ dσ VaVb∂aXµ∂bXν ηµν(X) . (3)

Here, Va are weight 1
2 vector densities and VaVb replaces

√
γ γab in the tensionless limit. In terms

of recent terminology, the worldsheet of a null string is described by a 2d Carrollian geometry
[68–70], see section 2.2 for more on the Carrollian picture. The constant κ is put in to match
dimensions, and we shall have more to say about it in our construction later. We have also chosen
the spacetime metric to be flat in this review section.

The tensionless worldsheet, like its tensile counterpart, enjoys diffeomorphism invariance
where the vector density Va transform as

δξVa = ξb∂bVa − Vb∂bξ
a +

1
2

Va ∂bξ
b . (4)

We thus need to fix the gauge. A particularly convenient one is the equivalent of the conformal
gauge where we choose

Va∂a = ∂τ . (5)

Analogously to the tensile case, this choice does not completely fix the gauge and we are left with
residual worldsheet diffeomorphisms generated by the vector fields [63]

ξ =
(
h(σ) + τ f ′(σ)

)
∂τ + f (σ) ∂σ (6)

that preserve the gauge choice (5), δξVa = 0. Defining generators

L( f ) = f ′(σ) τ ∂τ + f (σ) ∂σ M(g) = g(σ) ∂τ (7)

and expanding in Fourier modes, we find the residual symmetry algebra on the tensionless world-
sheet

[Ln, Lm] = (n − m) Ln+m [Ln, Mm] = (n − m) Mn+m [Mn, Mm] = 0 . (8)

This is the Bondi–van der Burgh–Metzner–Sachs algebra in 3d (BMS3), see e.g. [64, 71–73].
The BMS algebra was earlier found in the context of asymptotic symmetries of flat spacetime
at its null boundary [73–75] and has been of relevance for attempts to construct a holographic
correspondence in flat spacetimes [46,75–78]. The recent revival of the study of tensionless strings
is based on the fact that this BMS algebra replaces the two copies of Virasoro algebra on the
worldsheet of the tensionless string. The (centerless) BMS algebra (8) is central to the organization
of the tensionless string.

In the gauge (5), the equations of motion of the tensionless string simplify to

Ẍ = 0 (9)

and the constraints read
Ẋ2 = 0 = Ẋ · X′ = 0 . (10)

The equations of motion are solved by the mode expansion [63]

Xµ(τ, σ) = xµ + Aµ0σ + Bµ0τ + i
∑
n,0

1
n

(
Aµn − inτBµn

)
e−inσ . (11)

We are interested in studying closed strings and hence demand the boundary condition

Xµ(τ, σ) = Xµ(τ, σ + 2π) . (12)
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This renders A0 = 0. Plugging the mode expansion into the constraints yields

Ẋ · X′ =
1
2

∑
n,m

(A−m − inτB−m) Bn+me−inσ =
∑

n

(Ln − inτMn) e−inσ = T1 = 0 (13a)

Ẋ2 =
1
2

∑
n,m

B−nBn+me−inσ =
∑

n

Mne−inσ = T2 = 0 . (13b)

Above, we used the definitions

Ln =
1
2

∑
m

Aµ−mBνn+mηµν Mn =
1
2

∑
m

Bµ−mBνn+mηµν (14)

of the BMS generators. The quantities T1,T2 are two components of the energy-momentum ten-
sor for 2d BMS3-invariant field theories see e.g. [79–83] and references therein. The constraint
equations translate to the vanishing of the energy-momentum tensor of the worldsheet theory,

T1 = 0 = T2 . (15)

The existence of these constraints and the possibility of winding (12) are key differences between
null strings and a collection of free particles.

The algebra of the modes L,M yields the BMS algebra (8) provided the non-vanishing Poisson
brackets of the A, B modes are given by

{Aµn, B
ν
m} = −2in δn,m ηµν . (16)

The algebra (16) is not that of harmonic oscillators. To switch to a harmonic oscillator basis, we
change the basis,

Cµn = 2
(
Aµn + Bµn

)
C̃µn = 2

(
−Aµ−n + Bµ−n

)
. (17)

The Poisson brackets between the C and C̃,

{Cµn ,C
ν
m} = −in δn,m ηµν {C̃µn , C̃

ν
m} = −in δn,m ηµν {Cµn , C̃

ν
m} = 0 (18)

are those of harmonic oscillators.

2.2 Tensionless limit as a worldsheet Carroll limit

In the tensionless limit, the string becomes long and floppy. This can be achieved in terms of
worldsheet coordinates (σ, τ) by the singular scaling

τ→ ϵτ σ→ σ ϵ → 0 . (19)

Intuitively, the spatial direction becomes large on the worldsheet, typifying a long tensionless
string. The scaling (19) is a Carrollian limit on the worldsheet, where the worldsheet speed of
light goes to zero. The emergence of a Carrollian structure on the worldsheet is a sign that the
tensionless worldsheet becomes null [63].

The limit (19) leads to a contraction of two copies of the Virasoro algebra,

Ln − L̄−n = Ln Ln + L̄−n =
1
ϵ

Mn (20)

to the 2d Carroll algebra, which is isomorphic to the BMS3 algebra [46, 84] that arises on the
worldsheet (8).
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The analysis of the mode expansion of the equation of motion and the constraints presented
in the previous section can also be obtained by implementing (19) on the tensile string mode
expansions [63, 64]

X̃µ(σ, τ) = xµ + 4

√
α′

2
α
µ
0 + i

√
α′

2

(
α
µ
ne−in(τ+σ) + α̃

µ
ne−in(τ−σ)

)
(21)

where in addition we need to scale α′ → κ/ϵ. This leads to a relation between the tensile oscillators
(α, α̃) and the tensionless ones (A, B),

An =
1
√
ϵ

(αn − α̃−n) Bn =
√
ϵ(αn + α̃−n) , (22)

where we have suppressed the target space indices µ, ν for the ease of notation. Plugging these
expressions into the relation of the oscillator modes with the Virasoro algebra, Ln =

∑
n αn+mα−m,

and the ensuing BMS version (14), recovers (20), thus providing us with a sanity check of our
various formulae.

Finally, we note that the relation between the tensile α oscillators and the tensionless C oscil-
lators is given by the Bogoliubov transformation

Cn = β+αn + β−α̃−n C̃n = β−α−n + β+α̃n (23)

where β± =
√
ϵ ± 1√

ϵ
. Despite the singularity of the tensionless limit, the Poisson structure in

terms of these sets of oscillators is preserved as ϵ tends to zero.

2.3 Quantizing the null string

Having reviewed the salient features of the classical tensionless string, we now turn our attention to
the quantization of these objects. The discussion here will closely mirror that of [64,85]. The usual
tensile string is quantized as a free 2d relativistic massless scalar field. The constraints are then
imposed on the Hilbert space to give a space of physical states. Our construction of the tensionless
quantum theory proceeds along similar lines, where we now quantize a free 2d Carrollian massless
scalar field and impose the quantum versions of the classical constraints (15),

⟨phys′|T1|phys⟩ = 0 = ⟨phys′|T2|phys⟩ (24)

where |phys⟩, |phys′⟩ are any two physical states of the tensionless theory. In terms of the modes
of the energy-momentum tensor (13a), (13b), these become

⟨phys′|Ln|phys⟩ = 0 = ⟨phys′|Mn|phys⟩ . (25)

In [64], it was shown that three different quantum mechanical systems emerged out of the
classical null string that we discussed in the previous section. The gist of their canonical quantiza-
tion is that for each set of oscillator On = {Ln,Mn} there are three different ways of imposing the
constraints, viz.,

1. On|phys⟩ = 0 ∀n > 0.

2. On|phys⟩ = 0 for n , 0, and

3. On|phys⟩ , 0 but ⟨phys′|On|phys⟩ = 0 for n , 0.

This is true for both sets of oscillators leading to a total of nine possibilities. Assuming the vacuum
to be a physical state, i.e., ⟨0|On|0⟩ = 0 for n , 0, one can show that the closure of the BMS algebra
eliminates many of the possibilities and we are left with three consistent choices of vacua.
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• Flipped Vacuum |0⟩F : This is the vacuum where the BMS3 algebra is imposed in terms of
highest weight representations.

Ln|0⟩F = 0 Mn|0⟩F = 0 ∀n > 0 . (26)

The theory built on this vacuum is the bosonic ambitwistor theory [86, 87] and has some
strange features, including a restricted spectrum. Since the limit from the Virasoro genera-
tors of the parent tensile theory (20) mixes creation and annihilation operators, the parent of
the Flipped theory is an unusual string theory where the vacuum is annihilated by the usual
annihilation operators αn on the right, but by the creation operators α̃−n on the left (n > 0).
This is the reason behind the nomenclature. We are not interested in this vacuum in the
present work.

• Induced Vacuum |0⟩I: The condition for this vacuum is given by

Mn|0⟩I = 0, ∀n , 0 Ln|0⟩I , 0, but I⟨0|Ln|0⟩I = 0, for n , 0 . (27)

The theory built on this vacuum falls under the so-called induced representation of the BMS3
algebra, see [88]. This vacuum follows directly from the limit of the usual tensile theory
(20), where the Virasoro highest weights give rise to the BMS3 induced representations in
the Carrollian limit. The theory obtained is thus also what one gets if one takes a straight-
forward high-energy limit on tensile bosonic string theory. We are not interested in this
vacuum in the present work.

• Oscillator Vacuum |0⟩O: The condition for this vacuum is given by

Ln|0⟩O , 0 Mn|0⟩O , 0 but O⟨0|Ln|0⟩O = O⟨0|Mn|0⟩O = 0, for n , 0 . (28)

This is the vacuum of the C-oscillators described earlier in (17), viz.,

Cµn |0⟩O = 0 C̃µn |0⟩O = 0 ∀n , 0 . (29)

This vacuum leads to an intriguing theory, which comes about naturally from an accelerated
worldsheet theory [66,85]. The null string worldsheet can be thought about as the end point
of a series of accelerating worldsheets. The accelerated worldsheet is the 2d analog of an
accelerated observer in 2d Rindler spacetime. The null worldsheet is the string equivalent
of a Rindler observer hitting the Rindler horizon. The Bogoliubov transformations (23) are
the singular limit of the transformations between the inertial Minkowski observer and the
accelerating Rindler observer. We pick this vacuum for our construction of the BTZ black
hole microstates for three a priori reasons: 1. The Rindler limit is physically meaningful
when approaching a non-extremal black hole horizon, 2. The oscillator algebra (18) concurs
with the near-horizon symmetries of the BTZ black hole reviewed in the next section, 3. The
Oscillator Vacuum is the weakest of the three vacuum conditions and thus allows for the
largest number of physical states. A posteriori, another reason for this vacuum choice is that
it yields the correct combinatorics to match the BH entropy (1).

3 Null strings, black holes, and their symmetries

In this section, we remind the reader of the near-horizon expansion of the BTZ black hole and the
associated symmetries. We then relate these symmetries to those of null strings, which provides the
basis of our proposal to consider a theory of null strings as appropriate for a black hole description.
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3.1 Near-horizon expansion of BTZ

The most general near-horizon expansion of non-extremal BTZ black holes is given in Eq. (5)
of [52]. In a co-rotating frame and (ingoing) Eddington–Finkelstein coordinates, the full BTZ
metric adapted to a near-horizon expansion,

ds2 = −2aρ f (ρ) dv̂2 + 2 dv̂ dρ+ 4ωρ f (ρ) dv̂ dϕ− 2
ω

a
dϕ dρ+

[
R2

h +
2ρ
aℓ2

(R2
h − ℓ

2ω2) f (ρ)
]

dϕ2

(30)

contains the function f (ρ) = 1 + ρ/(2aℓ2), the AdS radius ℓ, surface gravity a, the near-horizon
angular momentum ω, and the horizon radius Rh. We assume for simplicity constant ω and make
the coordinate shift v = v̂ − ωa ϕ, yielding

ds2 = −2aρ f (ρ) dv2 + 2 dv dρ + R2
h

(
1 +

2ρ
aℓ2

f (ρ)
)

dϕ2 . (31)

Note that the near-horizon angular momentum ω has dropped out in (31). So this metric is suitable
for ensembles of fixed angular momentum and either fixed or varying horizon radius.

Since we are interested in evaluating the metric (31) on the horizon, we do not care about local
curvature effects and thus, to leading order, neglect effects from the AdS radius,

ds2 ≈ −2aρ dv2 + 2 dv dρ + R2
h dϕ2 . (32)

The metric (32) describes a geometry that is a direct product of 2-dimensional Rindler space
(spanned by v and ρ) and a round S 1 with radius Rh.

With the usual coordinate transformation v = t+ ln ρ
2a the metric (32) is converted into Schwarz-

schild-gauge

ds2 ≈ −2aρ dt2 +
dρ2

2aρ
+ R2

h dϕ2 . (33)

The additional change of radial coordinate r =
√

2ρ/a brings the metric into Rindler gauge

ds2 ≈ −a2r2 dt2 + dr2 + R2
h dϕ2 . (34)

Finally, we introduce lightcone coordinates x± = ± 1√
2

r e±at to bring the Rindler metric into
Minkowski form,

ds2 ≈ −2 dx+ dx− + R2
h dϕ2 = Gµν dxµ dxν . (35)

This metric is the starting point for our analysis of null strings on the (non-extremal) BTZ black
hole horizon, where it describes our target space geometry.

The non-trivial aspects of the target space metric (35) are the periodicity of the angular co-
ordinate, ϕ ∼ ϕ + 2π, and the appearance of a (macroscopic) scale, the horizon radius Rh. Thus,
despite being a locally flat geometry, our target space metric differs from 3d Minkwoski spacetime
in two aspects: 1. it has a compact direction ϕ, and 2. it carries a physical scale Rh. Both aspects
are crucial for our construction.

3.2 Null boundary and null worldsheet symmetries

We consider now symmetries as a guiding principle, starting with a general 3d metric in which
r = 0 is a null surface,1

ds2 = −rV dv2 + 2η dv dr + R2 ( dϕ + U dv
)2 . (36)

1For technical reasons, the gauge used here differs slightly from the gauge used in (30); namely, the dρ dϕ-term
present there is fixed to be absent here. This gauge fixing has no dramatic consequences.
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Here V,R,U are generic functions of all coordinates r, v, ϕ, which we assume to be smooth around
r = 0, and η = η(v, ϕ). The reader can think of the locus r = 0 as the black hole horizon, though it
is not necessary to adopt this viewpoint.

The family of metrics (36) is preserved by the near-horizon diffeomorphisms [58]

ξ = T∂v − rW∂r + Y∂ϕ + · · · (37)

where Ω = R(r = 0), the ellipsis denotes subleading terms, and T , W, and Y generic functions of
v, ϕ. Their Lie bracket algebra

[ξ(T1,W1,Y1), ξ(T2,W2,Y2)]Lie = ξ(T12,W12,Y12) (38)

closes with the structure functions

T12 = (T1∂v + Y1∂ϕ)T2 − (1↔ 2) (39a)

Y12 = (T1∂v + Y1∂ϕ)Y2 − (1↔ 2) (39b)

W12 = (T1∂v + Y1∂ϕ)W2 − (1↔ 2) . (39c)

The functions T,Y together generate diff2, while W generates radial dilatations and transforms like
a scalar under diff2. Since r = 0 is a null surface generated by ∂r, the dilatation W also scales the
other null vector in the rv-plane, ∂v.

A key observation is that the null boundary algebra (39) exactly matches the null string world-
sheet symmetries. Indeed, the null string action (3) is also invariant under diff2 and under dilata-
tions (the latter invariance is a consequence of the conformal Carrollian structure on the world-
sheet, see [62, 63] for details). The fact that the respective symmetries match is a non-trivial
consistency check of our proposal.

3.3 Near-horizon symmetries and glimpse of Oscillator Vacuum

We have just performed a rather generic check of symmetries, finding a match between symmetries
of null hypersurfaces and the worldsheet action of tensionless null strings.

Now we consider a refined set of symmetries, namely near-horizon symmetries associated
with a BTZ black hole at fixed surface gravity. These symmetries act non-trivially on the near-
horizon state space much in the same way that the Brown–Henneaux Virasoro symmetries act on
the asymptotic state space, see [51] for details.

In the coordinates (30), the near-horizon boundary conditions require fixed a but allow state-
and angle-dependent fluctuations of the horizon radius Rh and the near-horizon angular momentum
ω.2 The near-horizon charges found in [51] are suitably normalized Fourier modes of these state-
dependent functions

Jn ∼

∮
dϕ einϕ (Rh(ϕ) + ω(ϕ)

)
J̃n ∼

∮
dϕ einϕ (Rh(ϕ) − ω(ϕ)

)
. (40)

Their algebra, [
Jn, Jm

]
= n δn+m, 0 =

[
J̃n, J̃m

]
(41)

consists of two û(1) currents. The standard vacuum conditions

Jn|0⟩ = 0 = J̃n|0⟩ n ∈ Z+ (42)

led to soft Heisenberg hair when acting with descendants, Jn, J̃n on the vacuum state |0⟩. The
attribute “soft” physically refers to the zero energy of the descendants. Algebraically, softness

2Assuming constant a, these functions are v-independent as a consequence of the near-horizon holographic Ward
identities, see [52].
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comes from the fact that the near-horizon Hamiltonian, H ∼ J0 + J̃0, commutes with all elements
of the near-horizon symmetry algebra (41).

The symmetries (41) and vacuum conditions (42) are reminiscent of the Oscillator Vacuum of
tensionless null strings. The next section is going to make this observation more precise.

4 Horizon strings

In this section, we define and construct horizon strings, based on tensionless null strings that wrap
a spatial circle, with a suitable vacuum choice that matches with the near-horizon symmetries
reviewed in the previous section.

4.1 Basic set-up of horizon strings

The strings we consider are described by (3) with the background target space metric Gµν as in
(35). For later convenience, we introduce φ := Rhϕ, where ϕ ∼ ϕ + 2π and φ ∼ φ + 2πRh, while
the lightcone coordinates x± take arbitrary real values. The gauge-fixed version of the null string
action (3) for the target space metric (35) simplifies to

Sgf =
κ

2

∫
dτ dσ

(
− 2(∂τX+)(∂τX−) + (∂τXφ)2

)
(43)

where Xφ = Rh Xϕ. Varying the gauge-fixed action (43) yields the equation of motion

∂2
τX
µ = 0 (44)

solved as before by the mode expansion

Xµ(τ, σ) = xµ + Aµ0σ + Bµ0τ + i
∑
n,0

1
n

(
Aµn − inτBµn

)
e−inσ . (45)

Additionally, we now allow closed strings to wind around the compact φ-direction,

Xφ(σ + 2π, τ) = Xφ(σ, τ) + 2πRh ω ω ∈ Z (46)

and have identifications X±(σ + 2π, τ) = X±(σ, τ), implying

Aφ0 = Rhω A±0 = 0 . (47)

As usual in string theory [89,90], the momentum along the circle is quantized in units of one over
its radius.

pφ = κ Bφ0 =
n

Rh
n ∈ Z (48)

We refer to null strings on the background metric (35) that wind around the ϕ-direction as “horizon
strings”.

4.2 Quantizing horizon strings

The quantization of horizon strings parallels that of a generic null string discussed in section 2.3,
with the addition that horizon strings can wrap around the ϕ direction and have non-zero winding,
which does affect the quantization, as we shall demonstrate.

The constraints are (10) or (15) in the classical theory and (24) in the quantum theory. The first
step towards quantization of horizon strings is the choice of the appropriate vacuum state among
the three possibilities discussed in section 2.3, guided by the near-horizon discussion in section 3.

10
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4.2.1 Vacuum choice for horizon strings

In the lightcone gauge, only the φ-component matters because one can fix the residual diffeomor-
phisms such that X+ = x++B+0 τ and X− is determined by Xφ, see [91]. To quantize horizon strings,
we choose the Oscillator Vacuum (42) for this remaining component, i.e., the operators

Jn :=
√
κ
2
(
Aφn + Bφn

)
J̃n :=

√
κ
2
(
− Aφ−n + Bφ−n

)
(49)

obey the oscillator algebra (41). This algebraic equivalence to the soft Heisenberg hair algebra
provides confidence that the Oscillator Vacuum is appropriate for BTZ black holes.

4.2.2 Hilbert space

To construct the physical Hilbert space, we start with classifying states at different levels N ∈ N,

Vacuum: |0, pµ, ω⟩ ≡ |0⟩

Level 1: J−1|0⟩, J̃−1|0⟩

Level 2: J−2|0⟩, J2
−1|0⟩, J−1 J̃−1|0⟩, J̃2

−1|0⟩, J̃−2|0⟩

. . .

where pµ = κ Bµ0. The level splits into two integers associated with each set of oscillator modes,
N = r + s. For instance, the five states above at level N = 2 have, respectively, (r, s) = (2, 0),
(r, s) = (2, 0), (r, s) = (1, 1), (r, s) = (0, 2) and (r, s) = (0, 2). The levels r, s, in turn, can be
decomposed into a collection of integers associated with individual creation operators, r =

∑
n nrn

and s =
∑

n nsn. For example, the first two states at level N = 2 with r = 2 and s = 0 split,
respectively, into r2 = 1 and r1 = 2 (with all other ri = 0 in each case).

A generic state in the above set,

|Ψ⟩ = |pµ, {ri}, {si}, ω⟩, (50)

is given by arbitrary combinations of the creation operators J−m, J̃−m acting on the Oscillator Vac-
uum |0, pµ, ω⟩. Physical states are a subclass of these generic states subject to the constraints
(28). We are interested in physical states without momentum in the radial direction, which in our
lightcone coordinates implies p+ = p−, and we keep pφ arbitrary, see (48).

4.2.3 Level-matching and mass

We now follow a route analogous to the tensile string [89, 90] and impose the physical state con-
ditions (28) to obtain the physical Hilbert space. For the zero modes, L0 and M0, these give us,
respectively, a level-matching condition and a formula for the mass spectrum of the theory. The
remaining physical state conditions are automatically satisfied once states are level matched (for a
more detailed treatment, see [64]). By virtue of the Oscillator Vacuum (42)-(41), the requirement
L0|Ψ⟩ = 0 establishes a level-matching condition

s − r = ω n . (51)

From the vanishing of the M0-eigenvalue, M0 |Ψ⟩ = 0, we deduce the mass m :=
√

2p+p− of
the state |Ψ⟩,

m2 = (r + s)κ +
n2

R2
h

. (52)

Physical states of a given mass are thus labeled by the integers ri, si, ω, and n subject to the level-
matching (51) and the mass-shell condition (52).

11
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5 BTZ black hole microstates and their combinatorics

In this section, we introduce and define black hole microstates within the physical Hilbert space
of horizon strings discussed in the previous section.

5.1 Defining the microstates

We label BTZ black holes by the horizon string mass m and define the set of BTZ black hole mi-
crostates as the collection of all physical states in the horizon string Hilbert space. Each microstate

|m⟩BTZ = |{ri}, {si}, ω, n⟩ (53)

is labeled by a collection of mode excitation numbers ri, si, the winding number ω, and the mo-
mentum number n, subject to the level-matching (51) and the mass-shell condition (52).

The remaining task is to fix the value of the mass m in terms of the geometric input, the value
of the horizon radius Rh. Since m is the mass of our string states at the horizon, on dimensional
grounds it is plausible to identify it (up to some factor) with the near-horizon mass of the associated
BTZ black hole. The final puzzle piece is a relation between the BTZ black hole mass and the
horizon radius Rh, for which we use the near-horizon first law, the essence of which we review.

Assuming the existence of a non-extremal horizon in 3d, in 2015-2016 different boundary
conditions have been imposed accounting for the presence of the horizon and fluctuations around
it [48, 51, 52, 92, 93]. As explained in [56], this models generic properties of non-extremal hori-
zons in equilibrium with a thermal bath. Our proposal may be viewed as an explicit and micro-
scopic realization of the Hawking, Perry, and Strominger soft hair proposal [49]: the infinite set
of near-horizon symmetries generates soft hair excitations. The associated near-horizon charges
are conceptually analogous to the asymptotic Brown–Henneaux charges [94]. Like the latter, they
obey a first law,

δE = T δS (54)

where T is the temperature as derived from surface gravity, S ∝ Rh is the (Bekenstein–Hawking)
entropy, and E = Q[∂t] is the near-horizon charge for unit time-translations along the horizon [52].
Integrating the first law (54) requires knowledge of the state-dependence of temperature, e.g., in
the form of a Smarr-type relation, a Cardy-type relation, or some assumption about the thermo-
dynamical ensemble. For the near-horizon boundary conditions that lead to soft Heisenberg hair,
i.e., to the oscillator algebra (41) as near-horizon symmetries, the temperature is state-independent.
Therefore, the first law (54) trivially integrates to

E = TS . (55)

In Cardy language, the entropy depends linearly on the near-horizon energy, in contrast to the
asymptotic relation where it scales like the square root of the asymptotic energy.3

The near-horizon energy in terms of the near-horizon charges (41) is just the sum of the zero
modes E ∝ J0+J̃0 (we do not care about the precise numerical coefficient here since below we shall
absorb all such factors into a redefinition of our coupling constant κ), which in turn can be related
to the mass of the BTZ black hole as measured by an asymptotic observer, m ∝ J0 + J̃0 [51, 95].

In summary, due to the near-horizon first law, the mass scales linearly in the horizon radius,
i.e.,

m = κRh . (56)

While we could include some arbitrary numerical factor in the relation (56), we absorb such a
factor by the freedom to fix the coupling constant κ, which we shall do below in (69).

3The near-horizon version of the Cardy formula can be derived from the anisotropic near-horizon scaling symmetry
implicit in near-horizon Rindler-geometries with state-independent surface gravity, see [52].
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Plugging the mass (56) into the result (52),

κR2
h = s + r +

n2

κR2
h

:= N +
n2

κR2
h

, (57)

and assuming N ≫ n yields

κR2
h = N +

n2

N
+ O(n4/N3) . (58)

In the other limit, N ≪ n, we have instead κR2
h = n + N

2 + O(N2/n).

5.2 Combinatorics of microstates

There are various sectors of states, depending on the behavior of the quantum numbers. We discuss
all of them and determine their respective combinatorics. In all cases, we assume Rh ≫ 1/

√
κ to

guarantee the validity of the semiclassical approximation.

5.2.1 Soft sector

When the string has vanishing momentum, n = 0, we call it soft. In this case, there is a mundane
infinite degeneracy from the winding modes: no amount of winding changes anything about the
spectrum. We thus declare n = 0 states equivalent to each other if they differ only by their winding
numbers.

For fixed (large) mass m the counting is now straightforward. The total level N must be large
and splits evenly, s = r = N

2 . The (large) numbers s and r can be partitioned arbitrarily into positive
integers. The number of integer partitions, Π(N), is given by the Hardy–Ramanujan formula [96]
[OEIS: A000041]

Π(N) ≈
1

4
√

3 N
exp
(
2π

√
N
6

)
. (59)

Thus, the contribution to the partition function from the soft sector (at fixed m) is given by

Zsoft(N) = Π2
(N

2

)
≃

1
N2 exp

(
2π

√
N
3

)
. (60)

Here and in what follows, we use ≃ to denote the approximation of ln Z to the leading O(
√

N)
and subleading O(ln N) contributions, while dropping terms subleading to these. This simplifica-
tion has the added benefit that we can assume non-negative ω and n since considering all possible
sign combinations would only produce some overall factor of order unity in the partition function.
We make this assumption from now on.

5.2.2 High momentum sector

Consider the opposite of the soft sector: The mass is dominated by high momentum, n ≫ N.
Level-matching (51) then implies vanishing winding number ω. So we get the same result as for
the soft sector (60), but N, while it still can be a large number, is now much smaller than m2/κ.

Therefore, this sector is suppressed exponentially as compared to the soft sector and, as we
shall see, also as compared to the sectors below. The same logic applies to the sector n ≈ N.
Thus, we conclude that typical microstates require large levels, N ≫ n, and the contributions to
the partition function Zn≫N + Zn≈N are negligible for large masses.
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5.2.3 Generic sector

The higher the level, the stronger the exponential enhancement in the integer partitions (59). Thus,
typical microstates require N ≫ n. Generically, there are no further constraints on winding or
momentum other than level-matching and mass-shell conditions. In particular, generically neither
of them vanishes, n > 0, ω > 0. To reduce clutter, we assume N is even (none of our results
change essentially for odd N).

A curious aspect of the mass-shell condition (52) is that changing the momentum number n
alters the almost-integer number m2/κ slightly. So we should not consider a fixed mass in our
ensemble but allow for a range, depending on the allowed range of the momentum number. For
the time being, we fix the level N but permit varying the mass by changing the momentum number.

The partition function in the generic sector for fixed N

Zfixed
generic(N) =

N
2∑

l=1

Π
(

N
2 − l
)
Π
(

N
2 + l
)
τ(2l) (61)

involves the number of divisors τ(k) of the integer k. It appears due to the level-matching condition
(51), which requires the difference of the levels s − r to be the product ω n. The combinatorial
problem (61) is not trivial but solvable at large N.

Zfixed
generic(N) ≃

1
N5/4 exp

(
2π

√
N
3

)
(62)

We recover the same exponential degeneracy as in the soft sector (60) but with a monomial en-
hancement in N, plus other subleading corrections.

It can be shown that the essential part of the partition function Zfixed
generic(N) comes from levels r

in the range N/2 − O(N3/4) to N/2 − O(1), implying typical ranges of winding and momentum
numbers between O(1) and O(N3/4).

From the range of the momentum number, we deduce an interesting physical fact: Since
the momentum number generically scales at most like O(N3/4), the quantity m2/κ changes like
O(
√

N). We conclude that we must consider Gaussian fluctuations of the level N.
We can finally be precise about the allowed mass range in our definition of BTZ microstates.

We cannot insist on a fixed value of m but instead must allow fluctuations of the mass, m→ m+∆m,
of order unity to guarantee Gaussian fluctuations in N.

∆m = O(1) ↔ ∆N = O
(√

N
)

(63)

It is reassuring that the near-horizon analysis in [51,52] leads to analog conclusions. Namely, if we
want Gaussian fluctuations in the BTZ black hole mass as measured by an asymptotic observer,
∆M = O(

√
M), we need to allow order unity fluctuations of the black hole mass as measured

by a near-horizon observer, ∆m = O(1). It works because M and m are related by a Sugawara
construction, yielding M ∝ m2. This implies M + ∆M ∝ (m + ∆m)2 = m2 +mO(∆m), from which
we deduce ∆M ∝

√
MO(∆m).

While it was pure combinatorics that drove us to consider Gaussian fluctuations (63), such
fluctuations may have been anticipated on physical grounds, as we are in an ensemble of fixed
temperature rather than fixed energy.

The number of generic microstates subject to the fluctuations (63) is then given by

Zgeneric(N) =
N+O(

√
N)∑

N0=N

Zfixed
generic(N0) ≃

1
N3/4 exp

(
2π

√
N
3

)
. (64)
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5.2.4 Non-winding sector

There is one remaining sector, namely ω = 0. In this case, the level-matching (51) implies s = r,
exactly as in the soft sector. However, since the momentum number n appears in the mass-shell
condition (52), we get a cutoff on the spectrum.

For compatibility with the generic sector, we allow the same range of mass fluctuations and
hence get Gaussian fluctuations of the level N. We obtain

Zω=0(N) =
N+O(

√
N)∑

N0=N

O(N3/4
0 )∑

n=1

Π2
(N0

2

)
≃

1
N3/4 exp

(
2π

√
N
3

)
. (65)

While the generic sector contains infinitely more states than the non-winding sector, the ap-
proximate equality Zgeneric(N) ≃ Zω=0(N) shows that the non-winding and the generic sectors yield
the same leading and subleading result for the partition function.

6 Full partition function and Bekenstein–Hawking law

The final result of our combinatorial excursion is the partition function of BTZ black hole mi-
crostates

ZBTZ ≃ Zsoft + Zn≫N + Zn≈N + Zgeneric + Zω=0 . (66)

For large horizon radii, the partition function is dominated by the contribution from the generic
sector

ZBTZ(Rh) ≈ Zgeneric(κR2
h) ≃ R−3/2

h exp
(
2πRh

√
κ

3

)
(67)

where we used the relation (58) between the level N and the horizon radius Rh. The approximation
of the partition function (67) is the main result of our counting. It is valid for large horizon radii,
Rh ≫ 1/

√
κ, which permits comparing with semiclassical results for the black hole entropy.

Summarizing the combinatorics, we find the entropy of our horizon string microstates is given
by the logarithm of the partition function (67), viz.,

S = ln ZBTZ = 2πRh

√
κ

3
−

3
2

ln Rh + o(ln Rh) . (68)

The entropy (68) contains the correct scaling with the area of the BTZ event horizon, 2πRh, and
a well-known numerical factor −3

2 in front of the logarithmic corrections (see, e.g., [67]). The
sub-subleading terms are small as compared to ln Rh but still infinite for Rh → ∞. In particular,
they are not of order unity.4 Comparison with the BH-law (1) fixes the coupling constant as

κ =
3

16G2 . (69)

The scaling with 1/G2 follows from dimensional analysis. The numerical coefficient 3/16 is a
non-trivial input and cannot be derived within the setup presented here.

Since the log corrections to the entropy depend on the thermodynamical ensemble let us fi-
nally check if we are in the right ensemble. From near-horizon considerations, we have fixed
the temperature, and the tensionless string spectrum forced us to let the asymptotic mass have a
Gaussian profile, cf. our discussions below (63). The metric (35) in a co-rotating frame has fixed
angular momentum. In the conventions of [67], we thus have a mixed ensemble and should get a
coefficient of − 3

2 in front of the log corrections. This is precisely what we obtained in our main
result (68).

4This is qualitatively different from the precision counting e.g. in [97], where the next term is of order unity.
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7 Concluding remarks

Based on the matching of symmetries of the horizon, we formulated and implemented the idea
that microstates of a 3d black hole are physical states (53) of a null string theory. Typical mi-
crostates are excited strings with nonzero winding around the angular direction. The growth of
their degeneracy with the exponential of the square root of the excitation number (64) is a known
characteristic feature of strings [98–100]. This degeneracy correctly accounts for the Bekenstein–
Hawking entropy and its subleading log corrections (68).

Before addressing generalizations, we discuss similarities and key differences to some pre-
vious proposals for black hole microstates. Here, we compare with three previous proposals:
the membrane paradigm [101], fuzzballs [32, 36], and fluffballs [50, 53]; see [102] for more dis-
cussions on these three and other proposals. Our construction can be viewed as an implemen-
tation of the membrane paradigm [101]. Our mass spectrum (52) is quite different from naive
area quantization [37, 103] since, for large black holes, we have a fine (quasi-continuous) spac-
ing between neighboring energy levels, due to the presence of the momentum term n2/R2

h. Such
a fine spacing of energy levels is more in line with general lessons from statistical mechanics
than a Planck-quantized area spectrum, see e.g. [104]. Our setup differs conceptually from the
fuzzball proposal [32, 36], according to which black hole microstates are horizonless configura-
tions that asymptotically look like a black hole spacetime. By contrast, our construction relied
on the existence of a null surface that is identified with the worldsheet of the horizon strings, and
the microstates are understood as all possible horizon string configurations, i.e., the microstate
degeneracy is due to excitations, winding, and momentum of (tensionless) strings, the ensemble
of which effectively (semiclassically) is described by the black hole.

In comparison to the fluff proposal [50, 53], our construction only rests on the near-horizon
information, whereas the former used both near-horizon and asymptotic symmetries. Moreover,
we avoid ad-hoc input such as the quantization of Newton’s constant or the quantization of conical
deficit angles that were an integral part of the construction in [50, 53]. The realization of the soft
hair proposal in [55] exploits near-horizon Virasoro symmetries and the Cardy formula to account
for the black hole entropy but is not explicit about the precise spectrum of microstates.

While our proposal stands firmly on its own, it would be nice to understand how it emerges as
a limit of tensile strings approaching a black hole, building on the discussion in [85]. Relatedly,
the critical dimension of our horizon strings is 26 [91], and it could be rewarding to consider
the impact of these extra dimensions on our analysis. An obvious generalization is to consider
higher dimensions, specifically, four spacetime dimensions. Instead of tensionless null strings,
one would have to consider tensionless null branes wrapping the horizon. All these issues are
works in progress.

Acknowledgments

It is a pleasure to thank Mangesh Mandlik for helpful correspondence. We thank our colleagues
at the mathematics departments at TU Wien and IPM Tehran, in particular Bernhard Gittenberger,
Martin Rubey, Iman Eftekhari, and S.M. Hadi Hedayatzadeh, for helpful discussions and proofs
in section 5.2 and in particular (62).

AB wishes to acknowledge the support and hospitality of the Erwin-Schrödinger Institute,
University of Vienna, and TU Wien (Vienna University of Technology), Austria where the collab-
oration was initiated. AB was partially supported by a Swarnajayanti Fellowship (SB/SJF/2019-
20/08) of the Science and Engineering Research Board (SERB), India, a visiting professorship at
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