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In 1994, Susskind and Uglum argued that it is possible to derive the Bekenstein-Hawking entropy
A/4GN from string theory. In this article we explain the conceptual underpinnings of this argument,
while elucidating its relationship to induced gravity and ER=EPR. Following an off-shell calculation
by Tseytlin, we explicitly derive the classical closed string effective action from sphere diagrams at
leading order in α′. We then show how to use this to obtain black hole entropy from the RG flow
of the NLSM on conical manifolds. (We also briefly discuss the more problematic “open string
picture” of Susskind and Uglum, in which strings end on the horizon.) We then compare these
off-shell results with the rival “orbifold replica trick” using the on-shell C/ZN background, which
does not account for the leading order Bekenstein-Hawking entropy—unless perhaps tachyons are
allowed to condense on the orbifold. Possible connections to the ER=EPR conjecture are explored.
Finally, we discuss prospects for various extensions, including prospects for deriving holographic
entanglement entropy in the bulk of AdS.
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I. Introduction

As shown by Bekenstein and Hawking, the black hole
entropy in general relativity is proportional to the area:

S = A/4GN , (1)

in units where h̵ = c = k = 1. There are many famous
derivations of (1) in string theory, the most well-known
of which is the one by Strominger and Vafa where ex-
plicit counting of the microstates was done in terms of the
BPS states of a supersymmetric black hole [1]. Among
them is a notorious 1994 article by Susskind and Uglum
[2] (henceforth S&U), which claims to derive (1) from
the string theory worldsheet perspective, for black holes
which are far from extremal (in fact they take the infi-
nite mass limit so as to calculate in Rindler spacetime).
While the S&U paper has over 600 citations, there is a
surprising paucity of followup work related to their string
theory claims, perhaps because their central claims were
widely misunderstood. First of all, S&U contains, not
one but (at least) 3 conceptually distinct derivations of
black hole entropy. These include:

1. A discussion of the UV divergent entanglement en-
tropy contribution in semiclassical field theory, and
how it renormalizes 1/GN .

2. A cartoon picture of how, in string theory, the
entropy comes from open strings ending on the
horizon. This picture can be used to argue that
S/A = O(1/g2s) = O(1/GN) in the string coupling
constant gs. However, this argument has not yet
been made sufficiently precise to calculate the nu-
merical coefficient (except insofar as, at the level of
picture-thinking, it is equivalent to the next calcu-
lation).

3. A much more precisely defined calculation involv-
ing off-shell closed strings in the presence of a con-
ical singularity. This calculation gets the factor of
1/4GN exactly correct.
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Unfortunately, most of the details of calculation 3 are not
visible in the S&U paper, since they are “incorporated
by reference” to the work of Tseytlin on off-shell string
theory [3]. (This has led some people to wrongly think
the S&U derivation of 1/4 is essentially circular; when in
fact it has a sound basis, within an unfamiliar formalism.)

In S&U’s calculation, the black hole entropy comes
from the following conical variation formula [4]:

S = (1 − β∂β)Z0 ∣
β=2π (2)

where Z0 is the partition function of a single spherical
(genus-0) worldsheet, and β is the total angle around
the horizon. (Since there can be multiple such spheres,
we have to exponentiate to get the tree-level amplitude
Ztarget = exp(Z0) = exp(−I0), where I0 is the tree level
effective action.)

The main conceptual subtlety of S&U arises because,
on a conical manifold with β ≠ 2π, the Einstein equa-
tions of motion are not satisfied. Hence, (2) requires a
calculation in an off-shell string theory, where conformal
invariance on the worldsheet is explicitly broken. It fol-
lows that the nonlinear sigma model (NLSM) living on
the worldsheet is a QFT rather than a CFT. This means
that, in addition to the Lagrangian L, a UV cutoff ϵ with
dimensions of length must be specified. The UV cutoff
ϵ on the worldsheet behaves as an IR regulator in target
space, so by adjusting ϵ one can make I0 either approxi-
mately local, or highly nonlocal.

In part I of this work [5], we addressed this conceptual
difficulty associated with breaking conformal invariance
on the worldsheet using Tseytlin’s NLSM off-shell for-
malism. We gave an accessible overview of his off-shell
prescriptions, and provided a general abstract proof (us-
ing conformal perturbation theory) they give the correct
tree-level S-matrix and equations of motion, at least to
all orders in gs and α′.
Although taking the worldsheet QFT off-shell requires

the arbitrary specification of a Weyl frame ω on the
worldsheet, we showed that at the end of the day this
arbitrary choice does not matter, because the effects of
changing ω can be fully absorbed into field redefinitions
of the target space fields. This corresponds to renormal-
ization of the worldsheet QFT.

In this paper (part II), we explain how Tseytlin’s off-
shell formalism was used by S&U to calculate black hole
entropy. We will show how to explicitly use the formalism
to compute the the string partition function on off-shell
backgrounds, e.g. on a conical manifold.

Plan of Paper. The outline of this paper is as follows:
In section II, we describe Tseytlin’s sphere prescription,
and the results in part I of this work [5] justifying its
validity.

In section III we give a more concrete derivation of
the Einstein-Hilbert action from the worldsheet theory,
following the approach of [6]. It turns out that the
Einstein-Hilbert term arises from the zero mode sector
of the worldsheet. Doing this covariantly requires a care-
ful accounting of path integral measure factors, as well

as the definition of the zero mode of the Xµ coordinate
field. (This is a 2-loop calculation, but as a result of
some Feynman graph identities in the NLSM, it can be
reduced to a 1-loop calculation, with no need to integrate
over multiple momenta.) We also work out the dilaton
action to the same order in α′.
This allows us to arrive at the Susskind-Uglum calcu-

lation of black hole entropy from off-shell closed string
theory in section IV. In this section, we also discuss
the relationship between off-shell and on-shell black
hole entropy calculations, and discuss the connection to
renormalization—how RG flow smooths out a conical
manifold. (We also tentatively make some first steps to-
wards making sense of their open string picture.)
In section V we compare Susskind-Uglum to a rival

method for calculating black hole entropy by analytically
continuing (on-shell) ZN orbifolds. However, the orbifold
is fundamentally different from the cone because it does
not allow processes in which the string pinches off at
the orbifold singularity. As a result, this method does
not give the correct black hole entropy—unless perhaps
(following Dabholkar [7]) we allow tachyons to condense
on the orbifold.
Finally, we wrap up in the Discussion VI by suggest-

ing possible avenues for further calculations of entropy
in the off-shell formalism. We discuss the prospects for
higher genus and higher α′ calculations, as well as the
bulk side of holographic AdS/CFT spacetimes, and the
exact “cigar” solution.

II. Tseytlin’s Sphere Prescription

This section is a brief summary of Tseytlin’s sphere
prescription, which we justified in the previous install-
ment [5].
Tseytlin’s off-shell NLSM formalism is a first quantized

approach to string theory, in which one takes the world-
sheet field theory to be a non-conformally invariant QFT.
(In our work we do not need to assume that this QFT
takes the form of a standard NLSM; so we can also con-
sider highly non-geometrical string compactifications.)
On the sphere Tseytlin does not deal with the SL(2,C)

Möbius group by fixing 3 points, as this prescription does
not properly extend to the off-shell case. Instead, at the
n-th order of perturbation theory, he integrates all n ver-
tex operators over the sphere to obtain a correlator K0,n.
This introduces log divergences as n − 1 points come to-
gether on the sphere. To obtain the correct spherical
string amplitude Z0 for a sphere, Tseytlin therefore dif-
ferentiates by the log of the UV cutoff ϵ, so that (up to a
multiplicative factor we are not bothering with) we get:
[3]

Z0 =
∂

∂ log ϵ
K0, (T1)

where K0 = ∑nK0,n. We call this T1 because it was
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Tseytlin’s first sphere prescription, and also because it
involves one derivative with respect to the RG flow.1

By taking the QFT to be a nonlinear sigma model,
Tseytlin checked [8–11] that this prescription gives good
answers for the first few terms in the effective action I0,
at least for massless fields of super(string) theory in the
long wavelength regime where the characteristic radius
of curvature of the target spacetime rc ≫ ls [12, 13].

In [5], we justified these prescriptions with arguments
that are more general than those found in Tseytlin’s
work. As a key lemma, we showed that when all in-
sertions are marginal primaries, the T1 prescription is
equivalent to modding out by SL(2,C) gauge orbits. This
allowed us to recover standard string theory results from
the sphere partition function, including the tree-level S-
matrix and the equations of motion to all orders in per-
turbation theory in n.

As needed to go off-shell, these equations of motion are
valid even for perturbations to the worldsheet action that
are not marginal primaries. The precise range of validity
was described more carefully in part I, but at any finite
order in n it includes arbitrary orders in perturbations of
the operator dimension about marginality, which suffices
for purposes of calculating at all orders in α′.

Since S&U’s formula for black hole entropy (2) only
involves going off-shell at linear order (n = 1), and we
will work at leading order in α′, our results in part I
are vastly more general than what we needed for part II.
However, when trying to understand S&U we had numer-
ous questions about what it means to take string theory
off-shell, and why Tseytlin’s sphere prescription T1 can
be trusted. It was only by answering all of these ques-
tions in part I, that we gained sufficient confidence that
the off-shell formalism makes sense, to accept its asser-
tions about black hole entropy. We have tried to make
part II mostly self-contained for those readers who are
willing to take the general validity of Tseytlin’s prescrip-
tion on faith. But those who wish to have the sphere
prescription justified in more detail should read part I.

These results from part I provided a general abstract
argument that we obtain the correct string action. But
in the next section of this paper, we will get our hands
dirty and explain how to derive the Einstein-Hilbert ac-
tion directly from the worldsheet. This will allow us fi-
nally arrive at the key result of this paper: the Susskind-
Uglum calculation of black hole entropy from off-shell
closed string theory, in section IV.

1 There is also a more general T2 prescription needed to obtain
the correct action for the bosonic string tachyon:

Z0 = (
∂

∂ log ϵ
+
1

2

∂2

(∂ log ϵ)2
)K0. (T2)

but this prescription is not needed for the present paper as it
is equivalent to T1 in the regimes of interest. See part I [5] for
more details.

III. The Zero Mode of a Compact Worldsheet

In this section we will derive the classical Einstein-
Hilbert term in the bosonic string action I0 from a world-
sheet perspective. For this we must consider a nonlinear
sigma model on a noncompact target space manifold. In
this section we calculate the target space action up to 2
derivatives, i.e. the leading order in α′—unlike the re-
sults in chapter VI of [5] which were valid to all orders in
α′. Our analysis closely follows Tseytlin [6, 14]. In this
section, we use ϵ to refer to a heat kernel regulator rather
than a hard disk cutoff.

In order to write the effective action as an integral
over the D dimensions of spacetime, it is necessary to
decompose the coordinate Xµ into a zero mode Y µ and
the nonzero modes ηµ. That way, after integrating out
the ηµ fields, the action takes the form of

∫ dDY L0(Y ) (3)

where L0(Y ) is the spacetime Lagrangian for the light
string fields.

We will then show that the target space Einstein-
Hilbert term originates from the zero mode on the world-
sheet. More precisely, it comes from the fact that the zero
modes Y µ behave differently than the nonzero modes ηµ,
since only the latter are confined by a quadratic poten-
tial.2

It is essential for this program that the nonlinear sigma
model be defined in a way that respects target space co-
variance. There are two main hazards making this tricky:

1. The most naive way of extracting Feynman rules
from the action fails to be covariant when there are
dynamical fields multiplying propagator terms.3

This issue arises whenever the target space volume
is not unimodular:

√
G ≠ 1.

2. The most obvious way to define the zero mode
Y µ—just average the coordinate Xµ over the
worldsheet volume—fails to respect target space

2 This means that, in bosonic string theory, an analogue of this
term appears at arbitrary genus g, but for the classical black
hole entropy we are interested in the genus-0 sphere case. For
superstrings the higher genus (g ≥ 1) contribution to the Einstein
Hilbert term vanishes due to a target space supersymmetric non-
renormalization theorem.

3 For example, if we have a single scalar field ϕ whose action is
I = ∫ ddx (1+ϕ2)(∂ϕ)2, naively this introduces a 4-valent vertex
which renormalizes other terms in the action, and yet that can’t
be true because the action is field redefinition equivalent to a
free action. In this case we are missing a divergent measure
factor which depends on 1 + ϕ2. In other words, the principle of
“democracy of paths”, whereby all histories are weighted equally
in the path integral up to phases, is valid only for theories with
constant propagators.
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covariance, because it involves the word “coordi-
nate”.4

To deal with issue #1, we include in the partition func-
tion a measure factor which depends explicitly on

√
G.

This ensures that covariance remains manifest (at least
up to a pure scheme dependency).

With respect to issue #2, we note that (at least in the
finite ϵ regime where the string action is approximately
local) the non-covariant term coming from the identifica-
tion of the zero mode is a pure boundary term. So it can
be easily identified and dropped.

To see why this is true, suppose we integrate the La-
grangian over some region R which is large compared to
the nonlocality scale:

I0[R] = ∫
R
dDY L0(Y ). (4)

In the interior of R, we are now integrating over both
the zero modes and nonzero modes, without distinc-
tion. So in the deep interior, it doesn’t really mat-
ter how the zero mode is defined. The only problem
arises near the boundary ∂R, where there is an ambigu-
ity concerning which worldsheets—remember these are
extended objects!—should be counted as being “inside”
or “outside” of R. This is really a purely conventional
question, not an objective physical fact.

The zero mode Y µ as defined above answers this ques-
tion, albeit in a non-covariant manner that depends on
the particular choice of coordinate system.5 Yet because
the action is approximately local, this problem can only
affect the string worldsheets near the boundary. So in an
α′ expansion, the noncovariance must take the form of an
integral over ∂R. Hence it manifests as a total derivative
in the spacetime Lagrangian L0(Y ).

6

This means that the noncovariant terms will not affect
the equations of motion. We do, however, have to drop
them in order to obtain the correct result for the conical
entropy, since it is difficult to find a coordinate system
where their effects would cancel.

As for covariant boundary terms, we cannot determine
them by our current formalism. However, they cannot
affect off-shell computations of black hole entropy, since

4 The standard method of dealing with this problem, the back-
ground field method [15–17], ensures covariant answers but in-
troduces some additional extra complications.

5 More precisely, it depends on an affine structure on target space.
So long as we remember which affine structure we are using, we
are free to pass to other coordinate systems. There are mani-
folds with no globally defined affine structure (e.g. S2) and on
such manifolds it would be necessary to divide the manifold into
pieces include a boundary term on the border between pieces. In
this roundabout way one would recover the covariant action on
compact manifolds. But it is easier to just realize this could be
done, and drop the offending terms.

6 In at least some contexts, this noncovariant total derivative seems
to be closely related to the Gibbons-Hawking boundary term, but
we are not sure how to make this idea precise.

any such boundary terms will be linear in β and hence
will cancel in the variation (2). This is true even at higher
orders in α′.7 (They would, however, play a crucial role
in obtaining the correct black hole entropy by an on-shell
β variation, as we will discuss in section IVB.)

Having provided these salutary warnings, we are now
ready to proceed to compute the worldsheet partition
function.

A. Partition Function

We now calculate the partition function on a compact
2-manifold Σ. Although we are primarily interested in
the sphere, until the very end all our manipulations will
also be valid for the torus, as we will only use the fact
that the metric gab on Σ is homogeneous and has a 180○

rotational isotropy.

We start with the following bare NLSM partition func-
tion:

Z(B) = ∫ [dX] exp(−IQFT[X]), (5)

where

[dX] =∏
z

dX(z)
√
G(X(z)), G = detGµν ,

IQFT =
1

4πα′
∫ d2z

√
g(∂AX

µ∂AXνGµν(X)

+ α′R(2)Φ(X)).

(6)

In (5), Gµν(X) is the spacetime background metric,
Φ(X) is the dilaton. For simplicity, we don’t include
the antisymmetric Bµν field.8 The form of the path
integral measure guarantees the path integral is space-
time reparametrization-invariant under the simultaneous
transformation of X and G:

Xµ
→X ′µ(Xµ

), G→ G′µν =
∂Xα

∂X ′µ
∂Xβ

∂X ′ν
Gαβ . (7)

To make the path integral well defined, we need a UV
cutoff ϵ. In this section we use the heat kernel regular-
ization method to consistently cutoff the action and the
measure. This is done by inserting a factor of eϵ∆ into
divergent expressions, with ∆ = −∇2.

7 For a relevant discussion of the boundary term in the classical
string field theory as well as low-energy effective actions, see the
nice discussion on p.7-8 in [18].

8 As pointed put in [6], a choice of a local path integral measure
is equivalent to a choice of the bare values of the tachyon and
dilaton fields. In addition, the renormalized value of T (X) may
be consistently tuned to be zero because it is associated with a
power law divergence.
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Let us first focus on the measure factor [dX] in (5).
We regulate this expression as follows:

ZM ∶= [dX] =∏
z

dX(z) eM

M =
1

2
tr(lnG exp(−ϵ∆))

=
1

2
∫ d2z

√
g lnG(X(z))K(z, z; ϵ)

=
1

2
N logG(X(z)),

(8)

where K(z, z; ϵ) is the trace of the heat kernel with an
infinitesimal Schwinger proper time ϵ2 → 0 (which is a

regularization of the delta function δ(0))

K (z, z′; ϵ) = ⟨z∣ exp(−ϵ∆) ∣z′⟩ ,

lim
ϵ→0

K (z, z′; ϵ) = δ(2) (z, z′) = (1/
√
g)δ(2) (z − z′) .

(9)

The trace is given by the heat kernel asymptotic [19]:

K(z, z; ϵ) =
1

4πϵ
+

1

24π
R(2) +O(ϵ2), (10)

so that after regularization the effective number of modes
N is given by

N = ∫ d2z
√
gK(z, z; ϵ) =

V

4πϵ2
+
1

6
χ +O(ϵ2), (11)

where V is the volume of the worldsheet, and χ is its
Euler characteristic.9

Now, ZM can be written as

ZM = (
√
G)N . (12)

This would certainly be a covariant measure for a lattice
field theory with N points, since each X variable would
be integrated with the covariant measure dDX

√
G. As

we are using the heat kernel regulator, the covariance
could potentially be disrupted by scheme dependencies,
but as we shall see in section III C, the fact that we are
using ϵ to regulate both the action and the measure, will
result in the two terms combining to give a covariant final
result.

B. Mode Decomposition

The eigenfunctions φm and eigenvalues λm of the
Laplacian ∆ on a compact 2-surface of the string world-
sheet are defined by the following set of relations for

9 We note in passing that this formula implies that the CFT op-
erator conjugate to

√
G has an anomalous dependence on the

curvature R when acting with a conformal transformation. This
operator is not simply ∶∂AXµ∂AXµ ∶, because G also appears
in the measure. Both of these terms contribute to the afore-
mentioned anomaly, in order to give rise to the covariant answer
required by section VII in [5].

modes on the worldsheet:

∆φm = λmφm,

∫ d2z
√
g φmφn = δmn,

∫ d2z
√
g φm(z) = 0, m ≠ 0,

φ0 = 1/
√
V , λ0 = 0.

(13)

We now consider the regularized Green’s function defined
in terms of φn and λn as:

D (z, z′) = ⟨z ∣∆−1 exp(−ϵ2∆)∣ z′⟩

= ∑
m≠0

exp (−ϵ2λm)

λm
φm(z)φm (z

′
) .

(14)

Here we have omitted the zero mode (ϕ0)—which is good
because otherwise Gauss’ law prevents us from inverting
the propagator on a compact worldsheet! (This is justi-
fied by the fact that we will be using this expression in
Feynman diagrams that integrate over the nonzero modes
only.) From (14) we obtain the important relation:

∆D (z, z′) = δ(2) (z, z′) − 1/V. (15)

To compute the regulated partition function ZB , we
now split Xµ into a constant part and a non-constant
part Xµ = Y µ + ηµ. To do this properly, and avoid over-
counting of Y µ, following the standard Fadeev-Popov
(FP) procedure, we insert the following “1” factor into
(5) [15].10

1 =∫ dDY ∫ ∏
z

dη(z)δ(D)(X(z) − Y − η(z))

× δ(D)(Pµ
[Y, η])Q[Y, η]

Q = det (∂Pµ
[Y − a, η + a]/∂aν)a=0 .

(16)

A canonical choice of Pµ and the FP factor Q is

Pµ
= ∫ d2z

√
g ηµ(z),

Q = V D, V = ∫ d2z
√
g.

(17)

If we take the worldsheet to be a unit sphere, this just
contributes a multiplicative constant to the partition
function.

C. Covariance of the Measure:

To ensure the manifest covariance of the path integral
measure, the noncovariant terms lnG(X(z)) in (8) must

10 The Pµ = 0 gauge conditions guarantees that the integral over η
is can be expressed only in terms of the non-zero modes of ∆ by
virtue of (13).
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cancel with some term in the path integral over η in the
action which has the number of non-zero modes N ′. Let
us how this happens.

If we substitute Xµ = Y µ + ηµ into (5) and (8) and
expand, we obtain

IB =
1

4πα′
∫ d2z

√
g (∂aηµ∂aη

νGµν(Y )

+ ∂aηµ∂aη
νηλ∂λGµν(Y )

+
1

2
∂aηµ∂aη

νηληρ∂λ∂ρGµν(Y )

+O (η5) )

+ χΦ +
1

8πα′
∫ d2z

√
g(ηµην∂µ∂νΦ(Y ) +O(η)).

(18)
The leading order in α′ contribution to ZM (focusing
only on the zero mode and ignoring the O(η) perturba-
tions) is:

Z
(0)
M = ∫ dDY exp (−χΦ)

√
G
(N)

. (19)

The leading order term from the path integral over η
in (18) is

Z(0)η = [det′Gµν(Y )∆]
−1/2

= exp [−
1

2
N ′ logG(Y ) −

1

2
D ln det′∆]

= Z
(0)
f exp(−

1

2
N ′ logG(Y ))

= Z
(0)
f

√
G(Y )

−N ′
,

(20)

where Z
(0)
f is the l-loop free particle vacuum functional

given by

Z
(0)
f = exp(−

D

2
log det′∆), (21)

and det′∆ includes only the non-zero modes of ∆:

N ′ = ∫ d2z
√
gK ′(z, z, ϵ)

= ∫ d2z
√
gK(z, z, ϵ) − 1/V

= N − 1.

(22)

Putting ZM and Zη together, we obtain a manifestly
covariant measure:

Z
(0)
M Z(0)η = Z

(0)
f ∫ dDY exp(−χΦ)

√
G(Y )

(N−N ′)

= Z
(0)
f ∫ dDY

√
G exp(−χΦ).

(23)

If we now include the O(η2) terms in the expansion
of (8), then the O(α′) correction to the target space La-
grangian from the measure factor is:

Z
(1)
M = (1 +

1

2
πα′ND(z, z)

× (GµνGλρ∂λ∂ρGµν −G
µαGνβGρλ∂ρGµν∂λGαβ) ).

(24)

The path integral can now expressed as the product of
several factors:

Z(B) = Z
(0)
f ∫ dDY

√
G exp(−χΦ)Z

(1)
D Z

(1)
G Z

(1)
M (Y ),

(25)

where Z
(1)
D and Z

(1)
G are the 1-loop dilaton and 2-loop

graviton multiplicative corrections, respectively which we
compute separately in the next two subsections.

D. Dilaton Contribution

Now we turn to the dilaton contribution. From (18),
the dependence of the Lagrangian on the dilaton, ex-
panded to O(α′2) is given by

Z
(1)
D = 1 − α′χηµην∂µ∂νΦ(Y )

=1 − α′Gµν∂µ∂νΦ(Y )D(z, z)

=1 + α′
χ

2
log ϵ ∂µΦ∂

µΦ

(26)

where in the second step, we used that the regularized
propagator for ηµ given by

⟨ηµ(z)ην (z′)⟩ = 2πα′Gµν
(Y )D (z, z′) , (27)

and that in the limit z → z′, (14) is given by

D(z, z) = −
1

2π
log ϵ + h. (28)

where on a homogeneous worldsheet (which is possible
for either the sphere or the torus) h = 1

2
logV + O(1)

and is independent of position. Homogeneity also ensures
that there can be no tadpoles11 of the ηµ field; since by
symmetry, any such tadpole would be proportional to
the nonexistent zero mode of ηµ. The O(1) parameter is
just a constant which depends on the finite part of the
heat kernel—for a torus this is a function of the modular
parameter τ .

E. Graviton Contribution

We now turn our attention to the contribution ZG from
the metric perturbation in (25). From (5), we exam-
ine the two possible 2-loop diagrams in ZG expanded to
O(α′2):

Z
(1)
G = 1 + J1G

µνGλρ∂λ∂ρGµν

+ J2G
µαGνβGρλ∂ρGµν∂λGαβ

+ J3G
µλGνβGρα∂ρGµν∂λGαβ ,

(29)

11 Here we mean the ordinary QFT tadpole diagrams like O— of
the fundamental field of the NLSM, not the string field tadpoles
discussed in other parts of this article.
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Figure 1: The three 2-loop Feynman diagrams, J1, J2,
and J3 which contribute to ZG

(1). The edges are the
propagator of the nonzero modes ηµ (contracted with
the metric Gµν) while the tick marks represent ∂A

derivatives (always contracted with another derivative
on the same vertex). See Fig. 2 for their evaluation.

where the corresponding Feynman diagrams (shown in
Fig. 1) evaluate to:

J1 =
1

2
πα′ ∫ d2z

√
g [(∂A∂

A
D (z, z))

z=z′ D(z, z)]

= −
1

2
πα′D(z, z)N ′

=
1

4
α′N ′(log ϵ + h),

(30)

J2 =
1

2
πα′ ∫ d2z

√
g∫ d2z′

√
g′

× ∂A∂
′
BD (z, z

′
)∂AD (z, z′)∂′BD (z, z′)

=
1

2
πα′D(z, z)N ′

= −
1

4
α′N ′(log ϵ + h),

(31)

and

J3 = πα
′
∫ d2z

√
g∫ d2z′

√
g′ ∂A∂′BD(z, z′)

× ∂A∂
′
BD (z, z

′
)D (z, z′)

= −
1

2
πα′D(z, z)

=
1

4
α′(ln ϵ + h).

(32)

Happily, we didn’t actually have to do any 2-loop inte-
grals, as all of these diagrams can be reduced to 1-loop
diagrams by integrating by parts, and (in the case of the
oyster diagrams J2 and J3) using (15) to remove propa-
gator edges (see Fig. 2). To evaluate the resulting 1 loop
expressions, we use (11), (22) and (28).

We have also used the existence of a 180○ rotational
symmetry on the sphere or torus to discard any loop
from a vertex to itself containing a single derivative:

∂AD(z, z
′
)∣

z=z′
= 0, (33)

as this is odd with respect to the 180○ rotation.

F. Target Space Effective Action

Putting equations (24), (26), and (29) together, the
bare path integral (25) of the nonlinear sigma model ac-
tion (5) comes to

Z(B) = Z
(0)
f ∫ dDY

√
G exp(−χΦ)

[1 +
1

2
χα′(log ϵ + h)∂µΦ∂

µΦ

−
1

4
α′(N −N ′)(log ϵ + h)GµνGλρ∂λ∂ρGµν

+
1

8
α′(N −N ′)(log ϵ + h)GµαGνβGρλ∂ρGµν∂λGαβ

+
1

4
α′(log ϵ + h)GµλGνβGρα∂ρGµν∂λGαβ +O(α

′2
)]

(34)

Using the following identity for the Ricci scalar R in (34)
and after accounting for total derivative terms which we
show next, we obtain the string partition function on a
compact 2d string worldsheet

∫ dDY
√
G exp(−χΦ)R =

1

4
∫ dDY

√
G exp(−χΦ)

×GµαGνβGρλ(∂ρGνβ∂λGµα − ∂ρGβα∂λGµν

− 2 (∂ρGνβ∂µGαλ − ∂ρGβα∂νGµλ)),
(35)

we obtain the following NLSM partition function for the
sphere or torus:

Z = Z
(0)
f ∫ dDY

√
G exp(−χΦ)

× (1 +
1

2
α′(log(ϵ) + h)(R + χ∂µΦ∂

µΦ) +O(α′
2

)).

(36)

Some comments are in order. (1) The power law di-
vergences in (18) canceled with the choice of the local
measure in (24) such that the final expression of the
sphere partition function in (36) has only logarithmic di-
vergences. The key observation however is that the origin
of the logarithmic divergences in (36) is the zero mode of
the Laplacian, coming from N −N ′ in the measure and
action. (2) In calculating (36), we used the non-explicitly
covariant expansion of the action (18). However, the
explicitly covariant Riemann normal coordinates can be
used to obtain (36) [6]. The end result is the same except
for the absence of the noncovariant total derivative.

Total Derivative Terms. In order to obtain the inte-
grand of (36), we needed to subtract off two noncovariant
and one covariant total derivative terms. The noncovari-
ant terms are:

∫ dDY ∂λ[
√
G exp(−χΦ)GµνGλρ∂ρGµν] (37)

and its cousin

∫ dDY ∂λ[
√
G exp(−χΦ)GµνGλρ∂µGνρ] (38)
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(a) (b)

(c)

Figure 2: The evaluation of all Feynman diagrams required to determine the classical action I0 at leading order in α′.
We treat symmetry factors, and the −1 for each vertex, as numerical coefficients rather than as part of the diagram
values. (a) The basic manipulation rules: integration by parts, the evaluation of edges involving the Laplacian ∇2

using (15) or (11), the evaluation of a basic loop with no derivatives (28), and integrating a vertex over the
worldsheet volume V . The notation /●∣/ represents an arbitrary number of additional edges coming out of a vertex.

(b) The evaluation of 1-loop and figure 8 diagrams. (c) The evaluation of oyster diagrams.

The covariant total derivative term is

∫ dDY ∂µ[
√
G exp(−χΦ)Gµν∂νΦν] (39)

This term allows us to express the dilaton kinetic term
in the action as −χ∂µΦ∂

µΦ or ∂µ∂
µΦ.

Genus-0 Effective Action. To obtain the tree-level
(classical) finite effective action for closed bosonic strings,
we first note that the spherical worldsheet correlator K0

(defined in section VII.A of [5] is exactly the same as
the sphere partition function except for the inclusion of
ghosts:

K0 = Z0Zghosts. (40)

To get the classical string action, we now simply apply
the T1 prescription—whose use we have abundantly jus-
tified in sections 6 and 7 of [5]—and obtain:

I0 = −(
∂

∂ log ϵ
K0)

∝ −
α′

g2
∫ d26Y

√
G exp(−2Φ)(R + 2∇2Φ).

(41)

In this equation, we have assumed D = 26 so that the

ghosts cancel out the log ϵ in Z
(0)
f

12 and set χ = 2 Also

note that (41) uses the covariant derivative for the kinetic
term of the dilaton.
Note that there are no powers of log ϵ remaining in

(41), so our result for the sphere is actually independent
of the RG scale at this order in α′.13

12 otherwise there would be a leading term proportional to D − 26
in the action.

13 If we had considered higher orders in α′, there would remain pow-
ers of log ϵ in I0, in which case the interpretation would depend
on the choice of renormalization regime as discussed in section
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Genus-1 Effective Action. If we instead consider
the torus, we do not differentiate by log ϵ, so our result
depends on the Weyl frame when the background is off-
shell. This ambiguity would need to be absorbed into an
O(g2) field redefinition of the target space fields using the
tree-level equations of motion. For a classically on-shell
background, and for order unity τ , the genus-1 correction
takes the very simple form of a volume integral:

K1(τ) ∼ α
′
∫ d26Y

√
G. (42)

However, to obtain Z1 we also need to integrate over the
modular parameter τ (divided by Vol(CKG) = Re(τ)).
If we allow large τ in this integral, our perturbation the-
ory in η breaks down. In this regime the torus needs
to be treated as an extended worldline and so the effec-
tive action Ieff1 is no longer approximately local. In the
case of bosonic strings Ieff1 is also IR divergent due to the
tachyon.

On the other hand, in superstring theory, a target
space nonrenormalization theorem implies that Ag,n = 0
for g ≥ 1, n ≤ 3 when expanding around flat space, so
in this case there is no genus-1 correction to the target
space Einstein-Hilbert term.

IV. Susskind and Uglum Revisited

A. The Induced Gravity Scenario

Now that we have argued for the validity of Tseytlin’s
off-shell prescriptions, in this section, we explain how
Tseytlin’s off-shell formalism was actually used by S&U
[2] to calculate the tree-level BH entropy.

S&U [2] pointed out that string theory is actually an
induced theory of gravity, in the sense that the target
space manifoldM has no inherent action of its own, apart
from the action induced by the string worldsheets that
propagate on M. That is, we do not couple strings to
gravity by writing down something like:

Itarget = ∫
M
dDX

√
−G

R

16πGN
+ Istrings (43)

but rather the graviton and its gravitational action arise
entirely from integrating out the string worldsheets (as
we did in section III). In other words in the fundamental
description there is only Istrings and the bare value of
1/GN = 0, and it is only in the effective theory where

IV.C of [5]. If we want an approximately local effective action we
can simply choose a finite value for ϵ (which is equivalent to re-
moving the divergences with counterterms), and different choices
of ϵ or RG scheme will be equivalent via field redefinitions. On
the other hand, for want the S-matrix regime we would reinter-
pret these higher powers of log ϵ as poles, as discussed in section
V of [5].

there is a nonzero 1/GN (and similarly various higher
curvature terms in α′ expansion).
This is morally similar to Sakharov’s induced gravity

proposal [20] in which 1/GN is induced by 1-loop QFT
diagrams which are assumed to be cut off by some un-
known quantum gravity physics at the scale of the Planck
length lp. In fact string theory is even better, because it
is already finite, having an objective UV cutoff within it
because the behavior of strings smooths everything out
at the scale of the string length ls. Even at weak cou-
pling where ls ≫ lp, we still obtain an effective Newton
constant of size

GN ∼ (lp)
D−2

∼ g2s(ls)
D−2 (44)

because the tree level sphere diagrams come with a large
factor 1/g2s in front. This is an effect which has no ana-
logue in ordinary QFT.
Now what are the implications of this for black hole

thermodynamics? Recall that a black hole coupled to a
QFT has a generalized entropy equal to

Sgen = ⟨
A

4GN
⟩ + Sout, (45)

where A/4GN is the Bekenstein-Hawking horizon en-
tropy, and Sout = Tr(ρ log ρ−1) is the von Neumann en-
tropy of quantum fields outside of the horizon.
However, as pointed out by S&U and Jacobson [21], in

an induced gravity scenario, there is no bare 1/GN and
hence no intrinsic horizon entropy. Instead, we have at
the fundamental level

Sgen = Sout. (46)

In other words, the Sakharov induced gravity hypothesis
is equivalent to the statement that black hole entropy is
entirely due to the entanglement of matter fields. See
[22–24] for further discussion of this point.
In this section, we show that this is indeed true for

string theory if we interpret Sout as being

Sout = (1 − β∂β)Z0 (47)

where Z0 is the partition function of the sphere world-
sheet on a cone with opening angle β. In other words,
SBH can be interpreted as Sout in the sense that the effec-
tive field theory of classical strings which lives on the 2D
cone in target space, induces the effective Newton con-
stant from the spherical worldsheet partition function.

There are, however, some significant caveats in the
above statement. First of all, in order to really inter-
pret Sout as a manifestly statistical entanglement en-
tropy, there would have to be a way to factorize the
Hilbert space of string theory, so as to count the states
on just one side of the horizon. S&U interpret these hy-
pothetical states as being open strings which begin and
end on the horizon. (These are really closed strings on
the full manifold M, but the horizon cuts them off.) We
will discuss this putative open string picture (and the
problems with making it precise) in section IVE.
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Secondly, although string theory is induced in the
sense that there is no fundamental target space Einstein-
Hilbert term, there is still a fundamental Einstein-Hilbert
term on the worldsheet. It is this which produces the 1/g2s
factor in the string theory, which manifests in the open
string picture as a factor of 1/gs for each string endpoint
(almost like a Chan-Patton factor but with a continuous
range of values). It is not yet clear whether this term
can be given a statistical interpretation even in the open
string perspective.

In the remainder of this section, we first give an
overview in IVB of the two equivalent approaches (on-
shell and off-shell) to computing black hole and entan-
glement entropy in QFT and string theory. Then we
present the S&U off-shell closed string entropy calcula-
tion in section IVC, which implements the off-shell ap-
proach in string theory.

B. On-shell vs Off-shell Thermodynamics

Before we get to the S&U computation of the black hole
entropy, we briefly discuss the two different methods of
calculating it in semiclassical gravity and string theory14:
(1) on-shell and (2) off-shell. To make the discussion clear
and simple, let us focus on the Einstein-Hilbert (EH)
action with the Gibbons-Hawking (GH) boundary term

S =
1

16πG
∫
M
R +

1

8πG
∫
∂M

K. (48)

Gravity On-shell: In this method, the EH term van-
ishes on-shell i.e. on a saddle point, and hence the entire
contribution to the classical BH entropy comes from the
GH boundary term

lnZtree = −IGH = βF (β), (49)

where F (β) = − logZ(β)/β is the free energy of the canon-
ical ensemble, in terms of which the BH entropy is the
computed by

SBH = (β∂β − 1) (βF ) = β
2∂βF. (50)

The on-shell method takes you to a new saddle point; in
the context of black holes this means that we move to a
new massM(β) thus changing the horizon area A to first
order.

Gravity Off-shell: Here, the first order variation ∂βF
is independent of the mass M in the sense that the black
hole geometry does not react to the variation in β away
from the equilibrium βRindler = 2π. This introduces a
conical singularity at the black hole horizon and leads
to an unstable vacuum. This is the main physical effect

14 The discussion in this section is largely based on Chapter 5 of
[25]. See also [26].

of introducing a conical singularity in a thermodynamic
background.15 In the off-shell method, the GH boundary
term is proportional to β and is thus irrelevant off-shell.
Therefore, the entire contribution to SBH comes from IEH

lnZtree = −IEH = βF (β). (51)

In string theory, the on-shell approach corresponds
to worldsheet theory be a CFT (supplemented with a
Gibbons-Hawking like boundary term at infinity). On
the other hand, the off-shell approach corresponds to tak-
ing the worldsheet to be a QFT.
In section V, we will discuss a different on-shell ap-

proach involving ZN orbifolds.

C. Entropy of Closed Strings in Rindler

S&U compute the entropy associated with spherical
worldsheets in the near-horizon region of aD dimensional
Schwarzschild black hole.16 In the limit of infinite mass
M , this can be approximated as Rindler spacetime:17

ds2 = −ρ2dt2 + dρ2 +
D−2
∑
i=1
(dXi

)
2, (52)

which has topology R2 × RD−2. In this limit we are ne-
glecting subleading α′ corrections to the black hole en-
tropy A/4GN , which would otherwise be present in an
infinite series of higher curvature corrections [27, 28].
After analytic continuation to Euclidean time τ = −i t,

the metric (52) becomes

ds2 = ρ2dt2 + dρ2 +
D−2
∑
i=1
(dXi

)
2, (53)

which is just flat space in polar coordinates. To avoid a
conical singularity at the horizon, the τ -coordinate must
be periodic with periodicity

τ ∼ τ + 2π. (54)

We can then replace the normal R2 with a conical mani-
fold Mβ by simply replacing the periodicity with

τ ∼ τ + β. (55)

15 For the conical manifold to be a saddle point of IEH [2], there
would have to be a codimension-2 membrane source at the tip
of the cone.

16 We could also consider, as S&U do, the case of a KK reduced
product manifold M ×K, where M is e.g. the four dimensional
Euclidean Rindler space and K is a (D−4)-dimensional compact
CFT, in which case the 4 dimensional Newton constant would be
obtained from the D dimensional Newton constant by dividing
by the generalized volume V (K). Other than this factor, the
compact dimensions play no role in the argument.

17 While the S&U paper uses type II superstring worldsheet action
in D = 10, in this paper, we work with the bosonic string in
D = 26. At genus-0, the Susskind-Uglum derivation is essentially
identical in both cases.
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Since at the conical tip, the Ricci scalar is given by

√

G(2)R(2) = 2(2π − β)δ(2)(X), (56)

and hence the EH action is

∫
M
(2)
β

R = 2A(2π − β), (57)

the tree-level black hole entanglement entropy (2) can be
expressed as

SBH = (1 − β∂β)(
∂

∂ log ϵ
K0)∣

β=2π

= (1 − β∂β)Z0∣
β=2π

= (1 − β∂β)(−IEH)∣
β=2π

= (1 − β∂β)
2A⊥

16πGN
(2π − β)∣

β=2π

=
A⊥
4GN

.

(58)

Here K0 is the renormalized sphere partition function,
which is however (at this order in α′) independent of ϵ.
We got the third line from III, where we computed Z0

from the closed bosonic sphere string worldsheet action
(and showed that that the origin of the log ϵ in Z0 comes
from the zero mode of the heat kernel Laplacian on the
sphere). As we showed in section V of [5] that since Z0

also gives the correct S-matrix as ϵ → 0, this value of
GN appearing in the black hole entropy is necessarily
consistent with the value of GN that would be deduced
from gravitational scattering processes [29].

A word is necessary about how to justify our use of
the distributional curvature formula (56) at the singular
tip of the cone. Note that we cannot simply excise this
singularity (replacing the topology of the target space-
time from Mβ to S

1 ×R), because that would change the
physics even at β = 2π by preventing string worldsheets
from crossing the codimension 2 surface. Hence we must
have a way to deal with the singularity to make it regular.

In off-shell calculations of black hole entropy we usu-
ally slightly smooth out the tip over a length scale r∗. It
turns out however that the black hole entropy is not sen-
sitive to the value of r∗ because, at first order in 2π − β,
the contribution of the tip converges in the r∗ → 0 limit
[30], and so we recover the delta function (56). On the
plane, this is relatively obvious because translation sym-
metry of the plane R2 makes the position of the curvature
unimportant, allowing us to freely smear it out at first
order. But it the result holds more generally even on
backgrounds with less symmetry.

On this smoothed out cone, we are now justified in
using the target space effective action I0 that was derived
in section III. We can ignore the higher α′ corrections
because their contribution to S involves higher powers of
the curvature which vanish on the plane.

D. RG Flow of the Cone

While it should be obvious to see the relationship be-
tween the entropy and the graviton tadpole, we think
it’s still enlightening to have it written down explicitly.
Using that the graviton beta function is given by [5]

β(G)µν = α′Rµν + 2α
′
∇µ∇νΦ, (59)

and (57), there is a nonzero value of the 1-point string
amplitude A0,1 due to the graviton tadpole (for a con-
stant Φ) , associated with the β function of the metric at
the tip of the cone

β(G)µν = α
′Rµν =

δ(2)(X)

GN
(2π − β)Gµν . (60)

So, we see that the conical deficit in target spacetime
is directly related to the nonzero graviton tadpole. At
βRindler = 2π, it vanishes.18 This is consistent with the
fact that a non-zero tadpole signals an unstable vacuum
which emits strings, in this case, from the conical tip on
the black hole horizon.
While it would be interesting to explore the effects of

this string emission from a real-time perspective, in this
section we instead explore the RG flow of the cone, due
to the nonzero β function at the tip when β ≠ 2π. On a
smooth manifold increasing the size of the cutoff ϵ corre-
sponds to a Ricci flow process on the target space man-
ifold.
Is there a Ricci flow from a conical manifold with an

arbitrary β ≠ 2π to βRindler = 2π through which the cone
becomes flat? It turns out this type of flow is known as
smoothening Ricci flow.19.
As usually defined, the Ricci flow describes the evolu-

tion of a smooth Riemannian metric on a manifold. The
Ricci flow equation is then expressed in terms of a time-
dependent metric g(t) as

∂

∂t
Gµν = −2Rµν =∶ −2(∆G)µν , (61)

where Rµν is the Ricci tensor and ∆ is a spin-2 analogue
of the Laplacian operator. On a 2-dimensional conical
manifold, however, it is not clear that Ricci flow even
exists (in the sense that manifold will uniformize) due to
the infinite (delta function) curvature at the conical sin-
gularity. Indeed, the Ricci flow equation (in the smooth
part of the manifold not including the puncture), in terms
of the conformal metric on the cone becomes

∂

∂t
ω = −2e−2ω∆ω = −

R

2
, (62)

18 Because βΦ has no dependence on curvature, there is no dilaton
Φ tadpole, although there is a Φ̃ tadpole due to the RG flow of
the metric. See section VII in [5] for a discussion of the difference.

19 The definitions and discussion in this section are largely drawn
from chapters 4 and 5 in [31]
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Figure 3: The apex of the cone gets smoother and
smoother as we flow to the IR.

In conformal coordinates, the metric on a cone can be
expressed in terms of the conformal factor as20

ds2 = e2(a(t)+β lnρ) (dρ2 + ρ2dθ2) , (63)

where here −1 < β ≤ 0 and a(t) is a finite and bounded
function21. Thus, (63) says that the information about
the conical singularity is encoded in the logarithmically-
divergent β lnρ as ρ → 0 (the asymptote of ω i.e. as we
go arbitrarily close to the puncture in the center of the
disk.

Including the metric asymptote ρ → 0 in (62) gives
an ill-defined flow equation due to the unbounded curva-
ture at the tip22. Thus, to have a well-defined Ricci flow
equation, the ρ→ 0 singular point must be truncated by
putting consistent boundary and initial conditions. In
this case, it was in fact shown in [31, 33] that a unique
smoothening Ricci flow, that satisfies the flow equation
for any time t ∈ (0, T ] exists on this truncated, or blunt,
cone. Importantly, the curvature of the flow was found
to be bounded at finite RG time so that the cone evolves
into a smooth manifold.23

This means that there is a sense in which string the-
ory automatically smooths out the cone for us. Suppose
we introduce the conical singularity in target spacetime
at some specific value of the UV cutoff ϵ, and then we
RG flow the worldsheet theory towards an IR, to a new
length scale µ > ϵ. (E.g. we could fix µ to be a dimen-
sionless number times the worldsheet sphere radius.) At
the scale µ, the effective off-shell theory is now that of
strings propagating on a smooth background. As the Eu-
ler characteristic guarantees that

∫ d2X
√

G(2)R(2) = 2(2π − β) = const. (64)

in RG time, the black hole entropy S remains the same
at all values of ϵ.24 Note that in (64) we are defining β as

20 A conical surface is homeomorphic to a punctured disc with the
metric (63) in the neighborhood of the puncture at the center.

21 (63) is consistent with equation 4.5 in [32].
22 Using (56) in (62), we get −2e−β logρ∆ω = 2(1+β)δ(2)(ρ), which

shows the delta function singularity at the right hand side is di-
rectly related to the metric asymptote ρ→ 0, which by definition,
in not included in the disk on the left hand side!

23 It would be interesting to use these results to try to calculate the
Rindler entropy S(β) for β ≠ 2π.

24 Or, in the case of black hole entropy at higher orders in α′, we

the asymptotic periodicity as ρ→∞, which is unaffected
by finite quantities of RG flow.
If we take the limit that ϵ→ 0 while holding µ fixed,25

the curvature R spreads out and goes to 0 at every point
in the manifold. So asymptotically the Rindler cone re-
laxes to flat spacetime R2, in a process that takes us
back to on-shell string theory asymptotically. However
this limit is quite subtle as (64) still holds at every point
along the flow. What is happening is that the curvature
diffuses out to infinity. Hence, in order to successfully
take the on-shell limit without a discontinuous jump in
the action, we will need to include a boundary contribu-
tion to S out near infinity, as required by the on-shell
black hole entropy calculation.
If, rather than having perfect Rindler spacetime, we

instead started with a black hole spacetime as we did at
the start of IVC, then to take the IR limit we would need
to do the Ricci flow on the Euclidean black hole instead of
the plane. We expect that in this case we would similarly
relax to an on-shell black hole, but at a new inverse tem-
perature β. In this way, the off-shell string calculation
is presumably equivalent to an on-shell black hole string
theory calculation. But doing this calculation properly
would require a better understanding than we currently
possess of how the GH boundary terms are produced at
the level of the worldsheet theory.

E. Towards an Open String Picture?

So far we have shown how Tseytlin’s work on off-shell
string theory was used to derive the S&U closed string
calculation. Explaining that result was the main point of
this article.
In this section—which is far more speculative—we now

turn to the less rigorously defined open string picture,
which in S&U paper was essentially based on cartoon
drawings of how string worldsheets might be embedded
in a geometry (see Figures 1-5 of S&U [2], and also [34]
for the corresponding Feynman diagrams in the particle
limit.)
The goal of the open string picture is to provide a mani-

festly statistical interpretation of the string entanglement
entropy. The existence of such a picture is strongly sug-
gested by the success of the closed string picture in cal-
culating the A/4GN term even at weak coupling.
For a true statistical interpretation to exist, we need

a tensor factorization of target space into two Hilbert

would still have dS/dϵ = 0 since renormalization preserves the
effective action I0, but this would involve a more complicated
computation between target space field redefinitions and the ef-
fects of changing ϵ on the sphere.

25 Note that we are holding the coupling constants fixed at ϵ. This
differs from the more usual way of thinking about renormaliza-
tion where we hold the physics fixed at µ and adjust the couplings
as ϵ → 0. That would involve inverse Ricci flow which seems to
be ill-defined when applied to the conical singularity.
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spaces, describing strings both inside and outside the
horizon:26

H ⊆ Hout ⊗Hin. (65)

In Lorentzian signature, these would correspond to the
left and right wedges around the bifurcation surface of
the horizon. In Euclidean signature, the Hilbert space
Hout would describe the state on a ray in R2 of constant
τ coming out from the bifurcation point.

Since strings can cross the horizon, the description of
string states in just Hout would seem to require open
strings that end on the horizon, as shown in Fig. 4. This
is why we wrote ⊆ rather than = in (65) because (at least
in the low energy description) there seem to be edge mode
constraints relating the two sides, e.g. that the number
and positions27 of the string endpoints must agree on
both sides.28 The positions of these string endpoints on
the horizon are frozen, due to the infinite gravitational
time dilation. So the dynamical degrees of freedom are
those of an n-punctured sphere where n is the number of
intersections with the horizon.

If such a description existed, one could then write the
punctured sphere partition function as a one-sided ther-
mal ensemble:29

Z(β) = Trout exp(−βK), (66)

where K is the Killing Hamiltonian acting on states in
Hout, which looks like a boost at the horizon. It might
then be literally true30 that the black hole entropy is a
von Neumann entropy:

S = Trout(ρ log ρ
−1
). (67)

In order to ensure that there is a literal state count-
ing interpretation, one might want to cut out a small
disk D around every point p ∈ Σ ∩H in which the string
worldsheet Σ crosses the codimension-2 bifurcation sur-
face of the horizon H. For this to work, it is crucial that
the boundary conditions on ∂D be chosen so that the

26 Ref. [35, 36] attempted to calculate an entanglement entropy in
string theory by assigning string fields a position based on their
center-of-mass only. This seems conceptually problematic, since
the vibration of a string can cause it to partially exit a region.

27 Although these positions fluctuate wildly so it is not totally clear
how meaningful the position of a string endpoint on a compact
horizon is.

28 But see Harlow [37] for (i) an argument that there can be no fun-
damental edge mode degrees of freedom in a holographic theory
of quantum gravity, and (ii) a toy model showing how it is pos-
sible for there to be edge modes in an effective description even
though they are not present in a more fundamental description.

29 This presumes the horizon is thermodynamically stable in the
canonical ensemble, as would be true e.g. for large black holes in
AdS.

30 In the case of a black hole with finite horizon area. For a Rindler
horizon there would still be annoying IR issues requiring the use
of type III von Neumann algebras.

Figure 4: A closed spherical worldsheet is sliced
vertically along constant Euclidean Rindler time. Each
slice of the sphere appears to the Rindler observer as an

open string with its endpoints frozen on the
codimension-2 entangling surface (horizon). In this
cartoon we assume the sphere intersects the horizon

exactly twice—which is not actually realistic!

value of Z(β) is the same as on the original closed string
worldsheet before cutting out the disks. These boundary
conditions would also need to be local in the τ direction
on ∂D, in order to ensure the validity of the Hamiltonian
formalism (66). Since, on a t = 0 slice, the two sides of
the disk are related by entanglement only, this would pro-
vide a concrete realization of the ER = EPR conjecture
[38–41], in which a geometric connection is equivalent to
entanglement of disconnected systems. (See [42] for other
proposals for implementing ER = EPR on string theory
backgrounds.)
Varying β would now be associated with varying the

total angle of each circle ∂D. Since the Einstein-Hilbert
action ∫

√
gR on the worldsheet provides a term in the

effective action proportional to 2π − β for each disk of
angle β on the worldsheet, it is necessary for each disk to
come with this factor. But, any local classical boundary
term on ∂D will produce a term linear in β [43]. The
constant term 2π must therefore come from some quan-
tum statistical state counting. It seems to correspond to
an O(1/gs) number of states associated with each end-
point, so that a string with 2 endpoints on the horizon
contributes a factor of 1/g2s ∼ 1/GN to the black hole
entropy.31

31 As naively the endpoints of strings are integrated over the entire
volume of the horizon, it seems that the effect of finite string
coupling is in some way to regulate or discretize the number
of allowed string end states. However the fact that 1/g varies
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This open string picture has already been realized in
two-dimensional [44, 45] as well as six-dimensional topo-
logical string theory [46]. Whether it can be concretely
realized for bosonic strings or superstrings is still an open
and very challenging question.

In addition to the fact that the correct boundary con-
ditions at ∂D are unknown,32 there is a very serious prob-
lem with making sense of these open strings. The scariest
problem is that any given compact worldsheet Σ (e.g. a
sphere) will actually intersect the horizon H infinitely
many times! This is because the Xµ field on the world-
sheet is actually a quantum field which, like every QFT,
has violent fluctuations at short distances on the world-
sheet [50, 51]. Although these divergences are merely
logarithmic, they still ensure that the fluctuations at any
point p ∈ Σ of some specific coordinate X0 diverges:

⟨(X0)
2
(p)⟩ =∞. (68)

What’s more, since UV divergences are local, if we take
two distinct points p and q even their difference X0(p)−
X0(q) diverges wildly. See the discussion in section IV
of [5] where we discuss how divergences are related to
propagation of strings.

Therefore, if we are looking at the unregulated world-
sheet theory ϵ = 0, we cannot consistently suppose that
a sphere intersects H at 2 points, or even Taylor expand
in the number of intersections ∣Σ∩H ∣. Fortunately, since
we already needed to introduce a UV regulator ϵ to make
sense of off-shell string theory, we could choose our reg-
ulator so that it also solves this intersection problem.
One way to do this would be to add a new stiffness term
to the string worldsheet action which in flat spacetime
would take the form:

ϵ2n−2
√
gXµ
(∇

2
)
mXµ. (69)

Since this term is quadratic in the X field, it can be
viewed as a Pauli-Villars modification of the X propaga-
tor:

1

p2
→

1

p2 + p2m
, (70)

where m = 1 is the standard propagator term, and n ≥ 3
suffices to regulate all logarithmic and quadratic diver-
gences on the worldsheet.

continuously suggests that things are more subtle than a simple
Chern-Paton factor with N ∈ Z states running around ∂D.

32 A nonconformal boundary state representing a disk with bound-
ary condition β ≠ 2π, could be described by the insertion of a
vortex state, a hole, on the worldsheet. In target spacetime, the
vortex is a string winding mode [47–49]. This picture seems to
suggest there is an RG flow on ∂D that takes the vortex to a
conformal state β = 2π where the winding tachyon condenses on
the horizon, at which point, the black hole entropy is entirely the
entropy of the condensate. For further discussion of this point,
see section VB.

The stiffness term also ensures that the (m − 1)st
derivative of the worldsheet Σ becomes continuous be-
cause otherwise there is an infinite penalty in the action.
This appears to be strong enough to ensure that the set
of intersections Σ ∩H is finite, and that generically the
string intersections take a simple form that adds ±1 to
the winding number (since these sum to 0, the total num-
ber of intersections must be even.) We could then Taylor
expand in the number of intersections. But we leave a
detailed calculation of this proposal to future work.

V. Comparison to the Orbifold Method

We now wish to contrast the Susskind-Ulgum approach
to an alternative approach [7, 52–56] to calculating string
entanglement entropy, involving orbifolds. These are on-
shell Euclidean string noncompact backgrounds of the
form:

O =
C
ZN
×RD−2 (71)

obtained by starting with Minkowski space RD and quo-
tienting by rotations over angles that are multiples of
2π/N .33 This introduces an orbifold singularity with
opening angle β = 2π/N . (In superstring theories, it is
also necessary to take N = odd in order for the boundary
conditions for the fermions to be such that ψ → −ψ under
a 2π rotation; the analytic continuation of the N = even
case does not recover the expected physics at N = 1.)
In addition to projecting out string states whose an-

gular momentum is not a multiple of N , orbifolding also
introduces a new class of twisted states (see Fig. 5(a)),
which have winding numbers k ∈ {1, . . . ,N − 1}, while
the states inherited from the original theory have k = 0.
This quantum number is conserved mod N . The ground
states of these twisted sectors are twisted tachyons. Tak-
ing type II superstrings as an example,34 these twisted
tachyons have a mass:

M2
TT = −

4

α′
(1 −

k

N
) , (72)

which corresponds to a dimension

∆TT ≥ 1 +
k

N
, (73)

which is compatible with the ∆ > 1 bound on worldsheet
supersymmetric operators mentioned in section VI.H of
[5], even though the background breaks target space su-
persymmetry. The GSO projection then eliminates the

33 Of course, as in the case of Susskind-Ulgum the transverse direc-
tions RD−2 could be replaced by an arbitrary string compactifi-
cation.

34 The lower bound on the tachyon dimension will be different from
this in heterotic or bosonic string theories.
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Figure 5: (a) A Z3 orbifold geometry is shown, where the blue dot is the location of the singularity and the dashed
lines represent identified surfaces. A string with twist k = 1 is depicted. Despite appearances, this string is closed
because the two red points are identified. Such twisted strings are confined near the singularity. These kinds of
twisted strings also exist on a cone with β = 2π/3, which has the same physics except near the tip of the cone.

(b) The same cone/orbifold geometry, but now the extension into some 3rd dimension (perhaps time) is
depicted. A twisted spherical topology worldsheet is shown in front of the singularity (still blue). The black curves
represent time slices of the twisted string, with the red curves being identified. The black dots represent a process in
which the twisted string pinches off at the singularity. This pinching process is allowed for a smoothed out cone, but
it is not allowed on the orbifold (prior to tachyon condensation) because the orbifold background conserves twist
mod N . The absence of this process explains why the analytic continuation of the orbifold to arbitrary β doesn’t

have a geometric interpretation, nor does it recover the Bekenstein-Hawking entropy A/4GN . Tachyon condensation
may alleviate this problem, since now a string can pinch off by exchanging its twist with the condensate.

tachyons with k = even, including the original k = 0 bulk
superstring tachyon [57].

These twisted tachyons are reminiscent of the wind-
ing tachyons that appear in flat space compactified with
a sufficiently small thermal circle S1 [47–49]. However,
unlike the case of RD−1 × S1, these twisted tachyons are
localized at the tip of the orbifold cone, because it is only
there that the radius of the winding circle becomes small.
(A twisted string far from the origin would have a very
long length and hence a large energy.)

The orbifold construction only makes sense as a uni-
tary string theory background for integer values of N .
Nevertheless, because the orbifold looks awfully similar
to a cone with angle β = 2π/N , it is tempting to regard
it as if it were a thermal background with inverse tem-
perature β, and analytically continue it towards N = 1,
so that (analogously to (2)) the orbifold replica entropy
coming from all genera g is

S(ρ1)
?
= ∑

g

(1 −N∂N)Zg(N)∣
N=1

, (74)

where ρ1 is the Rindler state defined by N = 1. This
orbifold replica trick was inspired by the standard replica
trick [58, 59], in which one analytically continues a Z(N )
with β = 2πN (which can be done even in situations
without a U(1) rotational symmetry). However, in the
orbifold case N comes into the numerator rather than
the denominator.

The evaluation of (74) depends critically on our treat-
ment of the twisted tachyons. Most authors to propose
the orbifold replica trick [54–56] take the original back-
ground before the tachyons condense, and hope that in
the N → 1 limit the tachyons don’t matter too much.
This approach suffers from a number of problems, and
we believe it does not give the correct entropy at N = 1.
In particular, this method does not give the tree-level
A/4GN contribution to the entropy found by S&U.
On the other hand, in the version of the proposal de-

fended by Dabholkar [7] (who was inspired by [32]), the
tachyons are allowed to condense, and one hopes there
is a minimum of the potential (which seems likely to be
true by virtue of supersymmetry). We would then need to
calculate black hole entropy in the new background, that
arises as the Euclidean spacetime asymptotically settles
to its new ground state under RG flow. This is a very
interesting approach which plausibly would give the cor-
rect entropy, and might even help to illuminate the open
string picture of Susskind and Ulgum.
We now describe these two approaches in more detail.

A. Without Tachyon Condensation

The first thing to note about (74) is that the integer
N orbifold solutions are on-shell solutions, and there-
fore (by the general considerations of section II.B in [5],
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the genus-0 diagrams vanish, modulo a possible bound-
ary term which will not contribute to the entropy due
to being linear in β). In a perturbative expansion, this
property will be inherited by the analytic continuation to
non-integerN , and hence the orbifold replica trick cannot
give us the leading order A/4GN contribution to black
hole entropy. Instead, the first nontrivial closed string
contribution starts with the genus-1 torus diagrams.

This already implies that the orbifold O backgrounds
must be fundamentally different from off-shell conical
backgrounds at the same value of β. The key difference
between these two backgrounds can be seen in Fig. 5(b):
the orbifold conserves twist and hence does not allow
twisted strings to pinch off at the tip, while the off-shell
NLSM of a slightly smoothed out cone obviously does
allow this process.

On a cone of angle β, the winding number k is quan-
tized in units of k ∈ Z, but it is not conserved (except
mod 1 obviously). On the other hand, the orbifold con-
serves the twist k mod N . When N is not an integer,
this conservation law fails to align with the quantization
of winding modes, signalling that the analytically con-
tinued orbifold is a fundamentally non-geometrical con-
struction.

Put another way, it is implausible that O can be inter-
preted as the thermal partition function of any unitary
statistical mechanical system at inverse temperature β,
since periodic partition functions only have a thermal
interpretation when they can be written in terms of a
time-independent Hamiltonian as

exp(−βH) = Trρ
1/N
1 , (75)

which requires there to at least be some notion of geo-
metrical locality in the time direction.35

An additional problem is that the torus diagrams
with genus-1 suffer from IR issues associated with the
tachyon. This makes the analytic continuation of the
twisted tachyon quite subtle.

For open strings on O, a better analytic continua-

tion behavior of Trρ
1/N
1 was found by Witten [56], al-

though divergences from the closed string tachyon ex-
change propagating down the cylinder diagram (in the
crossed channel) have to be carefully handled.36 Ref. [56]
also found evidence that the analytically continued orb-
ifold, if interpreted as a thermal partition function, does
not correspond to a unitary theory.

35 However, it might still give the right answer if we restrict atten-
tion to the contribution from worldsheets which always remain
far from the horizon, which plausibly includes e.g. logM correc-
tions to black hole entropy.

36 The 1-loop partition was found to be holomorphic in a larger
region N > 0 and a result, analytic continuation to Re N > 1 was
tachyon-free, where N = 1/N .

B. After Tachyon Condensation

We now consider a distinct order of limits in which we
first allows tachyons to condense at finite N , and only
then do we take the N → 1 limit.
One way to allow the tachyons to condense is to turn

on a potential for twist terms in the string worldsheet.
Then one can RG flow this theory in order to seek out the
ground state of the system. In a supersymmetric theory
one expects on positive-energy grounds that there is a
stable ground state.
Adams, Polchinski, and Silverstein [32] conjectured

that after RG flowing all the way to the IR limit, the orb-
ifold relaxes to the usual flat spacetime C×RD−2 without
the orbifolding. Inspired by this conjecture, Dabholkar
[7] then showed how it might be used to calculate black
hole entropy.
Specifically, [32] analyzed the RG flow in two regimes

based on the relative size of the smoothed region of the
cone to the string scale. In the “substringy” regime, they
used D-brane probes and showed that the orbifold decays
in a series of steps from ZN to ZN−2, for integer N until it
completely flattens out. The also used the NLSM regime
to study the relaxation of the cone, obtaining similar re-
sults to our section IVD.
In fact, in [33]37, an exact solution of the Ricci flow

equation was found that studied the decay of the orb-
ifold (cone) C/ZN to another one C/ZN ′ with N ′ < N
(including the plane). This was done in the context of
tachyon condensation. The solution exhibits the proper-
ties discussed in IVD.
In other words, the recovery of flat spacetime seems to

involve two distinct physical effects. First of all, (i) the
tachyon condensation “heals” the orbifold singularity by
allowing processes in which twisted states pinch off at
the singularity, putting one back in the same class of
off-shell backgrounds as the NLSM smoothed out cone
backgrounds. But secondly, (ii), such vacua are unstable
under Ricci flow. And the end state of the conical RG is
just the flat vacuum!
To describe the effects of the tachyon field, Dabholkar

[7] considered the following action with a twisted tachyon
potential V(T ):

−I0 =
1

16πGN
∫
M
dDX

√
Ge−2Φ [R + 4(∇Φ)2 − δ(2)(X)V(T )]

+
1

8πGN
∫
∂M

dD−1X
√

G(D−1) e−2ΦK. (76)

Here, Dabholkar is using a convention in which the po-
tential V is positive when T = 0, before tachyon condensa-
tion, and zero for the minimum of V after condensation—

37 It was also demonstrated in [33] demonstrated, in asymptotically
flat target spaces, that the ADM energy of target spaces with IR
cutoff, is a monotonically decreasing function.
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assuming the hypothesis is correct that the tachyon con-
densate is equivalent to flat space with no angle deficit.38

To lowest order in α′, the equations of motion at the
tip tell us that (assuming a constant dilaton):

√

G(2)R(2) = (
1

16πGN
)V(T )δ(2)(X), (77)

Using the relation (56), we see that how the tachyon po-
tential V(T ) acts an explicit source to the conical deficit

δ = (2π − β) = 8πGNV(T ). (78)

As discussed in section IVB, we have a choice between
an on-shell or an off-shell calculation of black hole en-
tropy. If we RG flow all the way to the IR, then that puts
us back on-shell, so the contribution to the entropy S
would come entirely from the boundary GH term, hence
we recover the Bekenstein-Hawking entropy:

S = β2∂βF = −2π∂NF =
A

4GN
. (79)

where the free energy is F = (1 − N)(A/8πGN) after
subtracting the flat spacetime divergent contribution.

On the other hand, if we stop the flow at a finite but
large value of RG time, then we instead expect a large
Gaussian-like spread of curvature.39 We could then cal-
culate S by off-shell methods. The Gauss-Bonnet the-
orem would guarantee that at large RG time, the total
action is linear in the asymptotic angle deficit 2π − β, so
we would still recover the Susskind-Uglum S = A/4GN

answer.
Unlike the case where tachyons do not condense, it is

expected that a sensible and well-behaved analytic con-
tinuation exists for β, as needed for (79). In other words,
it is the order of analytic continuation and tachyon con-
densation that matters; while attempting the former be-
fore the latter can be problematic, allowing the tachyons
to first condense should avoid the analytic continuation
problems.

The idea of using tachyons as a cosmic brane source
for the conical singularity is rather nice, since their ex-
istence is of special to string theory. However, to the
best of our knowledge, the details of how to derive the
twisted tachyon potential as well as the GH boundary
term in (76) from the worldsheet are not known although
an attempt to calculate V(T ) in closed string field the-
ory [60] was promising. Using the on-shell string action

38 If we used the opposite convention in which V(0) = 0, and hence
V < 0 in the ground state, we would need to attribute a posi-
tive tension to the orbifold itself, which would then be cancelled
by the negative tension of the tachyon condensate in its ground
state.

39 Unlike the case described in IVD), there may also be a pertur-
bation to the dilaton field which would similarly spread out in a
Gaussian-like manner. But this does not contribute to the action
at late RG time.

in trying to calculate V(T ) gave nonsensical results;40

going off-shell, on the other hand, gives more promising
answers. Specifically, when truncating the closed string
field theory action at cubic order, [60, 61] found a depth
of the tachyon potential that was 35% of the expected
potential41, and with recent developments in computing
higher order corrections of the closed string field theory
action using machine learning in [62] (based on earlier
work by [63]), it may be possible to improve this result.
Thus, although the tachyon potential forces the strings
to be on-shell, to actually compute V(T ) seems to require
off-shell string theory.
We end by commenting on a partial relationship be-

tween the tachyon condensate and the open string picture
of S&U that we discussed in section IVE. By open-closed
string duality, any process in which one absorbs a closed
twisted string from the condensate, may be equivalently
described as allowing additional types of processes in-
volving open strings on the horizon. Thus, tachyon con-
densation on the orbifold gives a partial analogy for how
the counting of open string states may arise from a more
fundamental statistical description.
However, this orbifold condensate does not count as a

full implementation of ER = EPR [38–42] in string the-
ory. The reason is simply that the C/ZN orbifold already
permits the twist k to change by multiples of N even be-
fore the condensate forms.42 To obtain an ER = EPR
picture we would instead need to start on a background
in which strings are never allowed to cross the horizon,
and then let tachyons condense on that background, so
that all twist-changing processes result from the tachyon
condensate.
For example, to explicitly exclude all twist-changing

processes, we might instead start with a narrow worm-
hole connecting two asymptotic R2 regions, and then ap-
ply a Z2 orbifold so as to produce a non-simply connected
spacetime with only one asymptotic region. See Figure 6.
This would produce an off-shell spacetime with periodic-
ity β = 2π (although, as the spacetime is not simply con-
nected, this could be adjusted to arbitrary values of β).
For a sufficiently narrow wormhole, one might then ex-
pect the tachyons to condense, allowing strings to pinch
off at the tip.

Although this construction is inherently off-shell, it
might well RG flow to an on-shell configuration after
tachyons condense. If that on-shell configuration turns
out to be equivalent to the flat space string background,

40 The on-shell action predicted about 1241% of the expected depth
of the conical orbifold! We believe this may be because a proper
on-shell calculation would need to drop the negative energy in the
curvature/dilaton pulse noted by [32] which goes off to spatial
infinity.

41 In [60], an agreement of 72% with the predicted minimum of the
potential was reported but this large agreement was found to be
due to an error in identifying the orbifold gravitational coupling
with the its flat space counterpart.

42 Unless perhaps we take an N →∞ limit?
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Off-shell Euclidean wormhole

  ℤ orbifold2

Manifestly statistical background (“EPR”)

    tachyon  
condensation

?

RG flow

 Entangling surface in
empty flat space (“ER”)

    Tachyon condensate:
strings can pinch off at tip

β

Figure 6: A proposed set of steps for implementing ER = EPR in string theory. Start with an off-shell wormhole
(upper left), and identify the two sides with a Z2 orbifold. This gives an off-shell background (upper right) with the
topology of a disk cut out around a codimension-2 surface. This picture is manifestly statistical, as there is locality
around the thermal circle direction (labelled as β). Let us suppose that this background has winding mode tachyons
which condense to form a new background (lower right), in which strings can pinch off at the tip. Plausibly, this

background would RG flow towards flat spacetime (lower left) in the case where β = 2π. If we start with β ≠ 2π, we
instead expect the RG flow to converge in the IR towards the flowing cone trajectory, discussed in section IVD.

one would have a concrete situation in which all geo-
metrical connection effects emerge from the behavior of
entangled strings. This would be a concrete realization
of ER = EPR in string theory.

The presence of tachyons should be related to a Hage-
dorn transition of strings in Rindler spacetime; there
is evidence in the literature that this occurs at a criti-
cal temperature, the exact value of which, depends on
whether the strings are bosonic, Type II or heterotic.
For earlier work, see [64] and the discussion in section
3 of [54]; for more recent work, see [65] and [25] for an
extensive discussion and review of the matter.43

In support of the S&U open string picture, the con-
tribution of a winding condensate to the entropy is of
order O(1/GN) = 1/g2s . Some evidence for this can be
seen in the work of Horowitz and Polchinski [66], based
on earlier work in [67], who found a string background,

43 We did not observe any Hagedorn phase transition in β in the
closed string calculation in section IVC, but this is presumably
because the closed string picture is post-tachyon condensation
and therefore is stable.

that involves a winding condensate near the Hagedorn
inverse temperature βHag in the form of highly excited
self-gravitating oscillating strings. For recent work on
this subject, see [68–70].

VI. Discussion

A. Summary of Results

The main result of this paper (part II) was to explain
the underlying conceptual structure of the S&U black
hole entropy argument. We showed explicitly how the
effective action I0 and the entropy S = A/4GN may be
calculated from the sphere diagrams, in sections III and
IVC. We also discussed the behavior of the S&U entropy
under RG flow. Although the conical manifold smooths
out under RG flow, moving towards an on-shell configu-
ration, the entropy doesn’t change.
We then compared these off-shell results with the

(much more popular) orbifold method for calculating en-
tropy from the on-shell C/ZN background (V). By con-
sidering processes involving twisted string states, we con-
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cluded that the orbifold method is physically incorrect—
unless one allows tachyons to condense on the orbifold,
in which case it appears (though the off-shell string field
theory calculations are difficult and we did not attempt
them ourselves) that one probably ends up back in the
flowing cone scenario. However, there may be some im-
portant insights into the ER=EPR hypothesis that can
be obtained from the fact that this condensate at a
codimension-2 surface is apparently equivalent to ordi-
nary flat space.

B. Higher Genus Corrections

Next we discuss the prospects for extending S&U’s re-
sult to new settings. Unfortunately, it is somewhat diffi-
cult to find situations in string theory where (i) we have
full control over the worldsheet theory, and (ii) there is a
finite sized correction to A/4GN , that is neither zero nor
divergent.

The first obvious correction to consider is the effects
of the higher genus corrections, starting with the torus
g = 1 contribution. Since the torus correction is anal-
ogous to the 1-loop correction in field theory, one ex-
pects to obtain from it a quantum l-loop correction to
the black hole entropy. From a semiclassical perspective,
the 1-loop correction would contribute to the Sout term
in the generalized entropy (45), and if one integrates out
the leading order area term in Sout, one would obtain
an additive renormalization shift of the inverse Newton’s
constant 1/GN .44

Unfortunately, this effect cannot be easily seen in ei-
ther bosonic or superstring theory (for reasons mentioned
briefly at the end of section III). In the bosonic case, the
IR problems associated with the tachyon cause the torus
diagram to diverge, so one gets ∞ for the torus diagram.
On the other hand, for superstrings there is a target space
nonrenormalization theorem in D = 10 Minkowski which
causes all higher genus diagrams with n ≤ 3 on-shell in-
sertions to vanish. Since GN can be measured from the
graviton 3-point function, this means that it is unrenor-
malized and so Storus = 0.
This is a little strange because one might have expected

that the torus contribution to the von Neumann entropy
Sout is an inherently positive quantity. But negative con-
tact terms can appear in the black hole entropy under cer-
tain circumstances. For example, in the particle (α′ → 0)
limit of string theory, a negatively contributing “contact
term” in the black hole entropy was found by [72] for a
U(1) Maxwell field. This was later resolved in [73, 74]
where it realized that this term is fully explained by the
entanglement entropy of edge modes, which can be neg-
ative in certain continuum regulator schemes.45 Similar

44 See e.g. section 3.12 in [71].
45 A similar contact term which appears for the non-minimal scalar

contact terms presumably appear for higher spin fields
[55, 76], although there are additional subtleties in this
case (cf. [77] and references therein). It would be in-
teresting to try to understand this cancellation from a
worldsheet perspective. (In particular, it is interesting
that the torus nonrenormalization theorems seem to be
valid only when including edge modes and bulk entangle-
ment terms together.)

C. Other Backgrounds

The other obvious direction to modify the S&U calcu-
lation is by going to other backgrounds besides Rindler.

The most straightforward extension is to consider the
effects of α′ corrections, which in general produce higher
curvature corrections in the effective action I0. This
could be done along the same lines as section III, but
taking into account the effects of higher loop diagrams.

That being said, the effects of higher curvature entropy
on the black hole entropy have already been explored
extensively. It is not totally clear what is gained thinking
of such calculations from a worldsheet perspective, once
we know from S&U that it works at leading order.

A more interesting result would be to calculate black
hole entropy in a highly stringy regime that is nonper-
turbative in α′ where one has no choice but to think of
entropy from a worldsheet perspective. It is, however,
difficult to find a regime which would enable a nontriv-
ial result. For one thing, the worldsheet theory would
probably need to be understood as an exact CFT, which
limits one to a very restricted class of backgrounds (in
superstrings, all of them are NS-NS).

One possibility is the two-dimensional black hole [78,
79] whose Lorentzian worldsheet CFT is the group coset
SL(2,R)/U(1). The Euclidean version is the cigar back-
ground with a coset CFT given by H3/U(1). The cigar
has an interesting set of dualities; by the FZZ correspon-
dence, the cigar is dual to 2d (c = 1) sine-Liouville string
[80, 81], which itself is dual to a one-dimensional matrix
quantum mechanics with a single matrix [82, 83].

One of us (A.A.) was involved in a collaboration
that identified the boundary microstates of this two-
dimensional black hole in the dual matrix quantum me-
chanics and reproduced one of the two expressions for
the free energy found in [83], at leading order in large N
[84]. A string theory interpretation and count of these
microstates on the bulk side, specifically on the cigar,
would be a natural application of the off-shell formula-
tion of string theory presented in this paper.

should instead be thought of as a contribution to a Wald entropy
term ⟨ϕ2⟩ on the horizon [75], see [34] for an example of how such
terms can arise from models where the microscopic interpretation
is still an entanglement entropy.
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D. Holographic Entropy Formula

Another interesting possibility is to consider a string
background in a holographic AdS background. In this
case, a S&U type calculation can be performed on the
bulk side of the AdS/CFT duality, to obtain a worldsheet
derivation of the holographic entanglement entropy [85,
86].

The simplest non-trivial example to consider is the
pure NS-NS flux AdS3 ×S3 ×T4, which is an exact string
background with a worldsheet description in the bulk. It
is equivalent to an SL(2,R) WZW model, times the com-
pact directions. This background has been studied and
analyzed extensively in the literature [87–95] shortly af-
ter the AdS/CFT duality was proposed, with a plethora
of recent amazing work on the tensionless limit of the
string and the symmetric product orbifold [96–105]. One
can also compactify a spatial direction to obtain a BTZ
black hole.

If we treat the target space as a NLSM, and consider
the simplest possible holographic entropy surface (which
in AdS3 is just a single geodesic γ) then in this case the
derivation of S = A/4GN is an almost trivial extension
of the Susskind-Uglum calculation in section IVC. Since
the Euclidean spacetime is U(1) symmetric around γ, this
simply introduces a conical singularity at the tip and one
can go off-shell as before. The only new ingredient is the
Kolb-Raymond potential Bµν (which does not however
contribute directly to the entropy).

Since the CFT is exactly known, it would be interest-
ing to compute the operator of the corresponding world-
sheet WZW CFT that creates a conical singularity in
target spacetime. This would enable us to compute the
holographic entanglement entropy nonperturbatively in
α′, i.e. in a very stringy regime where we cannot use
bulk field theory, including cases where the dual CFT is
weakly coupled. Unfortunately this is not quite as excit-
ing as it sounds, because in this case S is proportional to
the boundary central charge c, which is independent of
α′ by virtue of the boundary c-theorem. (To avoid this,
one would need to find a stringy AdS which is not contin-
uously connected to an AdS background with small α′,
but then it is presumably difficult to have control over
the worldsheet theory.)

A closely related approach is to orbifold the AdS3 × S3

× T4 background in such a way as to break supersymme-
try and thus have twisted tachyons localized at the tip
of the orbifold fixed point (the cone) [106, 107]—just as
we discussed for Rindler in section VB. This can be done
by orbifolding only AdS3, i.e. AdS3/ZN . Here, tachyon
condensation plays a major role. This orbifold approach

is similar to the one considered in [32] for C/ZN . In
fact, the condensation of these tip-localized closed string
tachyons in AdS3/ZN was studied numerically in [108]
where they also was found that AdS3/ZN decays, by
emitting a dilaton pulse that propagates to the bound-
ary, into to AdS3/ZK with K < N until it reaches the
pure AdS3 vacuum.
Since the holographic entropy surface γ considered

above has a U(1) symmetry, so far this derivation is akin
to the Casini-Huerta-Myers derivation of stationary holo-
graphic entropy [109].
It would be very interesting however to try to extend

the stringy calculation to the non-U(1) symmetric case.
In that case, to calculate the boundary von Neumann
entropy, one has to do a replica trick calculation of the
boundary CFT:

S = (1 −N∂N )Z[N ]∣
N=1

(80)

By a clever argument of Lewkowycz-Maldacena [110], on
the bulk side of the duality, it is still possible to perform
this analytic continuation in a geometrical way using an
orbifold of the replicated background. (See [111, 112]
for the extension of this argument to the 1-loop quantum
corrections to Sgen, and [113–115] for further extensions.)
It is natural to wonder whether these arguments can be

extended to the case of worldsheet string theory, perhaps
using actual orbifolds. In that case, tachyon condensa-
tion at the tip may play a significant role in proving the
equivalence of the orbifold background with the original
replicated saddle.
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