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1 Introduction

The renormalization group (RG) flow provide a theoretical framework for isolating the

degrees of freedom which describe the low-energy phenomena. The idea is to sim-

plify the theory by ignoring its microscopic structure without affecting the low energy

physics. In doing so, the number of degrees of freedom decreases, and there has been

a long-standing debate about how to quantify this decrease. In 80’s, Zamolodchikov

formulated and proved the c-theorem, which makes this quantification precise for a

wide class of 2-dimensional quantum field theories [1]. Starting from this work many

results were obtained in various dimensions [2–20].

In this paper we study RG flows on two-dimensional defects. The defects have a

long story, both in two and higher dimensions – see for instance [21–38]. Defect RG

flows were also extensively studied in the literature [39–50]. There are a number of

exactly established results about the RG flows on line defects [51–54] and their higher

dimensional generalizations [55, 56]. Recent examples and perturbative calculations in

the context of defects cover a wide range of systems and models [57–62]. Here we restrict

our attention to the case where the bulk QFT is a d-dimensional Euclidean conformal

field theory, and the state is simply the flat space vacuum state. We are interested to

study RG flows when a two-dimensional spherical defect is present in such a theory.
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In this setup, the defect changes along the RG flow, but the bulk remains intact. The

flow in this case is called a defect RG (DRG) flow.

The full conformal group SO(d+ 1, 1) is broken at the fixed points of DRG. Since

a spherical defect is conformally equivalent to a planar one, it preserves the subgroup

SO(3, 1) × SO(d − 2) of the full conformal group. This symmetry pattern represents

global conformal transformations on the two-dimensional planar defect and rotations

around it. The theory at the fixed point is called a defect CFT (DCFT).

In what follows, we introduce a renormalized defect entropy which is fixed by the

characteristic size of the defect. Our construction is similar to the one previously

employed in the context of entanglement entropy [63]. For a DCFT, it reduces to

the dimensionless ”central charge” that multiplies the Euler density in the defect’s

Weyl anomaly, whereas for a general quantum field theory, it interpolates between the

central charges of the UV and IR fixed points as the radius of the spherical defect

is varied from zero to infinity. Using the ideas introduced in [53], we show that the

renormalized defect entropy necessarily decreases from its initial value along the DRG

flow, thus providing an alternative proof for irreversibility of the DRG flows on two-

dimensional defects [55]. Furthermore, we argue that when the DRG flow is induced by

a sufficiently weak relevant deformation of the UV fixed point, the renormalized defect

entropy exhibits monotonic decrease and plays the role of a C-function throughout all

orders in perturbation theory.

The paper is organized as follows. In section 2 we review the derivation of the

Ward identities which are necessary for our needs. In section 3 we define the renor-

malized entropy function, and use it to reproduce the sum rule as well as prove the

irreversibility of DRG flows on two-dimensional defects. In section 4 we provide an

instructive example which explicitly illustrates various details of DRG flows discussed

in this paper. We conclude in section 5.

2 Ward identities

As a starting point, we review a higher dimensional generalization of the identities

obtained in [53]. Consider a p-dimensional defect D, embedded in a d-dimensional

Euclidean bulk. For simplicity, the bulk is assumed to be flat. The theory is governed

by a DCFT action perturbed by a set of relevant defect operators Oi with scaling

dimensions ∆i < p,

I = IDCFT + gi
∫
D
dpσ
√
γ̂Oi , (2.1)

where γ̂ac is the induced metric on the defect.
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The bulk and defect stress-tensors, T µν , T̂ µν and the displacement operator Dµ are

defined through the variation of the effective action, W , with respect to the bulk metric

gµν
1 and embedding function Xµ (σ),

δW =− 1

2

∫
M
ddx
√
g δgµν〈T µν〉+

∫
D
dpσ
√
γ̂ δXµ (σ) 〈Dµ〉

− 1

2

∫
D
dpσ
√
γ̂
[
δgµν〈T̂ µν〉+ ...

]
. (2.2)

The total stress tensor, T tot
µν is defined by,

T tot
µν = Tµν + T̂µν δD , (2.3)

where δD denotes the delta function which restricts the bulk integrals to the defect, i.e.,

by definition
∫
ddxδD =

∫
D d

2σ
√
γ̂, or equivalently, the integral of the d-dimensional

delta-function over the defect satisfies,
∫
D δ = δD. By assumption, the bulk theory is

conformal, therefore T µµ = 0.

In what follows, the indices a, b, .. will be used to denote the p tangential directions

eµa = ∂Xµ

∂σa
. Similarly, the indices I, J, .. will be used to denote the d− p normal vectors,

nµI .

The three physical quantities in (2.2) are related by Ward identities associated with

the invariance of W under the bulk and defect reparametrizations. In the former case,

the condition δW = 0 is imposed under an infinitesimal diffeomorphism of the form

xµ → x′µ = xµ − ξµ,

δxµ = −ξµ, δgµν = ∇µξν +∇νξµ . (2.4)

By splitting the bulk into normal and tangential components, ξν = eaνξa + nIνξI , this

gives the following Ward identity (See Appendix A for details)

∇µT
µνξν + δD

[(
∇̂bT̂

ba −Da
)
ξa +

(
∇aT̂

aI −DI −KI
abT̂

ab
)
ξI

]
= 0 , (2.5)

where ∇̂a is the covariant derivative on the defect2.

1We adhere to the conventions of [55, 64], see [29] for alternative definitions. The ellipsis in the

last line of (2.2) encode variations associated with the normal derivatives of the bulk metric. These

terms are irrelevant for the low dimensional defects considered in this paper. Moreover, in general the

first-order normal derivative terms have no impact on the results for spherical defects.
2The symbol ∇̂ is used to denote the covariant derivative on the defect, compatible with the induced

metric, ∇̂aγ̂cb = 0. Refer also to the paragraph below (A.4).
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Likewise, the same condition, δW = 0, is imposed for infinitesimal reparametriza-

tions of the defect,3

δσa = −ζa, δXµ = eµaζ
a, δgµν = 0 . (2.6)

Combined with (2.2), they imply Da ≡ eµaDµ = 0, i.e., tangential displacements are

trivial.

Now consider a dimensionless dilaton background, Φ (σ), localized at the defect

[53]. By definition, the dilaton couples linearly to the trace of the defect stress-tensor,

i.e., T̂ ≡ gµνT̂µν = 1√
γ̂
δW
δΦ

, and under defect reparameterizations, it transforms as,

δΦ (σ) = −ζa∂aΦ (σ) . (2.7)

Hence, (2.2) takes the form

0 = δW =

∫
D
dpσ
√
γ̂ δXµ (σ)Dµ +

∫
D
dpσ

δW

δΦ
δΦ =

∫
D
dpσ
√
γ̂ ζa

(
Da − T̂ ∂aΦ

)
As a result, in the presence of dilaton, we have Da = T̂ ∂aΦ.

A bulk CFT in d-dimensions is invariant under the full conformal group SO(d +

1, 1). However, the conformal defect partially breaks it. In particular, a p-dimensional

spherical conformal defect is invariant under the subgroup SO(p+ 1, 1)×SO(d− p) ⊂
SO(d + 1, 1). The first factor represents conformal group of the p-sphere. For p = 2,

it has six generators, SO(3, 1) ' SL (2,C). This group acts on the 3-dimensional

ambient subspace hosting the sphere. For simplicity, we parametrize this subspace by

xµ, µ = 1, 2, 3. The group SO(d − 2), generates transformations in the transverse

directions to the defect. In the conformal frame where the defect is planar, SO(d− 2)

represents ordinary rotations in the transverse space to a flat defect. The six SL (2,C)

conformal Killing vectors are given by,

ξµ(a) =
1

2

[
δµa

(
R +

x2

R

)
− 2

xax
µ

R

]
, χµ(a) = δµb ε

bc
a xc, a, b, c = 1, 2, 3 , (2.8)

3Finite reparametrizations of the defect are defined as follows,

σ̃a = σ̃a(σ) , X̃µ(σ̃) = Xµ(σ) , g̃µν
(
X̃(σ̃)

)
= gµν

(
X(σ)

)
= gµν

(
X̃(σ̃)

)
.

Employing this definition yields the conventional transformation for the induced metric on the defect,

h̃ac(σ̃) =
∂X̃µ(σ̃)

∂σ̃a
∂X̃ν(σ̃)

∂σ̃c
g̃µν
(
X̃(σ̃)

)
=
∂σb

∂σ̃a
∂σd

∂σ̃c
hbd(σ) .

The infinitesimal diffeomorphism, σ̃a = σa − ζa, takes the form given in (2.6).
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where R is the radius of the sphere. The ξ’s are particular combinations of translations

and special conformal transformations which preserve the sphere, whereas χ’s represent

rotations. It can be checked that (2.8) satisfy the conformal Killing equations in the

bulk as well as on the defect. Each such Killing vector gives rise to a conserved charge

in the bulk,

Qξ =

∫
Σ

dd−1xΣµT
µνξν , (2.9)

where Σ is a hypersurface.

Now consider the vacuum expectation value of Qξ provided that the hypersurface

Σ wraps around the spherical defect. By definition, when Qξ surrounds an operator, it

transforms it, i.e.,

〈Qξ〉 = 〈δξD〉 , (2.10)

where δξD is a small change in the spherical defect induced by the conformal Killing

vectors (2.8). This change vanishes if the defect is conformal (DCFT), but we do not

assume it in what follows. In fact, the scale invariance is broken in the presence of fixed

dilaton background.

The boundary conditions at infinity correspond to a conformal vacuum state. Since

Qξ annihilates it, and there are no other insertions in the path integral save the defect,

we deduce that for any Φ(σ),

0 = 〈δξD〉 = 〈Qξ〉 =

∫
Σ

dd−1xΣµ〈T µν〉ξν = −
∫
D
d2σ

〈
∇̂bT̂

ba − T̂ ∂aΦ
〉
ξa , (2.11)

where in the last equality we used Gauss’s theorem followed by (2.5) with ξI = 0 for

the Killing vectors (2.8), as well as tracelesness of the bulk stress tensor. Integrating

by parts, yields

0 = 〈δξD〉 =

∫
d2σ

〈
T̂ ba∇̂bξa + T̂ ∂aΦ ξa

〉
. (2.12)

Next, recall that the conformal Killing vectors satisfy

∇̂aξb + ∇̂bξa =
2

p

(
∇̂ · ξ

)
γ̂ab

∣∣∣∣
p=2

=
(
∇̂ · ξ

)
γ̂ab . (2.13)

Combining, we finally obtain

0 = 〈δξD〉 =

∫
d2σ

(1

2

(
∇̂ · ξ

)
+ ∂bΦξb

)
〈T̂ 〉 . (2.14)
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The dilaton couples linearly to the trace of the defect stress tensor, and therefore

the right hand side of (2.14) can be interpreted as a change in the defect due to a small

variation in the dilaton profile, δΦ ∼ 1
2

(
∇̂ · ξ

)
+ ∂bΦξb. In particular, it follows from

(2.14) that one can identify two defects if their dilaton backgrounds are related by4

Φ ∼ Φ + α

(
1

p
∇̂aξ

a + ξa∂aΦ

)
, α� 1 . (2.15)

Hence,

logZΦ = logZΦ+δΦ = logZΦ +

∫
D
d2σ
〈
T̂ (σ)

〉
Φ
δΦ (σ) +O

(
δΦ2
)
, (2.16)

with δΦ defined in (2.15). Expanding around Φ = 0 results in a series of constraints.

At O(Φ0) we have, ∫
dpσ

1

p

(
∇̂aξ

a
)
〈T̂ (σ)〉0 = 0 , (2.17)

and at O(Φ1),∫
dpσ ξa∂aΦ〈T̂ (σ)〉0 +

∫
dpσ1 d

pσ2
1

p

(
∇̂ · ξ(σ1)

)
Φ(σ2)〈T̂ (σ1)T̂ (σ2)〉0 = 0 . (2.18)

For our purposes (2.18) is enough, and we ignore all the other identities.

Notice that the covariant derivative takes a simple form for the first three Killing

vectors in (2.8), i.e., ∇̂ξa (θ, φ) = −2na (θ, φ). where n̂ = (sin θ cosφ, sin θ sinφ, cos θ)

is a unit vector. Choosing a dilaton profile of the form, Φ (θ, φ) ≡ nb (θ, φ) for any

b = 1, 2, 3, and introducing the following notation
∫
d2σ
√
γ̂ ≡

∫
S2 for brevity, the

double integral in (2.18) becomes,

Iab =

∫
S2

∫
S2

na1 n
b
2

〈
T̂ (n̂1) T̂ (n̂2)

〉
. (2.19)

Due to the SO (3) invariance of the integration measure and the two-point function,

we deduce that Iab is an invariant bulk tensor, and therefore it is proportional to δab,

Iab =
1

3
δab
∫
S2

∫
S2

(n̂1 · n̂2)
〈
T̂ (n̂1) T̂ (n̂2)

〉
. (2.20)

Setting a = b = 3, i.e., Φ ∝ cos θ, and evaluating the first term in (2.18), yields∫
S2

〈
T̂ (n̂)

〉
=

1

2

∫
S2

∫
S2

(n̂1 · n̂2)
〈
T̂ (n̂1) T̂ (n̂2)

〉
. (2.21)

In fact, a similar expression also holds for higher dimensional spherical defects.

4Our analysis also holds in the case of a p-dimensional spherical defect. This is why a general p

appears in (2.15).
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3 Irreversibility of the DRG flows

In this section we establish the irreversibility of DRG flows on the two-dimensional

defects through the use of renormalized defect entropy defined below. It is derived

from the defect F -function defined by

F = − log
ZD
ZCFT

, (3.1)

where ZCFT is the partition function of an ambient CFT without defect. The F -

function is dimensionless, and therefore it depends on the dimensionless couplings and

dimensionless combination µR, where µ is the floating cutoff scale.5

For a 2d defect of characteristic size R embedded in a flat Euclidean space, the

F -function at the UV fixed point of the RG flow takes the form6

FUV

DCFT = c0 +
a0 µ

2
UV

4π

∫
d2σ

√
γ̂ (3.2)

−
(
b0

24π

∫
d2σ

√
γ̂ R+

b1

24π

∫
d2σ

√
γ̂ Tr

(
K̃µK̃

µ
))

log(µUVR) .

Here,R is the Ricci scalar of the defect, whereas K̃µ
ac = Kµ

ac− 1
2
γ̂acTr(Kµ) is the traceless

part of the defect extrinsic curvature Kµ
ac. The constants in the above expression are

functions of the critical couplings. This ansatz is obtained by solving the Wess-Zumino

consistency conditions at the fixed points of the DRG flow [66–68]. Moreover, for a

sphere in flat space K̃µ
ac = 0, and therefore (3.2) simplifies

FUV

DCFT

∣∣∣
S2

= cUV + aUV(µUVR)2 − bUV

3
log(µUVR) , (3.3)

where bUV = b0.

The F -function changes if a UV DCFT is subject to a relevant deformation. How-

ever, the precise structure of the F -function away from the UV fixed point is not

essential for our needs. Our analysis relies on the existence of a cutoff scale µIR � µUV,

where the theory is controlled by the IR DCFT, and the F -function can be recast as

(3.3) with µUV, cUV, aUV and cUV replaced by their IR counterparts.

The first two terms in (3.3) are non-universal, because one can shift cUV by rescaling

µUV, whereas aUV can be arbitrarily changed by adding a finite local counterterm to the

defect (cosmological constant). In contrast, bUV does not suffer from the ambiguities, it

is universal and satisfies bUV ≥ bIR for the UV and IR ends of the RG trajectory [55].7

5By introducing suitable explicit factors of µ all couplings may be assumed to be dimensionless.
6There are additional contributions if the ambient Euclidean space is curved, see e.g., [65, 66].
7b1 is also universal, but we do not study it in this work.
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In what follows, we provide an alternative derivation of this inequality. Moreover, we

prove that our construction decreases monotonically along the DRG flows induced by

weakly relevant deformations of the UV DCFT leading to a C-function. To the best of

our knowledge, this is the first perturbative example of a C-function in the context of

two-dimensional defects.8

To isolate the universal part of F , we define the renormalized defect entropy (RDE)

as follows

S = −R∂R
(

1− 1

2
R∂R

)
F =

1

2

(
R2∂2

R −R∂R
)
F . (3.4)

This definition is motivated by the so-called Renormalized Entanglement Entropy in

four spacetime dimensions [63]. The derivatives with respect to R are designed to

eliminate the non-universal terms, such that S = b0
3

at the fixed points of the DRG flows

on spherical defects. The Renormalized Entanglement Entropy is neither monotonic

nor proved to be useful in establishing irreversibility of RG flows in four dimensions

[63]. In contrast, as shown below, the RDE introduced in (3.4) necessarily decreases

between the two ends of the DRG flow.

Introducing a constant dilaton profile, one can rewrite (3.4) in an equivalent form

S =

[(
1

2

d2

dΦ2
− d

dΦ

)
F
]

Φ=0

=

∫
S2

〈T̂ (σ)〉 − 1

2

∫
S2

∫
S2

〈T̂ (σ1)T̂ (σ2)〉 , (3.5)

because by definition the dilaton is coupled to the trace of the defect stress tensor.

Using the constraint equation (2.21), we get

S = − 1

4R2

∫
S2

∫
S2

s2(σ1, σ2)〈T̂ (σ1)T̂ (σ2)〉 , (3.6)

where s2(σ1, σ2) = 2R2(1 − n̂1 · n̂2) is the square of the chordal distance between the

two points σ1 and σ2 on the surface of a two-dimensional sphere.

Note that (3.6) necessarily includes the contribution of the contact term, otherwise

(2.21) is not satisfied at the fixed points of the DRG flow, where the trace of defect

stress tensor vanishes up to an anomaly. In particular, while the two-point function

is positive definite due to unitarity of the theory, the contact term does not have a

definite sign. Hence, the RDE is not necessarily positive.

To isolate the contribution of the contact term, we evaluate (3.6) at the UV fixed

point of the DRG flow. To this end, we note that the UV DCFT satisfies,

〈T̂ 〉UV =
bUV

24π
R ⇒ 〈T̂ (σ1)T̂ (σ2)〉UV = − bUV

12π
(R+∇2)

δ(σ1, σ2)√
γ̂(σ1)

, (3.7)

8See also [69], where the ideas of entanglement [9, 45, 52] are used to build a proposal for the

C-function.
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where the contact term on the right is obtained by varying the anomaly term on the

left with respect to the induced metric on the defect. Substituting this expression into

(3.6), yields the expected result SUV = bUV

3
. In particular, (3.6) can be written as

follows

S =
bUV

3
− 1

4R2

∫
S2

∫
S2

s2(σ1, σ2)〈T̂ (σ1)T̂ (σ2)〉 =
bUV

3
− π

∫
S2

s2(σ)〈T̂ (σ)T̂ (0)〉 , (3.8)

where the contact term is now excluded from the positive definite 〈T̂ T̂ 〉. In the second

equality we used invariance of the integrand under rotations of S2 to position σ2 at the

south pole of the sphere (σ2 = 0).

The integral on the right hand side of (3.8) is manifestly positive and finite, because

the sphere introduces a natural IR cut off, whereas the limit of coincident points, σ → 0,

is dominated by the UV DCFT with vanishing T̂ , i.e., 〈T̂ T̂ 〉 = βiβj〈OiOj〉, where βi’s

are the beta functions of various couplings, whereas the renormalized operators Oi are

associated with the relevant deformations of the UV fixed point. Hence, 〈T̂ T̂ 〉 is less

singular than 1/s4, and the integral converges in this limit.

The RDE is a function of dimensionless couplings, gi, and µR. The natural choice

for the running scale is µ ∼ 1/R,

S
(
µR, gi(µ)

)∣∣∣
µ∼1/R

= S
(
gi(R−1)

)
. (3.9)

Thus the value of S along the RG trajectory can be probed by varying the radius of

the sphere. In particular, taking the limit R → ∞, we establish the irreversibility of

DRG flows on the two-dimensional defects

bIR − bUV

3
= −π

∫
S2

s2(σ)〈T̂ (σ)T̂ (0)〉
∣∣∣
R→∞

≤ 0 ⇔ bIR ≤ bUV . (3.10)

The RDE might not be necessarily monotonic along the RG trajectory. To show
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it explicitly, let us differentiate (3.9) with respect to R and use T̂ = βiOi,9

R
d

dR
S(gi) = −βi ∂

∂gi
S
(
gi) = +πβi

∂

∂gi

∫
S2

s2 (σ) βjβk 〈Oj(σ)Ok(0)〉

= πβiβj
(

2
∂βk

∂gi
+ βk

∂

∂gi

)∫
S2

s2 (σ) 〈Oj(σ)Ok(0)〉 = −2π2 βiβjhij . (3.13)

In the last equality we have defined the matrix hij(g), which is analogous to the well-

known Zamolodchikov metric [1].

The beta functions vanish at the fixed points of the DRG flow, therefore ∂βj/∂gi

likewise the first term within parenthesis in (3.13) necessarily flip the sign along the

flow. Similarly, the second term within parenthesis does not exhibit a definite sign,

because it explicitly depends on the three point function. The upshot of this discussion

is that the positive definiteness of hij and, consequently, the monotonicity of S is not

evident. That said, the renormalized defect entropy is monotonic for a large class of

RG flows, as demonstrated in the next subsection.

3.1 Perturbative DRG flow

Consider a DCFT perturbed by a set of weakly relevant defect operators Oi with scaling

dimensions ∆i = 2− εi where 0 < εi � 1. We choose the operators Oi such that at the

UV fixed point they satisfy

〈Oi(σ1)Oj(σ2)〉UV =
δij

s(σ1, σ2)2∆i
, (3.14)

〈Oi(σ1)Oj(σ2)Ok(σ3)〉UV =
Cijk

s(σ1, σ2)∆i+∆j−∆ks(σ1, σ3)∆i+∆k−∆js(σ2, σ3)∆j+∆k−∆i
.

The above weakly relevant deformations give rise to a perturbative RG flow of the form

[2, 70],10

βi = µ
dgi

dµ
= −εigi + πCi

jkg
jgk +O(g3) , (3.15)

9We drop the anomaly term from T̂ , because it does not contribute to the connected correlator in

(3.8). Note also that the flow equation for S
(
µR, gi(µ)

)
can be derived from the Callan-Symanzik

equation, (
µ
∂

∂µ
+ βi

∂

∂gi

)
S
(
µR, gi(µ)

)
= 0 . (3.11)

The differential operator within parenthesis in (3.11) commutes with R ∂
∂R , and therefore (3.11) follows

from the definition of S and the Callan-Symanzik equation for the F-function. Hence,

− βi ∂
∂gi

S
(
gi) = µ

∂

∂µ

∣∣∣
µ∼1/R

S
(
µR, gi(µ)

)
. (3.12)

10See also next section.

– 10 –



where the indices are raised and lowered with the Kronecker delta. In particular, the

IR fixed point is located in the vicinity of the UV DCFT and one can use conformal

perturbation theory to calculate ∆b = bIR− bUV. Substituting T̂ = βiOi into (3.10) and

expanding around the UV fixed point, yields

∆b = −3πβiβj
∫
d2σ
√
γ̂ s2(σ)

(
Z k
i Z

`
j 〈Ok(σ)O`(0)〉UV

− gk
∫
d2σ′

√
γ̂ 〈Oi(σ)Oj(0)Ok(σ′)〉UV +O(g2)

)
, (3.16)

where Z k
i is the mixing matrix, which relates the renormalized Oi to its UV coun-

terpart, Oi = Z k
i OUV

k . We keep only linear terms within parenthesis in the above

expression, because the perturbative beta functions (3.15) are evaluated up to O(g2).

For simplicity consider the case with equal εi’s, then

Zij = δij +
2πCijkg

k

ε
+O(g2) . (3.17)

Using (3.14), (3.15), (B.5) and (B.15), we obtain

∆b = −3π2ε δij g
i
IR g

j
IR + 2π3Cijk g

i
IR g

j
IR g

k
IR +O(g4

IR) = −π2ε δij g
i
IR g

j
IR +O(g4

IR) < 0 ,

(3.18)

where the couplings giIR correspond to the IR fixed point of the DRG flow, and we

used βi(gIR) = 0 in the second equality to simplify the expression. If there is only one

relevant deformation, i.e., a single coupling gIR and one OPE coefficient C1, we obtain

β(gIR) = 0 ⇒ gIR =
ε

πC1

⇒ ∆b = − ε3

C2
1

< 0 . (3.19)

Lastly, the matrix hij in (3.13) is given by11

hij = δij +O(g). (3.20)

Therefore, as long as the perturbative expansion remains valid, hij retains its positive

definiteness within a small neighborhood of the UV DCFT. Specifically, the RDE ex-

hibits perturbative monotonicity to all orders in the coupling constant and serves as

a C-function, provided that the DRG flow is generated by a sufficiently weak relevant

deformation of the UV DCFT.

11The first equality in (3.18) is applicable to any coupling gi along the DRG flow. Consequently,

one simply applies −βi ∂
∂gi to the expression for ∆b/3 to derive hij .
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4 Example of the DRG flow

In this section we present a concrete and simple example of a DCFT, where the general

concepts of the previous sections can be explicitly illustrated. With this aim, consider a

free massless scalar field in a d-dimensional Euclidean bulk coupled to a two-dimensional

defect D,

I =
1

2

∫
ddx ∂µφ0∂

µφ0 + g0

∫
D
d2σ
√
γ̂ φ2

0 +

∫
D
d2σ
√
γ̂
(

Λ0 −
b0

24π
R
)
, (4.1)

where the last integral on the right hand side represents the geometric counterterms

with Λ0 and R being the cosmological constant and Ricci scalar of the induced met-

ric respectively. This action is Gaussian with a space-time dependent mass term of

the form, m2 = 2g0δD. We employ the minimal subtraction scheme to absorb the

divergences due to the presence of a singular mass term.

Varying (4.1), yields

T tot
µν = ∂µφ0∂νφ0−

1

2
δµν
(
∂φ0

)2− d− 2

4(d− 1)

(
∂µ∂ν − δµν∂2

)
φ2

0− γ̂µν
(
g0φ

2
0 + Λ0

)
δD , (4.2)

where the third term on the right hand side represents the well known improvement in

the bulk, and we used the following identities,

δγ̂ac = δgµνeaµe
c
ν , γ̂µν = γ̂ace

a
µe
c
ν .

Taking trace of T tot
µν , and using (2.3) along with the tracelessness of the bulk stress

tensor, T ≡ T µµ = 0, yields

Ttot = T̂ δD =
d− 2

2
φ0∂

2φ0 − 2
(
g0φ

2
0 + Λ0

)
δD = (d− 4)g0φ

2
0δD − 2Λ0δD , (4.3)

where the last equality follows from the equation of motion operator,

E = −∂2φ0 + 2g0φ0 δD = 0 . (4.4)

Hence, we finally obtain,

T̂ = (d− 4)g0φ
2
0 − 2Λ0 . (4.5)

To facilitate further analysis, we assume that d = 4− ε, i.e., the bare coupling g0

is weakly relevant. In particular, conformal perturbation theory can be employed to

relate g0 to the renormalized coupling g at an arbitrary energy scale µ. To this end,

we note that up to second order in g0 the defect insertion in the path integral can be

written as follows,

e−g0
∫
D φ20 = 1− g0

∫
D
φ2

0(σ1) +
g2

0

2

∫
D

∫
D
φ2

0(σ1)φ2
0(σ2) + . . . . (4.6)
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All scales are included in the above expression. To get the defect at a given scale µ,

we integrate out the distances in the range 0 ≤ ` ≤ µ−1. This calculation boils down

to excluding a small ball of radius µ−1 around φ2
0(σ1) in the second term on the right

hand side of (4.6),∫
D
φ2

0(σ1)φ2
0(σ2) =

∫ σ12>µ−1

D
d2σ2

√
γ̂ φ2

0(σ1)φ2
0(σ2)+

∫ 0≤σ12≤µ−1

D
d2σ2

√
γ̂
C φ2

0(σ1)

σd−2
12

+. . . ,

(4.7)

where σ12 is the distance between the points σ1 and σ2 in the d-dimensional Euclidean

space, and C is the OPE coefficient at the Gaussian fixed point,

φ2
0(x)φ2

0(0) ∼ C

|x|d−2
φ2

0(0) + . . . . (4.8)

The last term in (4.7) contributes to the renormalization of the coupling g0 in (4.6),

g(µ)µε = g0 −
πC

ε
g2

0 µ
−ε +O(g3

0) ⇒ g0 = gµε
(

1 +
πCg

ε
+O(g2)

)
, (4.9)

where g is the dimensionless running coupling constant. Thus,

β = µ
dg

dµ
= −εg + πCg2 +O(g3) . (4.10)

Furthermore, the renormalized defect operator [φ2] can be obtained by differenti-

ating the partition function in the presence of D with respect to g and striping off the

integral over D. Indeed, the operator insertion obtained in this way is finite and differs

from the φ2
0 by an ascending series of poles in ε. In principle, the contribution of the

total derivatives to [φ2] could be missed, because we explicitly strip off the integral

over the defect. However, in our case total derivatives are not allowed by dimensional

analysis. As a result, one gets

[φ2] =
dg0

dg
φ2

0 +
dΛ0

dg
− db0

dg

R
24π

⇒ φ2
0 =

(dg0

dg

)−1(
[φ2]− dΛ0

dg
+
db0

dg

R
24π

)
, (4.11)

Combining, (4.5), (4.9), (4.10) and (4.11), yields

T̂ = β(g)[φ2] +A , (4.12)

where A represents anomaly (identity operator), which is not essential for our needs.

As expected, T̂ is a finite operator, which needs no renormalization, and up to an

anomaly term it vanishes at the UV and IR fixed points, gUV = 0 and gIR = ε
πC

.

Next, we use the general formula (3.10) to evaluate the difference between the

anomaly coefficients at the UV and IR ends of the DRG flow on a spherical defect.
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In our example, gUV = 0, thus the defect becomes trivial in the UV, and the anomaly

vanishes. Substituting (4.5) into (3.10), yields12

bIR = −3π

∫
S2

s2(σ1)
〈
T̂ (σ1)T̂ (0)

〉 ∣∣∣
R→∞

= −3π(d− 4)2g2
0 (4.13)

×
(∫

S2

s2(σ1)
〈
φ2

0(σ1)φ2
0(0)

〉
0
− g0

∫
S2

∫
S2

s2(σ1)
〈
φ2

0(σ1)φ2
0(σ2)φ2

0(0)
〉

0

)
R→∞

+O(g4
IR) ,

where

〈φ0(σ1)φ0(σ2)〉 =
Cφ

s(σ1, σ2)d−2
, Cφ =

Γ
(
d−2

2

)
4π

d
2

,

〈φ2
0(σ1)φ2

0(σ2)〉 =
2C2

φ

s(σ1, σ2)2(d−2)
, (4.14)

〈φ2
0(σ1)φ2

0(σ2)φ2
0(σ3)〉 =

8C3
φ

(s(σ1, σ2)s(σ1, σ3)s(σ2, σ3))d−2
.

In particular,

C = 4Cφ =
1

π2
, gIR = επ . (4.15)

The two integrals within parenthesis in (4.13) can be evaluated in a closed form,

see Appendix B. Substituting (B.5), (B.15) and (4.9), yields13

bIR = − 3

8π3
ε2g2

IR

(
π

ε
− 2 gIR

3ε2

)
+O(g4

IR) = −ε
3

8
+O(ε4) . (4.16)

To check this result we perform an independent calculation of bIR based on the

direct calculation of the F -function. We have,

−F =
g2

0

2

∫
D

∫
D

〈
φ2

0(σ1)φ2
0(σ2)

〉
0
− g

3
0

6

∫
D

∫
D

∫
D

〈
φ2

0(σ1)φ2
0(σ2)φ2

0(σ3)
〉

0
+O(g4

0) . (4.17)

Substituting (4.9), (4.14) and using (B.5), (B.10) of Appendix B, we obtain

−F =
g2(µR)2ε

2

(
1+

2g

πε

)(
− 1

8π2
+O(ε)

)
− g

3(µR)3ε

6

(
− 2

3π3ε
+O(ε0)

)
+O(g4) . (4.18)

This expression is not finite in the limit ε → 0, because we did not include the con-

tribution of the geometric counterterm proportional to the integral of the Ricci scalar

12Note that for any g along the RG trajectory, the expression for S is manifestly finite in the limit

ε→ 0, therefore O(g4) terms are free of poles in ε, i.e., these corrections are at least O(ε4).
13This result agrees with (3.19) if the difference between the normalizations of φ20 and Oi is taken

into account. It follows from (3.14) and (4.14) that one should use C1 =
√

8 in (3.19) to compare with

(4.16).
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over the defect.14 This counterterm is a constant independent of R, and therefore it

does not contribute to the RDE (3.4). Substituting (4.18) into (3.4), setting µ = R−1,

and taking the limit R→∞, gives

bIR = −ε
3

8
+O(ε4) , (4.19)

in full agreement with (4.16).

5 Conclusions

In this paper we defined the renormalised defect entropy (RDE) (3.4) to characterise

RG flows on the two-dimensional spherical defects embedded in a d-dimensional flat

Euclidean bulk CFT. By definition, the RDE is finite along the entire RG flow from the

UV to the IR fixed points. This construction is used to provide an alternative derivation

of the sum rule (3.10), also known as the defect b-theorem [55]. More interestingly, we

argue that the RDE is monotonically decreasing along the RG flows induced by weakly

relevant deformations of the UV fixed point. This result is quite surprising considering

the fact that monotonicity of the non-perturbative definition of RDE is not obvious.

The salient feature of the key identity (2.21) in our construction is that it can be

generalized to higher dimensional spherical defects (p > 2). However, for such defects,

the integral of the two-point function on the right hand side of (2.21) exhibits UV

divergences. These divergences are closely related to the new type of non-universal

terms appearing in the partition function for the higher dimensional defects. In par-

ticular, one has to modify the definition of RDE to isolate the subleading universal

contribution associated with anomaly. The corresponding modification necessarily in-

volves higher order derivatives of the partition function with respect to R, such that the

non-universal terms are suitably removed. The final pattern for the higher dimensional

RDE resembles the so-called renormalized entanglement entropy [63]. It includes the

uncharted higher point correlators of the defect stress tensor, which make nonpertur-

bative studies difficult. Even though it is hard to prove monotonicity or positivity of

14It satisfies b0 = g3

24π3ε + O(g4), because from (4.1) and (4.18), we have (Λ0 = 0 in dimensional

regularization),

−F = − g3

72π3ε
+

b0
24π

∫
D
d2σ
√
γ̂R+O(g4, ε0) .

Hence, using (4.5) and (4.11), we recover the anomaly term in (4.12)

A = (d− 4)g0

(dg0
dg

)−1 db0
dg

R
24π

= −ε
3

8

R
24π

+O(ε4) .

This result agrees with (4.16).
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such constructions in general, it would be interesting to explore them further.

Acknowledgements We thank Zohar Komargodski and Avia Raviv-Moshe for

helpful discussions and correspondence. We are grateful to the Israeli Science Founda-

tion Center of Excellence (grant No. 2289/18) for continuous support of our research.

RS would like to thank SINP, Kolkata for hospitality during the completion of this

work.

A Conformal Ward Identities in the presence of defects

For the sake of completeness of the presentation, in this Appendix we reproduce a

slight generalization of the Ward identities obtained in [64] to account for defects of

codimension higher than one. We apply the identities to the special case of a spherical

defect and recover (2.5).

Following [64], we extend (2.2) to include an extra term coupled to the normal

derivatives of the metric,

δW =− 1

2

∫
M
ddx
√
g δgµν 〈T µν〉+

∫
D
dpσ
√
γ̂ δXµ (σ) 〈Dµ〉

− 1

2

∫
D
dpσ
√
γ̂
[
δgµν〈T̂ µν〉+∇Iδgµν〈ÂIµν〉+ ...

]
(A.1)

In principle, there could be additional terms coupled to higher order normal derivatives

of the metric. However, they vanish at the fixed points of DRG provided that p < 4.

Moreover, even if the first additional term of this kind is present, we argue that the

Ward identity (2.5) is not modified in the special case of spherical defect.

The bulk diffeomorphism xµ → x′µ = xµ − ξµ yields

δgµν = ∇µξν +∇νξµ, δXu = −ξµ . (A.2)

Together with (A.1) it results in the following Ward identity,

0 =

∫
M
ddx
√
g ξν∇µT

µν −
∫
D
dpσ
√
γ̂
[
ξµDµ +∇µξνT̂

µν +∇I∇µξνÂ
Iµν
]

(A.3)

Thereafter, we split every vector ξν into components that are tangential and normal to

the defect, using the tangent frame eµa = ∂Xµ

∂σa
and a normal frame nµI .

ξν = eaνξa + nIνξI , ∇µ = eaµ∇a + nIµ∇I (A.4)

In all further computations, we will make the following assumptions for the tangent

and normal frames: ∇InJ = ∇Iea = 0. This assumption corresponds to a particular
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choice of foliation in the vicinity of the defect, because nµJ and eµa become bulk fields.

In the case of a generic two-dimensional defect embedded within a curved ambient

space, this type of foliation might not necessarily exist. However, it can be readily

established for a two-dimensional spherical defect in flat space, which is a central focus

of our paper. To achieve this, one simply needs to adopt spherical coordinates in the

three-dimensional ambient space that encloses the sphere, while employing Cartesian

coordinates for the remaining d−3 dimensions.15 The Ward identities remain unaffected

by the choice of foliation; hence, our results are applicable for all geometries that admit

a foliation of the above type.

To evaluate the above expression, we make use of the following identities,

∇ae
b
ν = −nIνKb

Ia, ∇an
I
µ = KI

abe
b
µ, (A.5)

where Kab are the extrinsic curvatures of the defect manifold D. Using these identities,

we obtain

∇µξν = eaµe
b
ν∇aξb − eaµnIνKb

Iaξb + eaµn
I
ν∇aξI + eaµe

b
νK

I
abξI + nIµe

b
ν∇Iξb + nIµn

J
ν∇IξJ

(A.6)

∇I∇µξν = eaµe
b
ν∇I∇aξb − eaµnJν

(
ξb∇IK

b
Ja +Kb

Ja∇Iξb
)

+ eaµn
J
ν∇I∇aξJ

+ eaµe
b
µ

(
∇IK

J
abξJ +KJ

ab∇IξJ
)

+ nJµe
b
ν∇I∇Jξb + nJµn

K
ν ∇I∇JξK (A.7)

Substituting equations (A.6),(A.7) into (A.3) yields,

δW =

∫
M
ddx
√
g ξν∇µT

µν +

∫
D
dpσ
√
γ̂
[
−Daξa −DIξI − T̂ ab∇aξb + T̂ IaKb

Iaξb

− T̂ Ia∇aξI − T̂ abKI
abξI − T̂ Ia∇Iξa −∇IξJ T̂

IJ − ÂIab∇I∇aξb + ÂIaJKb
Ja∇Iξb

− ÂIaJ∇I∇aξJ − ÂIabKJ
ab∇IξJ − ÂIJb∇I∇Jξb − ÂIJK∇I∇JξK + . . .

]
(A.8)

To proceed, change the order of∇I∇a to∇a∇I and then integrate by parts over the

defect submanifold. Using the identity [∇µ,∇ν ] ξρ = −R σ
ρµνξσ = R σ

ρ µνξσ, one arrives

at,

15The flat metric in these coordinates takes the form ds2 = dr2 + r2
(
dθ2 + sin2 θdφ2

)
+ δijdxidxj .

The defect is characterized by r = R and xi = 0. As a result, the normal frame extends into the bulk

field with nµr ∂µ = ∂r and nµi ∂µ = ∂i for i = 4, 5, ..., d. Likewise, the tangent frame extends into the bulk

field, giving eµφ∂µ = R
r ∂φ and eµθ∂µ = R

r ∂θ.Upon direct calculation, we find ∇reµθ = ∇reµφ = ∇rnµr =

∇rnµi = 0, and similarly for the derivative in the direction of nµi . The useful non-zero Christoffel

symbols are Γθ,rθ = −Γr,θθ = r, Γφ,rφ = −Γr,φφ = r sin2 θ, and Γφ,θφ = −Γθ,φφ = 1
2r

2 sin(2θ).

– 17 –



δW =

∫
M
ddx
√
g ξν∇µT

µν (A.9)

+

∫
D
dpσ
√
γ̂
[(
∇aT̂

ab −Db +∇a + T̂ IaKb
Ia + ÂIacR b

c aI −∇c

(
ÂIabKc

Ia

))
ξb

+
(
∇aT̂

Ia −DI − T̂ abKI
ab + ÂJabR I

b aJ + ÂJabKc
JaK

I
cb

)
ξI

+
(
− T̂ Ia +∇bÂ

Iba
)
∇Iξa +

(
− T̂ IJ − ÂIabKJ

ab

)
∇IξJ

− ÂIJb∇I∇Jξb − ÂIJK∇I∇JξK + . . .
]

Since ξb, ξI and their normal derivatives are completely independent, their coefficients

must separately vanish. This leaves us with the following Ward Identities,

∇bT̂
ba −Da +Ka

IbT̂
Ib −∇c

(
Kc
IbÂ

Iba
)

+R a
c bIÂ

Ibc = 0

∇aT̂
aI −DI −KI

abT̂
ab +

(
R I
b aJ +Kc

JaK
I
cb

)
ÂJab = 0

∇aÂ
Iab − T̂ Ib = 0

T̂ IJ + ÂIabKJ
ab = 0

ÂIJb = ÂIJK = 0 (A.10)

For a p-dimensional spherical defect and flat bulk with R = 0, there is only one normal

direction to the sphere with a non-vanishing extrinsic curvature, Kab = gab
R

. However, its

contribution to the first equation in (A.10) vanishes with the use of the third equation.

Thus we simply have

∇bT̂
ba = Da

B Useful integrals

In this Appendix we evaluate various integrals on a p-dimensional spherical defect of

radius R. These integrals are used in the main body of the text. It is convenient to

describe the metric on Sp through the use of stereographic projection on Rp. In these

coordinates the metric is conformally flat,

γ̂acdx
adxc =

4R2

(1 + |x|2)2
δacdx

adxc , |x|2 = δacx
axc . (B.1)

In particular, the chordal distance between the two points on Sp takes the form

s(x1, x2) = 2R
|x1 − x2|

(1 + |x1|2)1/2(1 + |x2|2)1/2
. (B.2)
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We start from the following double integral

I1 =

∫ 2∏
i=1

dpxi
√
γ̂(xi)

1

[s(x1, x2)]2α
. (B.3)

Note that the integral over x1 is independent of x2, because the integrand is invariant

under rigid rotations of the sphere. Hence, we can set x2 = 0 without changing the

answer. As a result, we obtain

I1 =

∫ 2∏
i=1

dpxi
√
γ̂(xi)

1

[s(x1, 0)]2α
= R2(p−α) 21+p−2απ

p+1
2

Γ
(
p+1

2

) ∫
dpx1

(1 + x2
1)p−α|x1|2α

, (B.4)

where in the second equality we used (B.1), (B.2) and integrated over x2. Using spher-

ical coordinates to perform the remaining integral, yields

I1 = R2(p−α) 21+p−2απp+
1
2 Γ
(
p
2
− α

)
Γ
(
p+1

2

)
Γ(p− α)

. (B.5)

Next we calculate

I2 =

∫ 3∏
i=1

dpxi
√
γ̂(xi)

1

[s(x1, x2)s(x2, x3)s(x3, x1)]p−ε
. (B.6)

Let us carry out the integrals over x1 and x2 first. Due to the manifest invariance of

the integrand under the rotations of the sphere, the final result is independent of x3,

and therefore we can set x3 = 0. Thus the integral over x3 gives the volume of Sp,

I2 =
2π

p+1
2 Rp

Γ
(
p+1

2

) ∫ 2∏
i=1

dpxi
√
γ̂(xi)

1

[s(x1, x2)s(x2, 0)s(0, x1)]p−ε
(B.7)

= (2R)3ε2
1−pπ

p+1
2

Γ
(
p+1

2

) ∫ 2∏
i=1

dpxi
1

(|x12||x2||x1|)p−ε
1

[(1 + x2
1) (1 + x2

2)]
ε , x12 = x1 − x2 .

To simplify the double integral, we apply inversion |x1,2| → |x1,2|−1,

I2 = (2R)3ε2
1−pπ

p+1
2

Γ
(
p+1

2

) ∫ 2∏
i=1

dpxi
1

|x12|p−ε
1

[(1 + x2
1) (1 + x2

2)]
ε . (B.8)

Using the standard Feynman parametrization to integrate over x1, yields

I2 = (2R)3ε 21−pπ
2p+1

2 Γ
(
ε
2

)
Γ
(
p+1

2

)
Γ
(
p−ε

2

)
Γ(ε)

∫
dpx2

∫ 1

0

du
(1− u)

p−ε−2
2 u

ε
2
−1

(1 + x2
2)
ε
(1 + (1− u)x2

2)
ε
2

. (B.9)
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Integrating over the Feynman parameter u, and then using the spherical coordinates

to carry out the remaining integral over x2, we obtain

I2 = R3ε 8π
3(p+1)

2 Γ
(
−p

2
+ 3ε

2

)
Γ (p) Γ

(
1+ε

2

)3 . (B.10)

Finally, we evaluate a triple integral of the form

I3 =

∫ 3∏
i=1

dpxi
√
γ̂(xi)

s(x1, x2)2

[s(x1, x2)s(x2, x3)s(x3, x1)](p−ε)
. (B.11)

As before, the rotational symmetry can be used to set x3 = 0,

I3 =

∫ 3∏
i=1

dpxi
√
γ̂(xi)

s(x1, x2)2

[s(x1, x2)s(x2, 0)s(0, x1)](p−ε)

=
21−pπ

p+1
2

Γ
(
p+1

2

) (2R)3ε+2

∫ 2∏
i=1

dpxi
1

(1 + x2
1)1+ε(1 + x2

2)1+ε |x12|p−ε−2|x2|p−ε|x1|p−ε
,

(B.12)

where in the second equality we used (B.1), (B.2). Next, we apply inversion |x1,2| →
|x1,2|−1 to simplify the double integral

I3 =
21−pπ

p+1
2

Γ
(
p+1

2

) (2R)3ε+2

∫ 2∏
i=1

dpxi
1

(1 + x2
1)1+ε(1 + x2

2)1+ε |x12|p−ε−2
, (B.13)

Introducing Feynman parametrization to integrate over x1, yields

I3 = (2R)3ε+2 21−pπ
2p+1

2 Γ
(
ε
2

)
Γ
(
p+1

2

)
Γ
(
p−ε−2

2

)
Γ(ε+ 1)

∫
dpx2

∫ 1

0

du
(1− u)

p−ε−4
2 u

ε
2

(1 + x2
2)

1+ε
(1 + (1− u)x2

2)
ε
2

.

(B.14)

Integrating now over the Feynman parameter u, and then using spherical coordinates

to calculate the integral over x2, we obtain

I3 = (2R)3ε+2π
3p/2+121−2εΓ

(
3ε
2

+ 1− p
2

)
Γ (ε/2)

Γ(1 + ε) Γ
(

1+ε
2

)2
Γ(p)

. (B.15)
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