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We propose bi-critical and tri-critical theories between chiral spin liquid (CSL), topological super-
conductor (SC) and charge density wave (CDW) ordered Chern insulator with Chern number C = 2
on square, triangular and kagome lattices. The three CDW order parameters form a manifold of S2

or S1 depending on whether there is easy-plane anisotropy. The skyrmion defect of the CDW order
carries physical charge 2e and its condensation leads to a topological superconductor. The CDW-SC
transitions are in the same universality classes as the celebrated deconfined quantum critical points
(DQCP) between Neel order and valence bond solid order on square lattice. Both SC and CDW
order can be accessed from the CSL phase through a continuous phase transition. At the CSL-SC
transition, there is still CDW order fluctuations although CDW is absent in both sides. We propose
three different theories for the CSL-SC transition (and CSL to easy-plane CDW transition): a U(1)
theory with two bosons, a U(1) theory with two Dirac fermions, and an SU(2) theory with two
bosons. Our construction offers a derivation of the duality between these three theories as well as
a promising physical realization. The SU(2) theory offers a unified framework for a series of fixed
points with explicit SO(5), O(4) or SO(3) × O(2) symmetry. There is also a transparent duality
transformation mapping SC order to easy-plane CDW order. The CSL-SC-CDW tri-critical points
are invariant under this duality mapping and have an enlarged SO(5) or O(4) symmetry. The
DQCPs between CDW and SC inherit the enlarged symmetry, emergent anomaly, and self-duality
from the tri-critical point. Our analysis unifies the well-studied DQCP between symmetry breaking
phases into a larger framework where they are proximate to a topologically ordered phase. Exper-
imentally the theory demonstrates the possibility of a rich phase diagram and criticality through
closing the Mott gap of a quantum spin liquid with projective symmetry group.
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I. INTRODUCTION

Deconfined critical points with fractionalization have
attracted lots of attention because they are beyond
the conventional Landau symmetry breaking framework.
One classic example is the deconfined quantum criti-
cal point (DQCP) between the Neel order and valence
bond solid (VBS) order for spin 1/2 system on square
lattice1,2. The same DQCP can also happen between
a quantum spin Hall insulator and a topologically triv-
ial superconductor3,4. In these examples the phases in
both sides are conventional symmetry breaking phases
and fractionalization happens only at the quantum crit-
ical point(QCP). In contrast, there is a different class of
QCP between a fractional phase and a symmetry break-
ing phase where fractionalization exists already in one
side. One simple example is the XY* transition between
a Z2 topological ordered phase and a superfluid phase5–7.
Such a transition is driven by the condensation of a Higgs
boson ϕ, which simultaneously kills the topological order
and leads to the onset of the symmetry breaking because
the bilinear of ϕ represents symmetry breaking order pa-
rameter.

In this paper we unify the above two classes of DQCPs
in one framework. We show that there can be direct
transitions between each pair of these three phases: a
U(1)2 chiral spin liquid (CSL), a topological supercon-
ductor (SC) and a charge density wave (CDW) ordered

Chern insulator with Chern number C = 2. The phase
diagrams are illustrated in Fig. 1. There are three CDW
orders, they have momenta Q = (π, 0), (0, π), (π, π) on
square lattice and Q = M1,M2,M3 on triangular and
kagome lattice, labeled as (n3, n4, n5). On square lat-
tice, (n3, n4) is rotated by C4. On triangular or kagome
lattice, (n3, n4, n5) is rotated to each other by C6 rota-
tion,forming a manifold of S2. On square lattice, we call
(n3, n4) CDWxy and n5 CDWz as an analog of the Neel
order with easy-plane or easy-axis anisotropy in magnets.
The superconductor order is labeled as (n1, n2). The
topological (d + id) superconductor can be understood
from condensation of the skyrmion defects of the CDW
order, which carries charge 2e similar to the quantum
Hall ferromagnetism with C = 28. Therefore, the CDW-
SC transition on triangular/kagome lattice is in the same
universality class as the DQCP between the isotropic
Neel and VBS order. On square lattice, the CDWxy-SC
transition is the same as the easy plane DQCP. These
two DQCPs are known to have SO(5) or O(4) symmetry
and self-duality2. This article offers a new understand-
ing of these enlarged symmetries as inherited from the
CSL-CDW-SC tri-critical points.

Triangular

CSL
SC

CDW

Square

CSL
CDWxy

CDWz

SC

(a) (b)

FIG. 1: Phase diagram on square (a) and triangular
lattice (b), respectively. We will provide theories for the
bi-critical (as boundaries between two phases) and
tri-critical points(dots at intersection of three phases).
The green line separating superconducting and CDW
phases are described by isotropic or easy-plane DQCP.
The dashed line represents first-order transitions.

We start from a chiral spin liquid and try to obtain ei-
ther the SC or CDW phase through a continuous transi-
tion, focusing on half-filling. CSL phase9,10 was proposed
as an example of quantum spin liquid phase11–14 in the
early attempts to study high Tc superconductor through
the resonating valence bond (RVB) mechanism15. It was
thought that a superconductor phase can be reached from
the CSL by closing the charge gap. A critical theory be-
tween the CSL and the SC phase has not been written
down explicitly. A simple theory for this transition is
through condensation of bosonic holons (eq (40)) starting
from a mean field ansatz of the CSL phase. On square
lattice, the ansatz for the fermionic spinon of the CSL
phase is gauge equivalent to a d + id superconductor,
so a transition through slave boson condensation seems
to be quite straightforward. Careful analysis shows that
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this transition has a rich structure and enlarged sym-
metry. First, on square, triangular and kagome lattice,
there are odd number of electrons per unit cell for the
CSL phase with one electron per site. Thus the semion
excitation is constrained to have a projective translation
T1T2 = −T2T1. The fermionic spinon and bosonic holon
inherit this projective translation and the minimal di-
mension for the irreducible representation of this projec-
tive translation is 2. Therefore, the critical theory has
two bosons ϕ1, ϕ2 coupled to a U(1) gauge field with a
self Chern-Simons term at level −2. Similar to the XY*
transition, bilinear terms of ϕ = (ϕ1, ϕ2)T represent the
symmetry breaking orders. In addition to the SC order
ϕ∗1ϕ2, we find three more gauge invariant order param-
eters from |ϕ1|2 − |ϕ2|2 and the monopole operator of
the U(1) gauge field. These three order parameters can
be identified as the three CDW orders (n3, n4, n5). The
appearance of the CDW order at the QCP is remarkable
given that it is absent on both sides away from the QCP.

The CDW order turns out to have an enlarged SO(3)
symmetry at the QCP between CSL and SC, even though
microscopically there is easy-plane anisotropy on square
lattice. The emergent symmetry is best revealed in a dual
theory with two Dirac fermions coupled to a U(1) gauge
field with self Chern-Simons term at level 1 (eq (45)).
The dual theory can be derived from the standard bo-
son fermion duality. Physically it is obtained by letting
the bosonic holon ϕ go through a pleateau transition into
a bosonic integer quantum Hall (bIQHE) phase. In the
dual theory the SC order is represented by the monopole
operator. The three fermion bilinear terms ψ̄~σψ corre-
spond to the CDW (n3, n4, n5). The SO(3) symmetry of
these three CDW order is transparent in the Dirac theory
given that the four-fermion interaction term is irrelevant.
The vortex of the SC order carries spin 1/2 under this
emergent SO(3) symmetry, an emergent anomaly shared
by the usual DQCP16. The existence of CDW order at
the CSL-SC transition is required by the Lieb-Schultz-
Mattis (LSM) theorem17–19. If the bilinear terms ψ̄~σψ do
not carry any non-trivial quantum number of the lattice

symmetry, they can be added to the QCP. This leads to a
trivial symmetric insulator, impossible with odd number
of electrons per unit cell. So ψ̄~σψ must carry non-trivial
symmetry quantum numbers. The same theory with two
Dirac fermions has been proposed between a Laughlin
state and a superfluid phase20. This is not a coincidence.
Spin gap and single electron gap remain finite across the
CSL-SC transition, so the transition is equivalent to the
transition between Laughlin state and superfluid phase of
Cooper pairs up to stacking of a ν = −2 integer quantum
Hall (IQHE) phase to account for the edge modes.

A parallel discussion follows for the transition between
CSL and CDWxy. The criticality is the same as the
CSL-SC transition after exchanging the SC order and the
CDWxy order. There is also an SO(3) × O(2) symme-
try and the QCP can be described by U(1) theory with
either two bosons or two Dirac fermions. This analysis
implies a duality which exchanges the SC and CDWxy or-
der. Both CSL-SC and CSL-CDWxy transitions can be
described by a theory with two bosons coupled to U(1)
gauge field with easy plane anisotropy λ > 0. The two
theories are in the same form after a mapping between
(n1, n2) and (n3, n4). If we tune λ < 0 in both theories,
they describe the CSL to CDWz transition. So the CSL-
CDWz QCP is self dual with (n1, n2) exchanged with
(n3, n4). This implies an enlarged O(4) symmetry rotat-
ing (n1, n2, n3, n4). λ = 0 point of the two theories corre-
sponds to the CSL-CDWxy-CDWz and CSL-SC-CDWz

tri-critical points. The CSL-CDWxy-CDWz tri-critical
point describes a CSL-CDW bi-critical point on triangu-
lar lattice because the easy-plane anisotropy term λ is
forbidden.

The best way to unify these various bi-critical and tri-
critical points, and understand the enlarged symmetry
and duality mapping is from an SU(2) theory. The CSL
phase can be understood as a U(1)2 or SU(2)−1 topolog-
ical order. Especially the fermionic spinon can be put in
an SU(2) ansatz, from which the U(1) ansatz descends
through a Higgs term. Starting from the SU(2) ansatz,
a critical theory can be obtained with two bosons Φ1,Φ2

coupled to an SU(2) gauge field a:

LSU(2) =
∑
i=1,2

|(∂µ − iasµτs − i
1

2
Ac;µτ0σ0)Φi|2 − r|Φ|2 +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− 1

8π
AcdAc − Lint

Lint = g|Φ†Φ|2 + λ0n · n− λ(n2
1 + n2

2)− λ′(n2
3 + n2

4), (1)

where Ac is the probe field for the electric charge,
τ, σ Pauli matrices act in the SU(2) spinor and flavor
spaces respectively and n = (n1, · · · , n5). The SU(2)
theory does not have monopole operators and all five or-
der parameters can be written as the bilinear terms of
Φ = (Φ1,Φ2)T . There are various fixed points in the

parameter space of quartic terms (λ, λ′) shown in fig 6.
There is a duality between the SU(2) theory and the
U(1) theory with two bosons for the CSL-SC transition.
In particular there is presumably a manifold of U(1) the-
ory corresponding to different Higgs terms adding to the
SU(2) theory, to wit
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LSU(2) = |(∂µ − iasµτs − i
1

2
Ac;µτ0σ0)Φ|2 − r|Φ|2 +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− 1

8π
AcdAc

− g|Φ†Φ|2 − λ0n · n + λ(n2
1 + n2

2)

↔ LSU(2) − hΦ† ~m · ~στ3Φ

↔ LU(1),~m = |(∂µ − iaµ − i
1

2
Ac;µσ3)ϕ|2 − r|ϕ|2 +

2

4π
ada− 1

8π
AcdAc − g̃(|ϕ|2)2 + λ̃|ϕ1|2|ϕ2|2.

(2)

The emergent SO(3) symmetry generally acts non-
locally in the U(1) theory in the sense it changes one U(1)
theory to a different one. On triangular/kagome lattice,
the lattice symmetry also needs to act non-locally in the
U(1) theory. Therefore there is no simple parton con-
struction of the U(1) theory for the CSL-SC transition
on triangular/kagome lattice.

In the SU(2) theory, there is an explicit duality map-
ping λ↔ λ′ which exchanges (n1, n2) and (n3, n4). The
special line λ = λ′ is self-dual and generically has an en-
larged O(4) symmetry. The special point λ = λ′ = 0 has
an SO(5) symmetry. We argue that the CSL-CDWxy-SC
tri-critical point on square lattice is at the λ = λ′ = λ∗

fixed point and thus is self dual with O(4) symmetry.
CSL-CDW-SC tri-critical point on triangular/kagome
lattice is at λ = λ′ = 0 and self-dual with SO(5) symme-
try. We also provide self-dual theory with two U(1) gauge
fields coupled to two bosons and two Dirac fermions for
the tri-critical points. The self-duality and SO(5) or O(4)
symmetry of the usual DQCP discussed in Ref. 2 can now
be understood as inherited from the tri-critical points.

We discuss the possible experimental realizations. Chi-
ral spin liquid has been found in (numerical simulations
of) various spin 1/2 models and Hubbard models21–35
and also in SU(N) model with N > 236–43. Especially
chiral spin liquids with spontaneous time reversal break-
ing were found in the intermediate U/t regime of the sim-
ple Hubbard model32 on triangular lattice and in spin 1/2
model on kagome lattice25,26. Triangular lattice Hubbard
model may be simulated in moiré superlattice with U/t
tuned by simple gating44, offering a promising direction
to search for chiral spin liquid and bandwidth tuned tran-
sitions into either superconductor or CDW phase pro-
posed in this paper. Note both superconductor45 and
chiral CDW33 were numerically observed from doping a
chiral spin liquid. Therefore it is also interesting to search
for chemical potential tuned transitions, which have dy-
namical exponent z = 2, but may still share similar struc-
tures as the critical theories we propose.

The outline of the paper is as follows: in Section II
we lay out the topological order of CSL and prove that
there is a unique symmetry fractionalization pattern on
square, triangular and Kagome lattices, which paves the
way to proposing duality for critical theories involving
CSL on one side. In sec III,IV, the mean-field ansatz and
projective symmetries with SU(2), U(1) gauge group are
discussed, respectively. The relation of U(1) ansatz to

SU(2) is highlighted. Sec V attaches a ν = −2 IQHE
state of spinful electrons to trivialize the spin degrees of
freedom throughout the transition, effectively rendering
the elementary degrees of freedom bosonic. This helps
to simplify the discussion. Sec VI,VII discusses the CSL-
SC transition on square lattices described by U(1)−2 2ϕ,
and U(1)1 2ψ, respectively. The duality between these
two theories and consequently operator mapping are pro-
vided. Sec VIII studies the CSL-CDW transition and
demonstrates a tricritical point for CSL-CDWxy-CDWz

on square lattices. Section IX and X discuss the SU(2)
critical theory that describe CSL-CDW (SC) transitions,
its symmetries, various fixed points in Fig 6 and the du-
ality to U(1)−2 2ϕ theory. Sec XI briefly reviews the
DQCP between CDW insulator and SC. Sec XII then
presents a tricritical point for CSL-CDW-SC transtion.
Sec XIII comments on honeycomb lattice where at low
energy only one bosonic mode ( or in dual theory one
Dirac fermion) exists and there is no symmetry breaking
order fluctuating at the QCP. Sec XIV discusses experi-
mental signatures of the duality in critical theories. We
conclude the paper by sec XV with various technical de-
tails delegated to appendices.

II. CHIRAL SPIN LIQUID AND ITS
SYMMETRY FRACTIONALIZATION ON

DIFFERENT LATTICES

A useful way to describe a CSL phase is through the
mean field ansatz of the fermionic spinon fi;σ from the
parton construction: ~Si = 1

2f
†
i;σ~σσσ′fi;σ′ . Here ~σ labels

the Pauli matrices. In a CSL phase, the spinon fσ is
put into a Chern insulator ansatz with Chern number
C = 1 for each spin. However, the invariant gauge group
(IGG) can be either SU(2) or U(1)46. After integrating
fσ, we get either a U(1)−2 gauge theory or a SU(2)−1

gauge theory. Both describe the same topological order
following the level-rank duality. The CSL phase here
has anyons I, s with s as a spin 1/2 semion. We note
that there is a different type of CSL which has fσ in a
d+ id superconductor ansatz and has only Z2 IGG. Such
a phase has four different anyons I, e,m, ε. We will only
discuss the first CSL with only two anyons as this is the
one which was found by numerical simulations.

If we only care about topological order, the U(1) and
SU(2) ansatz are clearly the same because of the equiv-
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alence between SU(2)−1 and U(1)2 topological field the-
ory. The next question is whether the U(1) and SU(2)
ansatz correspond to the same phase and can be con-
nected to each other without a phase transition. Given
the topological order is the same, the only difference
between them is the symmetry fractionalization. The
symmetry fractionalization for the symmetric CSL phase
turns out to be unique on various lattices. This was first
proved on kagome lattice47 and can be generalized to
square and triangular lattice. The proof proceeded by
considering a cylinder geometry with periodic boundary
along y, with two-fold degeneracy |1〉, |s〉. |s〉 is obtained
by nucleating a pair of semions and separating them to
the edges. Operationally it is obtained by threading
a flux 2π of Sz along y: |s〉 = e

i
∑
i S

z
i

2πyi
Ly |1〉, where

yi is the y coordinate of the site i. Due to the 1/2
spin-hall response of the C, a Sz = 1

2 is pumped from
x = 0→ x = Lx so that there is a semion at each end of
the cylinder with Sz = ± 1

2 .
Let us consider square lattices. Consider the algebraic

relation for inversion around a plaquette center I2 = 1
where I inverses with respect to the middle point of the
cylinder and leaves |1〉 , |s〉 invariant. The quantum num-
ber of I2 on a single semion I2 = ±1 is Z2 valued due to
the fact that two semions fusion into the vacuum. Ap-
plying I to |s〉 with one semion at each end, is equiva-
lent to applying I twice to a single semion.Hence I2 is
given by the quantum number of |s〉 under I denoted
as Qs(I) = 〈s|I|s〉, relative to that of |1〉 denoted as
Q1(I),i.e. Qs(I)

Q1(I) = (I2)s.
The Sz flux φ is inverted by eiπS

x

(Sx the total x com-
ponent spin) and inversion also reverts the Sz flux, dur-
ing the adiabatic flux threading, the quantum number of
Ihe

iπSx can be tracked and cannot change from |0〉 → |s〉,
i.e.

Qs(Ie
iπSx)

Q1(IeiπSx)
= (IeiπS

x

)2
s = 1. (3)

Given full SO(3)spin is preserved, spin rotation com-
mutes with inversion around the plaquette center48.
Hence (I2ei2πS

x

)s = 1. Since each semion carries
spin−1/2, we get (I2)s = −1.Similar to the arguments
in ref47, translation T1T2T

−1
1 T−1

2 = −1 follows from the
Oshikawa’s generalization18 of Lieb-Schultz-Mattis theo-
rem. Also we can get (R1T )2 = −1 following Ref. 47.
The translation and reflection (combined with time re-
versal) are shown in fig 2(square),3(triangular).

The site-centered inversion Is on square and triangular
lattices is a bit different due to the location of the branch
cut for the Sz flux48. When adiabatically threading an
Sz flux φ along the cylinder, we choose a branch cut
where the Sz rotation acts discontinuously and could not
go through a site. Under inversion that exchanges two
semions, one has to perform a spin rotation e−iS

zφ for
the sites encircled by the branch cut and its inversion
image to restore the location of the branch cut. Ĩs(φ) =
Is
∏
i∈encircled e

−iSzi φ combined with ei
∑
i S

x
i π hence can

be tracked throughout the flux threading. There are an
odd number of sites encircled by the branch cut and its
inversion image since one site sits at the center. When
φ = 2π and we reach the |s〉 state, this additional rotation
to restore the branch cut gives a eiS

z2π = −1 since there
is a spin−1/2 moment at the inversion site. Hence

Qs(Ĩs(2π)ei
∑
i S

x
i π)

Q0(Ĩs(0)ei
∑
i S

x
i π)

= 1 = −(Ise
iπSx)2

s. (4)

We have I2
s = 1 on triangular and square CSL, where

Is = C3
6 (triangular),or Is = C2

4 (square).
Hence we prove that the symmetric CSL has a unique

fractionalization pattern on Kagome, square and trian-
gular lattices. Given the uniqueness of the symmetry
fractionalization pattern, the U(1) and SU(2) ansatz for
the CSL phase must correspond to the same phase on
square, triangular and kagome lattice. This is quite use-
ful to derive critical theories as now we can start from
either the U(1) or SU(2) ansatz. Correspondingly the
critical theory can be either U(1) or SU(2) gauge theory
which must be dual to each other if we assume that there
is only one universality class for the critical point.

III. SU(2) MEAN-FIELD ANSATZ, PROJECTIVE
SYMMETRIES AND PROXIMATE PHASES

We introduce the SU(2) slave rotor theory11,49 to de-
scribe the chiral spin liquid phase and possible proximate
phases. The CSL is realized in a Mott insulator with one
electron per site. The SU(2) gauge field may or may
not be higgsed in the mean field ansatz. The electron
operator is written as:(

c↑(r)

c†↓(r)

)
=

(
z†1(r) z2(r)

−z†2(r) z1(r)

)(
f↑(r)

f†↓(r)

)
≡ Z(r)Ψ(r)

(5)

where Z(r) ∈ SU(2) is a rotor field representing the
charge degree of freedom and fermionic spinon Ψ(r) =(
f↑(r)

f†↓(r)

)
carries the spins. There is an SU(2) gauge re-

dundancy:

Z(r)→ Z(r)U†(r), Ψ(r)→ U(r)Ψ(r) (6)

where U(r) ∈ SU(2).
Simple algebra leads to(
f↑(r)

f†↓(r)

)
→ U(r)

(
f↑(r)

f†↓(r)

)
,

(
z1(r)
z∗2(r)

)
→ U(r)

(
z1(r)
z∗2(r)

)
(7)

The system has also a global U(1)c symmetry: cσ(r)→
cσ(r)eiθ. This U(1) global symmetry acts as

(
f↑(r)

f†↓(r)

)
→
(
f↑(r)

f†↓(r)

)
,

(
z1(r)
z∗2(r)

)
→ e−iθ

(
z1(r)
z∗2(r)

)
(8)
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Similarly the global SU(2) spin rotation symmetry
transforms as

(
f↑(r)
f↓(r)

)
→ US

(
f↑(r)
f↓(r)

)
,

(
z1(r)
z∗2(r)

)
→
(
z1(r)
z∗2(r)

)
(9)

where US ∈ SU(2).
With the holon Z and the spinon Ψ, we can always

write down a mean field theory with

HM = Hholon +Hspinon (10)

The mean field ansatz of the bosonic holon Z and the
fermionic spinon Ψ is constrained by a projective symme-
try group (PSG)50 with an invariant Gauge group (IGG)
which could be SU(2), U(1) or Z2. The bosonic holon
could be either gapped or condensed. If Z is gapped, this
describes a spin liquid phase depending on the ansatz of
the spinon Ψ. If Z is condensed, we have a conventional
phase which may have symmetry breaking if the PSG is
non-trivial. An SU(2) gauge transformation for both Ψ
and Z corresponds to a gauge redundancy and does not
change the physical state. However, if we do gauge trans-
formation for only Z or Ψ, we are changing the physical
states. In this paper we will choose the gauge to fix the
ansatz of Ψ, then different condensation patterns of 〈Z〉
lead to different phases. Alternatively, one may always fix
the condensation of Z to be 〈z1〉 6= 0, 〈z2〉 = 0, then dif-
ferent phases arise from different ansatz of the fermionic
spinon Ψ related by gauge transformation acting only on
Ψ. For our purpose, we take the first approach and al-
ways fix the gauge of Ψ.

When the bosonic holon Z is gapped, we are in a Mott
insulator phase with the spin degree of freedom decided
by HΨ. In this section we focus on ansatz with an SU(2)
IGG. The fermion Ψa is in a Chern insulator phase with
C = 1, so the final theory is an SU(2)−1 topological quan-
tum field theory (TQFT) describing a chiral spin liquid
(CSL)51. We will discuss mean field ansatz on square, tri-
angular and kagome lattice. Note that Z and Ψ share the
same gauge field and thus the same PSG. Once the mean
field ansatz of Ψ is fixed, we also know the PSG con-
straint on mean field ansatz of Z. We will show that low
energy modes of Z consist of two SU(2) spinor Φ1 and Φ2,
whose degeneracy is protected by the projective transla-
tion symmetry: T1T2 = −T2T1. From these two modes
Φa, a = 1, 2 we can construct five gauge invariant order
parameters and derive their symmetry properties. These
five order parameters are ΦT τ2σ2Φ and Φ†~σΦ. Here σa
acts in the space of a = 1, 2. For example, σ1 transforms
as: Φ1 ↔ Φ2. On the other hand, τa is the genera-
tor of the SU(2) gauge transformation. For example, τ1

acts as: Φa;1 ↔ Φa;2, where we write Φa =

(
Φa;1

Φa;2

)
.

The modes Φa are the critical boson whose condensa-

tions drive the transition between the CSL and a nearby
symmetry breaking phase.

Below we list the SU(2) mean field ansatz for spinons
and holons on square, triangular and Kagome lattices and
the PSG of holons at lowest energy. The detailed solution
and symmetry actions are contained in Appendix A.

A. Square lattices

An SU(2) ansatz for the CSL on square lattice is:

Hspinon =
∑
r

iΨ†r+r1Ψr − i(−1)r1Ψ†r+r2Ψr

+ iη(−1)r1Ψ†r+r1+r2Ψr + iη(−1)r1Ψ†r−r1+r2Ψr.

(11)

This simply describes spinons hopping on square lattice,
with the hopping as

tr,r+r1 = i, tr,r+r2 = (−1)r1i,

tr,r+r1+r2 = (−1)r1i, tr,r+r2−r1 = (−1)r1i. (12)

The holon Hamiltonian is given by the spinon mean-
field values 〈f†r,sfr′,s〉 from Hspinon. Assuming an elec-
tron hopping model HKE =

∑
r,r′,s tc

†
r,scr′,s and from

the parton relation Eq. 5, holon sector follow a Hamilto-
nian determined by the spinon mean-field value

Hholon =
∑
r,r′

tz∗r,1〈f
†
r′,sfr,s〉zr′,1−

∑
r,r′

tzr,2〈f†r′,sfr,s〉
∗z∗r′,2.

(13)
Since the hopping amplitude for spinons tij = 〈f†s,ifs,j〉

from optimizing mean-field ansatz, we get the SU(2) in-
variant Hamiltonian for holons

Hholon =
∑

iz†r+r1zr − i(−1)r1z†r+r2zr

+ iη(−1)r1z†r+r1+r2zr + iη(−1)r1z†r−r1+r2zr,

(14)

where zr = (z1(r), z2(r)∗)T .
There may also be other contributions to the holon

mean field ansatz from the interaction instead of the hop-
ping of the electrons. But these additional terms do not
alter the PSG of the holons and do not influence our dis-
cussion in the following. We solve the Hamiltonian above
and there are two degenerate lowest-energy states at mo-
menta Q1,2 = (π/2,±π/2). (See Appendix A). We de-
fine, at low energy, two SU(2) spinors for Z = (z1, z

∗
2)T :

Z(r) = Φ1(r)eiQ1r + Φ2(r)eiQ2r (15)

where Φ1,2 denotes the slowly-varying fields at momenta
Q1,2. Each spinor contains 2 components (Φa;1,Φa;2)
for (z1, z

∗
2). Under the SU(2) gauge transformation,

Φa(r)→ U(r)Φa(r), where U(r) ∈ SU(2).
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T1 T2 C4 C̃4 R1T U(1)c note
Φ −iσ1 −iσ2 σ2e

iπ
4
σ3 −iei

π
4
σ3 iσ1 ei

1
2
σ0θ

Φ†σ1Φ + − −Φ†σ2Φ Φ†σ2Φ + + n3

Φ†σ2Φ − + −Φ†σ1Φ −Φ†σ1Φ + + n4

Φ†σ3Φ − − −Φ†σ3Φ Φ†σ3Φ − + n5

ΦTσ2τ2Φ + + − − + eiθΦTσ2τ2Φ n1 − in2

TABLE I: The symmetry transforms of boson bilinears in the SU(2) gauge theory on square lattices. C̃4 = T2C4 so
C̃4 acts as −ieiπ4 σ3 . In the following we define Ar to be the gauge field of C̃4. We see (n3, n4) transforms as SO(2)
rotation under C̃4. Ψ†σiΨ represents 3 CDW order parameters at different momenta, while Ψ†σ2τ

2Ψ∗ carries one
unit of Ac charge and is identified as the cooper pair with d wave symmetry.

-
-

(c)(b)

+
-

+

++
-

-

T1

T2

+ +

--

+ +

-- -

-- -

R1(a)

Δ

−Δ

Δ

−Δ −iΔ
iΔ

C4

C̃4

FIG. 2: (a)The translation-invariant electron d+ id pairing(spin singlet) amplitude when condensing holons on
square lattices at low-energy fields Φ1;1 = 1,−Φ2;2 = eiΘ,Φ2;1 = Φ1;2 = 0, which makes ΦT τ2σ2Φ = −2. ∆ = eiΘ.
(b,c) CDW patterns where ± indicates a positive, negative (real) expectation value of electron hopping across the
bond.(b) CDW order on square lattice upon condensing Φ†σ3Φ. The unit cell dimension along T1,2 is both enlarged
by 2. The black arrows denotes expectation value of 〈c†i cj〉 of the bond 〈ij〉 as w = eiπ/4 with direction from i→ j
indicated by the arrow. (c) CDW pattern upon condensing Φ†σ1Φ. Unit cell is enlarged twice along T2. Arrows
indicates 〈ij〉 = i and direction is from i→ j. Another CDW pattern at momentum (π, 0) by condensing Φ†σ2Φ is
obtained by rotating (c) by π/2.

The relevant symmetries are translations T1,2, four-
fold rotations around a site C4, time-reversal followed by
reflection R1,2T . The spatial symmetries are listed in Fig
2. We also calculate rotation around a plaquette center
defined as C̃4 = T2C4 in table I. Note that the sublattice
structure on the square lattice gives 4 different rotations
around A,B sites/plaquettes centers, respectively. We
only write down rotations around B sites C4 and the
plaquette-center rotation related by C̃4 = T2C4.

The physical order parameters from electrons can be
written from the parton construction, in particular the
singlet pairing reads

∆rr′ = cr,↑cr′,↓ − cr,↓cr′,↑
=
∑
s

−z1,rz
∗
2,r′〈fr,sf

†
r′,s〉 − z

∗
2,rz1,r′〈fr,sf†r′,s〉

∗. (16)

Using the 〈fr,sf†r′,s〉 = tr,r′ for the mean field we use,
one could get the electron pairing when condensing the
lowest-energy holons z. Using eq (15) one gets ∆rr′ =

ΦT τ2σ2Φ.

With (Φ1,Φ2), we can define five gauge in-
variant order parameters: (n1, n2, n3, n4, n5) =
(ReΦTσ2τ2Φ, ImΦTσ2τ2Φ,Φ†σ1Φ,Φ†σ2Φ,Φ†σ3Φ).
Their symmetry transformations are shown in Table I.
Here we also include U(1)c symmetry which corresponds
to the charge conservation. Our notation is that the
charge of the Cooper pair is 1 and single electron carries
charge 1/2 for this U(1)c rotation. One can easily
identify n1 + in2 as the Cooper pair with the same
symmetry as a d + id superconductor. Actually, if
we condense Φ1 = (1, 0)T ,Φ2 = (0, 1)T , the physical
electron will be in the d+id superconductor ansatz.
On the other hand, n3, n4 carry momentum (π, 0) and
(0, π). They can be identified as the CDWxy order. n5

carries momentum (π, π) and is the CDWz order. The
d+ id superconductor pattern is plot in Fig 2(a) and the
CDW patterns are shown in Fig 2(b,c).
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B. Triangular lattices

We then move to triangular lattice. The spinon mean field reads

Hspinon = tfΨ†(r + r̂1)ieiθτ3Ψ(r) + h.c.+ tfΨ†(r + r̂2)(−1)r1ieiθτ3Ψ(r) + h.c.

+ tfΨ†(r + r̂1 + r̂2)(−1)r1+1ie−iθτ3Ψ(r) + h.c. (17)

where r̂1,2 are primitive lattice vectors with an angle 120o between them.

T1 T2 C6 RT comment

Φ Φ→ −iσ1Φ Φ→ −iσ3Φ Φ→ ei
π
3 e
−iσ3+σ2+σ1√

3
π
3 Φ Φ→ e−i

π
12 e−iσ1

π
4 Φ

Φ†σ1Φ + − Φ†σ2Φ + n3

Φ†σ2Φ − − Φ†σ3Φ Φ†σ3Φ n4

Φ†σ3Φ − + Φ†σ1Φ Φ†σ2Φ n5

Φ†σ2τ
2Φ∗ + + ei

2π
3 Φ†σ2τ

2Φ∗ ei
π
6 Φ†σ2τ

2Φ∗ n1 + in2

TABLE II: The symmetry transforms of boson bilinears in the SU(2) gauge theory on triangular lattices. Φ†σiΦ
represents 3 CDW order parameters at different momenta, while Φ†σ2τ

2Φ∗ carries one unit of Ac charge and is
identified as the cooper pair with d wave symmetry.

For the boson Z = (z1, z
†
2), we get the Hamiltonian:

Hholon = tbZ
†(r + r̂1)ieiθτ3Z(r) + h.c.+ tbZ

†(r + r̂2)(−1)r1ieiθτ3Z(r) + h.c.

+ tbZ
†(r + r̂1 + r̂2)(−1)r1+1ie−iθτ3Z(r) + h.c. (18)

When θ = 0, the mean field is SU(2) invariant.
Similar to the square case, there are 2 minima of holons represented by low energy spinors Φ1,2. The PSG for Φi

are listed in table II.
The d + id superconducting pattern and CDW pattern on triangular lattices upon condensing ΦTσ2τ2Φ,Φ†σIΦ,

respectively are shown in fig 3.

-

+ +

--

+

+

vv*

v*v
++

(a) (b)

C6

R1

T1

T2

FIG. 3: (a)The translation-invariant electron d+ id pairing(spin singlet) amplitude when condensing holons on
triangular lattices at low-energy fields Φ1;1 = −Φ2;2 = 1,Φ2;1 = Φ1;2 = 0, which makes ΦT τ2σ2Φ = −1. v = ei2π/3.
Hoppings between neighboring sites are identical. (b) CDW patterns where ± indicates a positive, negative (real)
expectation value of electron hopping across the bond. Plotted is upon condensing Φ†σ3Φ. The unit cell dimension
along T1 is both enlarged by 2. The black arrows denotes expectation value of 〈c†i cj〉 of the bond 〈ij〉 as w = eiπ/4

with direction from i→ j indicated by the arrow, similarly blue arrows of value iw = ei3π/4. Other 2 CDW patterns
are obtained by rotating 2π/3, π/3, respectively.
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-wiw*

-iw*

 wei2π/3

w

pairing hopping

we−iπ/3

π
2π

4 π
2

π
3

π
2

2π
3

− 5π
6

− 5π
6

π
2
π
2

− 5π
6

− 5π
6

T1

T2(b) (c)(a)

C6
R

FIG. 4: (a)The SU(2) invariant CSL ansatz on kagome lattices, with the arrows (irrespective of colors) indicating
the direction of imaginary hopping. The unit cell is enlarged to 2× 1. Black(red) bonds are additional
positive(negative) real hopping that breaks SU(2) to U(1).(b)The electron pairing(spin singlet) and hopping
amplitudes when condensing holons at low-energy fields Φ1;1 = Φ2;2 = 1,Φ2;1 = Φ1;2 = 0. The corresponding BCS
Hamiltonian is translation invariant, though pairing symmetry is p+ ip. w = eiπ/4. Arrows in the hopping pattern
generally denote complex hopping we do not specify here for conciseness, and along the arrow direction is the
hopping amplitude with an argument θ ∈ (−π/2, π/2). The hopping flux around hexagons/triangles are π/2, π/4
respectively. (c) CDW order on Kagome lattice where the flux around hexagones, triangles are marked.The unit cell
is enlarged twice along T2. The black arrows denotes expectation value of 〈c†i cj〉 of the bond 〈ij〉 as v = ei2π/3 with
direction from i→ j indicatd by the arrow, similarly red arrows of value −iv∗ = ei5π/6, blue arrows of value
u =
√

2ei11π/12.

T1 T2 C6 R1T note

transform iσ2 iσ3 eiπ/6e
i
σ1+σ2+σ3√

3
π/3

ei
π
4
−σ3+σ1√

2

Φ†σ1Φ − − Φ†σ2Φ −Φ†σ3Φ n3

Φ†σ2Φ + − Φ†σ3Φ − n4

Φ†σ3Φ − + Φ†σ1Φ −Φ†σ1Φ n5

Φ†σ2τ
2Φ∗ + + eiπ/3 −iΦ†σ2τ

2Φ∗ n1 + in2

TABLE III: The symmetry transforms of boson bilinears in the SU(2) gauge theory on kagome alttices. Φ†σiΦ
represents 3 CDW order parameters at different momenta, while Φ†σ2τ

2Φ∗ carries one unit of Ac charge and is
identified as the cooper pair.

C. Kagome lattices

For Kagome lattices, the ansatz for CSL has an en-
larged 2 × 1 unit cell shown in Fig 4(a). The hopping
for spinons are purely imaginary and the chern number
for the lowest 3 valence bands for one spinon are −1, 1, 1,
respectively. Just retaining the NN hopping would also
give a CSL, though to identify the simplest holon con-
densation pattern we add next nearest neighbor hopping
to split the degeneracy of lowest energy states to 2-fold.

Again the holon bilinears correspond to symmetry-
breaking order parameters and transform in table III.

The electron hopping and pairing descends from the
holon expectation values and spinon ansatz from the re-
lation eq (16) with the results shown in fig 4(b), where
w depends on NNN hopping, and the plot is for NNN
hopping amplitude i

4 . The CDW pattern is shown in fig

4(c).

IV. U(1) CSL ANSATZ

In the previous section we show the SU(2) ansatz for
the chiral spin liquid. Here we provide U(1) ansatz for
the same CSL phase. They are descendants of the SU(2)
ansatz by one additional Higgs term. Here we believe
they actually belong to the same CSL phase as the SU(2)
ansatz: the topological order is the same and the lattice
symmetry action on the semion should also be the same
given the symmetry fractionalization is unique.
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A. Square lattices

On square lattice there turns out to be two differ-
ent U(1) ansatz for the CSL. The U(1) ansatz can be
obtained from adding SU(2) ansatz. The low energy
bosonic holon Φ = (Φ1,Φ2)T will also feel the Higgs term.
The two U(1) ansatz corresponding to two different types
of Higgs terms: (I)Φ†σ3τ3Φ; (II) Φ†τ3Φ.

1. Type I: Φ†σ3τ3Φ

The first U(1) ansatz is the stagger flux:

Hspinon =
∑
r,s

f†r+r̂1,se
iεrθfr,s + f†r+r̂2,se

−iεrθfr,s

+ηf†r+r̂1+r̂2,s
εrfr,s − ηf†r−r̂1+r̂2,s

εrfr,s + h.c. (19)

where s represents spin indices,r̂1,2 are unit lattice vec-
tors along two orthogonal directions, η ∈ R and εr is an
alternating factor (−1)r1+r2 for two sublattices of square
lattice. The hopping flux around an elementary square
alternates between ±4θ for neighboring plaquettes, hence
staggered flux. This coupling form is invariant under a
U(1) rotation for the spinons fs → eiϕfs, which is a sub-
group of the SU(2) gauge group.

Assuming an electron hopping model HKE =∑
r,r′,s tc

†
r,scr′,s and from the parton relation eq (5) (iden-

tical to the derivation of eq (20)), holon sector follows a
Hamiltonian determined by the spinon mean-field value

Hholon =
∑
r,r′

tz∗r,1〈f
†
r′,sfr,s〉zr′,1−

∑
r,r′

tzr,2〈f†r′,sfr,s〉
∗z∗r′,2.

(20)
The spinon mean-field value 〈f†r,sfr+~v〉 is given by the
corresponding hopping amplitude in eq (19).

Hence for staggered flux the holons are put into the
ansatz:

Hsqholon =
∑
r,s

Z†r+r̂1e
iεrθZr + Z†r+r̂2e

−iεrθZr

+ηZ†r+r̂1+r̂2
εrZr − ηZ†r−r̂1+r̂2

εrZr + h.c. (21)

where Zr = (z1(r), z∗2(r))T and εr = ±1 for sublattices
A,B in a checkerboard alignment, respectively.

At filling x condensing holons in the 2 lowest energy
states of eq (21), with equal amplitudes and a relative
phase Θ gives

(〈z1,r〉, 〈z2,r〉) =
√
x(1, εre

iΘ). (22)

The electrons have a finite overlap with the spinons by
the relation ψr = 1√

2
〈Zr〉Ψr, and the Hamiltonian is re-

lated to Hspinon by the condensed holon values, i.e.

Helectron =
∑
r,s

εss′ [c
†
r,s sin θeiΘc†r+r̂1,s′ − c

†
r,s sin θeiΘc†r+r̂2,s′

+iηc†r,se
iΘc†r+r̂1+r̂2,s′

− iηc†r,seiΘc
†
r+r̂2−r̂1,s′ ]

+c†r,s cos θcr+r̂1,s + c†r,s cos θcr+r̂2,s + h.c.,

(23)

where εss′ is an antisymmetric symbol for spin indices
and the state has a d+ id pairing structure.

Relation to the SU(2) ansatz: The staggered flux is
obtained from the SU(2) invariant CSL ansatz by adding
real hopping for spinons:

∆Hcsl = ε(
∑
r

(−1)r2f†r+r2fr + (−1)r1+r2f†r+r1fr). (24)

One could check that adding such terms to the spinon
ansatz in eq (11) would change the hopping flux around
elementary square plaquette from π to ±(π+ θ) in alter-
nate plaquettes, where θ = 4 arctan(ε). Hence the ansatz
is gauge equivalent to the staggered flux eq (19).

For holons the additional terms would correspond to

∆Hhcsl = ε(
∑
r

(−1)r2z†r+r2τ3zr + (−1)r1+r2z†r+r1τ3zr).

(25)

Projecting the terms to the lowest-energy holon states in
eq (A2)(15), we find that it amounts to adding Φ†σ2τ3Φ,
which upon the redefinition by Φ → eiπ/4σ1Φ, this ad-
ditional term is in the form Φ†σ3τ3Φ. It naively breaks
the translation and rotation symmetry in Table. I, but
it is actually symmetric if one includes a gauge transfor-
mation iτ1 after the translation, R1T and C4. The new
symmetry action is:

T1 : Φ→ τ1σ1Φ, T2 : Φ→ τ1σ2Φ,

C4 : Φ→ −iτ1σ2e
iπ4 σ3Φ,

C̃4 : Φ→ −ieiπ4 σ3Φ, R1T : Φ→ τ1σ1Φ. (26)

2. Type II: Φ†τ3Φ

Another U(1) ansatz on square lattice is by adding to
the SU(2) ansatz Eq. 11 longer range real spinon hop-
ping:

ti,i+2r̂1 = ti,i+2r̂2 = ε, (27)

where ε ∈ R. This ansatz corresponds to adding Φ†τ3Φ
to the SU(2) ansatz for the holon low-energy fields Φ =
(Φ1,Φ2)T .

B. Triangular and Kagome lattices

We try to generalize the U(1) ansatz to the triangu-
lar and kagome lattice by considering possible symmet-
ric Higgs terms. Unlike the case for the square lattice,



11

Φ†σiτjΦ(i, j 6= 0) can not be symmetric unless i = 0. So
the only U(1) ansatz is the type II ansatz with the Higgs
term as Φ†τ3Φ. On triangular lattice this corresponds to
adding:

ti,i+2r̂1 = ti,i+2r̂2 = −ti,i+2r̂1+2r̂2 = ε, (28)

where ε ∈ R.
The U(1) ansatz on kagome lattice can be obtained by

adding real hopping with certans signs for spinons across
neighboring bonds as the black/red bonds in Fig 4(a).
In terms of the spinor Ψ real hopping is proportional to
Ψ†i τ3Ψj . Again for boson we can only add the Higgs term
Φ†τ3Φ.

The type I and type II U(1) ansatz will have very differ-
ent symmetry transformations. As we will show, super-
conductor can be obtained from simple holon condensa-
tion only from the type I U(1) ansatz. On the other hand,
from the type II U(1) ansatz we can get the CDWxy order
from holon condensation. From both type I and type II
ansatz, the CDWz order can be obtained from condens-
ing the holons with easy axis anisotropy. These different
approaches lead to various critical theories. Especially
the CSL-CDWz transition can be described starting from
both type I and type II ansatz, which implies two criti-
cal theories in the same form for the same critical point.
This QCP turns out to be self dual. For the CSL-SC
or CSL-CDWxy transition, we can only start from either
type I and type II ansatz. But we will find out these
two critical points are described by the same U(1) the-
ory with two critical bosons. Basically. there is a duality
transformation mapping the type I to type II U(1) Higgs
term, which induces duality mapping in the critical the-
ories. This duality transformation will be discussed in
details in Sec. IX.

V. EQUIVALENCE BETWEEN CSL-SC
TRANSITION AND LAUGHLIN STATE TO

SUPERFLUID TRANSITION OF COOPER PAIR

We are going to discuss the transition between the chi-
ral spin liquid (CSL) and the d+ id superconductor. The
spin and single electron remain gapped in the bulk. Al-
though the charge gap is closed at the QCP, the critical
degree of freedom does not carry spin. So in the low
energy we only need to consider the bosonic degree of
freedom. Actually, here we show that the QCP can be
viewed as a state with fractional quantum Hall effects
(FQHE) to a superfluid (SF) transition of the charge 2e
Cooper pair.

We will stack a ν = −2 state with integer quantum
Hall effects (IQHE) of spinful electrons to the CSL-SC
transition. This IQHE state does not change across the
transition and it does not have any effect in the bulk. Its
role is to gap out the gapless edge mode carrying S = 1

2
in the CSL-SC transition, so that we can get rid of the
spin 1/2 electron in our final critical theory. We label Ãc

and Ãs as probing gauge fields corresponding to charge
Q and spin Sz. Then the response of ν = −2 IQHE is:

LIQHE =
1

4π
β1dβ1 +

1

4π
β2dβ2

+
1

2π
Ãcd(β1 + β2) +

1

2π

1

2
Ãsd(β1 − β2) (29)

where β1, β2 are introduced to describe the C = 1 IQHE
of each spin. Here we use β1, β2 to keep the informa-
tion of the thermal Hall effect or chiral central charge.
Throughout this paper we use adb as an abbrivation of
the Chern-Simons term εµνσaµ∂νbσ, where εµνσ is the
anti-symmetric tensor with ε012 = 1 and εµνσ = −εµσν .

We can integrate β1, β2 to get:

LIQHE = − 2

4π
ÃcdÃc −

1

2

1

4π
ÃsdÃs − 4CS[g] (30)

where CS[g] is the gravitational Chern-Simons term to
encode the thermal Hall effect.This CS[g] is given by
some function of the Riemann tensor of a 4 dimension
manifold. It is formally needed to produce a theory which
leads to the same partition function as that from a U(1)1

action, consistent with framing anomaly and gluing laws,
etc. On physical grounds, a Dirac chiral fermion edge
mode, associated with thermal hall effects, propagates
along the edge on an open manifold from the U(1)1 ac-
tion. This makes the partition function diffeomorphism
invariant and the CS[g] holds the same issue, requiring
a Dirac chiral edge mode to remedy. For a review see52.

For the CSL part, its effective action is:

LCSL = − 1

4π
α1dα1 −

1

4π
α2dα2

+
1

2π
(
1

2
Ãs + a)dα1 +

1

2π
(−1

2
Ãs + a)dα2 (31)

where α1, α2 are introduced to describe C = 1 Chern
insulator phase for spin up and spin down spinon fσ. We
can also integrate α1, α2 to get

LCSL =
2

4π
ada+

1

2

1

4π
ÃsdÃs + 4CS[g] (32)

Note here a is a spin gauge field meaning it couples to
a fermion. Therefore, the anyon with l = 1 charge has
statistics θ = −π2 + π = π

2 , which is a semion expected
for a CSL phase.

Then the total action is:

LIQHE+CSL =
2

4π
ada− 2

4π
ÃcdÃc (33)

One can see that the spin Hall effect and the thermal
Hall effect of the CSL are cancelled by that of the IQHE
phase. We can also do a redefinition: ã = a−Ac, so that
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LIQHE+CSL =
2

4π
ãdã+

2

2π
Ãcdã (34)

The charge of ã can now be either a fermion with Q =
0, S = 1

2 or a boson with Q = 1, S = 0 because we can
always combine a single electron with Q = 1, S = 1

2 .
Here Q is the charge under Ãc and S is the physical spin.
The former has statistics θ = π

2 , Q = 0, S = 1
2 and is the

usual semionic spinon. The latter has statistics θ = π
2 ,

Q = 1, S = 0 and can be identified as the anyon of a
ν = − 1

2 Laughlin state of the Cooper pair. Actually the
above Lagrangian is exactly the effective theory of the
Laughlin state.

Because edge mode does not carry any S = 1
2 , we can

view it as a phase of bosonic Cooper pair and ignore the
single electron excitation. Then we define Ac = 2Ãc as
the probing gauge field of the Cooper pair charge, then
the effective theory is

LIQHE+CSL =
2

4π
ada+

1

2π
Acda (35)

Similarly, for the d+ id superconductor, there is a spin
Hall effect and c = 2 thermal Hall effect, which can also
be cancelled by the ν = −2 IQHE phase. Therefore, the
effective theory for the d+id SC+IQHE is:

LIQHE+SC =
1

2π
Acda−

1

2

1

4π
AcdAc (36)

where a is a gauge field representing the superfluid Gold-
stone mode. The first term represents a superfluid phase
of the Cooper pair. The second term can be ignored for
a superfluid phase. The final phase has chiral central
charge c = 0 and is an ordinary superfluid phase.

In the above we show that the CSL to d+id SC tran-
sition can be viewed as a transition between ν = − 1

2
Laughlin state to superfluid transition of the Cooper pair
up to stacking of a ν = −2 IQHE phase. In the remain-
ing of the paper, we will always stack the ν = −2 IQHE
phase at the critical points between CSL, SC and even
CDW Chern insulator. For the CDW Chern insulator,
the final phase is a trivial insulator after the stacking
of the ν = −2 IQHE phase. The critical theories can
then be viewed as that of a pure bosonic model formed
by spinless Cooper pair. As a result physical spin will
be ignored in the discussions. We note that a critical
theory with two Dirac fermions was proposed before for
Laughlin state to superfluid transition20 in the context
of quantum Hall system, which coincides with one of our
critical theories for the CSL-SC QCP (see Sec. VII). We
complement with two other theories with two bosons cou-
pled to either U(1) or SU(2) gauge fields. Note a U(1)
theory with four critical bosons was considered in Ref.
53.

Our analysis shows that there are three additional
CDW orders at the CSL-SC, which is required by the
LSM theorem. Without the crystal symmetry and
LSM constraint, the transition is generically fine tuned
and there will be an intermediate trivial insulator in
between20. The crystal symmetries and LSM constraint
required to protect the direct transition are not obviously
there for the usual Laughlin state in quantum Hall sys-
tem, but in our model they naturally exist.

VI. U(1)−2 WITH 2ϕ FOR THE CSL-SC
TRANSITION ON SQUARE LATTICE

We first derive a critical theory starting from the U(1)
ansatz for the CSL on square lattice. As shown in Sec
IV, on square lattice, there is a U(1) mean field ansatz
(the staggered flux ansatz) which is gauge equivalent to
d + id superconductor. Then we expect the transition
from the CSL to the d+id SC is driven simply by holon
condensation. But as we will show in this section, there
are two bosonic fields ϕ1 and ϕ2 at the critical point.
The degeneracy of these two bosons is protected by the
projective translation symmetry T1T2 = −T2T1 in the
PSG of the staggered flux ansatz. If we use the gauge in
which the ansatz is written as a d + id superconductor
for Ψ, then naively we have trivial PSG T1T2 = T2T1.
However, in this gauge the U(1) gauge field can not be
written in an explicit way. It is more convenient to work
in the staggered flux ansatz where there is an explicit
U(1) gauge symmetry.

We consider the staggered flux ansatz discussed in sec-
tion IV. It is equivalent to add a perturbation term to
the SU(2) ansatz:

H ′ = −Φ†τ3σ3Φ (37)

where Φ = (Φ1,Φ2). Φa is an SU(2) spinor. Φ1 and Φ2

are related by projective translation symmetry.
With this perturbation, the IGG becomes U(1) and

the CSL is described by a U(1)2 theory. The relevant
low energy holon fields are now ϕ1 = Φ1;1 and ϕ2 = Φ∗2,2.
Note that naively −Φ†τ3σ3Φ term breaks some symme-
tries listed in Table. I, but the ansatz is actually symmet-
ric if we include an SU(2) gauge transformation±iτ1. We
have new symmetry transformations for Φ = (Φ1,Φ2):
T1 : τ1σ1, T2 : τ1σ2, R1T : τ1σ1, C̃4 : −ieiπ4 σ3 . The
transformations in terms of ϕ = (ϕ1, ϕ2)T can be eas-
ily derived and are listed in Table. IV, where we use ~σ as
Pauli matrices in the space of (ϕ1, ϕ2). U(1)c is the phys-
ical U(1) rotation with the convention that the charge is
1 for the Cooper pair. We also include an emergent U(1)r
symmetry, which is the continuum version of the C̃4 ro-
tation.
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T1 T2 C̃4 R1T C U(1)c U(1)r comment
ϕ = (ϕ1, ϕ2)T σ1ϕ

∗ −iσ1ϕ
∗ −iσ3e

iπ
4
σ0ϕ σ1ϕ

∗ ϕ∗ ei
1
2
σ3θϕ ei

1
2
σ0θϕ

ϕ†σ1ϕ + + − + + ϕ†(cos θσ1 + sin θσ2)ϕ ϕ†σ1ϕ n1

ϕ†σ2ϕ + + − − − ϕ†(− sin θσ1 + cos θσ2)ϕ ϕ†σ2ϕ n2

ReMa + − ImMa + + ReMa cos θReMa + sin θImMa n3

ImMa − + −ReMa + − ImMa − sin θReMa + cos θImMa n4

ϕ†σ3ϕ − − + − + ϕ†σ3ϕ ϕ†σ3ϕ n5

TABLE IV: Symmetry transformations in the U(1)2 2ϕ theory for the CSL-SC transition on square lattice. C is the
charge conjugation which exists only for the bandwidth tuned transition. Only R1T is anti-unitary. The monopole
operator is defined asMa =M0

a(ϕ†iσ2~σϕ
∗) · (ϕ†~σϕ), whereM0

a is the bare monopole operator. This composite
monopole operator is a singlet under the SO(3) symmetry at the λ = 0 point generated by ϕ→ ei

1
2~σ·~nϕ. Here ~n is a

unit vector.

From the symmetry transformation in Table. IV, it is
clear that ϕ†1ϕ2 is the superconductivity order parameter.
Its symmetry transformation matches that of the d +
id superconductor. When we have a condensation ϕ =
(1, 1)T , it is shown that the electron operator cσ acquires
a d + id superconductor order in section IV. When ϕ
is gapped, it is a CSL phase. Therefore a direct CSL to
d+id SC transition can be described by the condensation
of ϕ.

For simplicity, one will stack a ν = −2 IQHE phase to
cancel the spin Hall effect as done in Sec. V. The critical
theory is:

L = |∂µ − iaµ − i
1

2
Acµσ3 − i

1

2
Arµ)ϕ|2 − r|ϕ|2 +

2

4π
ada

− g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2 −
1

8π
AcdAc (38)

where |ϕ|2 = |ϕ1|2 + |ϕ2|2 and Pauli matrix ~σ is acting in
the ϕ = (ϕ1, ϕ2)T space. We use the Lorentz convention
η00 = 1, η11 = η22 = −1, where ηµν is the metric. Note
that r, g, λ need to be added a sign when compared to the
Euclidean spacetime. Here Acµ is the probing gauge field
for U(1)c symmetry. Arµ is a probing gauge field for the
U(1)r symmetry, which is a continuum generalization of
the C̃4 rotation. As we discuss later, at the critical point
the discrete C̃4 rotation can be promoted to a continuous
rotation and one has an emergent U(1)r symmetry whose
transformation is listed in Table. IV. In the above 2

4πada
comes from the integration of the fermionic spinons. Spin
Hall and thermal Hall effect are cancelled by the stacked
IQHE phase. The above theory should describe a purely
bosonic system with elementary physical charge 1 under
Ac.
r is the tuning parameter of this QCP. Easy-plane

anisotropy λ > 0 is needed for the CSL-SC transition.
U(1)c symmetry forbids ϕ†σ1ϕ and ϕ†σ2ϕ. T1 forbids
ϕ†σ3ϕ. Then the only gauge invariant bilinear term
is ϕ†ϕ. One possible symmetric term is −hϕ†(iσ3∂t +
a0σ3 + 1

2A
c
0 + 1

2A
r
0σ3)ϕ, One can check that this term

is invariant under T1, T2, C̃4, R1T . The couplings to Ac0
and Ar0 are enforced by the corresponding U(1) trans-
formations. Therefore the critical theory should con-
tain this term and the dynamical exponent is z = 2,

unless fine tuning h to be zero. If the probing field
Acµ, A

r
µ = 0, then the critical point is at rc = 0. How-

ever, if we add a constant Ac0 = δµ, then rc is modified
to be at rc = 1

2hδµ + 1
4δµ

2, from which one can obtain
h = ∂rc

∂δµ |δµ=0. Physically δµ is obviously the change of
the chemical potential. So one reaches the conclusion
that the term h = 0 when ∂rc

∂δµ |δµ=0 = 0. When h = 0,
the critical theory has a Charge conjugation symmetry:

C : ϕ→ ϕ∗, Acµ → −Acµ, Arµ → −Arµ, aµ → −aµ. (39)

The h term will be mapped to −h under C. So to leading
order, one expects h ∼ −δµ as δµ = Ac0 and rc ∼ −δµ2.
This is also the relation shared by the superfluid-Mott
insulator transition in boson Hubbard model. We will
mainly focus on the point with h = 0 and a charge con-
jugation symmetry. Experimentally this fine tuned point
can be easily accessed in the bandwidth controlled tran-
sition with electron density fixed at n = 1. On the other
hand, the chemical potential tuned transition will have
the h term and a dynamical exponent z = 2.

One can also remove the coupling of ϕ to Arµ by redef-
inition: aµ → aµ − 1

2A
r
µ, then

Lu1−csl−sc = |(∂µ − iaµ − i
1

2
Acµσ3)ϕ|2 − r|ϕ|2

− g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2

+
2

4π
ada− 1

8π
AcdAc +

1

8π
ArdAr − 1

2π
Arda (40)

If r > 0, ϕ is gapped and one is left with the following
Lagrangian:

L =
2

4π
ada− 1

2

1

4π
AcdAc +

1

2

1

4π
ArdAr − 1

2π
Arda,

(41)

one can make a redefinition: aµ → aµ+ 1
2A

r
µ+ 1

2A
c
µ, then

get:

L =
2

4π
ada+

1

2π
Acda (42)

which is just the effective theory for the ν = − 1
2 Laughlin

state for the Cooper pair.
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When r < 0, ϕ needs to condense. For the fixed point
with λ > 0,ϕ ∝ (1, 1)T . This will higgs both aµ and Acµ,
so aµ is gapped and a superfluid phase for Acµ occurs.
There is still a term in the superconductor phase:

L = − 1

8π
AcdAc +

1

8π
ArdAr. (43)

The term for Ac can be ignored because of Meissner
effects. There is a 1/2 Hall effect for Ar. In our case the
U(1)r symmetry is present only at the QCP, so Ar is not
well defined in the superconductor phase. Notwithstand-
ing this term suggests that this is a topological supercon-
ductor.

One can identify ϕ†~σϕ as (n1, n2, n5). We comment
on the monopole operators in Table. IV. In the SU(2)
theory there are five order parameters. The Higgs term
should not alter this structure. In the U(1) theory the
remaining two order parameters come from the real and
imaginary part of the monopole operator. We define the
bare monopole operator as M0

a which annihilates a 2π
flux for the internal gauge field aµ. Because of the self
Chern-Simons term 2

4πada, the bare monopole operator
needs to be accompanied with operators such as ϕ∗aϕ∗b
to be gauge charge neutral. There are various differ-
ent operators which carry charge 2 under a. Here we
choose the one which is singlet under the SO(3) sym-
metry at λ = 0 generated by ϕ → ei

1
2~σ·~nϕ with ~n a

unit vector. The monopole oprator we are looking for is
Ma =M0

a(ϕ†iσ2~σϕ
∗) · (ϕ†~σϕ).

This Monopole corresponds to the order parameter
n3 + in4 because it carries charge 1 under Ar and
meanwhile is a SO(3) singlet. On the other hand,
the monopole operator such asMϕ†iσ2~σϕ

∗ corresponds
to composite order parameter (n3 + in4)(n1, n2, n5) be-
cause it is a tripet under the SO(3) symmetry which ro-
tates (n1, n2, n5) at λ = 0. When λ 6= 0, this SO(3)
symmetry is broken down to SO(2) and the expres-
sion of the monopole may be deformed to have only
M0

a(ϕ†iσ2σ3ϕ
∗)(ϕ†σ3ϕ) component, but its symmetry

transformation should remain the same as λ = 0. The
symmetry actions of the monopole operator can be de-
rived from the atomic limit of the holon states as we
demonstrate in Appendix. C. But the most convenient
way is to start from the SU(2) theory and view the the-
ory in Eq. 40 as its Higgs descendant. Then the symme-
try quantum numbers of the monopole operator should
inherit the corresponding bilinear operators in the SU(2)
theory. We will further discuss this approach in Sec. X.

VII. U(1)1 WITH 2ψ THEORY,
BOSON-FERMION DUALITY AND EMERGENT

SYMMETRY

We have shown a critical theory for the CSL-SC tran-
sition in the simple holon condensation picture if the par-
ton mean field theory for the CSL is in the type I U(1)
ansatz. However, CSL can also have the type II U(1)

ansatz. Actually on triangular and kagome lattice, there
is no type I U(1) ansatz. For the type II U(1) ansatz,
holon condensation picture can only give a CDW phase
because the ansatz can not be gauge transformed to a
translationally invariant superconductor ansatz.

As argued before, the type I and type II U(1) ansatz
on square lattice should really describe the same CSL
phase. So in principle there should still be a CSL-SC
transition starting from the type II ansatz. There is no
way to formulate it in the holon condensation picture.
In this section we will provide an alternative path to the
topological superconductor from the CSL phase.

A. U(1)1 with 2ψ theory from plateau transition of
holon

For this purpose, we can only use the U(1) slave rotor
theory with ci,s = bifi,s, where the gauge constraint is
nf = nb and b, fσ share the same U(1) gauge field. In
the U(1) ansatz, both b and fσ are in a π flux ansatz:
〈da〉 = π. The density of the slave boson nb is 1 per
site and thus it is at filling ν = −2 per magnetic unit
cell. Here minus sign arises because b carries opposite
gauge charge compared to f . As before, the CSL phase
corresponds to the trivial Mott insulator phase of the
slave boson b. For the type II U(1) ansatz, superfluid
phase of b leads to a CDW phase. However, boson at
magnetic filling ν = −2 can also be in a bosonic integer
quantum Hall (bIQHE) phase. As shown in ref46, bIQHE
phase of the slave boson leads to a d+ id superconductor
phase, schematically illustrated in Fig. 5. The simple
understanding is that the 2

4πada term of the CSL phase
gets cancelled by the ν = −2 bIQHE phase of b and we
are left with a term 1

2πAcda. Thus aµ now represents
the Goldstone mode of the SC. A detailed analysis shows
that its topological property is equivalent to a d + id
superconductor46.

In this picture, the phase transition is driven by the
plateau transition of the slave boson, which is known to
be described by a Nf = 2 QED54,55. The final critical
theory is:

L =
∑
i=1,1

ψ̄i(−iγµ∂µ − bµγµ)ψi +mψ̄iψi −
1

4π
(
1

2
Ac − a)d(

1

2
Ac − a)

+
1

2π
bd(

1

2
Ac − a) +

2

4π
ada− 1

8π
AcdAc, (44)

where two Dirac fermions ψ1, ψ2 are introduced to de-
scribe the plateau transition of the holon, which couples
to 1

2Ac − a. bµ is another internal gauge field. m < 0
and m > 0 corresponds to the trivial Mott insulator and
bIQHE phase of the holon respectively. 2

4πada comes
from integration of the fermionic spinons. − 1

8πAcdAc
comes from the stacking of the ν = −2 IQHE phase dis-
cussed in Sec. V. We use the convention γ0 = η3, γ1 =
iη2, γ2 = iη1 and ψ̄ = ψ†γ0. ηa is Pauli matrix acting on
the spinor basis of a Dirac fermion.
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bIQH

spinon CI
x x

... ..

2  fluxπ
ρ = ρf + ρb = 0

FIG. 5: The schematic illustration of the formation of
superconducting phases from CSL when the holons form
a bosonic integer quantum hall insulator with filling
ν = −2 with opposite chirality to that of the spinon.
The spinon remains in a chern insulator with ν = 2. A
2π flux of the internal gauge field nucleates a pair of
holons and spinons, hence forming a spin singlet Cooper
pair. From Ioffe-Larkin rule11, the resistivity of holon
and spinons are opposite and the physical resistivity
tensor ρc is zero, suggesting a superconducting phase.

Integrate aµ and then one obtains

LQED =
∑
i=1,2

ψ̄i(−iγµ∂µ − bµγµ)ψi +mψ̄iψi

− 1

4π
bdb+

1

2π
Acdb−

1

4π
AcdAc − 2CS[g],

(45)

where −2CS[g] comes from 1
4πada. The information of a

central charge c = −1 is lost after integrating aµ, so we
need to add a gravitational Chern-Simons term to keep
track of the thermal Hall effect.

When m < 0, integration of ψ gives a − 1
4π bdb term

and a thermal Hall effect −2CS[g]. Finally we have:

L = − 2

4π
bdb+

1

2π
Acdb−

1

4π
AcdAc − 4CS[g]. (46)

One can check it is equivalent to the CSL phase with
a stack of ν = −2 IQHE phase. Note that the charge
of bµ is a fermion, so the anyon here carries statistics
θ = π

2 − π = −π2 and charge Q = 1
2 under Ac. One

combines a single electron (with charge 1/2 under Ac
and physical spin S = 1/2) to get a neutral semion with
spin 1/2 as expected for the CSL phase.

When m > 0, integration of ψ gives a 1
4π bdb term and

a thermal Hall effect 2CS[g]. Finally we have:

L =
1

2π
Acdb−

1

4π
AcdAc. (47)

This is the superconductor phase where b higgs Ac. Note
that the − 1

4πAcdAc term can be absorbed by b → b −
1
2Ac. This means that charge Hall effect is ill defined in
a superfluid phase.

B. Boson fermion duality

In the above we show that the CSL to SC transition is
captured by a U(1)1 theory with two Dirac fermions. The
previous section provides a different critical theory with
two complex bosons for the same transition. Assuming
that there is only one universality class for this QCP,
the two critical theories in Eq. 40 and in Eq. 45 must
be dual to each other. If one ignores the Chern-Simons
term in the two theories, the two theories are known to
be dual to each other2 and they describe the Neel to
VBS deconfined quantum critical point(DQCP)1. Here
we demonstrate the duality in the modified version with
Chern-Simons terms for the CSL-SC transition.

Start from the U(1)−2 theory with two complex
bosons:

Lϕ = |∂µ − iaµ − i
1

2
Ac;µσ3)ϕ|2 − r|ϕ|2 − g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2 +

2

4π
ada− 1

8π
AcdAc +

1

8π
ArdAr −

1

2π
Arda, (48)

where ϕ = (ϕ1, ϕ2)T and |ϕ|2 is an abbreviation of ϕ†ϕ = |ϕ1|2 + |ϕ2|2 .

Then apply the standard boson-fermion duality for one single boson or fermion52,56:

|(∂µ − iaµ)φ|2 − r|φ|2 − g|φ|4 ↔ ψ̄(−iγµ∂µ − bµγµ)ψ ± 1

8π
bdb±mψ̄ψ ± 1

2π
bda± 1

4π
ada, (49)

which sends a theory describing boson condensation with internal U(1) gauge field aµ to a dual one with one Dirac
fermion coupling to U(1) gauge field bµ. The mass r > 0 (r < 0) corresponds to m > 0 (m < 0). There are two
versions of the duality, corresponding to two sign choices (taking uniformly the upper or lower signs). For our purpose
we will take the lower sign convention.
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Applying the duality to ϕ1 and ϕ2, one gets

Lϕ ↔
∑
i=1,2

ψ̄i(−iγµ∂µ − bi;µγµ)ψi −mψ̄iψi −
∑
i=1,2

1

8π
bidbi −

1

2π
b1d(a+

1

2
Ac)−

1

2π
b2d(a− 1

2
Ac))

− 1

4π
(a+

1

2
Ac)d(a+

1

2
Ac)−

1

4π
(a− 1

2
Ac)d(a− 1

2
Ac) +

2

4π
ada− 1

8π
AcdAc +

1

8π
ArdAr −

1

2π
Arda− 2CS[g]

=
∑
i=1,2

ψ̄i(−iγµ∂µ − bi;µγµ)ψi −mψ̄iψi −
∑
i=1,2

1

8π
bidbi

− 1

2π
(b1 + b2 +Ar)da+

1

4π
Acd(b1 − b2)− 1

4π
AcdAc +

1

8π
ArdAr − 2CS[g], (50)

where ψi, bi are introduced as dual theory of ϕi for i = 1, 2. −2CS[g] is introduced to match the thermal Hall effect
of the left side, which is lost because 2

4πada term is cancelled.
Integration of aµ leads to b1;µ + b2;µ = −Ar;µ. We will substitute b1;µ = − 1

2Ar;µ + bµ, b2;µ = − 1
2Ar;µ − bµ and get

Lϕ ↔ Lψ = ψ̄γµ(−i∂µ − bµσ3 +
1

2
Ar;µ)ψ −mψ̄ψ − 1

4π
bdb+

1

2π
Acdb−

1

4π
AcdAc +

1

16π
ArdAr − 2CS[g], (51)

where ψ = (ψ1, ψ2)T . ~σ are Pauli matrices acting on the (ψ1, ψ2) space. ψ̄ψ = ψ̄σ0ψ.
We can make a charge conjugation transformation only for ψ2: ψc2 = C(ψ̄2)T with C = γ1. Using γ0 = η3, γ1 =

iη2, γ2 = iη1 and ψ̄ = ψ†γ0, it can be shown that ψ̄c2 = −ψT2 C−1 and C−1γµC = −γTµ . Then mψ̄2ψ2 = −mψT2 (ψ̄2)T =

mψ̄c2ψ
c
2, ψ̄2γµψ2 = −ψT2 γTµ (ψ̄2)T = −ψ̄c2γµψc2 and ψ̄2(−iγµ∂µ)ψ2 = ψT2 (−iγTµ ∂µ)(ψ̄2)T = ψ̄c2(−iγµ∂µ)ψc2. We will

replace ψ2 with ψc2, which only needs a flip of the signs for the couplings to the gauge fields. In the end one labels ψc2
with ψ2 for simplicity. Finally we obtain:

Lψ =
∑
i=1,2

ψ̄i(−iγµ∂µ − bµγµ +
1

2
Ar;µσ3γµ)ψi +mψ̄iψi −

1

4π
bdb+

1

2π
Acdb−

1

4π
AcdAc +

1

16π
ArdAr − 2CS[g],

(52)

If we ignore Ar, this is exactly the same as in Eq. 45.
Now from the duality one can also derive the coupling to
the probing field Ar, which is absent in Eq. 45. The above
duality is derived by ignoring the interaction term (2g −
λ)|ϕ1|2|ϕ2|2. The r < 0 (r > 0) side of Eq. 40 and m < 0
(m > 0) side of Eq. 52 describe the same phase. Integra-
tion of ψ gives a term − sgn(m)

8π

(
(b + 1

2Ar)d(b + 1
2Ar) +

(b − 1
2Ar)d(b − 1

2Ar)
)
− sgn(m)2CS[g] = − sgn(m)

4π bdb −
sgn(m)

16π ArdAr − sgn(m)2CS[g]. Thus for m < 0, the fi-
nal theory is Lm<0 = 1

2πAcdb −
1

4πAcdAc + 1
8πArdAr.

This is a superfluid phase with 1
8πArdAr response, the

same as the r < 0 side of Eq. 40. When m > 0, we have
Lm>0 = − 2

4π bdb+ 1
2πAcdb−

1
4πAcdAc − 4CS[g]. This is

a phase with response − 1
8πAcdAc − 2CS[g], the same as

the Laughlin state at r > 0 side of Eq. 40. The anyon
has charge Q = 1

2 and statistics θ = −π2
57, also con-

sistent with the ν = − 1
2 Laughlin state of Cooper pair.

Given that the two sides of the two critical theories are
exactly the same, it is quite natural to expect that the
two critical theories at m = 0 (r = 0) are also dual to
each other. The derivation above further supports this
duality. Similar theories with Dirac fermions describing
CSL to XY-ordered or VBS transitions on square lattices
are discussed in ref 58, where the boson-fermion duality
was also formally derived. A different derivation of the
duality appears in ref59.

C. Order parameters in the dual theory

n1 n2 n3 n4 n5

U(1)−2 2ϕ ϕ†σ1ϕ ϕ†σ2ϕ ReM0
a(ϕ†iσ2~σϕ

∗) · (ϕ†~σϕ) ImM0
a(ϕ†iσ2~σϕ

∗) · (ϕ†~σϕ) ϕ†σ3ϕ
U(1)1 2ψ ReM0

bψ1ψ2 ImM0
bψ1ψ2 ψ̄σ1ψ ψ̄σ2ψ ψ̄σ3ψ

SU(2)−1 2Φ ReΦTσ2τ2Φ ImΦTσ2τ2Φ Φ†σ1Φ Φ†σ2Φ Φ†σ3Φ

TABLE V: Five order parameters in the two dual theories for the CSL-SC transition. Symmetry transformations of
these order parameters can be found in Table. IV. We list the corresponding operators in the SU(2) theory which is
going to be discussed in Sec. IX.M0

a is the bare monopole operator in the U(1) 2ϕ theory. M0
b is the bare

monopole operator in the U(1) 2ψ theory.

We have shown that there are five order parameters at
the CSL-SC QCP in Table. IV, which is derived in the

U(1)−2 theory with 2ϕ. Now with a dual theory in terms
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of Dirac fermions, these order parameters should exist
also in the dual side. First, when deriving the duality,
we start from a boson theory with the same mass r for ϕ1

and ϕ2. Had one introduced r1 and r2 for ϕ1 and ϕ2 sep-
arately, the same procedure would have given mass term
m1 and m2 for ψ1 and ψ2 in the dual side. This means
that ϕ†σ3ϕ is dual to ψ̄σ3ψ. This is the order param-
eter n5, representing the CDW order with momentum
(π, π). In the Dirac theory, it is easy to see that ψ̄1ψ2

carries charge −1 under Ar. Therefore one can identify
it as the order parameter n3 + in4. In other words, ψ̄σ1ψ
and ψ̄σ2ψ correspond to the two CDW orders n3 and
n4. In the Dirac theory, the term 1

2πAcdb indicates that
the monopole M0†

b carries charge 1 under Ac. Usually
one needs to add a fermion zero mode to the monopole
to make it gauge neutral. In our case, the term − 1

4π bdb
shows that the bare Monopole carries gauge charge −1,
so one needs to attach two fermion zero modes to the
monopole. Hence the gauge invariant monopole operator
isM0†

b ψ
†
1ψ
†
2. M0

bψ1ψ2 is then the physical Cooper pair,
whose real and imaginary parts are n1 and n2. We list
the operator mappings in the two theories in Table. V.

The duality provides information on symmetry trans-
formations of the operators in the Dirac theory, which is
otherwise not obvious given that the microscopic content
of the Dirac fermions ψ1, ψ2 are not clear. We can provide
an ansatz for the Dirac fermions to satisfy the symme-
try constraints, by taking a π flux state on square lattice
for spinless fermions to realize the two Dirac fermions
at low energy. The lattice site now is at the plaque-
tte center of the original lattice. Taking the mean-field
ti,i+x̂ = (−1)y, ti,i+ŷ = 1, the low-energy Lagrangian
reads,

Lπ−flux =
∑

i=1,2,µ=0···2
ψ̄i(iγ

µ∂µ)ψi (53)

, where γ0 = η3, γ1,2 = iη2,1 as η are Pauli matrices
acting on Lorentz indices. The symmetry action for the
Dirac fermions reads under appropriate basis choice, (in
Ψ = (ψ1, ψ2)T

T1 : Ψ→ iσ2Ψ, T2 : Ψ→ iσ1Ψ

C4 : Ψ→ eiσ3
π
4 σ1e

iγ0
π
4 Ψ,

C̃4 : Ψ→ eiσ3
π
4 σ3e

iγ0
π
4 Ψ,

C : Ψ→ γ1σ3(Ψ̄)T , R1T : Ψ→ −iσ1Ψ. (54)

One can verify that ψ̄σiψ transform in the same as the
three CDW orders in the U(1) 2ϕ theory, as listed in
Table. VI.

As for the transformation ofM0
bψ1ψ2,it is hard to de-

rive its quantum numbers due to a lack of definite UV
realization of the QED theory Lψ (note there is a Chern-
simons coupling) and the existence of associated atomic
limits. So we rely on duality and match the monopole
symmetries with those of ϕ∗1ϕ2 in the U(1) 2ϕ theory.

The U(1) 2ψ theory for the CSL-SC transition is de-
rived from the plateau transition of the bosonic holons

Op. mapping T1 T2 C̃4 R1T C
ψ̄σ3ψ − − + − +
ψ̄σ1ψ − + −ψ̄σ2ψ + −
ψ̄σ2ψ + − ψ̄σ1ψ + +

TABLE VI: The symmetry actions of Dirac fermions
realized from square lattice π flux state.

and it should also apply to the triangular and kagome lat-
tice. Later an SU(2) theory for the CSL-SC transition
on triangular and kagome lattice is provided. Therefore
this U(1) 2ψ theory should be dual to the SU(2) theory.
The symmetry transformations of the five operators in
the U(1) 2ψ theory should be the same as in the SU(2)
theory. Especially ψ̄~σψ still represent three CDW or-
ders. We will not try to regularize the Dirac fermions
with a lattice model and instead rely on the duality to
the SU(2) theory to obtain the symmetry transforma-
tions in this low energy theory.

D. Emergent symmetry and anomaly

Here we show that the CSL-SC QCP has an emergent
symmetry SO(3) × O(2). First, the SC order parame-
ter (n1, n2) has a U(1) global symmetry generated by
Ac. Similarly, easy-plane CDW order (n3, n4) has a U(1)
global symmetry generated by Ar. Note that U(1)r is al-
ready emergent, as there is only C4 rotation in the lattice
scale. In the Dirac fermion theory, it is believed the quar-
tic terms are irrelevant. Then one can see that Eq. 52 has
an SO(3) symmetry generated by the three Pauli matri-
ces σ1, σ2, σ3, which rotate in the subspace (n3, n4, n5).
This enlargement of U(1)r to SO(3) is not transparent
in the boson theory, but given the duality, one can now
easily see it in the Dirac theory. In addition to SO(3)
and U(1)c, there is also a Z2 symmetry from the charge
conjugation C, which corresponds to an improper rota-
tion in (n1, n2) and (n3, n4, n5) space. Together, we have
SO(3)×O(2) symmetry. Note that there is an additional
R1T symmetry which is an anti-unitary transformation
and maps n5 to −n5.

One comment on mixed anomaly of the U(1)c×U(1)ro
T1 or U(1)r × U(1)c o T2 symmetry is in order. At the
QCP the lattice symmetries act like an internal symme-
try. For example, T1 and T2 act like a Z2 symmetry
in Table. IV. In Eq. 52, dAc = 2π carries gauge charge
1 under bµ. In order to cancel the gauge charge, one
needs to combine a Dirac fermion ψ1 or ψ2, which carries
charge ± 1

2 under Ar. Similarly, from the boson theory
in Eq. 40, one can see that dAr = 2π needs to combine a
boson which carries charge ± 1

2 under Ac. This anomaly
indicates that there is no trivially gapped phase without
symmetry breaking proximate to the QCP. For exam-
ple, from the superfluid phase of Ac, to reach a trivially
gapped phase one needs to condense its vortex. However,
the above analysis shows that the vortex carries charge
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±1/2 under Ar and its condensation leads to a super-
fluid of Ar, which correspond to the (n3, n4) orders. A
Z2 symmetry from T1 or T2 is crucial. For example, in
Eq. 40, one can have 〈ϕ1〉 6= 0, 〈ϕ2〉 = 0, which locks
aµ = − 1

2Ac;µ. Then we have L = − 1
4πAcdAr−

1
8πArdAr.

In this case both U(1)c and U(1)r are preserved. How-
ever, T1 is broken because T1 flips the charge of Ar. This
phase has the order n5. Similar anomaly also exists in
the familiar example of Neel to VBS DQCP1,2,16.

The U(1)1 2ψ theory in Eq. 52 has already been pro-
posed in a previous paper on the transition between a
Laughlin state and a superfluid phase of boson20. Gener-
ically there is a relevant term ψ̄σzψ which drives the sys-
tem to an insulator in the middle between the Laughlin
state and the superfluid phase. In order to have a direct
transition between the superfluid and the Laughlin state,
one needs extra crystal symmetry to forbid the relevant
terms ψ̄σaψ with a = 1, 2, 3. In the CSL-SC transition
on square lattice at filling n = 1, ψ̄σaψ correspond to
three CDW order parameters and these terms are for-
bidden by translation symmetry. This is actually quite
generic at filling with odd number of electrons per unit
cell on any lattice. With odd number of electrons per
unit cell, the Luttinger theorem requires a Fermi surface
with size 1/2 of Brillouin zone for any symmetric phase
without fractionalization. Because the transition hap-
pens below a spin gap, a Fermi liquid is impossible. Then
there is no symmetric gapped phase without fractional-
ization according to the Lieb-Schultz-Mattis (LSM)17–19.
On the other hand, if one adds a ψ̄σaψ term, one can
reach a gapped phase without fractionalization following
Eq. 5260. This phase nevertheless needs to break symme-
try, i.e. ψ̄σaψ must carry a non-trivial quantum number
under lattice symmetry. Therefore the intertwinement
of three other symmetry breaking order parameters at
the CSL-SC transition is guaranteed by the Lieb-Schultz-
Mattis (LSM) theorem for odd number of electrons per
unit cell. Exactly at the QCP, there is an emergent SO(3)
symmetry rotating these three order parameters and the
vortex of the SC order needs to carry 1/2 spin under this
SO(3) rotation. As we will explicitly demonstrate below,
at CSL-SC transition on triangular lattice and kagome
lattice, ψ̄~σψ also corresponds to three CDW orders.

VIII. CSL TO CDW TRANSITIONS

In the previous two sections we discuss two critical the-
ories for the CSL-SC transition, which are argued to be
dual to each other. The U(1)−2 2ϕ theory can be nat-
urally derived from the type I U(1) ansatz for the CSL
phase. In this section we explore the other possibility
starting from the type II U(1) ansatz. As argued in the
previous section, CSL to SC transition is still possible
from a plateau transition of bosonic holon. However, the
simple condensation of bosonic holons in this case leads to
a charge density wave (CDW) Chern insulator phase. We
discuss critical theories associated with the CSL-CDW
transitions. Note that the symmetries for the CDW on
square and triangular lattice are very different. On both
lattices, there are three different CDW orders labeled
as (n3, n4, n5). On triangular/kagome lattice, they have
momenta M1,M2,M3 and are related by C6 rotation
symmetry. On the other hand, on square lattice, (n3, n4)
carry momenta (π, 0) and (0, π), and are related by C4 ro-
tation. n5 carries momentum (π, π) and is distinct from
(n3, n4). As a result, one goes to the CDW (n3, n4) or
n5 depending on anisotropy terms. As an analog to Neel
order, CDW (n3, n4) can be called as CDWxy and n5

CDWz. On square lattice, we have CSL-CDWxy transi-
tion or CSL-CDWz transition depending on whether it is
easy plane anisotropy or easy axis anisotropy. On trian-
gular/kagome lattice, CDWxy and CDWz are related by
symmetry. The CSL-CDW transition will be shown to be
the same as the tri-critical point between CSL, CDWxy

and CDWz on square lattice.

A. CSL-CDWxy transition on square lattice

Following the same analysis in Sec. VI,from the type II
U(1) ansatz of CSL phase, one can easily obtain a critical
theory for CSL-CDW transition in the holon condensa-
tion picture. The type II ansatz is equivalent to adding
a perturbation H ′ = −Φ†τ3Φ to the SU(2) ansatz (See
Sec. IV). The low energy holon fields are ϕ1 = Φ1;1 and
ϕ2 = Φ1;2, where Φ1 and Φ2 are the SU(2) spinors in-
troduced in the SU(2) ansatz in Sec. III. The symmetry
actions of ϕ = (ϕ1, ϕ2) can be derived from Table. I
and are shown in Table. VII. The difference from the
theory in Sec. VI is that now the action of U(1)c and
U(1)r get exchanged. As a result, ϕ∗1ϕ2 is now the easy
plane CDW order n3 + in4 and the monopole operator
M̃ =M(ϕ†iσ2~σϕ

∗)·(ϕ†~σϕ) is now the SC order n1+in2.
ϕ†σ3ϕ remains as the easy axis CDW n5.
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T1 T2 C̃4 R1T C U(1)c U(1)r comment
ϕ = (ϕ1, ϕ2)T iσ1ϕ iσ2ϕ −iei

π
4
σ3ϕ iσ1ϕ ϕ∗ ei

1
2
σ0θϕ ei

1
2
σ3θϕ

ϕ†σ1ϕ + − −ϕ†σ2ϕ + + ϕ†σ1ϕ ϕ†(cos θσ1 + sin θσ2)ϕ n3

ϕ†σ2ϕ − + ϕ†σ1ϕ + − ϕ†σ2ϕ ϕ†(− sin θσ1 + cos θσ2)ϕ n4

ReMa + + − + + cos θReMa + sin θImMa ReMa n1

ImMa + + − − − − sin θReMa + cos θImMa ImMa n2

ϕ†σ3ϕ − − + − + ϕ†σ3ϕ ϕ†σ3ϕ n5

TABLE VII: Symmetry transformations in the U(1)−2 2ϕ theory for the CSL-CDW transition on square lattice. C
is the charge conjugation and R1T is anti-unitary. Symmetry actions for ϕ†σaϕ inherits from that of the SU(2)
ansatz in Table. I.Ma =M0

a(ϕ†iσ2~σϕ
∗) · (ϕ†~σϕ), whereM0

a is the bare monopole operator.

A critical theory similar to Eq. 38 can be written down
in terms of ϕ = (ϕ1, ϕ2)T :

Lu1−csl−cdw = |(∂µ − iaµ − i
1

2
Ac;µ − i

1

2
σ3Ar;µ)ϕ|2 − r|ϕ|2

+
2

4π
ada− g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2 −

1

8π
AcdAc (55)

where we still stack a ν = −2 IQHE phase to cancel the
quantum spin Hall response. Ac;µ and Ar;µ are probing
fields as in Eq. 38. The only difference from Eq. 38 is
that Ac and Ar get exchanged.

By a redefinition aµ → aµ − 1
2A

c
µ one obtains a new

version:

L = |(∂µ − iaµ − i
1

2
Ar;µσ3)ϕ|2 − r|ϕ|2

− g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2 +
2

4π
ada− 1

2π
Acda. (56)

For now let us assume λ > 0, corresponding to easy-
plane anisotropy. If r > 0, ϕ is gapped and we are left
with the following Lagrangian:

L =
2

4π
ada− 1

2π
Acda (57)

which is the CSL phase.
When r < 0, ϕ needs to condense. For the fixed point

with λ > 0, ϕ ∝ (1, 1)T . This will higgs both aµ and
Ar;µ, so aµ is gapped and we have a superfluid phase
for Ar;µ. There is no other term left. Superfluid of Ar
means that there is a symmetry breaking order parameter
(n3, n4), i.e. a CDW insulator. Note that we have stacked
a ν = −2 IQHE phase. Without the stacking , the CDW
phase is a Chern insulator with C = 2.

Table VII lists the symmetries of bilinears in ϕ de-
scending from those in the SU(2) theory table I. ϕ†σiϕ
transform as the 3 CDW order parameters. We have the
transform of monopoles in the fourth and fifth line of ta-
ble VII. The symmetry transformations are inferred from
assuming that they are the same as in the SU(2) theory
described in section IX because Higgs term should not
alter the symmetry properties of the order parameters.

The CSL-CDWxy critical theory is the same as the
CSL-SC critical theory under exchange of Ac ↔ Ar.
Then it is also dual to a U(1)−1 2ψ theory. Following the

procedure to derive the boson-fermion duality in Sec. VII,
the U(1)1 2ψ critical theory for the CSL-CDWxy QCP
reads:

L = ψ̄γµ(−i∂µ − bµ −
1

2
Ac;µσ3)ψ −mψ̄ψ

+
1

2π
Ardb−

1

8π
ArdAr −

1

16π
AcdAc (58)

One can check that the m < 0 gives the CSL phase and
m > 0 describes a superfluid phase of Ar. In the Dirac
theory, there is again a SO(3) symmetry. But now the
SO(3) vector ψ̄~σψ corresponds to the order parameter
(n1, n2, n5). Then the duality implies that at the CSL-
CDWxy QCP, the superconductor order and the easy axis
CDWz order n5 forms a SO(3) vector together. In to-
tal, this QCP should have SO(3) × O(2) symmetry if
we further include the U(1)rotation U(1)r. The CSL-
CDWxy QCP is dual to the CSL-SC QCP upon exchange
of (n1, n2) and (n3, n4).

B. CSL-CDWz transition on square lattice

We have shown that the critical theory in Eq. 56 with
easy-plane anisotropy λ > 0 describes the transition be-
tween CSL and the CDWxy order. Now consider the
easy-axis anisotropy λ < 0, then the r < 0 side selects
the condensation ϕ = (1, 0)T or ϕ = (0, 1)T and one has
the CDWz order. So λ < 0 corresponds to the CSL-
CDWz transition.

One interesting observation is that the λ < 0 case of
Eq. 40 also describes the CSL-CDWz transition. These
two theories are related to each other by exchange of Ac
and Ar. Therefore, the CSL-CDWz QCP is self dual un-
der exchange of Ac and Ar. CDWz order corresponds to
ϕ†σ3ϕ in both theories. However, n1 + in2 (or n3 + in4)
corresponds to ϕ†σ1ϕ in one theory and the monopole
operatorMa in the other theory. This suggests that for
λ < 0, the U(1)−2 2ϕ theory has a hidden symmetry
which relates ϕ†σ1,2ϕ to the monopole operatorMa. In-
deed, as shown in Sec. IX, the CSL-CDWz has an O(4)
symmetry rotating the vector (n1, n2, n3, n4).
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C. CSL-CDWxy-CDWz tricritical point on square
lattice and CSL-CDW transition on

triangular/kagome lattice

We have shown that λ > 0 and λ < 0 of Eq. 56
corresponds to the CSL-CDWxy and CSL-CDWz tran-
sitions on square lattice. Then naturally λ = 0 is the
tri-critical point between CSL, CDWxy and CDWz. On
the other hand, on triangular/kagome lattice, there is

no easy-plane or easy-axis anisotropy for the three CDW
orders. λ = 0 is required by the C6 rotation and the
tri-critical point now becomes a bi-critical point on tri-
angular/kagome lattice between CSL and isotropic CDW
phase. At this QCP, there is a SO(3)×O(2) symmetry.
SO(3) rotates the three CDW orders (n3, n4, n5).

We list the symmetry actions for ϕ and the five or-
der parameters on triangular/kagome lattice in table VIII
and IX. They can be derived from the type II U(1) ansatz
of the CSL phase by adding −Φ†τ3Φ term to the SU(2)
ansatz.

T1 T2 C6 RT C U(1)c note

ϕ = (ϕ1, ϕ2)T −iσ1ϕ −iσ3ϕ ei
π
3 e
−iσ1+σ2+σ3√

3
π
3 ϕ e−i

π
12 e−iσ1

π
4 ϕ ϕ∗ ei

1
2
σ0θϕ

ϕ†σ1ϕ + − ϕ†σ2ϕ + + ϕ†σ1ϕ n3

ϕ†σ2ϕ − − ϕ†σ3ϕ ϕ†σ3ϕ − ϕ†σ2ϕ n4

ϕ†σ3ϕ − + ϕ†σ1ϕ ϕ†σ2ϕ + ϕ†σ3ϕ n5

ReMa + + cos( 2π
3

)ReMa + sin( 2π
3

)ImMa cos(π
6

)ReMa + sin(π
6

)ImMa + cos θReMa + sin θImMa n1

ImMa + + cos( 2π
3

)ImMa + sin( 2π
3

)ReMa − cos(π
6

)ImMa − sin(π
6

)ReMa − − sin θReMa + cos θImMa n2

TABLE VIII: Symmetries of boson bilinears and monopoles for U(1)−2 2ϕ theory on triangular lattices to describe
CSL-CDW transition with Eq. 56 with λ = 0. It can be viewed as descending from SU(2) theory eq (59) by adding
a mass Φ†σ3Φ. We define U(1)r to be ϕ→ ei

1
2σ3θϕ to preserve Eq.(56).Like on the square lattice, U(1)r rotates 2

CDW order parameters (n3, n4) ∼ (ϕ†σ1ϕ,ϕ
†σ2ϕ) and preserves other operators.

T1 T2 C6 RT C U(1)c comment

ϕ = (ϕ1, ϕ2)T iσ2ϕ iσ3ϕ ei
π
6 e
−iσ1+σ2+σ3√

3
π
3 ϕ e−i

π
4 e
−i−σ3+σ1√

2
π
2 ϕ ϕ∗ ei

1
2
σ0θϕ

ϕ†σ1ϕ − − ϕ†σ2ϕ −ϕ†σ3ϕ + ϕ†σ1ϕ n3

ϕ†σ2ϕ + − ϕ†σ3ϕ − − ϕ†σ2ϕ n4

ϕ†σ3ϕ − + ϕ†σ1ϕ −ϕ†1σ1ϕ + ϕ†σ3ϕ n5

ReMa + + cos(π
3

)ReMa + sin(π
3

)ImMa ImMa + cos θReMa + sin θImMa n1

ImMa + + cos(π
3

)ImMa + sin(π
3

)ReMa ReMa − − sin θReMa + cos θImMa n2

TABLE IX: Symmetries of boson bilinears and monopoles for U(1)−2 2ϕ theory on Kagome lattices to describe
CSL-CDW transitions. It can be viewed as descending from SU(2) theory eq (59) by adding a mass Φ†σ3Φ. We
define U(1)r to be ϕ→ ei

1
2σ3θϕ to preserve Eq.(56).Like on the square lattice, U(1)r rotates 2 CDW order

parameters (n3, n4) ∼ (ϕ†σ1ϕ,ϕ
†σ2ϕ) and preserves other operators.

D. CSL-CDWz-SC tricritical point on square
lattice

We comment on the λ = 0 point of the CSL-SC critical
theory Eq. 40. In this case λ > 0 describes the CSL-SC
transition and λ < 0 describes the CSL-CDWz transition
on square lattice. Then naturally λ = 0 is a tri-critical
point on square lattice. This tri-critical point is dual
to the tri-critical point between CSL-CDWxy-CDWz be-
cause the action is in the same form up to an exchange of
Ac and Ar. Again one expects a SO(3)×O(2) symmetry
with SO(3) symmetry rotating (n1, n2, n5) now.

IX. SU(2) THEORY: A UNIFIED FRAMEWORK
FOR CSL-SC AND CSL-CDW TRANSITIONS

As shown in previous sections, the CSL can have either
SU(2) ansatz or U(1) ansatz at the mean field level. Both
ansatz describe the same topological order. We can de-
scribe the CSL-SC transition starting from either ansatz.
For the U(1) ansatz, there are two types. In type I U(1)
ansatz, the mean field theory of spinon fσ can be gauge
transformed to that of a translation invariant supercon-
ductor. Then CSL-SC transition can be captured by con-
densation of bosonic holons as demonstrated in Sec. VI.
In contrast, for the type II U(1) ansatz, the mean field
theory of spinon fσ is not gauge equivalent to a trans-
lation invariant superconductor. In this case holon con-
densation leads to CDW order instead of superconductor
as discussed in Sec. VIII. Even for this case, we can still
reach a SC phase if the bosonic holon goes through a
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plateau transition, as shown in Sec. VII. The final theory
contains two Dirac fermions and is argued to be dual to
the theory with bosonic holon fields. The shortcoming
of the U(1)1 theory with two Dirac fermions is that the
microscopic symmetry actions on the Dirac fermions are
not transparent. On triangular lattice and kagome lat-
tice, there is no type I U(1) ansatz, hence there is no
obvious critical theory with two complex bosons ϕ cou-
pled to U(1) gauge field to describ CSL-SC transition.

In this section, we will start from the SU(2) ansatz for
the CSL and derive a new critical theory for the CSL-
SC transition where there are two SU(2) bosonic spinors
Φ1,Φ2 coupled to an SU(2) gauge field with chern-simons
term at level −1. Because the SU(2) ansatz describes
the same CSL phase as the U(1) ansatz, we will argue
that this SU(2) critical theory is dual to the U(1)−2 the-
ory with 2ϕ and the U(1)1 theory with 2ψ in the previ-

ous two sections. This offers a new perspective on the
critical point. In the SU(2) theory, the five order pa-
rameters are all bilinears of the bosonic fields and there
is no monopole. Therefore the symmetry actions on
the five order parameters can be easily obtained from
mean field ansatz. In the SU(2) theory, one can identify
other fixed points corresponding to CSL-CDW transition
and tricritical points at the intersection of CSL, SC and
CDW. Therefore SU(2) theory offers a unified framework
to capture all critical theories discussed in the previous
sections. Enlarged symmetry and self duality at certain
fixed points in the SU(2) theory are shown explicitly.

A. SU(2) theory on square lattice

T1 T2 C̃4 R1T C U(1)c U(1)r comment
Φ = (Φ1,Φ2)T −iσ1Φ −iσ2Φ −iei

π
4
σ3Φ iσ1Φ Φ∗ ei

1
2
σ0θΦ ei

1
2
σ3θΦ

Re ΦTσ2τ2Φ + + − + + cos θRe ΦTσ2τ2Φ + sin θIm ΦTσ2τ2Φ + n1

Im ΦTσ2τ2Φ + + − + − − sin θRe ΦTσ2τ2Φ + cos θIm ΦTσ2τ2Φ + n2

Φ†σ1Φ + − Φ†σ2Φ + + Φ†σ1Φ cos θRe Φ†σ1Φ + sin θΦ†σ2Φ n3

Φ†σ2Φ − + −Φ†σ1Φ + − Φ†σ2Φ − sin θΦ†σ1Φ + cos θΦ†σ2Φ n4

Φ†σ3Φ − − + − + + + n5

TABLE X: Symmetry transformations in the SU(2)−1 2Φ theory for the CSL-SC transition on square lattice. C is
the charge conjugation which exists only for the bandwidth tuned transition. Only R1T is anti-unitary.

On square lattice, we start from the SU(2) ansatz
for the CSL listed in Sec. IIIA. As already shown in
Sec. III A, at low energy there are two bosons Φ1 and Φ2

in the fundamental representation of the SU(2) gauge
field. They are related by translation symmetry and
their degeneracy is guaranteed by the T1T2 = −T2T2

algebra. A critical theory can be written down corre-

sponding to the condensation of these two bosons. The
symmetry transformations of Φ = (Φ1,Φ2)T are listed in
Table. X, which follows from Table. I. U(1)r symmetry
and charge conjugation symmetry follows the same nota-
tion as in Sec. VI. Here σa labels Pauli matrices acting in
the (Φ1,Φ2) space. τi labels generators of SU(2) gauge
field and acts in the (Φa;1,Φa;2) space for a = 1, 2. The
SU(2) critical theory is

LSU(2) =
∑
i=1,2

|(∂µ − iasµτs − i
1

2
Ac;µτ0σ0 −

1

2
iAr;µτ0σ3)Φi|2 − r|Φ|2 +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− 1

8π
AcdAc − Lint

Lint = g|Φ†Φ|2 + λ0n · n− λ(n2
1 + n2

2)− λ′(n2
3 + n2

4), (59)

where as, s = 1, 2, 3 is an SU(2) gauge field. Ac
and Ar are the U(1) probing fields for the U(1)c and
U(1)r global symmetry. n = (n1, n2, n3, n4, n5) =
(ReΦTσ2τ2Φ, ImΦTσ2τ2Φ,Φ†σ1Φ,Φ†σ2Φ,Φ†σ3Φ).
1

4πTr[a ∧ da + 2
3 ia ∧ a ∧ a] is the Chern-Simons term

for SU(2) gauge field coming from the integration of
the fermionic spinons. Here aµ =

∑
s=1,2,3 a

s
µτ

s. The
− 1

8πAcdAc term again is from the stacking of the ν = −2
IQHE phase to cancel the spin Hall effect. All symmetry
allowed quartic terms are included(see Appendix. B).
The theory has a charge conjugation symmetry

C : Φ(x)→ Φ∗(x), aµ(x)→ −aµ(x),

Acµ(x)→ −Acµ(x), Arµ(x)→ −Arµ(x). (60)

Under C, (n1, n2) → (n1,−n2) and (n3, n4, n5) →
(n3,−n4, n5). The same as the discussion for the U(1)−2

2ϕ theory, the C symmetry exists only for the bandwidth
tuned transition. For the chemical potential tuned transi-
tion, there is a iΦ†∂tΦ term and the dynamical exponent
is z = 2. We focus on the bandwidth tuned transition
and thus a charge conjugation symmetry is present.

The phase transition is tuned by the sign of r. When
r > 0, Φ is gapped out and one is left with the SU(2)−1

Chern Simons theory, which is known to be equivalent to
the U(1)2 CSL phase by level-rank duality. When r < 0,
condensation of Φ higgses the SU(2) gauge fields and
leads to a symmetry breaking phase. There are various
different possible phases corresponding to different con-
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densation patterns of Φ, which are decided by the quartic
terms.

It can be shown that λ > 0 favors the SC order parame-
ter (n1, n2). In contrast, λ′ > 0 favors the CDW order pa-
rameter (n3, n4). λ < 0, λ′ < 0 favors the CDW order n5.

Therefore there should be several different fixed points
in the parameter space (λ, λ′), corresponding to transi-
tion between the CSL and different symmetry breaking
phases. The energy cost of different symmetry breaking
orders can be found in Table. XI.

Order parameter SC (n1, n2) CDW (n3, n4) CDW n5

Condensation Φ1 = 1√
2

(
1
0

)
,Φ2 = 1√

2

(
0
1

)
Φ1 = 1√

2

(
1
0

)
,Φ2 = 1√

2

(
1
0

)
Φ1 =

(
1
0

)
,Φ2 =

(
0
0

)
Energy −λ −λ′ 0

TABLE XI: The role of quartic terms in the SU(2) theory to select the symmetry breaking order parameter in the
ordered side. The energy cost is defined on top of g + λ0.

B. SU(2) theory on triangular and kagome lattices

On triangular and kagome lattices, we also have SU(2)
ansatz for the CSL phase. Again the low energy holon
fields are captured by Φ1 and Φ2, whose symmetry trans-
formations are listed in Table. II and in Table. III. As
in square lattice, T1 and T2 relates Φ1 and Φ2 and pro-
tect their degeneracy. Φ†~σΦ all break translation symme-
try and now carry momenta M1,M2,M3, corresponding
to three CDW orders (n3, n4, n5). Together they form
a three dimensional vector ~n = (n3, n4, n5) and lattice
symmetries act as one element of a SO(3) rotation on
~n. As on square lattice, T1 and T2 act as a 180◦ ro-
tation around one of ~n3, ~n4, ~n5. In contrast to square
lattice, the C6 acts as an rotation around the direction
along 1√

3
(~n3 +~n4 +~n5) and thus rotates ~n3, ~n4, ~n5 to each

other. The C4 on square lattice instead rotates around
~n5 and the CDW on square lattice has an easy-plane
anisotropy meaning (n3, n4) can not be rotated to n5 by
any symmetry.

A critical theory in terms of Φ = (Φ1,Φ2)T reads as
Eq. 59, albeit with the easy-plane anisotropy terms λ′
forbidden by the C6 symmetry which rotates n3, n4, n5 to
each other. U(1)r symmetry is now enlarged to SO(3),
however we can still keep the probing field Ar, which acts
as Φ→ ei

1
2σ3θΦ. In summary the critical theory is Eq. 59

with λ′ = 0.

C. Enlarged symmetry and duality

Here we discuss the symmetry in the (λ, λ′) space. It
is convenient to construct a 2 × 2 matrix field for each

field Φa:

Xa =
1√
2

(
Φa;1 Φa;2

−Φ∗a;2 Φ∗a;1

)
(61)

It can be shown that (Φa;1,Φa;2)T and (−Φ∗a;2,Φ
∗
a;1)T

transform in the same way under the SU(2) gauge trans-
formation. Therefore, the SU(2) gauge transformation
acts as:

Xa → XaUg (62)
where Ug ∈ SU(2).

The four elements of Xa are not independent. They
are constrained by the condition:

X∗a = τ2Xaτ2. (63)

Note that the gauge transformation eiτaθ acts on the right
of Xa. On the other hand, Xa → UXa with U ∈ SU(2)
generically does not belong to the gauge group.

We can then define a 4 × 2 matrix field: X =

(
X1

X2

)
.

Each element can be labeled as Xστ ;τ ′ with σ = 1, 2 as
the index for the ‘valley’ degree of freedom. We need to
apply the following constraint:

X∗ = σ0 ⊗ τ2Xτ2 (64)

where σ0 ⊗ τ2 is a 4× 4 matrix.
The gauge invariant bilinear operators can be

organized in TrX†σaτbX with a, b = 0, 1, 2, 3.
Among the 16 operators, we find that ten of
them vanish (see Appendix. B). TrX†X = Φ†Φ.
The remaining five are the five symmetry break-
ing order parameters: n = (n1, n2, n3, n4, n5) =
(ReΦTσ2τ2Φ, ImΦTσ2τ2Φ,Φ†σ1Φ,Φ†σ2Φ,Φ†σ3Φ) =
TrX†(−σ2τ2,−σ2τ1, σ1, σ2τ3, σ3)X. SU(2) gauge trans-
formation acts as X → XU†g , aµ → UgaµU

†
g − iUg∂µU†g .

The critical theory can be rewritten as:

L = Tr(∂µX† + iaµX
†)(∂µX − iXaµ) + rTrX†X +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− Lint (65)

where aµ is the abbreviation of asµτs with s = 1, 2, 3.
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The interaction term reads:

Lint = g|TrX†X|2 + λ0n · n− λ(n2
1 + n2

2)− λ′(n2
3 + n2

4) (66)

1. SO(5) o ZT2 symmetry at λ = λ′ = 0

At λ = λ′ = 0, there is a global symmetry SO(5).
First, let us set λ = λ′ = λ0 = 0, then the action is
invariant under X → UX where U ∈ U(4). To satisfy
the constraint in Eq. 64, we need UTσ0⊗ τ2U = σ0⊗ τ2,
which forms an Sp(4) group. Because X → −X is
shared with the SU(2) gauge transformation, the global
symmetry is SO(5) ∼= Sp(4)/Z2. The SO(5) group has
10 generators, which correspond to X → eiΓθX with
Γ = σ0τ3, σ3τ2, σ0τ1, σ1τ2, σ3τ1, σ0τ2, σ1τ1, σ3τ3, σ2, σ1τ3.
This SO(5) symmetry rotates the five di-
mensional vector n = (n1, n2, n3, n4, n5) =
TrX†(−σ2τ2,−σ2τ1, σ1, σ2τ3, σ3)X. More specifi-
cally, one can label the generator of SO(5) as Lαβ with
α < β and α, β = 1, 2, 3, 4, 5. One can check that Γ =
σ0τ3, σ3τ2, σ0τ1, σ1τ2, σ3τ1, σ0τ2, σ1τ1, σ3τ3, σ2, σ1τ3 cor-
responds to L12, L13, L14, L15, L23, L24, L25, L34, L35, L45

up to a sign convention. Here Lαβ generates an SO(2)
rotation in the (nα, nβ) subspace. n ·n is invariant under
the SO(5) rotation and L has the SO(5) symmetry
with a finite λ0 as long as λ = λ′ = 0. There is also
an anti-unitary symmetry RT , so the final symmetry is
SO(5) o ZT2

61.

2. O(4) o ZT2 symmetry at λ = λ′

Consider the high symmetry line with λ = λ′ 6= 0 and
g 6= 0, λ0 6= 0. The interaction term can be rewritten as:

Lint = gTrX†X+(λ+λ0)(n2
1+n2

2+n2
3+n2

4)+λ0n
2
5. (67)

Then one still has an SO(4) symmetry which ro-
tates the vector (n1, n2, n3, n4). SO(4) has 4 gen-
erators, corresponding to X → eiΓθX with Γ =
σ0τ3, σ3τ2, σ0τ1, σ3τ1, σ0τ2, σ3τ3. Meanwhile, there is
a Z2 action from X → eiσ1τ3

π
2X, which acts as

(n1, n2, n3, n4, n5)→ (n1, n2, n3,−n4,−n5), an improper
rotation in the (n1, n2, n3, n4) space. Together we have
a O(4) symmetry. Including the anti-unitary symmetry
RT , together the symmetry becomes O(4) o ZT2 .

3. Duality under λ↔ λ′

A special operation: X → eiτ2
π
4 eiσ3τ2

π
4X corresponds

to Φ1 → −iτ2Φ∗1,Φ2 → Φ2. This belongs to a spe-
cial element in the SO(4) group discussed in the pre-
vious subsection for λ = λ′. This operation maps
(n1, n2, n3, n4, n5) → (n3, n4,−n1,−n2, n5). It flips
Ac;µ ↔ Ar;µ, but leaves the action invariant at the spe-
cial line λ = λ′. When λ 6= λ′, it is no longer a symme-
try. Instead, it induces a duality which maps one criti-
cal theory with (λ, λ′) to a different critical theory with

(λ′, λ). As shown below, the CSL-SC fixed point and
the CSL-CDWxy fixed point on square lattice are related
by this duality. This duality constrains the renormaliza-
tion group (RG) flow in the (λ, λ′) space to be symmetric
under the reflection λ ↔ λ′. This duality precisely cor-
responds to the duality between Eq. 40 and Eq. 56 with
Ac and Ar exchanged.

D. Various fixed points in the SU(2)−1 2Φ theory

We now discuss possible fixed points in the SU(2)−1

2Φ theory. There is one obvious relevant direction tuned
by r. When r > 0, the CSL phase with Φ gapped oc-
curs. When r < 0, Φ condenses and higgses the SU(2)
gauge field, leading to a symmetry breaking phase. The
exact symmetry breaking pattern depends on the quar-
tic term and there are various different fixed points in
the g, λ0, λ, λ

′ space. g, λ0 terms are SO(5) invariant
and presumably flow to a fixed point value. They do
not select the symmetry breaking pattern after r < 0.
Therefore one focuses on the (λ, λ′) space.

A schematic phase diagram and fixed points are shown
in Fig. 6. First consider the triangular or kagome lattice.
Then C6 rotation guarantees λ′ = 0. In this case, CSL-
SC QCP must be the fixed point at (λ, λ′) = (λ∗+, 0) with
λ∗+ > 0, shown as the blue point in Fig. 6(a). Similarly
there is a fixed point at λ < 0 for CSL-CDW transition,
shown as light blue point in Fig. 6(a). The red point
at (λ, λ′) = (0, 0) is then a tri-critical point on triangu-
lar/kagome lattice.

Next square lattice. We argue that the CSL-SC transi-
tion still corresponds to the same fixed point as on trian-
gular lattice for the following two reasons: (I) The CSL
phase and SC phase on square and triangular lattice are
the same. So it is natural to expect that the QCP on
these two lattices are also the same. (II) As discussed in
the U(1)1 2ψ theory for the CSL-SC transition, there is
an SO(3)×O(2) symmetry, which is possible only when
λ′ = 0. Now that the blue point is identified as the
CSL-SC transition, we use the duality map λ ↔ λ′ to
obtain another fixed point at (λ, λ′) = (0, λ∗+) (the or-
ange point in Fig. 6(a)), which corresponds to the CSL-
CDWxy transition on square lattice. There should be a
tri-critical point between CSL, SC and CDWxy, though
not necessarily at the (λ, λ′) = (0, 0) point. The tri-
critical point, if exists, most naturally occurs somewhere
along the λ = λ′ line marked as the pink point. Note
that the RG flow constrained by the λ↔ λ′ duality fixes
this fixed point to be along the λ = λ′ line, so it has an
O(4) symmetry rotating (n1, n2, n3, n4).

The light blue point is believed to describe the CSL-
CDW transition on triangular/kagome lattice. According
to the analysis in Sec. VIII C, it should also be the tri-
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critical point between CSL, CDWz, CDWxy on square
lattice. Using the λ ↔ λ′ duality, we know there is an-
other fixed point labeled as the grey point. This should
be the tri-critical point between CSL, SC, CDWx (see
Sec. VIIID). The RG flow suggests a fixed point along
the line λ = λ′ < 0. This yellow point is exactly
the CSL-CDWz critical point discussed in Sec. VIII B.
This QCP has an additional symmetry relating (n1, n2)
to (n3, n4). The SU(2) theory enables one to make a
stronger statement that there is an O(4) symmetry ro-
tating (n1, n2, n3, n4) and a self-duality symmetry from
λ↔ λ′ for the CSL-CDWz QCP.

The SU(2) theory offers a unified framework for all
of the critical points and tri-critical points discussed in
previous sections using bosonic holons or Dirac fermions
in U(1) theories. The blue and orange points are known
to be dual to the U(1)1 2ψ theory. The blue, light blue,
orange, yellow and grey points can all be described by
U(1)−2 2ϕ theory in Eq. 40 and Eq. 56 by tuning the
easy-plane anisotropy term λ. The red and pink point,
however, are not captured by the simple U(1)−2 2ϕ the-
ory. SU(2) theory proves to be the most convenient way
to describe these two tri-critical points.

Although not shown in Fig. 6(a), the SC-CDWxy tran-
sition on square lattice and SC-CDW transition on tri-
angular/kagome lattice are in the same universality class
as the famous DQCP between Neel order and VBS order
with or without easy-plane anisotropy respectively. The
DQCP can be viewed as descendant from the tri-critical
points (the red and pink fixed point). Let us start from
the red fixed point at λ = λ′ = 0 with a SO(5) symme-
try. After r < 0, the CSL phase is higgsed and the theory
should be reduced to a non-linear sigma model in terms
of ~n = (n1, n2, n3, n4, n5). It can be derived that the
SU(2)−1 Chern-Simons term leads to a Wess-Zumino-
Witten (WZW) term with level k = 1 for the non-linear
sigma model in terms of ~n62, which exactly corresponds
to the isotropic DQCP2. With an easy-plane anisotropy,
the SO(5) non-linear sigma model with WZW term re-
duces to an O(4) non-linear sigma model with θ = π,
corresponding to the easy-plane DQCP between CDWxy

and SC. This will be discussed in more details in Sec. XI.
The CDWxy-SC and CDWxy-CDWz transitions

should be first order because there are only three in-
dependent order parameters and there is no non-trivial
Wess-Zumino-Witten term or θ term for order parame-
ters living on S2 manifold in 2 + 1 dimension.

X. CSL-SC AND CSL-CDWxy TRANSITION:
DUALITY BETWEEN SU(2)−1 2Φ AND U(1)−2 2ϕ

THEORY

We have shown that the blue and the orange fixed point
in Fig. 6 describe the CSL-SC and CSL-CDWxy transi-
tion. Sec. VI and Sec. VII also discussed U(1) theories
with 2ϕ or 2ψ for the same CSL-SC transition. The
same is true for the CSL-CDWxy transition discussed in

Triangular

CSL
SC

CDW

Square(a) (b)

(c)λ

λ′ 

CSL
CDWxy

CDWz

SC

FIG. 6: (a)Fixed points of the SU(2) theory with
Nb = 2 bosons. On triangular and kagome lattice,
λ′ = 0 is enforced by lattice symmetry. There is a
duality transformation λ↔ λ′. The red point has
SO(5) symmetry. Pink and bright yellow points have
O(4) symmetry.(b,c) plot phase diagram on square and
triangular lattice, respectively. The critical line or point
has the same color as the fixed points in
renormalization group(RG) flow of (a). Note that fixed
points in the RG flow diagram may correspond to phase
boundaries (line) or the intersection points of 3 phases
in (b,c) depending on the lattice and symmetries. The
green line in (b,c) separating superconducting and
CDW phases are described by isotropic or easy-plane
DQCP not displayed in the flow diagram (a). The
dashed line represents first-order transitions.

Sec. VIII. It is natural to expect these three theories are
dual to each other at the blue and orange fixed points
in Fig. 6(a). The boson-fermion duality between the two
U(1) theories have already been demonstrated. Here we
discuss the duality between the SU(2) 2Φ and U(1) 2ϕ
theories. The duality between the SU(2) 2Φ and U(1)
2ψ was already proposed previously62–64. One interesting
property about the CSL-SC and CSL-CDWxy transition
is the enlarged SO(3) symmetry among (ϕ†σ3ϕ,Ma(b)),
which is not obvious in the U(1) 2ϕ theory. This section
provides an understanding of this SO(3) symmetry in
the U(1) 2ϕ theory. The CSL-CDWxy-CDWz tri-critical
point also has SO(3) symmetry, simply from fine tuning
to λ = 0. An enlarged SO(3) theory in the U(1) 2ϕ the-
ory with easy-plane anisotropy λ > 0 in Eq. 40 or Eq. 56
is more nontrivial.

Starting from the SU(2)−1 2Φ theory defined in Eq. 59,
one obtains a U(1)−2 2ϕ theory by higgsing the SU(2)
gauge field down to U(1) generated by τ3. There are two
different types of the Higgs term:

(I) −~m · Φ†~στ3Φ,
(II) ~m · (ReΦTσ1τ1Φ, ImΦTσ1τ1Φ,Φ†τ3Φ),
where ~m is a three dimensional unit vector. These two

groups are related by the duality transformation X →
eiτ2

π
4 eiσ3τ2

π
4X or equivalently Φ1 → −iτ2Φ∗1,Φ2 → Φ2

(see Appendix. B). The type I U(1) and type II U(1)
ansatz in Sec. IV are obtained with ~m = (0, 0, 1) in the
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two groups respectively. In the first group, other values
of ~m can be generated from ~m = (0, 0, 1) with an SO(3)
rotation generated by L34, L35, L45, which rotate in the
subspace of (n3, n4, n5). On the other hand, ~m in the sec-
ond group is generated from ~m = (0, 0, 1) with a SO(3)
rotation in the subspace of (n1, n2, n5).

The SU(2)−1 theory will flow to the U(1) 2ϕ theory in
Eq. 40 and Eq. 56 by adding the Higgs term in the two
groups respectively, corresponding to the CSL-SC and

CSL-CDWxy transition. The SU(2) theories at the fixed
point (λ, λ′) = (λ∗+, 0) and (λ, λ′) = (0, λ∗+) are dual to
Eq. 40 and Eq. 56 respectively. There is a manifold of
U(1) theories specified by the vector ~m in the Higgs term
rotated by SO(3) symmetry.

We discuss CSL-SC transition as an example. CSL-
CDWxy is in parallel as related by the λ ↔ λ′ duality.
For the CSL-SC transition, we propose the following du-
ality:

LSU(2) = |(∂µ − iasµτs − i
1

2
Ac;µτ0σ0)Φa|2 − r|Φ|2 +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− 1

8π
AcdAc

− g|Φ†Φ|2 − λ0n · n + λ(n2
1 + n2

2)

↔ LSU(2) − hΦ† ~m · ~στ3Φ

↔ LU(1),~m = |(∂µ − iaµ − i
1

2
Ac;µσ3)ϕ|2 − r|ϕ|2 +

2

4π
ada− 1

8π
AcdAc − g̃(|ϕ|2)2 + λ̃|ϕ1|2|ϕ2|2.

(68)

ϕ = (ϕ1, ϕ2)T descends from Φ = (Φ1,Φ2)T af-
ter adding the Higgs term −hΦ† ~m · ~στ3Φ on energetic
grounds. For example, if ~m = (0, 0, 1), we have ϕ1 = Φ1;1

and ϕ2 = Φ∗2;2. The probing field Ar is omitted because
the U(1)r is not explicit in the U(1) theory for a generic
~m, unless ~m = (0, 0,±1).
Note that LU(1),~m is gauge equivalent to LU(1),−~m af-

ter a gauge transformation Φ→ iτ1Φ. Therefore the real
manifold of U(1)−2 2ϕ theories specified by a unit vector
~m, is RP2 = S2/Z2 after one mods out the equivalence
between ~m and −~m. For any ~m, LU(1),~m reduces to the
U(1)−2 2ϕ theory, albeit the symmetry actions are differ-
ent as discussed in the following. The implication of the
duality is that all of these seemingly gauge nonequivalent
theories flow to the same IR fixed point, which is also the
(λ, λ′) = (λ∗+, 0) fixed point of the SU(2) theory without
Higgs term.

The SU(2) 2Φ theory at the (λ, λ′) = (λ∗, 0) fixed
point has a SO(3)×O(2) symmetry. The SO(3) symme-
try is also transparent in the U(1)1 2ψ theory. Lattice
symmetry like T1, T2, C4 (or C6 on triangular/kagome lat-
tice) are special elements in the SO(3). In contrast, the
LU(1),~m theory above does not have the SO(3) symmetry
and the lattice symmetry explicitly for a generic ~m. So
how does one understand the symmetry in the U(1) the-
ory? The answer is that the SO(3) symmetry needs to act
non-locally in the sense that it leaves the partition func-
tion invariant but not the action. It needs to transform
the field Φ~m in LU(1),~m to another field ΦR·~m = UΦ~m in
a different theory LU(1),R·~m, where R ∈ SO(3) is gener-
ated accordingly from U ∈ SU(2).65 In the low energy
regime of the U(1) theory, one uses the CP1 field variable
(ϕ1;~m, ϕ

∗
2;~m) for each ~m, which are obtained by project-

ing to the two components of lowest energy from the term
−Φ† ~m·~σΦ. After an SO(3) rotation, (ϕ1;~m, ϕ

∗
2;~m)T maps

to (ϕ1;±R·~m, ϕ
∗
2;±R·~m)T .

Let us illustrate this procedure using one example with
~m = (0, 0, 1) and consider the translation T1 : −iσ1

in the original SU(2) theory. Now, it will first trans-
form ~m to −~m with Φ−~m = −iσ1Φ~m. Then we map it
back to ~m using Φ~m = iτ1Φ−~m = σ1τ1Φ~m. For this
particular example, the translation symmetry T1 acts
locally in the sense that it maps Φ to the same U(1)
theory specified by ~m = (0, 0, 1). Focusing on the low
energy degree (ϕ1, ϕ

∗
2) = (Φ1;1,Φ2,2), T1 acts simply

as σ1. In the similar way one can see that T2 acts as
−iσ2, ~m = (0, 0, 1) → ~m = (0, 0, 1). However, consider
a different U(1) theory labeled by ~m = (1, 1, 0), then T1

needs to act non locally and it maps (ϕ1, ϕ
∗
2) to the field

of a different U(1) theory labeled by ~m′ = (1,−1, 0).
On square lattice, all of the lattice symmetries map

~m = (0, 0, 1) to ~m = (0, 0, 1). Therefore for the U(1)
theory with ~m = (0, 0, 1), lattice symmetries act locally.
Thus the U(1) theory can be regularized by a lattice
model, as derived from the parton mean field theory in
Sec. VI. A generic SO(3) rotation still acts non-locally,
but it does not correspond to a microscopic lattice sym-
metry. In contrast, on triangular lattice, the C6 symme-
try transforms ~m = (0, 0, 1) to ~m = (1, 0, 0) and then
to ~m = (0, 1, 0), following the rule in Table. II, since
C6 relates (n3, n4, n5) to each other. The ϕ†σzϕ in the
U(1) theory with these three different ~m correspond to
these three CDW orders. As a result, C6 needs to act
non-locally in the U(1) theory with a generic ~m, unless
~m = 1√

3
(1, 1, 1). But T1 needs to act non-locally for

~m = 1√
3
(1, 1, 1). Therefore, on triangular/kagome lat-

tice, one can not find any ~m such that the microscopic
lattice symmetries can act locally. This is consistent with
the observation that there is no type I U(1) ansatz on
triangular/kagome lattice discussed in Sec. IV. It is im-
possible to derive the U(1) 2ϕ theory for the CSL-SC
transition starting from a parton mean field construction
on triangular/kagome lattice, because otherwise the lat-
tice symmetry should act locally in the resulting theory.

A similar discussion can be made for the CSL-CDWxy

transition following the λ ↔ λ′ duality. At the fixed
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point (λ, λ′) = (0, λ∗+), we expect the duality LSU(2) ↔
LSU(2) − h~m · (ReΦTσ1τ1Φ, ImΦTσ1τ1Φ,Φ†τ3Φ), which
again leads to a manifold of U(1)−2 2ϕ theory speci-
fied by ~m. The symmetry action is different. For ex-
ample, the ϕ†σzϕ operator in the resulting U(1) theory
correspond to the order parameter (n1, n2, n5) now for
~m = (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively. The SO(3)
symmetry still needs to act non-locally, mapping one ~m
to a different ~m. However, in this case all lattice sym-
metries on square, triangular and kagome lattice act lo-
cally for ~m = (0, 0, 1), since microscopically the SC order
(n1, n2) are very different from CDWz order n5 and no
microscopic symmetry can rotate n5 to mix with (n1, n2).
Hence the U(1) 2ϕ theory for the CSL-CDWxy transition
can be derived from parton mean field theory on square,
triangular and kagome lattice.

XI. DQCP BETWEEN CDW AND SC

We have discussed CSL-SC and CSL-CDW transitions
on square and triangular/kagome lattice. It is then in-
teresting to ask whether there can be a direct transition
between SC and CDW phase. Both phases are symme-
try breaking phases without fractionalization, so a di-
rect transition needs to be beyond Landau framework
although nearby phases are conventional phases. In this
section we show that the SC-CDWxy on square lattice
and SC-CDW transition on triangular lattice are in the
same universality class as the DQCP of easy plane or
isotropic Neel to VBS transition1. The key is that the
topological superconductor can be understood as from
condensation of skyrmion. The CDWxy or CDW order
live on the manifold S1 or S2 and the CDW phase is a
Chern insulator with C = 2. Similar to the quantum Hall
ferromagnetism, the skyrmion defect of the S2 order car-
ries physical charge 2e and can be identified as a bosonic
Cooper pair. Condensation of these skyrmions will dis-
order the CDW order and lead to a superconductor at
the same time.

Skyrmion superconductor has been discussed from a
quantum spin Hall insulator (QSHI)3,4. There the result-
ing superconductor is topologically trivial. In contrast,
the skyrmion superconductor in our case still inherits the
chiral central charge c = 2 from the C = 2 Chern insula-
tor and is thus topologically equivalent to a d+ id super-
conductor. Nevertheless the CDW-SC transition in the
bulk is the same as the QSHI-SC transition if we ignore
the edge physics. Skyrmion superconductor was also pro-
posed from a spin polarized Chern insulator with C = 2
in moiré systems8. The physics is similar to our case and
the skyrmion superconductor there, if possible, should
also be topological with chiral central charge c = 2.

Technically, the easiest way to describe this transition
is to use CP1 representation of the SO(3) CDW order
parameter. To obtain the topological superconductor,the
CP1 boson needs to be in a bosonic integer quantum
Hall insulator phase, instead of a trivial insulator. We

start from the type II U(1) ansatz and the low energy
boson field is ϕ = (ϕ1, ϕ2)T with ϕ†~σϕ represents the
CDW order. Following the discussion in Sec. VII, we
let these bosons enter a bIQHE phase to provide a term
− 2

4πada term, which cancels the Chern-Simons term from
the fermionic spinons. Finally there is no Chern-Simons
term for aµ anymore. Now one has gapped bosonic holon
ϕ excitations and the ground state is a Superconductor
whose order parameter is the monopole of the gauge field
a. Then consider a transition between the bIQHE phase
and the superfluid phase for the boson ϕ, which leads to
the SC to CDW transition for the physical system. The
superfluid transition from bIQHE for bosons is the same
as that from a trivial insulator and is simply captured by
condensation of ϕ, so the SC-CDW transition is described
by the following critical theory:

L = |(∂µ − iaµ − i
1

2
σ3Ar;µ)ϕ|2 − 1

2π
Acda

− r|ϕ|2 − g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2 (69)

When r > 0, ϕ is gapped and one obtains the SC
phase. When r < 0 and λ > 0, ϕ condenses with easy-
plane anisotropy, describing the Chern insulator phase
with CDWxy order. This is exactly the same critical the-
ory for the easy plane DQCP between Neel and VBS or-
der on square lattice1. If λ = 0, then this is the isotropic
DQCP. When λ > 0, naively the above action can de-
scribe the transition between SC and CDWz, but this
transition should be first order. The above theory also
has a self duality symmetry, which will be discussed in
the next section.

XII. TRI-CRITICAL POINT AND
SELF-DUALITY

We have provided critical theories for CSL-SC, CSL-
CDW and SC-CDW transitions.This section discusses
the tri-critical point at the intersection of these three
phases. For square lattice we only consider the CDWxy

order. For triangular/kagome lattice we consider the
isotropic CDW order with SO(3) symmetry. The tri-
critical points on square and triangular lattice correspond
to the pink and red fixed points in Fig. 6 for the SU(2)
theory. There is a self-duality symmetry from the λ↔ λ′

transformation in the SU(2) theory. Here we provide al-
ternative theories with two U(1) gauge fields coupled to
both 2ϕ and 2ψ.

We discuss the CSL-CDWxy-SC tri-critical point on
square lattice first. We start from the type II U(1)
ansatz for the CSL phase.As discussed previously, when
the holons go through a plateau transition into IQHE, the
system goes into an SC phase. While if the holons simply
condense with 〈ϕ〉 ∝ (1, 1)T , the condensation pattern
breaks lattice symmetry and results in a CDWxy state.
We see there are 2 different tuning parameters controlling
transition into either SC or CDW. Hence we arrive at a
tri-critical point among CSL,CDW and SC.To formulate
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the tricritical theory, we use two Dirac fermions to de-
scribe the CSL-SC transition as in Eq. 45. Meanwhile

we also keep track the bosonic holons ϕ and consider the
mass of ϕ as another tuning parameter.66 Putting them
together, the following critical theory emerges:

L = ψ̄(−iγµ∂µ − bµγµ +
1

2
Ar;µσ3γµ)ψ +mψ̄iψi −

1

4π
(
1

2
Ac + a)d(

1

2
Ac + a) +

1

2π
bd(

1

2
Ac + a) +

1

16π
ArdAr

+ |(∂µ − iaµ − i
1

2
σ0Ac;µ − i

1

2
σ3Ar;µ)ϕ|2 − r|ϕ|2 − g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2

+
2

4π
ada− 1

8π
AcdAc − Lint (70)

where the first line describes the plateau transition of
the bosonic holon and the second line the condensation
of the holon. The third line is from the integration of
the fermionic spinons and the stacking of the ν = −2

IQHE phase. Interactions between ϕ and ψ Lint will be
specified in the next equation.

With a simplification aµ → aµ − 1
2Ac;µ, the tri-critical

point theory is cast into:

L = ψ̄(−iγµ∂µ − bµγµ +
1

2
Ar;µσ3γµ)ψ +mψ̄iψi + |(∂µ − iaµ − i

1

2
σ3Ar;µ)ϕ|2 − r|ϕ|2 − g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2

+
1

4π
ada+

1

2π
(b−Ac)da+

1

16π
ArdAr − g0(ψ̄ψ)(ϕ†ϕ)− g̃(ψ̄~σψ) · (ϕ†~σϕ)− λ̃(ψ̄σ3ψ)(ϕ†σ3ϕ) (71)

where ϕ = (ϕ1, ϕ2)T and ψ = (ψ1, ψ2)T .
We have also included the interaction terms between ψ

and ϕ. λ and λ̃ are easy-plane anisotropy terms. When
m < 0, one can integrate ψ and then integrate bµ, after
which we recover Eq. 56 for the CSL-CDWxy transition.
When r > 0, ϕ is gapped and one can integrate aµ and get
the U(1)1 2ψ theory for the CSL-SC transition in Eq. 52.
In summary, m < 0, r > 0 is the CSL phase, m > 0, r > 0
is the SC phase. r < 0 is the CDW phase regardless of the
sign ofm. r = m = 0 corresponds to the tri-critical point.
These are summarized in Fig. 7(b). When λ = λ̃ = 0,
this is the CSL-SC-CDW tri-critical point on triangular
lattice, shown in Fig. 7(a). When λ > 0, λ̃ > 0, this
is the CSL-SC-CDWxy tri-critical point. In this theory,

ϕ†~σϕ ∼ ψ̄~σψ correspond to the CDW order (n3, n4, n5).

In the SU(2) theory, these two tri-critical points have
a self-duality which exchanges Ac and Ar. Thus we be-
lieve the above tri-critical theory is also self dual to itself
except the exchange between Ac and Ar. One can derive
this self-duality in the following way on square lattice.
On square lattice, starting from the type I U(1) ansatz,
then the CSL-SC transition is described by the U(1)−2

2ϕ theory. Alternatively one could let the holon ϕ goes
through a plateau transition and get a CDWxy order.
Putting them together, the following tri-critical theory
reads:

L = ψ̄(−iγµ∂µ − bµγµ −
1

2
Ac;µσ3γµ)ψ +mψ̄iψi + |(∂µ − iaµ − i

1

2
σ3Ac;µ)ϕ|2 − r|ϕ|2 − g(|ϕ|2)2 + λ|ϕ1|2|ϕ2|2

+
1

4π
ada+

1

2π
(b−Ar)da+

1

8π
ArdAr −

1

16π
AcdAc − g0(ψ̄ψ)(ϕ†ϕ)− g̃(ψ̄~σψ) · (ϕ†~σϕ)− λ̃(ψ̄σ3ψ)(ϕ†σ3ϕ) (72)

where ϕ = (ϕ1, ϕ2)T and ψ = (ψ1, ψ2)T .
When r > 0 and ϕ is gapped, we recover Eq. 58 af-

ter integrating a. When m < 0, we recover Eq. 40
after integrating ψ and b. m < 0, r > 0 is the CSL
phase. m > 0, r > 0 is the CDWxy order. r < 0 is
the SC phase regardless of the sign of m. m = r = 0
is the tri-critical point. This time ϕ†~σϕ ∼ ψ̄~σψ corre-
spond to (n1, n2, n5). In the above we assume the easy
plane anisotropy terms λ, λ̃ so the tri-critical point is be-
tween CSL-SC-CDWxy. We believe the λ = λ̃ = 0 corre-
sponds to the CSL-SC-CDW tri-critical point on triangu-
lar/kagome lattice, though now ϕ transforms non-locally
under lattice symmetry. This means that both tri-critical
points on square and triangular/kagome lattice have the
self-duality at r = m = 0 of Eq. 71 and Eq. 72.

Both theories only have explicit U(1)c × U(1)r o Z2

symmetry with Z2 coming from either translation T1 or
T2. In Eq. 71, one can see the mixed anomaly that
dAc = 2π carries charge 1/2 under Ar because one needs
to attach ϕ to cancel the charge under a. Similarly
dAr = 2π carries charge 1/2 under Ac. This mixed
anomaly is crucial for the DQCP between SC and CDW
and it already exits at the tri-critical point. The self-
duality relates order parameter (n1, n2) to (n3, n4) and
suggests an enlarged O(4) symmetry when there is easy-
plane anisotropy terms λ, λ′. When λ = λ′ = 0, there
is explicit SO(3)× O(2) symmetry in either theory. In
Eq. 71 the SO(3) rotates (n3, n4, n5), while in Eq. 72 the
SO(3) rotates (n1, n2, n5). The self-duality then implies
a SO(5) symmetry. Nevertheless, O(4) and SO(5) sym-
metries are not explicit in the above form. To explicitly
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see the symmetry, we still need to use the SU(2) theory.
We plot phase diagrams for Eq. 71 and Eq. 72 in

Fig. 7. The tri-critical critical theories here are differ-
ent from that of the SU(2) theory in Sec. IX. Let us take
the square lattice as an example. In the SU(2) theory,
bosonic holons are in either trivial insulator and super-
fluid phases. SC and CDW correspond to different con-
densation patterns of the superfluid phase of the bosonic
holon Φ. In contrast, here we start from the U(1) ansatz
of the CSL. If we start from the type I U(1) ansatz, then
CSL, SC and CDWxy correspond to trivial insulator, su-
perfluid and bIQHE insulator of the bosonic holons ϕ.
If we start from type II U(1) ansatz, CSL, CDWxy and
SC correspond to trivial insulator, superfluid and bIQHE
insulator of bosonic holon ϕ. One can clearly see the du-
ality between type I and type II U(1) with exchange of
SC and CDWxy. For triangular and kagome lattice, we
only have type II ansatz and can only derive Eq. 71 from
parton construction. But we believe it has a dual theory
as Eq. 72, just the lattice symmetry needs to act non-
locally as discussed in Sec. X.

CSL

SC

CDW

m>0,r>0

m<0,r>0

r<0
SO(5)

SO(5)

SO(3)xO(2)

SO(3)xO(2)

CSL

SC

CDWxy

m>0,r>0

m<0,r>0

r<0

O(4)

O(4)

SO(3)xO(2)

SO(3)xO(2)

CSL
SC

CDWxy

m>0,r>0

m<0,r>0

r<0
O(4)

O(4)

SO(3)xO(2)

SO(3)xO(2)

(a)

(b)

(c)

FIG. 7: The phase diagram summarizing the transitions
between CSL,d+id SC and CDW Chern insulator on
triangular (a) and square lattices (b,c). (b,c) are
described by Eq (71) and Eq (72),respectively.

XIII. HONEYCOMB LATTICE: U(1) 1ϕ
THEORY AND ABSENCE OF SYMMETRY

BREAKING ORDER

We have shown various critical theories and proximate
phases nearby a chiral spin liquid phase on square, tri-
angular and kagome lattice. In contrast, on honeycomb
lattice, we do not expect a direct CSL-SC transition be-
cause there are two electrons per unit cell in the CSL
phase of a Mott insulator. On honeycomb lattice, the
natural mean field ansatz of the CSL phase is the Hal-

dane model with T1T2 = T2T1. As a result there is only
one single bosonic holon mode ϕ, which leads to a critical
theory:

L = |(∂µ−iaµ)ϕ|2−r|ϕ|2−g|ϕ|4+
2

4π
ada− 1

2π
Acda (73)

In this case the r < 0 side is a symmetry Chern insula-
tor with C = 2, simply described by the Haldane model.
The critical theory is known to be dual to a U(1) the-
ory with one Dirac fermion, an SU(2) theory with one
boson and an SU(2) theory with one Dirac fermion67,68.
There is also an emergent SO(3) symmetry which ro-
tates (∇ × a,Re(Mϕ∗), Im(Mϕ∗)). They represent the
density fluctuation and the Cooper pair creation opera-
tors which transform trivially under lattice symmetries.
Gapless charge mode is expected at the QCP. There is no
other symmetry breaking order parameter fluctuating at
the QCP. One can clearly see that the difference of the
square, triangular and kagome lattice arises from the pro-
jective translation symmetry of the semion, which guar-
antees the existence of two bosonic modes in the U(1) 2ϕ
theory.

XIV. EXPERIMENTAL SIGNATURES

We discuss the possible experimental realization and
signatures of the CSL-SC transition. Recently CSL was
observed numerically in triangular lattice Hubbard model
in the intermediate regime of U/t32. The next phase close
to the CSL may be a superconductor69 and a CSL-SC
transition as described by our paper can be naturally re-
alized by reducing U/t. Bandwidth tuned metal insulator
transition has recently been observed in moiré superlat-
tice based on transition metal dichalcogenide(TMD)44.
Although a CSL phase was not reported in the current
experiment, it may be found at lower temperature or a
different parameter regime. Therefore it may be inter-
esting to search for CSL-SC transition in moiré materi-
als. Here we will provide experimental predictions in the
critical regime, focusing on the transport at the CSL-SC
critical point. One can access the conductivity tensor
from the U(1) 2ϕ theory, U(1) 2ψ theory or SU(2) 2Φ
theory, and we mainly use the two U(1) theories.

First, let us start with the U(1) 2ϕ theory in Eq. 40.
We will ignore Ar as the transport measured in the ex-
periments is associated only with Ac. In the original
action a term − 1

8πAcdAc was added coming from the
stacking of ν = −2 IQHE phase, which will be ignored
because the ν = −2 IQHE phase is stacked only for sim-
plicity and does not really exist. ϕ1 couples to a + 1

2A

and ϕ2 couples to a− 1
2A. Translation symmetry acts as

T1 : ϕ1 → ϕ∗2, ϕ2 → ϕ∗1. Integrating ϕ1, ϕ2, we get:

Leff = La +
1

2

∑
ω,q

1

4
(Ax(ω,q), Ay(ω,q))(Π11(ω,q) + Π22(ω,q)−Π12(ω,q)−Π21(ω,q))

(
Ax(−ω,−q)
Ay(−ω,−q)

)
(74)
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where Π11 and Π22 are from the conductivity tensor
of ϕ1 and ϕ2. Π12,Π21 encode the drag conductivity
between ϕ1 and ϕ2. Note that under T1, we have A →
A,a → −a, so that there is no crossing term between
A and a. La includes the terms for aµ, which is not
interesting for physical transport.

We simply define Π(ω,q) = 1
4 (Π11(ω,q) + Π22(ω,q)−

Π12(ω,q)−Π21(ω,q)). It encodes the conductivity tensor
of the physical electron:

Π(ω,q) =
e2

~
1

2π
(−iω)

(
σ0 σxy
−σxy σ0

)
(75)

σ0 and σxy are universal numbers. σ0 is the universal
conductivity usually present in 2+1 d CFT for bosons.
There is no symmetry to forbid the Hall conductivity σxy.
However, note that 〈da〉 = 0 on average and it does not
couple to the physical gauge field Aµ due to symmetry
T1. So we expect that σxy should be very small even if
it exist.

We can also derive the conductivity tensor from the
U(1) theory with two Dirac fermions in Eq. 52. Again
we ignore Ar and add back a term 1

8πAcdAc. Integration
of ψ leads to

Leff =
1

2
bT (ω,q)

−iω
2π

(
σψI + (σxyψ − 1)ε

)
b(−ω,−q)− 1

4
AT (ω,q)

−iω
2π

εA(−ω,−q)

+
1

2
AT (ω,q)

−iω
2π

εb(−ω,−q) +
1

2
bT (ω,q)

−iω
2π

εA(−ω,−q) (76)

where AT = (Ax, Ay) and bT = (bx, by). I and ε are

2× 2 matrix. I is the identity matrix. ε =

(
0 1
−1 0

)
.

Integration of bµ leads to

Leff =
1

2

∑
ω,q

(Ax(ω,q), Ay(ω,q))
−iω
2π

σ(ω,q)

(
Ax(−ω,−q)
Ay(−ω,−q)

)
(77)

with

σ(ω,q) =
(
σψI + (σxyψ − 1)ε

)−1 − 1

2
ε

=
σψ

σ2
ψ + (1− σxyψ )2

I +
( 1− σxyψ
σ2
ψ + (1− σxyψ )2

− 1

2

)
ε

(78)

Compared to Eq. 75, we have the following constraint
for the two dual theories, where similar results are ob-
tained in ref70:

σ0 =
σψ

σ2
ψ + (1− σxyψ )2

σxy =
1− σxyψ

σ2
ψ + (1− σxyψ )2

− 1

2
(79)

We have argued that σxy should be very small from the
U(1) 2ϕ theory. This will impose non-trivial constraint
for the theory with Dirac fermion.

In addition to a universal conductivity, there also
should be quasi long range fluctuation of the CDW or-
der at the CSL-SC critical point. The CDW fluctuation
can persist to the superconductor phase and the CDW
can be stabilized in the vortex core of the superconduc-
tor phase. This can be tested by X-ray scattering and
scanning tunneling microscope (STM) experiments.

We have restricted to the transition tuned by band-
width with the density fixed at integer filling. For the

chemical potential tuned transition, we can still use the
SU(2) theory in Sec. IX. But now there is a term iΦ∗∂tΦ
and we have z = 2. The fixed point should still be de-
cided by the quartic terms (λ, λ′). On triangular lattice,
the CSL-SC transition is still fixed at the λ′ = 0 axis by
the C6 symmetry. If we assume that the chemical poten-
tial tuned CSL-SC transition is the same on square and
triangular lattice, then the transition on square lattice is
at the same fixed point and still has SO(3)×O(2) sym-
metry. The λ↔ λ′ duality is still there and the structure
of the fixed points should remain the same as the z = 1
case. We should still have a dual U(1) theory with 2ϕ
by adding Higgs terms to the SU(2) theory, though now
it is also z = 2. There is no obvious theory with Dirac
fermion. We no longer expect a universal conductivity,
but the intertwinement of the SC and CDW order in the
critical regime should still exist.

XV. CONCLUSION

In summary we present critical theories for transitions
between chiral spin liquid, topological superconductor
and CDW Chern insulator. In the CSL to SC transi-
tion, the are also CDW orders transforming under an
emergent SO(3) symmetry. Such an intertwinement of
an additional symmetry breaking order is guaranteed by
the LSM theorem at odd electron filling per unit cell.
We present the critical theories in three forms: U(1)
theory with two bosons, U(1) theory with two Dirac
fermions and SU(2) theory with two bosons. Our work
demonstrates the duality between these three theories
and possible experimental realizations of these interest-
ing CFTs. In the SU(2) theory, there are several fixed
points decided by the quartic terms λ, λ′, corresponding
to bi-critical and tri-critical points with SO(5), O(4) or
SO(3) × O(2) global symmetry. There is also a duality
transformation λ ↔ λ′ which exchanges the easy-plane
CDW order and the SC order. We offer a new perspec-
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tive to understand the d + id superconductor as from
skyrmion condensation of the CDW order. The CDW-
SC transitions are in the same universality classes as the
usual Neel to VBS DQCP, but now both of them are
proximate to a CSL phase. The CDW-SC DQCP theo-
ries, along with the enlarged symmetry and self-duality,
are simply descendants of unified tri-critical theories. We
also discuss possible experimental realizations and detec-
tion of the CSL-SC transition.
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Appendix A: SU(2), U(1) mean-field states for holons and symmetries

Here we list the solution for the SU(2) mean-field ansatz for holons and the projective symmetry group of the
holons.

1. Square lattice

The unit cell for the mean-field for holons eq (14) is enlarged to contain 2 sites A = (0, 0), B = (1, 0) connected by
a horizontal bond. It translates into k space form in terms of Z = (zA,1, zB,1)T :

Hk =

(
sin k2 − sin k1 + iη(cos(k1 + k2) + cos(k2 − k1)

− sin k1 − iη(cos(k1 + k2) + cos(k2 − k1)) − sin k2

)
. (A1)

The Dirac nodes at (0, 0(π)) are gapped out by a mass of order 2η. For z2 it differs by a minus sign.
The holon dynamics at low-energy is dominated by the fluctuations around the lowest energy states of Hk, located

at Q1(2) = (π/2,±π/2).The eigenvectors for z1, z2 are

Q1 : (z1,A, z1,B) = (cos
π

8
,− sin

π

8
), (z2,A, z2,B) = (sin

π

8
, cos

π

8
),

Q2 : (z1,A, z1,B) = (− sin
π

8
, cos

π

8
), (z2,A, z2,B) = (cos

π

8
, sin

π

8
) (A2)

at Q1,2, respectively.
The symmetry actions on spinons and holons are projective, albeit the composite action for electrons is a faithful

representation. The actions on spinons read:

T1,2 : (f†r,↑, fr,↓)
T → iεrτ

2(f†r+r̂1(2),↑, fr+r̂1(2),↓)
T ,

C4 : (f†r,↑, fr,↓)
T → iεrτ

2(f†C(r),↑, fC(r)),↓)
T ,

R1T : (f†r,↑, fr,↓)
T → Kiεrτ2(f†R1(r),↓, fR1(r)),↑)

T , (A3)
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where K denoting anti-unitary operations and τ1,2,3 matrices are Pauli matrices acting on the spinor indices. The
transformation for holons follows from those of spinons by requiring the electron operators transform faithfully under
the symmetries, i.e. Ψr,f → gR(r)ΨR(r),f , Zr,b → gR(r)−1ZR(r),b for a symmetry operation R with a site-dependent
gauge transform gR(r).

The lattice translation along r1 direction T1 gives a momentum boost of (0, π), i.e.

T1 : z1(2),r → i(−1)r2z1(2),r+r̂1

(Φ1,Φ2)T → −iσ1(Φ1,Φ2)T (A4)

where we use σa to label the Pauli matrix that rotates Φ = (Φ1,Φ2). Translation along r2 just sends z1(2),r → z1(2),r+r̂2
and at low-energy:

T1 : (Φ1,Φ2)T → −iσ1(Φ1,Φ2)T ,

T2 : (Φ1,Φ2)T → −iσ3(Φ1,Φ2)T , (A5)

For C4 rotation around a site e.g. at B sublattice with coordinate (1, 0), one choice of transform that leave the
ansatz invariant reads

z1,r → g(C4(r))z1,C4(r), g(r) =

{
−(−1)r1 if mod (r2, 2) = 0

1 if mod (r2, 2) = 1
. (A6)

The transform for z∗2 differs by an overall minus sign to make the rotation of Φ free of SU(2) gauge transform.
It sends the low energy field as:

C4 : (Φ1,Φ2))T → −σ3e
iπ4 σ2(Φ1,Φ2))T . (A7)

For R1T , R2T , the holon fields are sent to (identical for z1, z2)

R1,2T : zr → (−1)r2,1KzR1,2T (r), (Φ1,Φ2)→ −(Φ1,Φ2). (A8)

To simplify our notation, we make a redefinition (Φ1,Φ2)T → e−iσ1π/4(Φ1,Φ2)T , so that the symmetry transfor-
mation now is: T1 : −iσ1, T2 : iσ2, C4 : σ2e

iπ4 σ3 , R1,2T : iσ1.

2. Triangular lattices

As a starting point, we consider the U(1) CSL mean field ansatz. We define the coordinate to be r = xa1 + ya2.
a1 is along x direction, a2 is along 120◦ direction.

HΨ = tfΨ†(r + r̂1)iei(
π
2 +θ)τ3Ψ(r) + h.c.

+ tfΨ†(r + r̂2)(−1)r1iei(
π
2 +θ)τ3Ψ(r) + h.c.

+ tfΨ†(r + r̂1 + r̂2)(−1)r1ie
−iθτ3Ψ(r) + h.c. (A9)

We then do a gauge transformation Ψ(r)→ ei
π
2 (r1+r2)τ3Ψ(r), and get the mean-field eq (17).

The mean-field composes of 2-site unit cells denoted as sublattice A,B. In the basis (ZA(k), ZB(k)), we get

HZ = (Z†A(k), Z†B(k))h(k)

(
ZA(k)
ZB(k)

)
(A10)

where

h(k) =

(
2tb cos θ sin(− 1

2kx +
√

3
2 ky) 2tb cos θ sin kx − 2itb cos θ cos( 1

2kx +
√

3
2 ky)

2tb cos θ sin kx + 2itb cos θ cos( 1
2kx +

√
3

2 ky) −2tb cos θ sin(− 1
2kx +

√
3

2 ky)

)

+

(
−2tb sin θτ3 cos(− 1

2kx +
√

3
2 ky) −2tb sin θ cos kxτ3 + 2itb sin θ sin( 1

2kx +
√

3
2 ky)

−2tb sin θ cos kxτ3 − 2itb sin θ sin( 1
2kx +

√
3

2 ky) 2tb sin θτ3 cos(− 1
2kx +

√
3

2 ky)

)
(A11)
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When taking θ = 0, the mean-field is invariant under SU(2), with symmetry transformation:

T1 : Ψ(r)→ (−1)r2Ψ(r + r̂1)

T2 : Ψ(r)→ Ψ(r + r̂2)

C6 : Ψ(r)→

{
i(i)r2Ψ(C6(r)) Mod(r2, 2) = 1

−(−1)r1(i)r2Ψ(C6(r)) Mod(r2, 2) = 0

RT : Ψ(~r)→

{
(−1)r1Ψ(R(r)) Mod(r2, 4) = 0, 1

−(−1)r1Ψ(R(r)) Mod(r2, 4) = 2, 3
(A12)

The holons hop in the same ansatz as the spinons, with the k space Hamiltonian reads,

HZ(k) = sin k2η
3 − sin k1η

1 − cos(k1 + k2)η2, (A13)

where k1,2 are coordinates in reciprocal space spanned by b1,2, that satisfies bi ·aj = 2πδij . η rotates A,B sublattices.
There are 2 holon minima at Q1,2 = (π/2,±π/2), with states of minimal energy denoted as Φ = (Φ1,Φ2), at Q1,2,

respectively. They transform as

T1 : Φ→ −iσ1Φ,

T2 : Φ→ −iσ3Φ,

C6 : Φ→ ei
π
3 e
−iσ3+σ2+σ1√

3
π
3 Φ,

RT : Φ→ e−i
π
12

√
2

(1− iσ1)Φ (A14)

where σ rotates two valleys Q1,2.
For the U(1) ansatz on triangular lattices discussed in section IV, the projective symmetry group for the spinons

reads:

T1 : ψr → (−1)r2ψr+r̂1 ,

T2 : ψr → ψr+r̂2 ,

C6 : ψr →

{
τ1ψC6r (C6r)2 mod 2 = 0

−(−1)(C6r)xiτ1ψC6r (C6r)2 mod 2 = 1
, (A15)

those for the holons in terms of (z1, z
∗
2)T are the same for the spinon symmetry transforms.

There are 2 holon minima at Q1,2 = (π/2,±π/2) for each holon species, respectively46. The flux is translation
invariant but breaks naive C6 rotation defined by eq (A14). Note compared to SU(2) invariant ansatz, the additional
hopping for small θ projects to the lowest-energy holon states to be 0.

Denote the states of minimal energy as Φ = (Φ1,Φ2), at Q1,2. They transform as

T1 : Φ→ −iσ1Φ,

T2 : Φ→ −iσ3Φ,

C6 : Φ→ ei
π
3 τ1e

−iσ3+σ2+σ1√
3

π
3 Φ,

RT : Φ→ e−i
π
12

√
2

(1− iσ1)Φ (A16)

where σ rotates two valleys Q1,2.

3. Kagome lattices

The projective symmetry group on the spinons act as

T1 : fi → (−1)R1+R2fi+R̂1

T2 : fi → fi+R̂2

C6 : fi → G(C6(i))fC6(i), (G(C6(i))in fig 8(a))
RT : fi → GR(R(i))fR(i), (GR(R(i))in fig 8(b)) (A17)



34

(a)
(b)

̂r1

̂r2

FIG. 8: (a)The gauge transform for C6 where the red dot denotes −1 gauge transform and no point denotes trivial
gauge transform. With the 2× 2 cell enclosed by the parallelogram, the gauge transform carries a (π, π) momentum,
i.e. gauge transform is invariant upon translation by 4 units of primitive lattice vectors. (b) Gauge transform for
RT , with a 2× 2 unit cell. (d) The electron pairing(spin singlet) and hopping amplitude when condensing holons at
low-energy fields Φ1;1 = Φ2;1 = Φ1;2 = −Φ2;2 = 1, which makes ΦT τ2σ2Φ = −2.The corresponding BCS Hamiltonian
is translation invariant, though pairing breaks inversion.

For the holons z they hop in a similar ansatz as for spinons from eq (20), with the ansatz differ by a negative sign (for
purely imaginary hopping) for z1,2. This results in a degenerate line of lowest-energy states in the Brillouin zone. To
simplify the case, we focus on a degenerate pair of momentum points Q1,2 = (0,±π/4) and do not require the states at
Q1,2 to the lowest energy, since we are concerned about the symmetry properties of the resulting electron Hamiltonian,
not energetics. The holons condense at states at Q1,2 with a condensation value of Φ1,2;i for zi, respectively.Note that
the lowest-energy state wavefunctions of z1,2 are related by ψ1(Qi) = ψ2(Q3−i)

∗. For a generic CSL ansatz with NNN
hopping, the lowest-energy states for holons reads,

ψ1(Q1) = (e−5iπ/12,
√

2eiπ/6, i,−e−5iπ/12, 0, 1),

ψ1(Q2) = (−e−5iπ/12, 0, i,−e−5iπ/12,−
√

2eiπ/6, 1), (A18)

independent of NNN hopping.
The PSG on low-energy holon fields at Q1,2, arranged in the form Φ = (Φ1;1,Φ

∗
2;2,Φ2;1,Φ

∗
1;2), since (z1, z

∗
2) transform

as a vector under the SU(2) gauge group, reads as

T1 : Φ→ iσ2Φ

T2 : Φ→ iσ3Φ

C6 : Φ→ eiπ/6e
i
σ1+σ2+σ3√

3
π/3

Φ

RT : Φ→ ei
π
4
−σ3 + σ1√

2
Φ (A19)

Appendix B: Details in the SU(2) theory

Here we list more details about the SU(2) 2Φ theory in Sec. IX and its global symmetry. First, let us consider the
square lattice. Because the C̃4 rotation: Φ→ −ieiπ4 σ3τ0Φ, the most generic action is:

L =
∑
a=1,2

|(∂µ − iasµτs − iAcµσ0τ0 − iArµσ3τ0)Φa|2 + r|Φ|2 +
1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− Lint,

Lint =g|Φ|4 + λτ
∑
i

|Φ†τ iΦ|2 + λσ
∑
i

|Φ†σiΦ|2 + λσ3|Φ†σ3Φ|2 + λm
∑
i,j

|Φ†τ iσjΦ|2 + λm3

∑
i

|Φ†τ iσ3Φ|2 (B1)
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where as, s = 1, 2, 3 is an SU(2) gauge field and
∑
i =

∑
i=1,2,3. Ac is the physical probing field. We have used the

symmetry transforms above to simplify the possible quartic interaction. Using identities of∑
i

|Φ†τ iΦ|2 =
∑
i

|Φ†σiΦ|2,∑
i,j

|Φ†τ iσjΦ|2 = −2
∑
i

|Φ†σiΦ|2 + 3|Φ†Φ|2, (B2)

, we further simplify the quartic terms to

Lint =g|Φ†Φ|2 + λ1

∑
i

|Φ†σiΦ|2 + λ2

∑
i

|Φ†τ iσ3Φ|2 + λ3|Φ†σ3Φ|2 (B3)

With some algebra, we can show that:

∑
i

|Φ†τ iσ3Φ|2 = (ΦTσ2τ2Φ)∗(ΦTσ2τ2Φ) + (Φ†σ3Φ)2 (B4)

Then in terms of n = (n1, n2, n3, n4, n5) = (ReΦTσ2τ2Φ, ImΦTσ2τ2Φ,Φ†σ1Φ,Φ†σ2Φ,Φ†σ3Φ), we can rewrite the
quartic terms to be:

Lint = g|Φ†Φ|2 + λ1(n2
3 + n2

4 + n2
5) + λ2(n2

1 + n2
2 + n2

5) + λ3n
2
5 (B5)

Note that the C̃4 rotates n3 → n4, n4 → −n3 and thus forbids terms like n2
3 − n2

4 and n3n4.
We will group the interaction into the form:

Lint = g|Φ†Φ|2 + λ0n · n + λ(n2
1 + n2

2) + λ′(n2
3 + n2

4) (B6)

On triangular and kagome lattice, because (n3, n4, n5) can be rotated to each other by C6, we must have λ′ = 0.
When λ or λ′ vanishes, there is a SO(3) × O(2) global symmetry. At special line λ = λ′, there is a O(4) symmetry.
When λ = λ′ = 0, the symmetry is further enlarged to be SO(5). To see these enlarged symmetries, it is more
convenient to use the 4× 2 matrix field X introduced in Sec. IXC.

1. Action in terms of the matrix field X

We have X =

(
X1

X2

)
with

Xa =
1√
2

(
Φa;1 Φa;2

−Φ∗a;2 Φ∗a;1

)
(B7)

under the constraint

X∗a = τ2Xaτ2 (B8)

One can derive these equations:

TrX†aXb =
1

2
(Φ†aΦb + Φ†bΦa), TrX†aτ3Xb =

1

2
(Φ†aΦb − Φ†bΦa) (B9)

TrX†a(−iτ1)Xb = ImΦTa iτyΦb, TrX†a(−iτ2)Xb = ReΦTa iτyΦb (B10)

Then we can derive:

Φ†σ0τ0Φ = TrX†X, TrX†σ3X = Φ†σ3Φ (B11)
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TrX†σ1X = Φ†σ1Φ, TrX†σ2τ3X = Φ†σ2Φ (B12)

TrX†(−σ2τ1)X = ImΦT1 σ2τ2Φ, TrX†(−σ2τ2)X = ReΦT1 σ2τ2Φ (B13)

TrX†σ2X = 0, TrX†σ0,1,3τ3X = 0, TrX†σ0,1,3τ1,2X (B14)

The five symmetry breaking order parameters now can be rewritten as: (n1, n2, n3, n4, n5) =
(ReΦTσ2τ2Φ, ImΦTσ2τ2Φ,Φ†σ1Φ,Φ†σ2Φ,Φ†σ3Φ) = TrX†(−σ2τ2,−σ2τ1, σ1, σ2τ3, σ3)X,
SU(2) gauge transformation acts as X → XU†g , aµ → UgaµU

†
g − iUg∂µU†g . The critical theory at (λ = λ′ = λ3 = 0

can be rewritten as:

L = Tr(∂µX† + iaµX
†)(∂µX − iXaµ) + rTrX†X +

1

4π
Tr[a ∧ da+

2

3
ia ∧ a ∧ a]− Lint (B15)

where aµ is the abbreviation of asµτs with s = 1, 2, 3.
The interaction term is now:

Lint = gTrX†X + λ0n · n + λ(n2
1 + n2

2) + λ′(n2
3 + n2

4) (B16)

2. Higgs term

We also discuss the Higgs term needed to reach the U(1) theory from SU(2) theory.
It is easy to derive:

TrX†aτ3Xbτ3 =
1

2
(Φ†aτ3Φb + Φ†bτ3Φa) (B17)

Then we obtain:

Φ†τ3Φ = TrX†τ3Xτ3, Φ†σ3τ3Φ = TrX†σ3τ3Xτ3 (B18)

Φ†σ1τ3Φ = TrX†σ1τ3Xτ3, Φ†σ2τ3Φ = TrX†σ2Xτ3 (B19)

ReΦTσ1τ1Φ = −TrX†σ1τ1Xτ3, ImΦTσ1τ1Φ = TrX†σ1τ2Xτ3 (B20)

Under the duality transformation X → eiτ2
π
4 eiσ3τ2

π
4X, TrX†σ3τ3Xτ3 → −TrX†τ3Xτ3, TrX†σ1τ3Xτ3 →

TrX†σ1τ1Xτ3, TrX†σ2Xτ3 → −TrX†σ1τ2Xτ3

Appendix C: Monopole quantum numbers in U(1)−2 2ϕ theory for CSL-SC transition

Monopoles in the U(1)−2 Chern-Simons theory with 2ϕ are dressed with 2 units of gauge charges to be gauge-
invariant. We consider

ϕT εσiϕM†(i = 1, 2, 3) (C1)

where ε = iσ2 =

(
0 1
−1 0

)
is the antisymmetric tensor and is used to make symmetric combinations of two gauge

charges ϕ. The dressed charges ϕT εσiϕ transform identically as ϕ†σiϕ, which carry the quantum numbers of order
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x

x

x

x

(a) (b)

FIG. 9: The holon center that determines monopoleMa symmetry transforms in CSL-SC transition on square
lattices.Close, open circles represent holons with ± gauge charge, respectively, with ·,× sign indicating a holon of
the ϕ1,2 species.

parameters (n1, n2, n5) . To identify monopoles that transform as the remaining two order parameters (n3, n4), we
consider the composite operator which is singlet under the SO(3) symmetry transforming (n1, n2, n5):

M†a = (ϕ†~σiϕ) · (ϕT ε~σϕ)M†. (C2)

Since the dressed gauge charges now preserve symmetries, we need only to concern about the Berry phase or
symmetry transforms of the bare fluxM. The berry phase for rotation symmetries can be inferred from the atomic
limit of the holons71. q units of gauge charges located at the rotation center contribute to the angular momentum of
the monopoles from the Ahronov-Bohm effects, i.e. lM = q. We remark that the atomic limit of holons that preserves
space group symmetries and gauge-invariant (total gauge charge 0) is not unique, e.g. the vacuum state is a trivial
example. This is due to the fact that we are dealing with an effective low-energy theory after integrating out chern
bands from the fermionic spinons. We show in fig 9 a symmetric atomic limit for U(1)−2 theories on square lattices
that describe CSL-SC and CSL-CDW transitions. Monopoles carry CDW, d + id SC order parameters in these two
cases, respectively. Close and open circles represent ± gauge charges, respectively, and they sum to zero as required
by gauge invariance.

We now elaborate on the case for CSL-SC transition listed in table IV.
Note thatM†a changes to an anti-monopole under translations or C4 as the symmetry actions exchanges ϕ1 ↔ ϕ∗2

in section IV, with opposite charge of a. There is hence a phase ambiguity for the symmetry actions that send
M†a → Ma from a U(1) phase attachment to Ma. We fix the phase by fixing e.g. the T1 action as simply sending
M†a →Ma with a trivial sign. The relative sign of symmetry actions among T1,2, C4 is meaningful and can be further
determined by finding the atomic limit of the holon state that obeys the symmetries in table IV, as shown in fig 9.

The translation

T2 = C4AC
−1
4BT1, (C3)

where C4A,4B is the four-fold rotation around the plaquette center of A,B plaquettes, i.e. occupied by ϕ1,2 charges,
respectively in fig 9(a). Since ϕ1,2 carry 1 unit of charge for a, the holons with charge ±1 act as a source of angular
momentum of ±1 for the monopole. The monopole hence obtains a factor −1 from C4AC

−1
4B in eq (C3). We thus

obtain T2 action. For site-center rotation C4, it is related to translation by

C4 = T1C4A. (C4)

C4A contributes a factor of i for the monopoles and we arrive at C4 action for monopoles in table IV.
For the action R1T on monopoles, since it exchanges ϕ1, ϕ

∗
2 with an additional anti-unitary time reversal action,

it sends a monopole to itself up to an arbitrary phase factor. Therefore we obtain the symmetry actions for gauge-
invariant operators in U(1)−2 theory.
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