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1 Introduction

String theory, as many other quantum theories, is characterized by factorially divergent pertur-
bative expansions, and this suggests that the full theory should have instanton sectors which lead
to exponentially small corrections in the string coupling constant gs [1, 2].

One class of string theories where instanton sectors have been relatively well understood is
non-critical string theories. In some cases, the exact solution to non-critical strings is described
by a non-linear ODE of the Painlevé type. The perturbative genus expansion corresponds to
the conventional asymptotic expansion of the ODE near an irregular singular point, and multi-
instanton sectors are given by the so-called trans-series solution to the ODE, i.e. a solution
involving exponentially small corrections (see e.g. [2–5] for introductions to trans-series solu-
tions). In addition, one can interpret these non-perturbative effects in terms of D-branes [6]
and check in many situations that D-brane calculations reproduce important ingredients of the
trans-series solution (see e.g. [7, 8] for examples of these calculations).

Another class of string theories where one can hope to understand in detail the structure
of space-time instanton corrections is topological string theory with a Calabi–Yau (CY) target
manifold. It was proposed in [9–11] that this can be achieved in the framework of the theory
of resurgence, in particular by using the large order behavior of the perturbative series as a
concrete, quantitative guide for the study of non-perturbative effects. A crucial step in this
program was made by Couso, Edelstein, Schiappa and Vonk (CESV) in [12–14]. Topological
string amplitudes satisfy a set of partial differential equations known as the holomorphic anomaly
equations (HAE), or BCOV equations [15, 16]. The HAE give, among other things, a recursive
procedure to calculate the perturbative genus expansion of topological string theory which can
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be implemented in a very efficient way, specially in the local case [17, 18]. CESV noted in [12]
that the BCOV equations could be regarded as the topological string analogue of the Painlevé
equations in non-critical string theory, and they suggested that the multi-instanton amplitudes
of the topological string can be obtained by considering trans-series solutions to the HAE. In
[13] they managed to obtain explicit trans-series solutions in the case of local P2, the simplest
non-trivial toric CY manifold. They also tested their results in detail against the large order
behavior of the perturbative genus expansion. In addition, it was found in [19] that the instanton
amplitudes of [13] provide the correct non-perturbative effects to match the non-perturbative
definition of topological strings proposed in [20–22]. Therefore, there is little doubt that the
trans-series found in [12, 13] are indeed the multi-instanton amplitudes of the topological string.

In spite of these successes, the actual solutions found by CESV have a number of drawbacks.
The expressions they find are obtained recursively, order by order in the string coupling constant
and in the instanton number, and their complexity grows very fast as one goes to higher order
in gs or to higher instanton number. In addition, the physical content of the solution is obscure,
as it is given by complicated expressions involving the BCOV propagators and the instanton
actions, as well as their derivatives. This has made the theory of CESV difficult to work with,
even for experts in the field.

In this paper we consider general local CY manifolds with one modulus, and we find exact
multi-instanton solutions to the trans-series extension of the BCOV equations considered by
CESV. Our solutions give explicit, simple expressions at all orders in the string coupling constant
and for general instanton number, and they cover in particular all the examples studied in
[13]. This is achieved by exploiting an operator formulation of the BCOV equations, which
was proposed in [23, 24] to study a similar problem in the NS topological string [25]. In the
holomorphic limit, these explicit solutions take a surprisingly simple and suggestive form: they
can be written in terms of the perturbative free energy F(t) and its derivatives, and they involve
an exponent of the form

exp (F(t− nαgs)−F(t)) . (1.1)

This structure is typical of multi-instantons obtained by eigenvalue tunneling in matrix models
[26–28] (here, n is the instanton number, and α is a constant characterizing the instanton sector,
to be defined more precisely below). It has also appeared in a related context in [29]. The
expression (1.1) suggests that t, the flat coordinate of the CY, is quantized in units of αgs. In
topological string theories with large N duals this is an ingredient of the duality [22, 30, 31], but
here it is deduced only from the holomorphic anomaly equations.

The focus of this paper is on the formal structure of the trans-series solutions associated to
the possible Borel singularities. This is a preliminary ingredient in order to understand the full
resurgent structure of topological string theory, which requires additional ingredients. First of all,
we have to determine which of the possible Borel singularities are actually realized, and we have
to know the corresponding alien derivatives (or, equivalently, the values of the Stokes constants
for the actual singularities). In particular, one would like to know how this structure changes as
we vary the moduli. In this paper we address this second set of problems (in an incomplete way)
in the example of local P2, mostly to illustrate our results. By using long perturbative series for
the topological string free energies we explore the structure of Borel singularities, and we use our
exact multi-instanton solutions to calculate some alien derivatives.

In a companion paper we use similar techniques and ideas to study the resurgent structure
of quantum periods [32].

This paper is organized as follows. In section 2 we review the HAE and its rôle in generating
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the perturbative series of topological string theory. In section 3 we present the CESV framework
and we proceed to construct our exact solutions, first in the one-instanton case and then in
the general multi-(anti)-instanton case. We end up with a conjecture on the structure of alien
derivatives and how they relate to our exact solutions. In section 4 we illustrate some of our
considerations with explicit examples in the case of the local P2 manifold. Some details on
topological string theory on this toric CY can be found in Appendix A. In the final section we
present our conclusions and some open problems.

2 Topological strings and the holomorphic anomaly equations

In this paper we will consider topological string theory with a target given by a toric Calabi–Yau
manifold X (for introductions to topological string theory, see e.g. [33, 34]). For simplicity, we
will consider the case in which one has a single true modulus (although one can have many “mass
parameters,” see e.g. [35]). The basic observables are the genus g topological string free energies
Fg(t), where t is a flat coordinate parametrizing the one-dimensional moduli space. These free
energies represent contributions of genus g Riemann surfaces to the free energy of string theory.
It is then natural to consider the total free energy, given by the formal power series

F(t, gs) =
∑
g≥0

Fg(t)g
2g−2
s . (2.1)

Although we have not indicated it explicitly, these free energies depend on a choice of electro-
magnetic duality frame. There is in principle an infinity of choices, related by SL(2,Z) transfor-
mations. At the level of free energies, changes of frame are implemented by generalized Fourier
transforms [36]. There are also canonical choices of frame, associated to special points or regions
in moduli space. Two important points are the so-called large radius point and the conifold point.
Near the large radius point, the appropriate flat coordinate goes to infinity t→ ∞, and one has
the expansion

Fg(t) = pg(t) +
∑
d≥1

Ng,d e
−dt, (2.2)

where Ng,d are Gromov–Witten invariants, and pg(t) are polynomials in t (of degree 3 for g = 0,
degree 1 for g = 1, and degree 0 for g ≥ 2). In the large radius frame the free energies are
completely captured by enumerative geometry.

In the conifold frame, the appropriate flat coordinate is denoted by tc, and it is chosen so as
to vanish at the conifold point. Near this point, and in the conifold frame, the free energies for
g ≥ 2 have the following structure,

Fc
g(tc) = a bg−1 B2g

2g(2g − 2)
t2−2g
c +O(1), (2.3)

where B2g are Bernoulli numbers, and a, b are constants depending on the model. The behaviour
of the free energies at the conifold locus is a fundamental ingredient of the theory and it has
been argued to be universal [37]. It will play an important rôle in what follows.

The topological string free energies can be upgraded to more general, non-holomorphic func-
tions of the moduli of the CY X, as emphasized in the seminal papers [15, 16]. We will denote
the non-holomorphic free energies as Fg, in order to distinguish them from their holomorphic
versions Fg. In the case of g = 0, F0 is itself holomorphic, so F0 = F0 and we will use both
notations interchangeably. The general formalism to analyze the non-holomorphic free energies
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is based on the special geometry of the Calabi–Yau moduli space and it was developed in [16]
(see e.g. [33, 34] for reviews). Here we will consider a simplified version of the formalism which
is appropriate for a one-modulus local CY manifold.

In their non-holomorphic version, the free energies are regarded as functions of a complex
coordinate z, which parametrizes the moduli space, and of a propagator function S, which encodes
all the non-holomorphic dependence. The free energies will then be denoted by Fg(S, z), g ≥ 2.
We also note that z is related to the flat coordinate by a mirror map t(z). The genus one free
energy is slightly different, and in fact it defines the propagator S through the equation

∂zF1 =
1

2
CzS + holomorphic. (2.4)

Here, Cz denotes the so-called Yukawa coupling in the z coordinate, which is defined by

∂3t F0 = Ct =

(
dz

dt

)3

Cz. (2.5)

The holomorphic part in the r.h.s. of (2.4) can be regarded as a choice of “gauge” for the
propagator. We will choose it to vanish, so that we simply have

S =
2

Cz
∂zF1. (2.6)

The holomorphic limit of the free energies Fg(S, z) is obtained by taking the holomorphic limit
of the propagator, which will be denoted by S. It is a function of z. We then have

Fg(t) = Fg (S = S(z), z) , (2.7)

after one expresses z as a function of t through the inverse mirror map. One powerful aspect of
this formalism is that the propagator S has different holomorphic limits depending on the frame,
so that the holomorphic free energies in a given frame can be obtained from the same function
Fg(S, z) by choosing different holomorphic limits for S and different inverse mirror maps.

As we mentioned before, a choice of frame can be specified by an appropriate choice of a flat
coordinate t. There is a very useful formula which expresses the holomorphic limit of S in terms
of the mirror map t(z) for the corresponding flat coordinate:

S = − 1

Cz

d2t

dz2
dz

dt
− s(z). (2.8)

Here, s(z) is a holomorphic function of z which is independent of the frame. Due to (2.6), one
also obtains a formula for the holomorphic limit of F1,

F1 = −1

2
log

(
dt

dz

)
+ f1(z). (2.9)

Here, f1(z) is a holomorphic function which is related to the function s(z) appearing in (2.8) by

s(z) = − 1

Cz
f̃(z) = − 2

Cz

df1(z)

dz
. (2.10)

The propagator satisfies various important properties which will be much used. The first
one, which follows from the special geometry of the moduli space, is that its derivative w.r.t. z
can be written as a quadratic polynomial in S

∂zS = S(2), S(2) = Cz

(
S2 + 2s(z)S + f(z)

)
, (2.11)
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where f(z) is again a universal, holomorphic function independent of the frame. Another property
of the propagator which will be needed is the following. The CY moduli space is a special Kähler
manifold, and in particular it has a Levi–Civita connection associated to the Kähler metric. In
the one-dimensional case, the corresponding Christoffel symbol turns out to be related to the
propagator by the equation

Γz
zz = −Cz (S + s(z)) . (2.12)

Finally, we will need the following property. Let us denote by S1,S2 the holomorphic limits of
the propagator in frames associated to the flat coordinates t1, t2, respectively. We first note that
we can always write t2 as a linear combination of periods in the first frame

t2 = α∂t1F0(t1) + βt1 + γ, (2.13)

where α, β, γ are constants. Then, a simple calculation shows that the difference between the
holomorphic propagators is

S1 − S2 = α

(
dt1
dz

dt2
dz

)−1

. (2.14)

Let us now write down the holomorphic anomaly equations of BCOV, in the case at hand.
These equations determine the dependence of Fg(S, z) on the propagator, once the lower order
functions Fg′(S, z), g

′ < g, are known. In order to use the HAE properly, it is important to note
that the derivative w.r.t. z of S can be traded for a polynomial in S, as we have seen in (2.11).
For this reason, it is useful to introduce an operator Dz. This is a derivation, and it acts as
follows on a function of S and z:

Dzf(S, z) = ∂Sf(S, z)S
(2) + ∂zf(S, z), (2.15)

where S(2) was defined in (2.11). Note that, in the holomorphic limit, S becomes a function of
z, S(z), and Dz becomes ∂z. An important property of Dz is that it does not commute with ∂S ,
and we rather have

[∂S ,Dz] =
(
∂SS

(2)
)
∂S = 2Cz(S + s)∂S . (2.16)

The HAE read then,

∂Fg

∂S
=

1

2

(
DzDzFg−1 +

g−1∑
m=1

DzFmDzFg−m

)
, g ≥ 2. (2.17)

Here, Dz is the covariant derivative w.r.t. the Kähler metric, and it acts on the indexed object
DzFg as

DzDzFg = D2
zFg − Γz

zzDzFg. (2.18)

It is straightforward to calculate e.g. F2(S, z) from this equation. The starting point is (2.6),
and we immediately find

F2(S, z) = C2
z

{
5S3

24
+
S2

24

(
9s(z) + 3

C ′
z

C2
z

)
+

1

4
Sf(z)

}
+ f2(z), (2.19)

where f2(z) is an arbitrary holomorphic function of z which is not fixed by (2.17), and it appears
as an integration constant. This happens at all genera: the HAE determine Fg(S, z) up to an
arbitrary holomorphic function fg(z) called the holomorphic ambiguity. Fixing this ambiguity is
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the main obstacle to solve the topological string in the BCOV approach, and additional infor-
mation is required. In the case of local CY manifolds with one modulus, it was shown in [18]
that this can be done by using the behavior (2.3) at the conifold point. This makes it possible
to calculate the free energies Fg to high order in the genus.

It is convenient to reformulate the HAE in terms of a “master equation” for the full pertur-
bative series. Various equations of this type have been used in the literature [12, 16, 38], but
here we will use a simpler version similar to what was proposed in [23]. We first introduce the
modified free energy

F̃ = g2sF − F0 =
∑
g≥1

Fgg
2g
s , (2.20)

as well as
F̂ = F̃ − g2sF1 =

∑
g≥2

Fgg
2g
s . (2.21)

The master equation is then,

∂F̂

∂S
=
g2s
2
DzDzF̃ +

1

2

(
DzF̃

)2
. (2.22)

3 Multi-instanton amplitudes

3.1 Trans-series extension of the holomorphic anomaly equations

The discussion in the previous section was restricted to the perturbative sector of the theory.
However, we expect the full topological string to contain spacetime instantons, perhaps originat-
ing in topological D-branes, and leading to exponentially small corrections in the string coupling
constant. Let us consider the perturbative free energies in a given frame, characterized by the
flat coordinate t. Then, the ℓ-th instanton amplitude is expected to be of the form

F (ℓ)(t) ≈ exp

(
−ℓA

gs

)
, ℓ ∈ Z>0. (3.1)

Here, A is the instanton action, and general considerations suggest that A must be a combination
of CY periods [12, 13, 39]. We will write it as

A = α∂tF0(t) + βt+ γ. (3.2)

More precisely, we expect the action A to belong to a lattice of periods, therefore the coefficients
α, β and γ should satisfy some integrality properties. In addition, the instanton action can be
physically interpreted as the mass of a D-brane, since 1, t, and ∂tF0 are the masses of D0, D2 and
D4 branes (in an appropriate normalization). However, these considerations will not be needed
in what follows. More important to our purposes is the fact that A can be interpreted as a flat
coordinate and therefore it defines a frame. We will often denote the corresponding propagator
as SA, which can be written as [13]

SA = − 1

Cz

∂2zA
∂zA

− s(z). (3.3)

Let us also note that, if α = 0, the frame defined by A is the same frame in which one calculates
the free energies, since A coincides with t up to a shift and a rescaling.
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The calculation of multi-instanton amplitudes (3.1) is challenging, since it is not even clear
what is the framework to use. Here we will follow the successful strategy of [12, 13], which is
inspired by the theory of ODEs of Écalle. The starting point of [12, 13] is the holomorphic
anomaly equation for the non-holomorphic perturbative free energies, in the form of a master
equation like (2.22). In order to solve this equation, one uses, instead of a perturbative ansatz,
a general trans-series ansatz, i.e. an ansatz of the form,

F =
∑
ℓ≥0

CℓF (ℓ). (3.4)

Here,

F (0) =
∑
g≥0

Fg(S, z)g
2g−2
s (3.5)

is the perturbative free energy, C is a trans-series parameter which keeps track of the exponential
order, and F (ℓ) are non-holomorphic versions of the multi-instanton amplitudes. We will assume
that they have the structure

F (ℓ) = e−ℓA/gs
∑
k≥0

gksF
(ℓ)
k , (3.6)

where F
(ℓ)
k depends on S, z and A.

It is instructive to work out the very first orders in gs of the first instanton correction,
following [12, 13]. To do this, we plug the ansatz (3.4) in the master equation (2.22). We note
from (2.20) and (2.21) that

F̂ (ℓ) = F̃ (ℓ) = g2sF
(ℓ), ℓ ≥ 1, (3.7)

since the subtraction of the genus 0, 1 terms does not have any effect in the instanton amplitudes.
It is easy to see that the first instanton correction has to satisfy the linear equation

∂F (1)

∂S
=
g2s
2
DzDzF

(1) +DzF̃
(0)DzF

(1). (3.8)

As noted in [12, 13], the first consequence of these equations is that

∂SA = 0, (3.9)

which is expected since A is a holomorphic period and it only depends on z. We find the following
recursive equations for the coefficients of F (1):

∂SF
(1)
n =

1

2
(DzA)2 F (1)

n +
1

2

(
D2

z − Γz
zzDz

)
F

(1)
n−2 −

DzA
2

(Cz(S − SA) + 2Dz)F
(1)
n−1

−DzA
[n+1

2 ]∑
ℓ=1

DzF
(0)
ℓ F

(1)
n+1−2ℓ +

[n2 ]∑
ℓ=1

DzF
(0)
ℓ DzF

(1)
n−2ℓ,

(3.10)

where SA was introduced in (3.3) (note that, since A does not depend on S, DzA = ∂zA).
Explicitly, we have, for n = 0, 1,

∂SF
(1)
0 =

1

2
(DzA)2 F

(1)
0 ,

∂SF
(1)
1 =

1

2
(DzA)2 F

(1)
1 − DzA

2
(Cz(S − SA) + 2Dz)F

(1)
0 −DzADzF

(0)
1 F

(1)
0 .

(3.11)
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These equations were integrated in [12, 13], although only the first one has a simple solution

F
(1)
0 = f

(1)
0 (z) exp

(
1

2
(DzA)2 S

)
. (3.12)

Here, f
(1)
0 (z) is an integration constant which can be regarded as the manifestation of the holo-

morphic ambiguity in the multi-instanton solutions. As in the perturbative case, we need addi-
tional conditions that fix this ambiguity. This was also addressed in [12, 13] in an ingenious way,
which we now explain.

As in the perturbative case, one can evaluate the holomorphic limit of the multi-instanton
solution in an arbitrary frame by simply setting S to the appropriate value. It was pointed out
in [12, 13, 19] that multi-instanton amplitudes associated to an instanton action A simplify in
the frame defined by A itself, i.e. when S = SA. Let us consider for example the one-instanton

case, and let us denote by F (1)
A the holomorphic limit in that frame. Then, one has

F (1)
A = (A+ gs) e

−A/gs , (3.13)

up to an overall multiplicative constant which can be absorbed in the trans-series parameter.
The behavior (3.13) can be justified in the case in which A is proportional to the conifold flat
coordinate tc and we work in the conifold frame. As is well-known in the theory of resurgence,
the one-instanton amplitude should govern the large order behavior of the perturbative series. If
tc is sufficiently small, we expect the large order behavior of Fc

g to be dominated by the pole of
order 2g − 2 in (2.3). By using the well-known formula for the Bernoulli numbers,

B2g = (−1)g−1 2(2g)!

(2π)2g

∑
ℓ≥1

ℓ−2g, (3.14)

one finds the following all-orders asymptotic behavior for the polar part in (2.3):

a

2π2
Γ(2g − 1)

∑
ℓ≥1

(ℓAc)
1−2g

(
µ0,ℓ +

ℓAc

2g − 2
µ1,ℓ

)
. (3.15)

Here,

Ac =
2πi√
b
tc, µ0,ℓ =

Ac

ℓ
, µ1,ℓ =

1

ℓ2
. (3.16)

By using the standard correspondence between large order behavior and exponentially small
corrections (see e.g. [40]), one sees that (3.15) corresponds to an ℓ-th instanton amplitude of the
form,

(µ0,ℓ + gsµ1,ℓ) e
−ℓAc/gs , (3.17)

up to overall factors which do not depend on ℓ. For ℓ = 1 we obtain (3.13). In addition, this
suggests a generalization of the boundary condition (3.13) to the ℓ-th instanton case,

F (ℓ)
A =

(
A
ℓ
+
gs
ℓ2

)
e−ℓA/gs . (3.18)

Although the above argument applies only to the conifold frame, somewhat surprisingly the result
can be checked to be true as well for the large radius frame [19]. The “trivial” ℓ-th instanton
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amplitude (3.18) first appeared in [41], in the study of the resurgent structure of topological
string theory on the resolved conifold.

Let us now come back to (3.12). If we now use the boundary condition (3.13) we can easily

fix the value of f
(1)
0 , and the final result is

F
(1)
0 = A exp

(
1

2
(DzA)2 (S − SA)

)
. (3.19)

The next term might be obtained with some additional effort, and one finds

F
(1)
1 =−Ae

1
2
(DzA)2(S−SA)

{1
6
Cz (DzA (S − SA))

3 +
1

2
CzDzA (S − SA)

2

+
1

2
CzDzASA(S − SA)

}
+ e

1
2
(DzA)2(S−SA)

{
1− (DzA)2 (S − SA)

}
.

(3.20)

Higher order terms become more and more complicated. In spite of this complexity, it was
checked very carefully in [13] that the above one-instanton amplitude describes correctly the
large order behavior of the perturbative free energies (even away from the holomorphic limit).

Multi-instanton amplitudes can be also computed with the same method. The HAE equation
for the ℓ-th instanton amplitude is

∂F (ℓ)

∂S
=
g2s
2
DzDzF

(ℓ) +DzF̃
(0)DzF

(ℓ) +
g2s
2

ℓ−1∑
r=1

DzF
(r)DzF

(ℓ−r), (3.21)

where we have taken into account (3.7). However, as noted in [13], in the multi-instanton case
it becomes more and more difficult to calculate the higher order corrections in gs. In this paper
we will obtain exact, closed formulae for F (ℓ) to all orders in gs. The physics of the instanton
amplitudes will be also much more transparent in our expressions.

3.2 Operator formulation

The key idea to obtain our exact solutions is to reformulate the HAE in terms of a pair of
differential operators which were introduced in [23, 24], in the context of the NS topological
string.

The first operator is defined as
D = T Dz (3.22)

where
T = DzA (S − SA). (3.23)

To understand the meaning of this operator, let us evaluate it in the holomorphic limit, in the
frame whose flat coordinate is t. Let us assume that the action is given by (3.2). Then, by using
the relation between propagators (2.14), we find

T → α
dz

dt
, (3.24)

so that
D → α∂t. (3.25)
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Finally, another important fact is that T vanishes in the frame S = SA, and therefore the action
of D also vanishes in that frame.

The second operator is

W = T 2DS , DS = ∂S −DzF̃
(0)Dz. (3.26)

We note that D, DS and W are all derivations. We also introduce the following object:

G = A+ DF̃ (0). (3.27)

This has again an appealing interpretation. First of all, we point out that, when α ̸= 0, the
instanton action A defines a modified prepotential:

FA
0 (t) = F0(t) +

β

2α
t2 +

γ

α
t, (3.28)

in such a way that
A = α∂tFA

0 . (3.29)

(3.28) involves a redefinition of the prepotential by a quadratic term in the flat coordinate, which
is allowed since it does not change the Yukawa coupling. When considering multi-instanton
amplitudes, it will be convenient to redefine the prepotential as prescribed by (3.28), and we will
omit the superscript A. With this redefinition, we find that

G → αg2s∂tF(t, gs) (3.30)

in the holomorphic limit. The formal series in the r.h.s. can be regarded as a “quantum period,”
i.e. as a gs deformation of the classical period ∂tF0 (this should not be confused with the quantum
periods appearing in the NS limit of the topological string).

The most important property of the two operators W, D is the commutation relation

[W,D] = DG D, (3.31)

which was already used in [23], in the context of the NS topological string. We will now prove
(3.31) for general local CY with one modulus. We first note the following identity

1

2
(S − SA)∂SS

(2)DzA− (S(2) −DzSA)DzA− (S − SA)D
2
zA = 0. (3.32)

We also have the useful equalities,

Dz T = D2
zA(S − SA) +DzA(S(2) −DzSA) =

1

2
∂SS

(2)T = −Γz
zzT,

DS T = DzA−DzF̃
(0)
(
D2

zA(S − SA) +DzA(S(2) −DzSA)
)
.

(3.33)

Let f be an arbitrary function of S and z. A direct calculation gives

DS Df = T
(
Dz + ∂SS

(2)
)
DSf +DzGDzf. (3.34)

We then find
WDf = DG Df + T 3

(
Dz + ∂SS

(2)
)
DSf. (3.35)
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At the same time,
DWf = T 3DzDSf + 2T 2(DzT )DSf. (3.36)

By using (3.33) and (3.32), (3.31) follows. Another consequence of (3.33) is the crucial happy
fact that

D2 = T 2 (Dz − Γz
zz)Dz = T 2DzDz, (3.37)

and one reconstructs the covariant derivative by acting twice with D.
It is now possible to write the original HAE and its trans-series extension by using only the

operators W and D. The master equation (2.22) reads, in this language,

W F̂ (0) =
g2s
2
D2F̃ (0) − 1

2

(
DF̃ (0)

)2
+ g2sDF

(0)
1 DF̃ (0), (3.38)

while the equation (3.21) for the ℓ-th instanton amplitude F (ℓ) becomes,

WF (ℓ) =
g2s
2
D2F (ℓ) +

g2s
2

ℓ−1∑
r=1

DF (r)DF (ℓ−r). (3.39)

3.3 The one-instanton amplitude

The simpler instanton amplitude is of course F (1). It follows from (3.39) that it satisfies

WF (1) =
g2s
2
D2F (1). (3.40)

We will now prove that the exact solution to this equation, at all orders in gs, with the correct
boundary condition (3.13) is

F (1) = (G − gsDΦ+ gs) e
−Φ/gs , (3.41)

where Φ is the formal power series

Φ =
∑
k≥1

(−1)k−1gk−1
s

k!
Dk−1G. (3.42)

We will present our proof in several steps. Our first claim is that

E = e−Φ/gs (3.43)

satisfies (3.40). Equivalently, Φ satisfies the equation

WΦ =
g2s
2
D2Φ− gs

2
(DΦ)2 , (3.44)

To prove this, we have to establish first an intermediate result, namely

WG =
g2s
2
D2G. (3.45)

This is done by direct calculation. We have

WG = WA+ g2sWDF
(0)
1 +WDF̂ (0). (3.46)
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We can now use the commutation relation (3.31) and (3.38) to write

WG = WA+ g2sWDF
(0)
1 − g2sDGDF

(0)
1 + DF̃ (0)DA+

g2s
2
D3F̃ (0) + g2sD

(
DF

(0)
1 DF̃ (0)

)
. (3.47)

On the other hand,
g2s
2
D2G =

g2s
2

(
D2A+ D3F̃ (0)

)
. (3.48)

By using the definition of G in the r.h.s. of (3.47) we conclude that

WG − g2s
2
D2G = g2s

[
−1

2
D2A+ T 2∂S

(
DF

(0)
1

)
− DADF

(0)
1

]
. (3.49)

A direct calculation shows that the sum of the terms inside the bracket in the r.h.s. is zero. To
see this, one uses (2.6) to write

DF
(0)
1 =

1

2
DzACz(S − SA)S, (3.50)

and takes into account that

−1

2
D2A = −1

2
(DzA)3(S − SA)

3Cz, −DADF
(0)
1 = −1

2
(DzA)3S(S − SA)

2Cz. (3.51)

We are now ready to prove that Φ, as defined in (3.42), satisfies (3.44). To do this, we need
to write Φ in the convenient form

Φ = OG, (3.52)

where O is the operator

O =
∑
k≥1

(−1)k−1gk−1
s

k!
Dk−1 =

1

gsD

(
1− e−gsD

)
=

1

gs

∫ gs

0
e−uDdu. (3.53)

It is now clear that, in order to verify (3.44), we have to calculate the commutator of W with O.
We first calculate the commutator of W with e−uD. This can be done with Hadamard’s lemma,

eABe−A =
∑
n≥0

1

n!
[A,B]n, (3.54)

where the iterated commutator [A,B]n is defined by

[A,B]n≥1 = [A, [A,B]n−1], [A,B]0 = B. (3.55)

In our case, we have the simple result that

[D,W]n≥1 = − (DnG)D, [D,W]0 = W, (3.56)

therefore

W e−uD = e−uD

W −
∑
k≥1

uk

k!

(
DkG

)
D

 . (3.57)

– 12 –



The parentheses emphasize that Dk acts only on G. By using now the integral formula for O we
conclude that

WO = OW − 1

gs

∫ gs

0
du e−uD

[
(euD − 1)G

]
D. (3.58)

Note that

OWG =
g2s
2
OD2G =

g2s
2
D2Φ, (3.59)

since O commutes with D2. We have to calculate now

1

gs

∫ gs

0
e−uD

{[
(euD − 1)G

]
DG
}
du. (3.60)

Since D is a derivation, we have

e−uD(fg) =
(
e−uDf

)(
e−uDg

)
, (3.61)

therefore
e−uD

{[
(euD − 1)G

]
DG
}
=
[
(1− e−uD)G

] [
e−uDDG

]
. (3.62)

On the other hand, we have that

DΦ =
∑
k≥1

(−1)k−1gk−1
s

k!
DkG =

1

gs

∫ gs

0
e−uDDGdu. (3.63)

Its square can be computed as

(DΦ)2 =
1

g2s

∫ gs

0
e−uDDG du

∫ gs

0
e−vDDG dv =

2

g2s

∫ gs

0
e−uDDG du

∫ u

0
e−vDDGdv

=
2

g2s

∫ gs

0

[
e−uDDG

] [
(1− e−uD)G

]
du,

(3.64)

where, in going to the last line, instead of integrating the symmetric function in v, u over the
square [0, gs]

2, we integrated it over the triangle below the diagonal, and multiplied the result by
two. We then find, by combining (3.58), (3.59) and (3.64),

WOG =
g2s
2
D2Φ− gs

2
(DΦ)2 , (3.65)

which proves (3.44).
One could think that E, defined in (3.43), is the one-instanton amplitude we are looking

for. However, although it satisfies the trans-series HAE, as we have seen, it does not satisfy the
boundary condition (3.13), since

EA = e−A/gs . (3.66)

Let us then consider an ansatz for F (1) of the form

F (1) = a e−Φ/gs , (3.67)

Then, a has to satisfy the equation

Wa =
g2s
2
D2a− gsDaDΦ (3.68)

– 13 –



as well as the boundary condition
aA = A+ gs. (3.69)

We now claim that
a = G − gsDΦ+ gs (3.70)

is the sought-for solution. To see it, we calculate

Wa = WG − gsDWΦ− gsDGDΦ. (3.71)

Acting with D on the equation satisfied by Φ, we find

DWΦ =
g2s
2
D3Φ− gsDΦD

2Φ. (3.72)

We also have
Da = DG − gsD

2Φ, D2a = D2G − gsD
3Φ. (3.73)

Therefore,

Wa+ gsDaDΦ− g2s
2
D2a = WG − g2s

2
D2G = 0, (3.74)

and (3.68) holds. We finally arrive at (3.41). It is an easy exercise to check explicitly that this
reproduces the first two terms in the expansion that we obtained before, (3.19) and (3.20).

We can now evaluate (3.41) in the holomorphic limit associated to the flat coordinate t. In
this limit, D becomes α∂t, and

1

gs
Φ → F(t)−F(t− αgs), a → gs + αg2s (∂tF) (t− αgs), (3.75)

so that
F (1) =

(
gs + αg2s (∂tF) (t− αgs)

)
exp {F (t− αgs)−F(t)} . (3.76)

It is useful to write explicitly the very first terms of its expansion in powers of gs:

F (1) = e−A/gs exp

(
α2

2
∂2tF0

)
×
{
A+ gs

(
1− α2∂2tF0 −A

(
α∂tF1 +

α3

6
∂3tF0

))
+O(g2s)

}
.

(3.77)

They give the holomorphic limit of the expressions (3.19) and (3.20). One important property
of (3.76) is that it can be uniquely written in terms of the conventional, perturbative topological
string free energy. There was some speculation that the instanton amplitudes obtained in [12, 13]
could contain new geometric information [42], but our explicit formula shows that this is not the
case.

As we pointed out in the Introduction, the exponent appearing in (3.76) is very similar to the
one obtained by eigenvalue tunneling in matrix models. This suggests that the flat coordinate t
is “quantized” in units of αgs, i.e.

t = Nαgs, (3.78)

so that the free energy of the one-instanton corresponds to a background in whichN has decreased
by one unit. As we will see in the next section, an ℓ multi-instanton configuration will decrease
N by ℓ units (in matrix models, N is the number of eigenvalues.) The “quantization” of the
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flat coordinate (3.78) is an ingredient of large N dualities of the topological string [22, 30, 31],
where the flat coordinate t is interpreted as a ’t Hooft parameter, but here it appears as a
consequence solely of the HAE. The form of (3.76) is also reminiscent of the “grand partition
function” for topological strings considered e.g. in [29], in which one has to sum the topological
string partition function over all possible shifts of the Kähler parameters. Note however that the
prefactor appearing in (3.76) is more difficult to interpret in the context of eigenvalue tunneling,
and this remains an interesting problem for the future.

Remark 3.1. It is instructive to compare the structure of the one-instanton amplitude obtained
here with the one-instanton amplitude for the NS free energy considered in [23, 32]. In the NS
case one simply has

exp (−GNS/ℏ) (3.79)

where GNS is the NS counterpart of (3.27). Its holomorphic limit is simply

GNS → αℏ∂tFNS(t, ℏ), (3.80)

where
FNS(t, ℏ) =

∑
n≥0

FNS
n (t)ℏ2n−1 (3.81)

is the perturbative series for the NS free energy. In the NS case, the exponent appearing in the
instanton amplitude does not involve a difference operator acting on the free energy, as in (3.76),
but a differential operator. Note also that the prefactor of (3.76) is absent in the NS case.

3.4 Generalization to multi-instantons

Let us now consider multi-instantons. In principle, we have to solve the equation (3.21). However,
to do this it is better to consider the partition function, instead of the free energies. The reason
it that, as noted in [16], the HAE for the partition function is linear, and much easier to solve.

To proceed, let us define the perturbative partition function as

Z(0) = eF
(0)
, (3.82)

while the full non-perturbative partition function will be denoted by Z = eF . We will also
introduce the “reduced” partition function

Zr =
Z

Z(0)
. (3.83)

We now use the fact that both log Z and log Z(0) satisfy the master equation (2.22). After some
easy algebra we find the equation

∂Zr

∂S
=
g2s
2
DzDzZr +DzF̃

(0)DzZr, (3.84)

which is linear, as advertised.
We now solve this equation with a trans-series ansatz. We could use an ansatz mimicking

(3.4), but as noted in [12, 13] we should consider a more general ansatz. The reason is the
following. The topological string free energy is a formal power series in g2s , and therefore the
singularities of its Borel transform (which correspond to instanton actions) come in pairs. This
means that if we have a trans-series solution with an exponential of the form e−A/gs , there should
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be an “anti-instanton” amplitude involving the opposite exponential eA/gs . Perhaps the simplest
incarnation of this phenomenon occurs in the Painlevé I equation describing 2d gravity. The
general trans-series solution to this equation was studied in [43] and it involves both instantons
and “anti-instantons,” as well as mixed sectors (see [44–46] for further studies of this type of
trans-series). We will then assume the following ansatz for the reduced partition function,

Zr = 1 +
∑

n,m≥0,(n,m) ̸=(0,0)

Cn
1 Cm

2 Z
(n|m)
r , (3.85)

where the behavior at small gs given by

Z(n|m)
r ∼ exp

(
−n−m

gs
A
)
. (3.86)

The conventional multi-instanton sectors are recovered when m = 0:

Z(n)
r ≡ Z(n|0)

r , n ≥ 0. (3.87)

Let us note that the free energies can be easily obtained from the reduced partition functions by
simply taking the logarithm. For example, we have

F (2) = Z(2)
r − 1

2

(
Z(1)
r

)2
,

F (1|1) = Z(1|1)
r − Z(1|0)

r Z(0|1)
r .

(3.88)

We can now specialize (3.84) to the (n|m) sector and use the operators W,D to obtain

WZ(n|m)
r =

g2s
2
D2Z(n|m)

r . (3.89)

Our goal is to find solutions to (3.89) with the exponential behavior (3.86). In addition, we will
need boundary conditions, as we discussed in the case of the one-instanton amplitude. Boundary

conditions are obtained by evaluating Z
(n|m)
r in the frame defined by A, like before. For reasons

which will become clear later, we consider a general boundary condition of the form

Z(n|m)
r,A =

∑
k≥0

akAk

 exp

(
−n−m

gs
A
)
, (3.90)

where the coefficients ak depend only on gs.
We will now write down an ansatz to solve the equation (3.89). Let us first define

Φn = OnG (3.91)

where On is the operator

On =
1

gsD

(
1− e−ngsD

)
. (3.92)

The ansatz is
Z(n|m)
r = a(n|m)e

−Φ(n|m)/gs , (3.93)

where
Φ(n|m) = Φn−m. (3.94)
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This already guarantees the behavior (3.86). The function Φ(n|m) satisfies the same equation
than Φ in (3.44), namely

WΦ(n|m) =
g2s
2
D2Φ(n|m) −

gs
2

(
DΦ(n|m)

)2
, (3.95)

and the proof is identical. By using (3.40) and (3.95), we find that the prefactor in (3.93) satisfies
the linear equation

Ma(n|m) = 0 (3.96)

where we have defined the operator

M = W + gsDΦ(n|m)D− g2s
2
D2. (3.97)

A subindex (n|m) is implicit in M, but when no confusion arises we will not write it down. In
addition, a(n|m) satisfies the boundary condition

a(n|m),A =
∑
k≥0

akAk. (3.98)

Since the equation (3.96) is linear, it suffices to solve the case

a(n|m),A = Aℓ, (3.99)

for arbitrary ℓ ≥ 1. Let us now introduce the formal power series

X = G − gsDΦ(n|m). (3.100)

There is again an (n|m) subindex implicit in X. By using the same argument that we used in
the one-instanton case for (3.70), it is easy to see that

MX = 0. (3.101)

We claim now that the solution to the problem (3.96), (3.99) is given as follows. Let us
consider the set partitions of ℓ. These can be labelled by vectors k = (k1, k2, · · · ) satisfying

d(k) = ℓ, (3.102)

where
d(k) =

∑
j

jkj . (3.103)

Let us associate to each vector k the object

Xk = Xk1(DX)k2(D2X)k3 · · · . (3.104)

Then, the solution to the problem (3.96), (3.99) is

wℓ =
∑

k, d(k)=ℓ

g2(ℓ−|k|)
s CkXk, (3.105)

where
|k| =

∑
j

kj (3.106)
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and

Ck =
ℓ!∏

j≥1 kj !(j!)
kj
. (3.107)

Note that, since D acts as zero in the frame defined by A, one has

wℓ,A = Aℓ, (3.108)

which is the correct boundary condition. It is less obvious that

Mwℓ = 0, ℓ ∈ Z>0. (3.109)

Before proving this statement, let us write down some examples of (3.105):

w2 = X2 + g2sDX,

w3 = X3 + 3g2sXDX + g4sD
2X.

(3.110)

The key to prove (3.109) lies in the properties of the operator M. Note that, due to the
presence of D2, this operator is not a derivation: acting on products, we have

M(fg) = M(f)g + fM(g)− g2sDfDg. (3.111)

However, it satisfies the useful commutation relation

[M,D] = DXD. (3.112)

By using this relation and (3.101) it is easy to verify by hand that the very first wℓ in (3.110)
satisfy (3.109). Proving (3.109) for all ℓ ∈ Z>0 is equivalent to proving that

MΞ(ξ) = 0, Ξ(ξ) =
∑
ℓ≥0

wℓ

ℓ!
ξℓ, (3.113)

where we set w0 = 1. A simple exercise in combinatorics shows1

Ξ(ξ) = eLξX (3.114)

where

Lξ =

∞∑
j=1

ξj

j!
g2(j−1)
s Dj−1 =

1

g2sD

(
eξg

2
sD − 1

)
=

1

g2s

∫ g2sξ

0
euDdu. (3.115)

Lξ is of course very similar to the operator O defined in (3.53). It is easy to see that (3.113)
holds if and only if

MLξX =
g2s
2
(DLξX)2 . (3.116)

This can be proved similarly to what we did to establish (3.44). We first have

MLξ = LξM− 1

g2s

∫ ξg2s

0
du euD

[
(e−uD − 1)X

]
D. (3.117)

1This is the same exercise which is performed when one goes from the canonical to the grand canonical formalism
in the cluster expansion of classical statistical mechanics, see e.g. [47], section 10.1.
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Acting on X and using that M(X) = 0, we find

MLξX =
1

g2s

∫ ξg2s

0
du
[(

euD − 1
)
X
]
euDDX (3.118)

On the other hand, we have that

(DLξX)2 =
2

g4s

∫ ξg2s

0

[
euDDX

] [
(euD − 1)X

]
du, (3.119)

and (3.116) follows.

Let us make a list of observations on the above result.

1. The holomorphic limit of Φ(n|m) is simply the tunneling exponent

gs (F(t)−F(t− (n−m)αgs)) , (3.120)

and in particular, for m = 0 we find a tunneling of n eigenvalues, as anticipated above.
The general case in which m ̸= 0 can be interpreted as tunneling of n eigenvalues on the
physical sheet of the mirror curve, and of m eigenvalues on the non-physical sheet, as it
has been proposed recently in [48]. We also note that the holomorphic limit of X(m|n) is

αg2s∂tF(t− (n−m)αgs). (3.121)

2. The solution for Z
(m|n)
r has some symmetry properties as we change the sign of gs. It

follows from its definition that

Φ(n|m)(−gs) = −Φ(m|n)(gs). (3.122)

By looking at the equation satisfied by a(n|m), we deduce that

a(n|m)(−gs) = a(m|n)(gs), (3.123)

and we conclude that

Z(n|m)
r (−gs) = Z(m|n)

r (gs). (3.124)

3. In solving for the prefactor a(n|m) we have constructed a correspondence

Aℓ → wℓ = Aℓ +O(gs), (3.125)

which can be regarded as a quantum deformation.

So far we have considered the generic boundary condition (3.90). The results of [12, 13], as
well as of this paper, indicate that there is a multi-parameter family of boundary conditions of
the form (3.90) which is relevant to the resurgent structure of the topological string. This family
is defined by a set of coefficients τk, k = 1, 2, · · · , and is given by

F (k|0)
A = τk

(
A
k

+
gs
k2

)
e−kA/gs , F (0|k)

A = τk

(
A
k

− gs
k2

)
ekA/gs . (3.126)
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The mixed sectors vanish in the frame defined by A. This family of boundary conditions is
suggested by the behavior (3.18). The corresponding boundary conditions for the reduced par-
tition functions can be obtained by exponentiation, and they are indeed of the form (3.90). One
can consider a further specialization of the above family, labelled by a discrete positive integer
ℓ ∈ Z>0, in which

τk = δkℓ. (3.127)

We will denote this family by the subindex ℓ, as F
(n|m)
ℓ or Z

(n|m)
r,ℓ (they of course depend on the

choice of instanton action A, but we will not indicate this dependence explicitly). In this case,
the boundary conditions for the reduced partition functions can be written very explicitly. When
the instanton and anti-instanton numbers are both multiples of ℓ, one has

Z(nℓ|mℓ)
r,ℓ,A =

1

n!m!

(
A
ℓ
+
gs
ℓ2

)n(A
ℓ
− gs
ℓ2

)m

e−ℓ(n−m)A/gs , (3.128)

otherwise they vanish. The relevance of these boundary conditions will be explained in more
detail in the next sections.

In this section we have found explicit expressions for a wide class of multi-instanton ampli-
tudes, associated to generic boundary conditions of the form (3.90). These include all solutions
considered in [12, 13]. As we will explain later, it is likely that in actual examples only the

families F
(n|m)
ℓ are relevant. Let us now give some concrete examples of solutions to illustrate

our general construction.

We first consider solutions in the family Z
(n|m)
r,1 . When n = 2,m = 0, our general construction

gives

Z
(2)
r,1 =

1

2

(
(X2 + gs)

2 + g2sDX2

)
e−Φ2/gs , (3.129)

where X2 is defined in (3.100) and we have indicated the subindex explicitly. The holomorphic
limit of this object is

Z(2)
r,1 =

1

2

[(
gs + αg2s (∂tF) (t− 2αgs)

)2
+ α2g4s∂

2
tF(t− 2αgs)

]
eF(t−2αgs)−F(t). (3.130)

Another interesting case is m = n = 1, where one finds

Z
(1|1)
r,1 = G2 − g2s + g2sDG. (3.131)

Its holomorphic limit is

Z(1|1)
r,1 = α2g4s

[
(∂tF)2 + ∂2tF

]
− g2s . (3.132)

Finally, let us consider the first non-trivial example in the family with ℓ ≥ 2:

Z
(ℓ)
r,ℓ =

(
Xℓ

ℓ
+
gs
ℓ2

)
e−Φℓ/gs . (3.133)

Its holomorphic limit is simply

Z(ℓ)
r,ℓ =

(
αg2s
ℓ
∂tF(t− ℓαgs) +

gs
ℓ2

)
eF(t−ℓαgs)−F(t). (3.134)

Remark 3.2. Note that the reduced partition function Z
(ℓ)
r,ℓ is equal to the free energy F

(ℓ)
ℓ ,

since F
(ℓ′)
ℓ = 0 for ℓ′ < ℓ. The two-instanton amplitude Z

(2)
r,2 already appeared in [13], but it led

to some confusions there since it does not solve the same equation than F
(2)
1 . In our formulation,

this is due to the fact that they satisfy different boundary conditions.
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3.5 From multi-instantons to the resurgent structure

As in the theory of nonlinear ODEs, the trans-series obtained from the HAE are expected to be
the building blocks for the resurgent structure of the topological string. The resurgent structure
of a given perturbative series can be formalized in many different ways, but in this paper the most
convenient way consists of specifying the so-called alien derivatives of the different formal series
appearing in the theory (alien calculus was originally developed by Écalle in [49], and accessible
introductions can be found in [3–5]).

One remarkable property of the trans-series solutions that we have obtained is that they are
all constructed from the perturbative series and its derivatives. This means that, if we know the
alien derivatives of the perturbative series F (0), we can deduce in principle the alien derivatives
of all the multi-instanton trans-series. In this section we will obtain expressions for all these
alien derivatives, for the family of multi-instanton solutions introduced above and denoted by

F (n|m)
ℓ . Let us briefly review some ingredients of the theory of resurgence which we will need in

the following.
Given a formal Gevrey-1 power series

φ(z) =
∑
n≥0

anz
n, (3.135)

its Borel transform is defined by

φ̂(ζ) =
∑
n≥0

an
n!
ζn. (3.136)

We will assume that φ(z) are resurgent functions. This means essentially that their Borel trans-
forms can be analytically continued across the complex plane except for a discrete set of singu-
larities.

Let us now fix a value z, and let θ = arg z. If φ̂(ζ) analytically continues to an integrable
function along the ray Cθ := eiθR+, the Borel resummation of φ(z) is given by the Laplace
transform

s(φ)(z) =

∫ ∞

0
φ̂(zζ)e−ζdζ =

1

z

∫
Cθ

φ̂(ζ)e−ζ/zdζ. (3.137)

Let ζω be a singularity of φ̂(ζ). A ray in the ζ-plane which starts at the origin and passes through
ζω is called a Stokes ray. It is of the form eiθR+, where θ = arg(ζω). Clearly, Borel resummations
are not defined along Stokes rays, but one can define instead lateral resummations as follows. Let
Cθ
± be contours starting at the origin and going slightly above (respectively, below) the Stokes

ray Cθ. Then, the lateral resummations are defined by

s±(φ)(z) =
1

z

∫
Cθ
±

φ̂(ζ)e−ζ/zdζ. (3.138)

Due to the presence of singularities, the two lateral resummations differ in exponentially small
corrections. Let us denote by Ωθ the set indexing the singularities along the ray Cθ. Then, one
has the discontinuity formula

s+(φ)(z)− s−(φ)(z) = i
∑
ω∈Ωθ

sω e−ζω/zs−(φω)(z), (3.139)

where φω(z) is a formal power series associated to the singularity ζω of φ̂(ζ). Given a choice
of normalization for these series, the discontinuity relation (3.139) defines non-trivial Stokes
constants sω.
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The result (3.139) involves Borel resummed formal series, but it is useful to rewrite it as a
relation between formal series themselves. If we regard lateral Borel resummations as operators,
we introduce the Stokes automorphism along the ray Cθ, Sθ, as

s+θ = s−θSθ. (3.140)

Then, we can write (3.139) as

Sθ(φ) = φ+ i
∑
ω∈Ωθ

sωe
−ζω/zφω. (3.141)

We define now the (pointed) alien derivative ∆̇ζω associated to the singularity ζω, ω ∈ Ωθ, by

Sθ = exp

∑
ω∈Ωθ

∆̇ζω

 . (3.142)

The most important property of alien derivatives is that they are indeed derivatives, i.e. they
satisfy Leibniz rule when acting on a product of formal series:

∆̇ζω (ϕ1(z)ϕ2(z)) =
(
∆̇ζωϕ1(z)

)
ϕ2(z) + ϕ1(z)

(
∆̇ζωϕ2(z)

)
. (3.143)

Given now a formal power series φ(z) as a starting point, we can iterate the above procedure
to eventually find a “complete” set of formal power series

Bφ = {φω(z)}ω∈Ω, (3.144)

labelled by a set Ω, in such a way that the operation of the alien derivatives closes in this set:

∆̇Aφω =
∑
ω′

SAωω′φω′ . (3.145)

The coefficients SAωω′ can be obtained from the Stokes coefficients appearing in the discontinuities,
see e.g. [4] for additional examples and clarifications. We call the setBφ, together with the action
of all alien derivatives on it, the (minimal) resurgent structure associated to φ [50]. This notion
is a mathematical formulation of the non-perturbative information that can be obtained from a
perturbative series φ(z).

We would like to understand the resurgent structure associated to the topological string
perturbation series. This is a well-defined problem (under the mild assumption that the se-
ries involved are resurgent), and it provides a concrete characterization of the non-perturbative
structure of the theory. In addition, it was conjectured in [50, 51] that the Stokes coefficients
appearing in this resurgent structure are interesting invariants counting BPS states. In the case
of the resolved conifold, the resurgent structure was studied in [41], and more recently it was
studied from the point of view of the relation to BPS counting in [52–54]. Of course, the resolved
conifold is in many ways too simple an example, and life starts being interesting for non-trivial
toric CYs with one modulus, like those studied in [13] and in the present paper. We will now
make various proposals for the resurgent structure of the topological string in this case, based
on the results above and on some numerical calculations described in the next section.
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Let F (0)
g (t) be the holomorphic free energies at genus g, in a given frame. The Borel transform

F̂ (0)(t, ζ) =
∑
g≥0

1

(2g)!
F (0)
g (t)ζ2g (3.146)

will have singularities filling a subset of a lattice in the complex plane. Let us consider a sin-
gularity ℓA, where A is a “primitive” singularity of the form (3.2), and ℓ ∈ Z>0 is a positive
integer. There are two different cases to consider. If α = 0, i.e. if the instanton action is given
by the flat coordinate of the frame (up to a linear shift by a constant), then the multi-instanton
trans-series are trivial, and of the form (3.18). In this case, we will have

∆̇ℓAF (0) = SℓA(gs)F
(ℓ)
A . (3.147)

Here, SℓA(gs) is a Stokes coefficient which depends on gs and in principle also on the modulus t.
Our concrete calculations indicate that the dependence on gs is simple and that they are locally
constant functions of t. We expect the Stokes coefficients to be independent of ℓ in many cases.
This is suggested by the large order behavior (3.15).

Let us now consider the more interesting case α ̸= 0, in which the multi-instantons take the
more complicated form discussed in the previous sections. We conjecture the following result for
the pointed alien derivatives,

∆̇ℓAF (0) = SℓA(gs)F
(ℓ)
ℓ , (3.148)

where F (ℓ)
ℓ is the holomorphic limit of the multi-instanton amplitude F

(n|m)
ℓ with n = ℓ, m = 0,

corresponding to the family of solutions (3.127). SℓA(gs) is a Stokes coefficient with the properties
noted above, and in particular we expect it to be independent of ℓ in many situations, as in
(3.147). Since F (0) is an even power series in gs, we have

∆̇−ℓAF (0) = SℓA(−gs)F
(0|ℓ)
ℓ . (3.149)

The conjecture (3.148) contains and extends empirical results obtained in [13] and further devel-
oped in the next section. We note that a similar conjecture applies to the NS free energy [32].
The Stokes coefficients encode information about the resurgent structure of the theory and they
are non-trivial. Currently, we can only calculate them numerically, and we have access to very
few of them.

We should think about (3.148) as the “primitive” alien derivatives, from which additional
alien derivatives can be calculated. This is simply because all multi-instantons are functionals
of F (0) itself, and the action of alien derivatives commutes with taking derivatives w.r.t. t. We

then have the following formula for the full family of trans-series sectors F (n|m)
ℓ :

∆̇ℓAF
(ℓn|ℓm)
ℓ = SℓA(gs)(n+ 1)F (ℓ(n+1)|ℓm)

ℓ , (3.150)

from which one obtains

∆̇−ℓAF
(ℓn|ℓm)
ℓ = SℓA(−gs)(m+ 1)F (ℓn|ℓ(m+1)

ℓ . (3.151)

Let us emphasize that (3.150) follows directly from (3.148) by taking derivatives, and although
we don’t have a proof of the general formula, we have checked it in many cases.
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Example 3.3. Let us consider the case ℓ = 1. The one-instanton amplitude is given in (3.76),

F (1)
1 =

(
gs + αg2s (∂tF) (t− αgs)

)
eF(t−αgs)−F(t). (3.152)

One finds, by a direct calculation,

∆̇AF (1)
1 = αg2s∂t

(
∆̇AF

)
(t− αgs)e

F(t−αgs)−F(t)

+
(
∆̇AF (t− αgs)− ∆̇AF (t)

) (
gs + αg2s (∂tF) (t− αgs)

)
eF(t−αgs)−F(t),

(3.153)

and by using (3.148) one obtains

∆̇AF (1)
1 = SA(gs)

{[(
gs + αg2s (∂tF) (t− 2αgs)

)2
+ α2g4s∂

2
tF(t− 2αgs)

]
eF(t−2αgs)−F(t)

−
(
F (1)
1

)2}
.

(3.154)

If we take into account the explicit expression (3.130), we conclude that

∆̇AF (1)
1 = SA(gs) 2F (2)

1 , (3.155)

in agreement with (3.150) for ℓ = n = 1, m = 0.

The result for the alien derivatives in (3.150) is very similar to what one obtains in nonlinear
ODEs with the help of the so-called bridge equation (see e.g. [3–5]). This can be understood as
follows. Let us define the multi-instanton free energy

F np
ℓ =

∑
n,m≥0,(n,m)̸=(0,0)

Cn
1 Cm

2 F
(ℓn|ℓm)
ℓ (3.156)

which contains all the non-perturbative trans-series associated to the solution characterised by
(3.127). This free energy satisfies the non-linear equation obtained from the HAE

WF np
ℓ =

g2s
2

(
D2F np

ℓ +
(
DF np

ℓ

)2)
. (3.157)

Since the dotted alien derivative commutes with the operators W, D, one obtains the linearized
equation

W
(
∆̇ℓAF

np
ℓ

)
=
g2s
2

(
D2
(
∆̇ℓAF

np
ℓ

)
+ 2DF np

ℓ D
(
∆̇ℓAF

np
ℓ

))
. (3.158)

The same equation is satisfied by the derivatives

∂F np
ℓ

∂C1
,

∂F np
ℓ

∂C2
(3.159)

and their linear combinations. Although we don’t seem to have a uniqueness result to guarantee
it, it is natural to assume that

∆̇ℓAF
np
ℓ = SℓA(gs)

∂F np
ℓ

∂C1
+ TℓA(gs)

∂F np
ℓ

∂C2
. (3.160)

Indeed, the equation (3.150) says that this is the case, and that in addition TℓA(gs) = 0.
In the next section we will illustrate the conjectures and results of this section with the

example of local P2.
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4 Examples and experimental evidence

The toric CY known as local P2 is perhaps the simplest CY manifold with a rich topological string
theory, and it has been studied from many points of view since the early days of local mirror
symmetry [17, 55]. In Appendix A we summarize some of the ingredients needed to analyze this
model with the holomorphic anomaly equations. As it should be clear by now, this is an example
of “parametric resurgence,” i.e. the whole resurgent structure varies as we move on the moduli
space, and we expect to have a rich structure (e.g. wall-crossing phenomena) which has not been
fully unveiled yet. The moduli space of local P2 is parametrized by a complex variable z, in such
a way that z = 0 corresponds to the large radius point, while z = −1/27 corresponds to the
conifold point. We will mostly focus on the region in moduli space in which z is real,

− 1

27
< z < 0 (4.1)

which describes essentially the geometric phase of the theory. Of course, one can explore other
regions.

The results in this section are based on numerical calculations of the perturbative free energies
Fg(t) in two different frames: the large radius frame, and the conifold frame (we always work on
the holomorphic limit). These calculations allow us to determine the location of the very first
Borel singularities, and to estimate numerically some of the Stokes constants.

4.1 Borel singularities and Stokes constants in the large radius frame

Let us first consider the large radius frame. For values of z close to the conifold point, we find
Borel singularities at

ℓAc, ℓ ∈ Z, (4.2)

where

Ac =
2πi√
3
tc. (4.3)

This is the singularity (3.16) expected just from the conifold behavior (in this case, as noted in
(A.18), one has b = 3). By using the results in Appendix A, it is easy to check that for this
action, α = 3i in (3.2).

A good graphical guide to the location of Borel singularities is obtained as follows. One
takes an approximation to the Borel transform by picking a finite number of terms in (3.146).
The diagonal Padé approximant to this polynomial provides a reasonable approximation to the
analytic continuation of the Borel transform, and its poles mimick the location of branch cuts.
In Fig. 1 we plot these poles for z = −1/30. The figure on the left is made for the standard
Padé approximant, showing clearly the location of the first singularity (4.2) with ℓ = 1. The
singularities with highest values of ℓ are hidden behind the line of poles, but one can unveil the
very first ones by using a conformal Padé approximant, i.e. by combining the Padé approximant
with the conformal map

ζ =
1

i

2Acξ

1− ξ2
, (4.4)

see e.g. [56] for a summary of this class of techniques in Borel analysis. The resulting plot, shown
in the right, displays the singularities with ℓ = 2, 3, 4 in the ξ-plane.

We can now ask what is the value of the “primary” alien derivatives associated to these
singularities, or equivalently, we can calculate the discontinuity of the lateral Borel transforms
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Figure 1. The Borel singularities for large radius free energies Fg, at z = −1/30. On the left we plot
the poles of the conventional Padé approximant, while on the right we plot the poles of the conformal
Padé approximant in the ξ-plane, where ξ is defined in (4.4). In both cases we use the free energies up to
g = 125. The black dots in the plot on the right correspond to the location of the singularities (4.2) in
the ξ-plane, with ℓ = 1, 2, 3, 4.

across, say, the positive imaginary axis. Explicit numerical calculations up to the two instanton
order show that

(s+ − s−)(F (0)) = s−

{
i

2πgs
F (1)
1 − 1

4π2g2s
F (2)
1 +

i

2πgs
F (2)
2 + · · ·

}
. (4.5)

As a technical comment, note that the Borel resummation of the multi-instanton amplitudes
involves just the resummation of the sequence of derivatives of Fg(t), evaluated at a shifted
argument, and therefore it is straightforward. By using (3.150), we deduce that the result (4.5)
is equivalent to

∆̇AcF (0) =
i

2πgs
F (1)
1 , ∆̇2AcF (0) =

i

2πgs
F (2)
2 , (4.6)

which is indeed as expected from the conjecture (3.148), and gives in addition the value

SℓAc(gs) =
i

2πgs
, ℓ = 1, 2. (4.7)

Note that the Stokes constants seem to be independent of ℓ, as we anticipated above. These re-
sults summarize compactly many of the numerical results obtained in [13] by large order analysis.
We note that, by using (3.77), one finds the explicit large order formula

Fg ∼ 1

2π2
exp

(
α2

2
∂2tF0

)
A−2g+2Γ(2g − 1), g ≫ 1. (4.8)

We also note that the values of the Stokes constants in (4.6) are dictated by the large order
behavior at the conifold (3.15) (for example, the power g−1

s is due to the shift −1 in Γ(2g − 1)).
As we approach the large radius point at z = 0, we find a tower of singularities located at

±2πt(z) + 4π2im, m ∈ Z. (4.9)
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Figure 2. The Borel singularities for the free energies at large radius, for z = −15 · 10−6 (left) and
z = −10−8 (right). We use the poles of the Padé approximant and the free energies Fg with g up to 120.
The black dots in the first quadrant correspond to the tower A+

0,n (4.10), for the values n = 0, 1 (left)
and n = 0, 1, 2, 3 (right). The black dots in the positive imaginary axis corresponds to the location of the
singularity (4.2) with ℓ = 1.

This type of towers, also called “peacock patterns” in [57], appeared before in [19, 41], in the
context of topological string theory, and also in complex Chern–Simons theory [57–59]. Note
that, for negative values of z, the points (4.9) can be written as

A±
0,n = ±2πRe(t(z)) + 4π2i

(
n+

1

2

)
, n ∈ Z. (4.10)

(The zero subindex will become clear in (4.19)). Some of these singularities are shown in Fig. 2.
Since the instanton actions (4.10) do not involve the derivative of the prepotential in this frame,
the corresponding instanton amplitudes are of the “trivial” form (3.18). We expect these towers
of singularities to lead however to non-trivial Stokes constants, as found in a closely related
context in [50] (see also in [57–60] for similar situations in complex Chern–Simons theory). One
finds, for example,

∆̇A+
0,0
F (0) =

3i

2πgs
F (1)

A+
0,0

, (4.11)

which is equivalent to the result reported in the Appendix A of [19]. We expect to have, more
generally,

∆̇ℓA+
0,n

F (0) =
i

2πgs
sn,ℓF

(ℓ)

ℓA+
0,n

, (4.12)

where sn,ℓ are Stokes coefficients. It is likely that these numbers are integers (or at least rational
numbers), and related to BPS invariants of some type.

We should note that the above results give just numerical approximations to the structure
of singularities of the Borel plane. The most general singularity is expected to be of the form

2πkt(z) + 4π2in+ ℓAc(z) (4.13)

for integer numbers k, n, ℓ. Our numerical results tell us that some of these points are definitely
realized as actual singularities, but singularities which are sufficiently far from the origin are not
detected by our analysis.
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4.2 Borel singularities and Stokes constants in the conifold frame

Let us now consider the free energies in the conifold frame, which we will denote by Fg(tc) (we
do not add the superscript c to make our notation less heavy, and it is understood that in this
section all free energies refer to the conifold frame). In this case, one can improve the numerical
analysis in various ways. First of all, one finds a sequence of singularities in the imaginary axis of
the form (4.2), but in the conifold frame these are solely due to the singular part of the conifold
free energy. We can then divide Fg(tc) into a regular and a singular part,

Fg(tc) = F sing
g (tc) + F reg

g (tc), (4.14)

where

F sing
g (tc) = 3g−1 B2g

2g(2g − 2)
t2−2g
c , g ≥ 2, (4.15)

is the polar part in (A.18), and

F sing
0 (λ) =

t2c
6
log

(
tc
27

)
− t2c

4
,

F sing
1 (λ) = − 1

12
log

(
tc
27

)
.

(4.16)

We can then remove the singularities (4.2) by considering the regular free energies. When one
does that, one uncovers additional singularities which are not numerically visible in the original
free energies. One finds two towers of Borel singularities. The first one is of the form

Ac,n = Ac + 4π2in, n ∈ Z. (4.17)

The second one is of the form

±2πt(z) + 4π2im+ ℓAc(z), m, ℓ ∈ Z (4.18)

and we will write it as

A±
ℓ,n = ±2πRe(t(z)) + 4π2i

(
n+

1

2

)
+ ℓAc(z), n, ℓ ∈ Z. (4.19)

(Note that, in contrast, in the large radius frame, the tower of singularities (4.10) has ℓ = 0.)
The leading singularities near the conifold point turn out to be at ±As, ±A⋆

s, where As = A+
−1,0.

We show some of these singularities in Fig. 3, by using Padé approximants.

There are two Stokes constants that can be calculated with precision. The first one corre-
sponds to the singularity (4.17) with n = 1. The corresponding trans-series is of the “trivial”
type and is given by (3.13):

F (1)
Ac,1

=
(
Ac + 4π2i + gs

)
exp

{
− 1

gs
(Ac + 4π2i)

}
. (4.20)

We find, with high numerical precision,

∆̇Ac,1F (0) =
3i

2πgs
F (1)
Ac,1

. (4.21)
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Figure 3. The Borel singularities for the regulated free energies in the conifold frame F reg
g , for z = −1/200

(left), and for the value of z such that Ac(z) = 2π2i (right). We use a Padé approximant with a maximal
value of g = 100 in the first case and g = 130 in the second. The black dots in the first quadrant correspond
to the singularities A+

−1,0, A
+
0,0, A

+
1,0, A

+
2,0. The black dot in the positive imaginary axis corresponds to

the location of the singularity Ac,1.

We expect to have, more generally,

∆̇ℓAc,nF (0) =
i

2πgs
scn,ℓF

(ℓ)
ℓAc,n

. (4.22)

The second Stokes constant that can be computed with precision corresponds to As, at the
point in moduli space where Ac = 2π2i. This is because, for that value, As is real and the
discontinuity along the real direction is easier to calculate. First of all, we have to calculate the
one-instanton contribution associated to As. We write the action as in (3.2),

As = −33/2∂tcFc
0(tc)− i

(
2π

√
3

3
tc − 2π2

)
, (4.23)

where we used that, due to (A.17),
α = −33/2. (4.24)

This means that in the formulae for the non-perturbative one-instanton correction one has to
use the prepotential (3.28),

Fc
0(tc) +

a

2
t2c + btc, (4.25)

where

a =
2πi

9
, b = −2π2i

33/2
. (4.26)

The one-instanton correction can be written as

F (1)
As

=−
{
gs + αg2s∂tcFc(tc − αgs) + 2π2i−Ac(z)− 6πigs

}
× exp

[
Fc(tc − αgs)−Fc(tc)−

1

gs

(
2π2i−Ac(z)

)]
.

(4.27)
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One finds, when Ac(z) = 2π2i,

∆̇AsF (0) =
i

2πgs

(
F (1)
As

+ F (1)
A⋆

s

)
, (4.28)

since the action As and its complex conjugate come together precisely at that point in moduli
space. The one-instanton amplitudes associated to As, A⋆

s are the non-perturbative effects stud-
ied in [19] in order to compare the resurgent structure of the topological string, to the TS/ST
correspondence of [20, 21].

5 Conclusions and open problems

In this paper we have found exact, closed form multi-instanton solutions to the trans-series
extension of the BCOV equations proposed in [12, 13]. The main tool to achieve this is an
operator formulation of the equations, akin to what was done in [23, 24]. Our results include all
the solutions found in [13], and they generalize them to arbitrary multi-instantons. In addition,
we found that the holomorphic limit of these solutions is very simple: it can be written solely in
terms of the perturbative free energies and can be naturally interpreted in terms of eigenvalue
tunneling. In particular, our result suggests that the flat coordinates are naturally quantized in
units of the string coupling constant. This is a working hypothesis in large N dualities for the
topological string, but here it follows from the non-perturbative structure of the holomorphic
anomaly equations.

Our results are a first step in decoding the full resurgent structure of the topological string,
which requires a determination of the actual Borel singularities and their Stokes constants. We
have given a first taste of these issues in section 4, but there is clearly much more to do. The
calculation of Stokes constants by numerical means reaches very quickly its limits, and one
should find more clever approaches to the problem. In [50] we proposed a modified version of
the resurgent structure of the topological string in the conifold frame, involving only numerical
power series (in contrast to the parametric power series considered in this paper). This version
leads to calculable Stokes constants, and it would be very interesting to find the precise relation
between the framework of [50] and the problem considered here.

As we have mentioned in section 4, we expect the Stokes constants appearing in this problem
to be closely related to BPS invariants, and further evidence along this direction will be presented
in [61]. A similar problem displaying this connection to BPS counting is the resurgent structure
of quantum periods, studied in the companion paper [32]. However, we should note that the two
problems differ in many important points. In particular, formulae like (4.5) show that, in the case
of the topological string, Stokes automorphisms are more complicated than in the case of quantum
periods, where they are given by the so-called Delabaere–Pham formula [62]. In that sense, the
Riemann–Hilbert problem naturally associated to the topological string should be different from
the one considered in e.g. [63, 64], which assumes, following [65], Stokes automorphisms of the
Delabaere–Pham type. A related observation is that the resolved conifold, which is so far the
only example worked out in detail in the approach of [63, 64] (see also [52]), might be a misleading
arena for the general story, since it only involves the “trivial” instanton (3.18), and not the more
general (and complicated) instantons found in [12, 13] and further clarified in this paper.

Although we have focused in this paper on topological string theory, our results can be applied
to any model whose perturbative expansion is described by the holomorphic anomaly equations.
This includes systems governed by topological recursion [66], as shown in [67]. In particular, the
HAE has proved to be very useful in describing the large N expansion of matrix models [68–70].
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The results of this paper can then be used to describe multi-instantons in the large N expansion
of matrix models, and therefore in string/gauge theory models with holographic matrix model
duals.

Conversely, it would be very interesting to use our results to further our understanding of non-
perturbative aspects of the topological recursion, and of large N instantons in matrix models.
For example, as a non-trivial consequence of the TS/ST correspondence [20, 21], topological
strings on toric CY threefolds and their 4d limits can be described by a new class of convergent
matrix models [22, 71–74]. The multi-instantons we have found based on [12, 13] describe the
large N instantons of these models, and it would be very interesting to rederive them directly in
the matrix model framework, perhaps as some form of eigenvalue tunneling.

Another possible perspective on our results is the following. The genus expansion of topo-
logical string theory on a CY manifold can be regarded as the perturbative expansion of a
spacetime string field theory, called in [16] the Kodaira–Spencer theory of gravity. Perhaps the
multi-instanton amplitudes obtained in this paper can be obtained by doing an expansion around
non-trivial saddle-points of this string field theory. A related approach would be to identify our
multi-instantons as amplitudes due to (topological) D-branes.

Finally, it would be very interesting to study the trans-series solution of the HAE in the case
of compact CYs. The main complications are the presence of additional propagators and the
difficulty in producing perturbative data to test the resurgent structure. We expect to report on
this problem in the near future [61].
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A Useful formulae for local P2

Here we collect some useful information on topological string theory on local P2. Most of the
formulae below can be found in e.g. [13, 18, 22, 23].

The periods of local P2 can be obtained by local mirror symmetry [55]. They are built from
the formal power series:

ϖ̃1(z) =
∑
j≥1

3
(3j − 1)!

(j!)3
(−z)j ,

ϖ̃2(z) =
∑
j≥1

18

j!

Γ(3j)

Γ(1 + j)2
{ψ(3j)− ψ(j + 1)} (−z)j ,

(A.1)

and the flat coordinate at large radius is given by

t = − log(z)− ϖ̃1(z) = − log(z) + 6z 4F3

(
1, 1,

4

3
,
5

3
; 2, 2, 2;−27z

)
. (A.2)
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Here, z parametrizes the moduli space of local P2, and z = 0 is the large radius point where
t→ ∞. The genus zero free energy or prepotential F0(t) is defined by

∂tF0(t) =
ω2(z)

6
, (A.3)

where

ω2(z) = log2(z) + 2ϖ̃1(z) log(z) + ϖ̃2(z). (A.4)

It is convenient to define the higher genus free energies in the large radius frame in such a way
that the so-called constant map contribution [16] is subtracted. We then have

Fg(t) = O
(
e−t
)
, (A.5)

for t≫ 1 and g ≥ 2.

In our parametrization, the conifold point occurs at z = −1/27. The discriminant is

∆ = 1 + 27z, (A.6)

while the Yukawa coupling is given by

Cz = − 1

3z3∆(z)
. (A.7)

The holomorphic function appearing in (2.9) reads

f1(z) = − 1

12
log(z7∆), (A.8)

and it determines the function s(z) in (2.8) through (2.10). The function f(z) in (2.11) is given
by

f(z) =
z4

4
. (A.9)

The flat coordinate at the conifold is given by

tc(z) =

√
3

4π

(
ωc(z)− π2

)
(A.10)

where

ωc(z) = log2(−z) + 2 log(−z)ϖ̃1(z) + ϖ̃2(z). (A.11)

It has the property that it vanishes at the conifold point:

tc

(
− 1

27

)
= 0. (A.12)

There is a convenient expression for tc in terms of a Meijer function:

tc(z) =
3
√
3

2π

G
3,2
3,3

(
−27z

∣∣∣∣ 13 , 23 , 10, 0, 0

)
2
√
3π

− 4π2

9

 . (A.13)
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This flat coordinate has the following power series expansion near the conifold point,

tc(z) = ∆+
11

18
∆2 +

109

243
∆3 + · · · , (A.14)

where ∆ is the discriminant. The prepotential in the conifold frame is defined by the following
small tc expansion

Fc
0(tc) =

t2c
6
log

(
tc
27

)
− t2c

4
−
√
3V tc −

t3c
324

+ · · · (A.15)

where

V = 2 ImLi2

(
eπi/3

)
, (A.16)

and we have the relation

2πRe(t(z)) = −3
√
3
∂Fc

0

∂tc
. (A.17)

The behavior of the higher genus free energies near the conifold point is given by [18, 22]

Fc
g(tc) = 3g−1 B2g

2g(2g − 2)
t2−2g
c +O(1), g ≥ 2. (A.18)

Therefore, in (2.3) we have a = 1, b = 3.
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