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Abstract

We present a new on-shell method for the matching of ultraviolet models featuring massive
states onto their massless effective field theory. We employ a dispersion relation in the
space of complex momentum dilations to capture, in a single variable, the relevant analytic
structure of scattering amplitudes at any multiplicity. Multivariate complex analysis
and crossing considerations are therefore avoided. Remarkably, no knowledge about the
infrared effective field theory is required in dimensional regularisation. All matching
information is extracted from the residues and discontinuities of the ultraviolet scattering
amplitudes, which unitarity expresses in terms of lower-point and lower-loop results,
respectively. This decomposition into simpler building blocks could deliver new insights
in the structure of the effective field theories obtained from classes of ultraviolet scenarios
and facilitate computations at higher loop orders.
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1 Introduction

Effective field theories (EFTs) are becoming the prime interpretation framework for collider
data. The lack of unambiguous sign of new resonance at the energy frontier, together with
the upcoming increases in luminosity and precision rather than energy, indeed motivates
an indirect approach to hypothetical heavy new physics. Understanding how specific
ultraviolet (UV) models —and classes thereof— populate the infrared (IR) EFT parameter
space, and grasping the implications of EFT results for concrete scenarios is however
essential. The procedure of matching between full models and their low-energy EFTs
establishes the needed UV–IR correspondence.

The automation of matching computations has recently been pushed to the one-loop
level [1–5] using diagrammatic [6, 7] and functional [8–32] methods, together with the
method of regions in dimensional regularisation [33, 34]. Here, we devise a distinct ap-
proach which relies on a dispersion relation in the complex plane of momentum dilations.
It expresses the low-energy EFT amplitudes in terms of the tree-propagator residues and
loop cuts of UV amplitudes. Thereby, unitarity reduces the complexity of the amplitudes
required for matching, in the number of legs or loops. By exploiting simpler building
blocks, it may moreover deliver new insight.

The required computations are facilitated by the successful developments of unitar-
ity methods [35–45] and Feynman diagram integration techniques (see e.g. [46, 47] for
detailed reviews and references therein) in dimensional regularisation [48] applied to high-
multiplicity and high-order calculations in perturbation theory, for gauge theories [49, 50]
and gravity [51, 52]. Scattering-amplitude methods are also finding more and more appli-
cations in the study of EFTs and, in particular, that of the Standard Model (SMEFT).
They helped uncovering positivity constraints [53–55], non-interferences between renor-
malisable and dimension-six amplitudes [56], and non-renormalisation theorems between
higher-dimensional operators [57–61]. They provided an alternative means of computing
anomalous dimensions [62–70], of constructing SMEFT operator bases [71–77] as well as
broken-phase massive amplitudes [78–86].

Our on-shell approach to matching was inspired by the computation of Wilson coeffi-
cients directly from unitarity cuts in [87] and from the procedure used to derive positivity
constraints on operator coefficients in terms of dispersion relations [88]. These hinted at
the possibility of expressing the Wilson coefficients of an IR EFT in terms of the discon-
tinuities of UV amplitudes. However, in the context of positivity bounds, only four-point
amplitudes are accessible and the analytic structure in a single Mandelstam invariant is
most often exploited. We use form factors [62] to control analytic properties at arbitrary
multiplicity (they were first studied on-shell in the context of the N = 4 super Yang-Mills
theory [89, 90]). Moreover, we simplify the multivariate complex analysis into a one-
variable problem using an analytically continued momentum dilation parameter, which is
reminiscent of the BCFW shift [91].

Before providing a more rigorous discussion in Section 3, we start by presenting the
basic principles of this new matching method in Section 2. A working example of scalar
theory is discussed in Section 4, and conclusions are presented in Section 5.

2 Basic principles

For simplicity, let us focus here on an IR EFT containing only massless scalars. Matching
would make the IR and UV amplitudes identical for small enough external momenta pi:

AIR = AUV for pi/M → 0 , (1)
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where M is the mass scale of the heavy UV states that are integrated out. As matching
condition, we enforce the term-by-term equality of the amplitudes expanded at all orders
in powers of external momenta (squared into Mandelstam invariants). On the IR EFT
side, this expansion involves the tree-level contact terms which readily map onto operators
and are multiplied by the Wilson coefficients to be matched.1 From a purely on-shell per-
spective, these tree-level amplitudes of higher-and-higher multiplicities fully characterise
the EFT and allow to reconstruct it entirely.

To count powers of squared external momenta, let us introduce momentum dilations,
acting on Mandelstam invariants and amplitudes as

sI → ŝI = z sI and A → Â(z) , (2)

where I is a unordered subset of external particles and sI ≡ (∑i∈I p
µ
i )2. Analytically

continuing z to the complex plane, the power-by-power matching is enforced by equating
the z = 0 residues of the two amplitudes divided by an integer powers of z:

Res
z=0

ÂIR(z)
zn+1 = Res

z=0

ÂUV(z)
zn+1 . (3)

Note that negative n’s are allowed but that the associated residues vanish unless Â(z)
itself contains poles at z = 0, corresponding to massless factorisation channels.

On the IR EFT side, the residues straightforwardly extract terms of the tree-level
amplitude homogenous in the Mandelstam invariants, e.g. cns

n
I + c′

ns
n+1
I /sJ . On the UV

side, let us express each residue as an integral over a small contour surrounding the origin,
at z = 0 (in blue on Figure 1). Deforming this contour towards infinity extracts the residues
and discontinuities of AUV in all Mandelstam invariants (in orange on Figure 1). Indeed,
the non-analycities in z are inherited from the poles and branch cuts in Mandelstam
invariants: sI = M2

I poles give rise to z = M2
I /sI ones, and sJ ≥ M2

J branch cuts give rise
to z ≥ M2

J/sJ ones. The contour at infinity may also yield a non-vanishing contribution
if n is small enough.

Unitarity can then be used to express these residues and discontinuities in terms of
lower-point and lower-loop amplitudes. The matching at tree level only involves pole
residues which can be expressed as products of two lower-point on-shell amplitudes:

Atree
IR ⊃ −

∑
poles

Res
z=M2

I /sI

ÂUV(z)
zn+1 =

∑
z=M2

I /sI

Âleft
UV(z)Âright

UV (z)
sI zn+1 . (4)

At the one-loop level, unitarity turns discontinuities into two-particle cuts involving two
tree-level amplitudes and an intermediate phase-space integration:

Atree
IR ⊃ + 1

2πi
∑

branch
cuts

∫ ∞
M2

J
sJ

dz
zn+1

(
ÂUV(z + iϵ) − ÂUV(z − iϵ)

)
= 1

2π
∑

branch
cuts

∫ ∞
M2

J
sJ

dz
zn+1

∫
dLIPS Âleft

UV(z)Âright
UV (z) (5)

with the appropriate symmetry factor left implicit on the right-hand side.
Subtleties omitted in the above discussion and addressed below are the following:

1As will be seen more rigorously below, our power-by-power matching does not capture contributions
which do not admit a Laurent expansion at zero external momenta. Heuristically, dimensionally regulated
loops in our scaleless EFT have branch points in this limit, i.e. no zero-momentum expansion, and do not
contribute. On the IR EFT side, the Laurent expansion therefore only captures tree-level contributions.
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Figure 1: Each nth order of the tree-level IR EFT amplitude expanded in powers
of Mandelstam invariants is expressed as a contour integral of the subtracted
UV amplitude ÂUV(z)/zn+1 in the complex plane of momentum dilations. All
matching information is therefore extracted from the residues and branch cuts of
the UV amplitude alone. For illustration, we picture one residue at z = M2

I /sI

arising from the 1/(sI −M2
I ) pole of a tree propagator and one branch cut starting

at z = M2
J/sJ which could for instance arise from a log(M2

J − sJ) term.

• A form factor with an additional momentum influx q has to be considered instead
of the UV amplitude to confine all non-analyticities to known locations, namely on
the positive real z axis.
Note the polynomial dependence of the obtained result in Mandelstam invariants
renders the crossing and q → 0 limit trivial. Calculations at four points and above
can therefore in practice be performed directly on amplitudes.

• The UV amplitude may have branch cuts extending all the way down to z = 0, in
which case one needs to formally consider the expansion around a small z = −δ < 0.
After taking δ → 0, the IR divergence of the cut integral can be handled, as custom-
ary, within dimensional regularisation.

Simplest examples Before closing this section, let us give simple examples for which the
subtleties above are irrelevant (more complicated cases are discussed in Section 4). Let
us consider a ϕ3Φ theory, involving a massless scalar ϕ and a heavy Φ of mass M to be
integrated out. The tree-level exchanges

k

j
i g4 g4

(6)

generate six-point contact terms in the IR EFT, which can trivially be obtained from the
lower-point A(ϕϕϕΦ) = g4 amplitude:

Atree,(0)
IR,6 ⊃

∑
z=M2/sijk

Â(ϕϕϕΦ)2

sijk zn+1 = g2
4

M2

∑
10 (ijk) perm.

(
sijk

M2

)n

, (7)

where the sum on the right-hand side runs over the 10 independent unordered permutations
of ijk external legs. At the loop level, four-point contact terms are generated by the
bubbles

j

i
g4 g4 (8)
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whose cut can be expressed as the square of the tree-level A(ϕϕϕΦ) amplitude and a
two-particle ϕΦ Lorentz invariant phase-space integral,

∫
dLIPS = 1

8π (1 − M2

zsij
). The last

ingredient is the z integral along the cut:

Atree,(1)
IR,4 ⊃ 1

2π
∑

sij=s,t,u

∫ ∞

M2/sij

dz
zn+1

∫
dLIPS Â(ϕϕϕΦ)2

= g2
4

16π2n(n+ 1)
∑

sij=s,t,u

(
sij

M2

)n

for n > 0 .
(9)

The renormalisable n = 0 term is UV divergent and requires a regulator to be computed
(see Section 4).

Remarkably, both at tree and loop levels, the EFT amplitude is obtained at once, to
all orders in the derivative expansion, thereby fixing a whole tower of Wilson coefficients.

3 Matching formula

We aim to match a UV theory involving heavy states to the corresponding EFT of light
IR states only. For simplicity, we focus on massless light states.2 After matching, the
EFT truncated at a given order should approximate the predictions of the UV theory for
momenta much smaller than the heavy masses.

The central objects of our matching procedure are the form factors of a local operator
O, having a momentum influx q, a set of m particles carrying quantum numbers m⃗ as
out-state, and the vacuum as in-state,3

FO(m⃗) =
∫

ddx eix·q
out⟨ψm⃗|O(x)|0⟩ = (2π)d δ(d)(q − p1 · · · − pm) out⟨ψm⃗|O(0)|0⟩ , (10)

which are formally defined as the limiting value of a complex function FO(sij + iϵ) using
the Feynman-iϵ prescription. In particular, we consider form factors of the Lagrangian
operator which are the closest to (purely on-shell) S-matrix elements. Matching to all
orders in inverse powers of the heavy mass scale M would result in identical UV and IR
predictions

FLIR(m⃗) = FLUV(m⃗) (11)

for q2 = (p1 + ...+ pm)2 < M2, where LUV includes the modes that are dynamical at high
energies, while LIR only contains light modes interacting through higher-dimensional local
operators.

As sketched in Section 2, we realise this matching by imposing an order-by-order iden-
tification in the momentum expansion or, equivalently, in powers of a momentum dilation
variable z. Let us thus consider the continuous form-factor deformation FO(m⃗; z), by the

2In the presence of massive external states, ensuring momentum conservation and on-shell conditions
would naively require masses to dilated in addition to momenta. Non-analyticities in z would therefore be
introduced which are not related to non-analyticities in Mandelstam invariants (e.g. arising from logarithms
of the masses). It remains to be examined how those could be consistently handled.

3It is worth emphasising that, when we consider form factors, there is no relation between the different
kinematic invariants arising from momentum conservation: (p1 + ... + pn)2 = q2 ̸= 0. In particular, it is
necessary to consider qµ time-like. Alternatively, form factors can be thought of as the decay amplitude
of a very massive (non-dynamical) scalar of square mass equal to q2. In practice, we will however consider
q ̸= 0 only in the three-point case. At and above four points, we can set q = 0 after performing crossing
of some of the out-states into the in-state, with the proper normalisation. The form factors are strictly
related to the S-matrix elements by the simple relation out⟨ψn⃗|O(0)|ψm⃗⟩in|q2=0 = ∂g out⟨ψn⃗|ψm⃗⟩in where
g is the coupling of the operator O in the Lagrangian.
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Re z

Im z

−δ

FLx(m⃗, z)
(z + δ)n+1

Figure 2: Analytic structure of FLx(m⃗, z)/(z + δ)n+1 in the complex z plane
of momentum dilations. We isolate terms of the Taylor expansion in z + δ by
integrating on a small contour around z = −δ, before taking δ → 0. This small
contour is then deformed towards infinity, thereby capturing the discontinuities
and residues of the form factor on the positive real axis.

complex momentum dilation (2), away from the physical z = 1+iϵ configuration. Since all
external particles are outgoing, the Mandelstam invariants are all positive, sI ≥ 0. This
ensures that all the form-factor singularities on the physical sheet of the complex z plane
are confined to the positive real axis (see e.g. [62]). The discontinuity across the z ≥ 0
branch cut is then given by the sum of the physical discontinuities in each Mandelstam
invariant:

Disc
z
FO(m⃗; z) =

∑
I

Disc
sI

FO(m⃗; z) , (12)

where I is an unordered subset of external particles. The discontinuity across a mI -
particle cut is given by the product of form-factors and amplitudes (at lower loop order, in
perturbation theory), integrated over the appropriate Lorentz-invariant phase space [92]:

Disc
sI

FO(m⃗; 1 + iϵ) = i
∑
X

(−1)mX

SX

∫
dLIPSX FO(m⃗Ī , m⃗X ; 1 − iϵ)A(m⃗X → m⃗I) , (13)

where the sum runs over all possible sets of internal states of mX particles in the cut
and where the external state is partitioned as m⃗ = {m⃗I , m⃗Ī}. Similarly, the residues are
directly related to the physical residues appearing in Mandelstam invariants:

Res
z=M2

I /sI

FO(m⃗; z) = 1
sI

Res
sI=M2

I

FO(m⃗; 1)
∣∣∣∣
sJ →sJ M2

I /sI

, (14)

which are given by the factorisation onto lower-point form factors and amplitudes:

Res
sI=M2

I

FO(m⃗; 1 + iϵ) = −
∑
X

FO(m⃗Ī , X; 1 − iϵ)A(X → m⃗I) , (15)

where the sum is over all possible one-particle state exchanges.
In z-space, the identification between the UV and IR theories can be imposed within

the smallest |z| < M2
I /sI radius. To avoid possible singularities at z = 0, we formally

perform our power-by-power matching of the form factors expanded around z = −δ for a
small δ > 0, where analyticity is guaranteed. Our matching condition therefore becomes:

PIR
n (m⃗) = PUV

n (m⃗)

with Px
n(m⃗) ≡ lim

δ→0
Res

z=−δ

FLx(m⃗, z)
(z + δ)n+1 = lim

δ→0

1
2πi

∮
−δ

dz
(z + δ)n+1FLx(m⃗, z) .

(16)
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The contour integral can then be deformed towards |z| → ∞ as in Figure 2, which captures
the non-trivial analytic structure of FLIR(m⃗; z) and FLUV(m⃗; z) along the positive real axis.

On the IR side of this matching condition (16), we obtain

PIR
n (m⃗) = + 1

2πi

∫ ∞

0

dz
(z + δ)n+1 Disc

z
FLIR(m⃗; z)

− 1
δn+1 Res

z=0
FLIR(m⃗; z)

− Res
z=∞

FLIR(m⃗; z)
zn+1 ,

(17)

where the δ → 0 limit is understood. It is particularly advantageous to regulate all
divergences using dimensional regularisation. Contributions from the discontinuities then
become scaleless integrals in z and vanish. The loop contributions to the residue at infinity
similarly vanish: the residue at infinity is tree-level exact. Indeed, as the IR theory has no
mass scale, the dilated form factor is a sum of terms each homogenous in z. In d = 4 − 2ϵ
dimensions, the integrands in both cases have a zα−ϵ form for some integer α and therefore
vanish for a suitable choice of dimensional regularisation parameter ϵ. A more detailed
discussion is provided in Appendix B. Therefore, the residue at infinity of the full form
factor is that of the tree-level one, which can in turn be identified with the one at z = 0
since there is no other non-analyticity at tree level:

− Res
z=∞

FLIR(m⃗; z)
zn+1 = − Res

z=∞

F tree
LIR

(m⃗; z)
zn+1 = +Res

z=0

F tree
LIR

(m⃗; z)
zn+1 . (18)

So (17) simplifies to

PIR
n (m⃗) = − 1

δn+1 Res
z=0

FLIR(m⃗; z) + Res
z=0

F tree
LIR

(m⃗; z)
zn+1 . (19)

Let us now consider the UV side of the matching condition (16). Again, we express
the residue at z = −δ as a small contour integral subsequently deformed towards |z| → ∞
as in Figure 2, which captures the non-analyticities of FLUV(m⃗; z):

PUV
n (m⃗) = −

∑
I

(
sI

M2
I

)n+1
Res

z=M2
I /sI

FLUV(m⃗; z)

+ 1
2πi

∫ ∞

0

dz
zn+1 Disc

z
FLUV(m⃗; z)

− 1
δn+1 Res

z=0
FLUV(m⃗; z)

− Res
z=∞

FLUV(m⃗; z)
zn+1 ,

(20)

where the δ → 0 limit is still understood. Possible non-analyticities are poles and branch
points at z = M2

I /sI generated by massive tree propagator and loop cuts, a massless tree
propagator pole and loop branch point at z = 0, and a pole at infinity. The δ → 0 limit of
the z ≥ 0 discontinuity integral is by definition singular, but the associated singularities
can be traded for singularities in the IR regulator as δ is taken to zero. More details are
provided in Appendix B. The residue at z = 0 is the only term in which a δ dependence
remains. As it is generated by massless IR poles, it however cancels against the analogous
term in the IR part of the matching in (19). The residue at infinity is again tree-level
exact, as the z integral is again scaleless in the |z| → ∞ limit (see Appendix B).

Imposing the matching condition PIR
n (m⃗) = PUV

n (m⃗) and cancelling the 1/δn+1 terms
between the UV and the IR, one can therefore extract each term of the tree-level expansion
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of the IR form factor from the non-analyticities of the UV form factor:

Res
z=0

F tree
LIR

(m⃗; z)
zn+1 = −

∑
I

(
sI

M2
I

)n+1
Res

z=M2
I /sI

FLUV(m⃗; z)

+ 1
2πi

∫ ∞

0

dz
zn+1 Disc

z
FLUV(m⃗; z)

− Res
z=∞

F tree
LUV

(m⃗; z)
zn+1 .

(21)

We emphasise that, combining the analytic properties of the form factors and dimensional
regularisation, we managed to isolate the tree-level IR form factor, bypassing the subtrac-
tion of IR loops (which contribute to the renormalisation-group running). Note that our
master formula (21) is also valid for n negative, in which case the factorisable components
of the tree-level form factor (having poles at z = 0) are also extracted from the UV. In
practice, both sides of (21) however vanish identically, providing no matching information,
unless

n ≥ p for p ≡
min

{
d−m

(
d
2 − 1

)
− [cIR]

}
2 (22)

where d is the space-time dimension and [cIR] is the total mass dimension of the cou-
plings appearing in the IR form factor. The full tree-level IR form factor can thus be
reconstructed from the sum of (21) over n:

F tree
LIR (m⃗) =

∞∑
n=p

Res
z=0

F tree
LIR

(m⃗; z)
zn+1 . (23)

The residue at infinity is scarcely needed. Dimensional analysis implies that it vanishes
unless n ≤ min(d−m (d/2 − 1)− [cUV])/2. Since couplings in the IR are moreover at most
as relevant as those in the UV (max[cIR] ≤ max[cUV]), a residue at infinity is thus only
necessary if the two inequalities on n (i.e. max[cIR] ≥ d−m (d/2 − 1)−2n ≥ max[cUV]) can
be saturated simultaneously. The fact that only the most relevant UV couplings matter
also implies that the residue at infinity can be obtained from the massless limit of the UV
theory, in particular if it is renormalisable (assuming that such limit is well-defined).4

The formula (21) above constitutes the main result of this paper. It refines the argu-
ment of [87] that one-loop rational terms are not relevant for the matching at four points.
Indeed, the z discontinuity of these terms only arises in non-integer dimensions, from a
zϵ dependence, and vanish in the ϵ → 0 limit. On the other hand, for higher-point loop
amplitudes, rational terms may give additional contributions to the pole residues of FLUV

and thus contribute to the matching.
Remarkably, this matching procedure, combined with a purely on-shell construction of

the full IR amplitude, does not require the specification of an EFT operator basis. Unless
Wilson coefficients defined from a Lagrangian are desired, no information about the IR is
actually needed and all matching information is extracted from the UV alone. The full
UV amplitude is not even required since only lower-point factorisations and lower-loop
cuts are necessary. If present, the residue at infinity only needs to be evaluated at tree
level and in the high-energy limit. Matching is thus expressed in terms of simpler building

4Note that the contributions from the arc at infinity comes purely from the UV, contrary to the case
of positivity bounds from 2 → 2 scattering amplitudes where one can have high-energy scattering and
small scattering angle (large distance). Indeed, we are in the physical kinematic configuration for which
q2 = s+ t+ u > 0 and s ∼ t ∼ u.
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block which may also allow to uncover new patterns and selection rules in the EFT of UV
models.

Finally, as a by-product of our analysis, we have also generalised the method of [62]
for computing anomalous dimensions from S-matrix elements with internal massive states
(see Appendix A). The decoupling of heavy modes in the renormalisable group evolution
is manifest within this framework.

4 Scalar working example

In this section, we study the matching of a toy scalar UV model using our central formula
(21). This scalar theory exhibits all the singularity structures (coming from Feynman
integrals) potentially appearing in our matching procedure. Additional subtleties arising
from spinors (e.g. evanescent operators) and tensor structures (e.g. gauge and gravitational
theories) will be discussed elsewhere.

This toy scalar theory features a single heavy scalar Φ of mass M to be integrated out,
and a massless ϕ which remains dynamical in the low-energy EFT. It is defined by the
following Lagrangian:

LUV = 1
2∂µϕ∂

µϕ+ 1
2∂µΦ∂

µΦ− 1
2M

2Φ2 − λ

4!ϕ
4 − g3

2!Φϕ
2 − g4

3!Φϕ
3 . (24)

Radiative corrections will generate a ϕ3 term (for example, at order g3g4) because the g4
interaction breaks the Z2 symmetry of ϕ. In the following, we however focus on higher-
point interactions for which we can take the momentum influx of form factors to zero
(q → 0) and effectively consider amplitudes in different channels, after crossing.

Tree-level four points Let us start with the four-ϕ tree-level amplitude:

j

i λ g3 g3
. (25)

Although we do not need to write them down explicitly when proceeding on-shell, let us
give the UV amplitude and the expected form of the IR one:

Atree
UV,4 = λ−

∑
s,t,u

g2
3

sij −M2 , (26)

Atree
IR,4 = λ+

∞∑
n=0

g2
3

cn

M2n+2 (sn + tn + un) , (27)

where cn are the Wilson coefficients to be determined.
In this tree-level example, only the residues appearing in the master formula (21) need

to be evaluated. The massive propagator gives rise to poles at z = M2/sij (for sij = s, t, u)
whose residues are just the product of two A(ϕϕΦ) = g3 amplitudes:

Atree,(0)
IR,4 ⊃ −

∑
sij=s,t,u

Res
z= M2

sij

Âtree
UV,4(z)
zn+1 =

∑
z= M2

s,t,u

A(ϕϕΦ)2

M2zn
= g2

3
M2n+2 (sn + tn + un) , (28)

which implies that cn = 1. Note that in a scalar theory, −p defined in (22) equivalently
counts the number of massless propagators. Since no massless propagator is present in
this case (i.e. p = 0), one only needs to consider n ≥ 0.
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For completeness, note that the residue at infinity yields the extra quartic coupling
dependence of the n = 0 term of Atree,(0)

IR,4 expansion:

Atree,(0)
IR,4 ⊃ − Res

z=∞

Âtree
UV,4(z)
z

= λ . (29)

Tree-level six points Let us now go to six points, still at the tree level. UV amplitude
topologies (the last one was already examined in Section 2) are:

k

j
i λ λ

j

i

k
g3 g3

λ

k

j
i g4 g4

, (30)

where we ignore a g4
3 contribution, for simplicity. The second and third topologies generate

residues at z = M2/sij and M2/sijk which are picked up in our matching formula, giving:

Atree,(0)
IR,6 ⊃

∑
20 (ijk) perm.

− 1
sijk

λg2
3

M2
sn+1

ij + sn+1
jk + sn+1

ki

M2n+2 and
∑

20 (ijk) perm.

1
2
g2

4
M2

(
sijk

M2

)n

.

(31)
In the first case, only n ≥ min(−2 − 2[ ])/2 = −1 is needed, while in the second case
n ≥ min(−2 − [ ])/2 = 0 is sufficient.

The first topology in (30) only generates a renormalisable contribution which appears
as a residue at infinity for n = min(−2 − 2[ ])/2 = −1:

Atree,(0)
IR,6 ⊃

∑
20 (ijk) perm.

−1
2
λ2

sijk
. (32)

As in the second part of (31), a symmetry factor of 1/2 is included since only half of the
(ijk) permutations are independent.

One-loop four points At the one-loop level, the four-point topologies are the following:

j

i
g4 g4

j

i

λ
g3

g3 j

i

λ

g3

g3

, (33)

ignoring again terms of order g4
3, for simplicity.

The first one was considered already in Section 2. Let us re-examine it in d dimensions,
to be able to also extract its n = 0 renormalisable component which diverges in four
dimensions. In the first line of (9), we thus need to evaluate the d-dimensional phase-
space integral: ∫

dLIPSd =
∫ ddl

(2π)d−2 δ
+(l2 −M2) δ+((pi + pj − l)2) ,

= 1
(16π)1−ϵ

s−ϵ
ij

Γ [3
2 − ϵ]

(
1 − M2

sij

)1−2ϵ

,

(34)

with δ+(l2 − m2) ≡ θ(l0) δ(l2 − m2). After dilation and integration over the branch cut,
one then gets:∫ ∞

M2
sij

dz
zn+1

∫
dLIPSd =

(
sij

M2

)n √
π Γ [2 − 2ϵ]Γ [n+ ϵ]

(16π)1−ϵ Γ [3
2 − ϵ]Γ [n+ 2 − ϵ]

M−2ϵ , (35)
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which leads to the result obtained in Section 2:

Atree,(1)
IR,4 ⊃ g2

3
16π2n(n+ 1)

(
sij

M2

)n

(36)

in the four-dimensional limit and for n > 0. For n = 0, one gets

Atree,(1)
IR,4 ⊃ g2

3
16π2

(
1
ϵ̄

+ log µ2

M2 + 1
)

where 1
ϵ̄

≡ 1
ϵ

− γE + log 4π . (37)

The UV divergence can be cancelled by a quartic coupling counterterm, and it is easy to
check that the results above match those obtained from the hard-region expansion of the
loop integral.

The second and third topologies in (33) give rise to branch cuts extending down to
z = 0. The second topology also generates a residue at z = M2/sij , proportional to a
bubble loop function. Together with the integral along the discontinuity of the bubble
and triangle loops, we thus obtain:

Atree,(1)
IR,4 ⊃ + λg2

3
sn

ij

M2n+2B(M2 − iϵ; 0, 0)

+ λg2
3

2π

∫ ∞

0

dz
zn+1

−1
zsij −M2 + iϵ

∫
dLIPSd

+ λg2
3

2π

∫ ∞

0

dz
zn+1

∫
dLIPSd

(
− 1

(l −
√
zpi)2 −M2 − 1

(l −
√
zpj)2 −M2

) (38)

where a factor of 2 × 1/2 arising from the exchange of initial and final states and from
the Bose symmetry of the light scalars in the loop is understood. The massless bubble
integral B(P 2; 0, 0) is:

B(P 2; 0, 0) = − π
d
2 (−P 2) d

2 −2

(4π)d− 3
2 sin πd

2 Γ
[

d−1
2

] , (39)

and the M2 − iϵ prescription is fixed by the position of the z = M2/s − iϵ pole. The
on-shell integration measure can be parametrised as

ddl δ+(l2) = dl0 θ(l0) δ((l0)2 − l2) dl ld−2dcos θ (sin θ)d−4 2πd/2−1

Γ [d
2 − 1]

, (40)

with lµ = (l0, l Ω⃗d−2, l cos θ) and note that the two contributions in the last line of (38)
are identical. One can explicitly check that the first two lines of (38) add up to zero, i.e.
the residue and the discontinuity of the second diagram in (33) cancel each other. This
should not be a surprise, as the hard-region expansion of the bubble diagram from which
they both originate corresponds to a scaleless integral, as discussed in Appendix B. To
perform the cut-triangle integral, we follow the integration strategy outlined in [93] and
find ∫ ∞

0

dz
zn+1

∫
dLIPSd

1
(l − pi)2 −M2 =

(
sij

M2

)n Md−6

8(4π) d
2 −2

(−1)n+1n! csc πd
2

Γ [d
2 + n]

, (41)

which agrees with the hard-region expansion of the full integral. Then, (38) becomes

Atree,(1)
IR,4 ⊃ λg2

3
16π2M2

(−1)n

n+ 1

(
sij

M2

)n(1
ϵ̄

+Hn+1 + log µ2

M2 + O (ϵ)
)
, (42)
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where Hn ≡
∑n

k=1
1
k are the harmonic numbers. As discussed in Appendix B, the soft-

regions of the bubble and triangle loops (l2 ∼ sij ≪ M2), which encode the renormalisation-
group running of the EFT, do not contribute to our matching formula.

The result (42) exhibits a 1/ϵ pole at any n, which is understood as an IR divergence
associated with the mass of the heavy state in the UV theory. The associated logarithm
does not contribute to the running of the EFT, as shown in Appendix A. Such divergences
however always match UV divergences of opposite sign in the EFT (see, for example, the
reviews [94, 95]). In the present case, this is clear because the full triangle integral is both
UV and IR finite.

Note that the results obtained from the computation of cuts in a single channel may
not be polynomial in Mandelstam invariants as those of (36), (37) and (42). In general,
loops may have discontinuities in multiple channels (e.g. the box appearing in the four-
point matching at order g4

3) giving rise to transcendental functions of ratios of Mandelstam
invariants. Only the sum over all channels is guaranteed to be polynomial and reproduces
the hard-region expansion of the loop integrals.

5 Conclusions

We presented a new method for the matching of UV models onto their massless EFT.
Relying only on on-shell quantities, it avoids the gauge and field-redefinition redundancies
arising in the Lagrangian formalism. A dispersion relation in the space of complex mo-
mentum dilations is applied to form factors and captures the relevant analytic structure
at any multiplicity and for generic kinematics. The IR tree-level amplitudes, which fully
characterise the EFT and can be employed to bootstrap it, are extracted from the residues
and discontinuities of the UV amplitudes regularised dimensionally. Contributions to all
EFT orders are extracted at once. No operator basis or EFT computation is required,
unless Wilson coefficients defined from a Lagrangian are desired. The full UV amplitudes
are not even needed since unitary expresses their non-analyticities in terms of lower-point
and lower-loop results. The possible contribution from a residue at infinity is tree-level
exact, mostly needed to extract renormalisable contributions, and can be computed in the
strict massless limit of a renormalisable UV theory.

The main computational difficulty arises from the evaluation of phase-space integrals
across loop cuts, especially when the loop involves several uncut propagators (cut bubble
are trivial) and masses. Understanding how to introduce the method of regions at the
level of such integrals, drawing inspiration from recent analyses [96–99], could ease such
calculations. On the other hand, our conclusion that no other information than non-
analyticities is needed for EFT matching could also be used to facilitate the computation
at higher orders with traditional techniques.

By expressing matching in terms of simpler lower-point and lower-loop building blocks,
our procedure may shed light on the structure of EFTs obtained from classes of UV models
and make manifest selection rules. Examples of matched Wilson coefficients exhibiting
magic zeros, with no immediate symmetry explanation, have notably been discussed in
the literature recently [87, 100, 101]. Finally, since our method enables the dispersive
extraction of Wilson coefficients appearing in amplitudes of any multiplicity, it may open
the door to the derivation of positivity constraints in scatterings beyond the 2-to-2 case.

12



Re z

Im z

Figure 3: Analytical structure in z of a three-point form factor, with massive
particles in the spectrum of the theory. From left to right, the empty circles
correspond to z = M2/s123 and the three M2/sij . The filled one are located
at z = 4M2/s123 and 4M2/sij . All the sij = 0 and s123 = 0 singularities are
superimposed at z = 0.
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A Renormalisation-group running with intermediate massive states

When considering a generic z, we know that

FO(m⃗; z) = z
D
2 FO(m⃗; 1 + iϵ) , (43)

where D = ∑
i p

µ
i

∂
∂pµ

i
is the dilation operator. Homogeneity in mass dimension5 tells us

that
D = dFO −

∑
i

[gi] gi
∂

∂gi
+Dµ , (44)

where dFO = dimO − m is the mass dimension of the m-point form factor, dimO is the
classical dimension of the operator considered, gi are the couplings of the theory, [gi] their
dimension and

Dµ = −µ ∂

∂µ
, (45)

is also usually referred to as the (anomalous) dilation operator, as it only differs from D
by classical dimensions. The renormalisation scale µ is introduced in dimensional regular-
isation and controls the UV anomalous dimension of the operator (and the IR anomalous
dimensions of the external states) as well as the beta functions of the couplings, through
the Callan-Symanzik equation [102, 103].

In particular, combining equation (43) with unitarity, one finds

FO(m⃗; 1 + iϵ) = e−iπDFO(m⃗; 1 − iϵ) =
∑

n
out⟨ψm⃗|ψn⃗⟩in FO(n⃗; 1 − iϵ) . (46)

5The dimension of the asymptotic states, defined as free-theory states, is fixed and does not run. If
the asymptotic states are not well-defined because of long-range interactions, anomalous IR divergences
appear in the Callan-Symanzik equation.
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In the second equality, the optical theorem was used by introducing a complete set of
on-shell states ψn⃗ (and an integral over the associated phase space is left implicit). This
is the central formula proven in [62], which has found various applications in the com-
putation of SMEFT anomalous dimensions [60, 63, 64, 66] and in the formulation of
non-renormalisation theorems at the two-loop level and beyond [58].

Considering a theory of massive particles and performing a 2π rotation of the form
factor in z-space (see Figure 3), we notice that the right-hand side of (46) now depends
on the kinematic configuration, i.e. on which branch points arise to the left of z = 1
on the real axis. In other words, for a fixed external kinematic configuration, only the
discontinuities from the cuts with branch points at z < 1 contribute to the anomalous
dimension, after modifying equation (44) to include contributions from the mass:

D = dFO −M
∂

∂M
−
∑

i

[gi] gi
∂

∂gi
+Dµ . (47)

We can distinguish two cases:

• If the mass is smaller than the typical energies in the process, i.e. M2 < q2, there
are a finite number of thresholds contributing to the running of the theory, up to
n intermediate massive states such that n2M2 > q2. Beyond that, the loops give
virtual corrections which can be encapsulated into contact interactions. Desirable
configurations to consider are either n2M2 > q2 or n2M2 < sI for all the Mandel-
stam invariants, as otherwise the renormalisation and matching would be process-
dependent and give non-local results. This is a strong version of the requirement to
not have any hierarchy among the external momenta, when performing matching.

• Conversely, if we haveM2 > q2, the heavy states decouples for every observables [104]
and the thresholds do not contribute to the renormalisation group evolution of the
theory [105]. This is equivalent to the (DS) renormalisation scheme [106]. In this
case, the hard regions of the loop integrals are analytic and the discontinuity van-
ishes. Then, only the soft region of integration contributes and the derivative ex-
pansion in ∂2/M2 determines the mixing of the EFT operators.

B Soft loops and arcs at infinity as scaleless integrals

In this appendix, we explain how the loop discontinuities in the EFT and in the soft
region of the UV theory, as well as the loop corrections to the arcs at infinity, are scaleless
integrals within dimensional regularisation and therefore vanish. Explicit examples of such
cancellations are seen in Section 4.

We start from the first term in (17), which can be evaluated for generic values of δ in
terms of an Euler integral:

Iδ = 1
2πi

∫ ∞

0

dz
(z + δ)n+1 Disc

z
Fα
LIR(m⃗; z)

=
∑

I

Disc
sI

Fα
LIR(m⃗)

∣∣∣∣
sJ →−sJ

∫ ∞

0

dz
(z + δ)n+1 (−z)α−ϵ

=
∑

I

Disc
sI

Fα
LIR(m⃗)

∣∣∣∣
sJ →−sJ

Γ [α− ϵ+ 1] Γ [α+ n+ ϵ]
Γ [n+ 1] δα−n−ϵ ,

(48)

where FLIR(m⃗; z) = ∑
α cαF

α
LIR

(m⃗; z), cα are collections of couplings with fixed mass di-
mension and α is the corresponding mass dimension of the kinematic part of the form
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factor. In particular, we notice that the integral has a branch point at δ = 0, as expected
from the pinching of the contour of integration by the pole of the integrand at z = −δ
and the branch point at z = 0. A suitable choice of ϵ makes the δ → 0 limit finite and
vanishing. We can thus take the defining values of limδ→0 Iδ = 0 and analytically continue
to ϵ ∼ 0 in the complex plane to circumvent the poles generated by the Γ -functions on the
real axis. An alternative approach is to split the integral on the second line of (48) into
two pieces: from 0 to Λ and from Λ to +∞. A suitable choice of the regulator (different
for each integral) makes the two terms finite and equal up to an overall sign. Analytically
continuing in ϵ, their sum does not depend on Λ and is vanishing.

A similar fate is shared by the soft-region contributions of the UV integrals with a
branch cut starting at z = 0. This is clear from dimensional analysis, once we analyse
the integrals using the method of regions. In the soft region, the loop momenta are of the
order of the external momenta and much smaller than the heavy mass

l2 ∼ sI ≪ M2 . (49)
We can thus perform a Taylor expansion of the loop integrand in inverse powers of the
heavy mass. After integration over loop momenta, each term of the expansion involves
(dynamical) transcendental functions which depend of the ratio of Mandelstam invariants
(which are all equally rescaled by z) and a kinematic factor which carries the transcen-
dental dimensionality of the dimensionally regularised integral. The latter include all the
z dependence and is proportional to zk−ϵ (where k ∈ N). The z integral along the branch
cut is thus scaleless, and hence vanishing. We emphasise that such contributions, before
integrating over z, determine the anomalous dimensions.

This does not mean that the loops with branch cuts starting at z = 0 in the UV theory
do not contribute to the matching because the heavy mass introduces a new scale in the
Feynman integrals. In the hard region characterised by

sI ≪ l2 ∼ M2 , (50)
the loop integrand can be expanded in powers of the external momenta. The transcen-
dental dimension of the amplitude in this region is carried by the heavy-mass M−2ϵ and
the z integral is not scaleless.

Then, equation (19) is strictly correct under two assumptions: there is no non-dynamical
mass scale in the IR theory6 (i.e. all the states are massless) and dimensional regularisa-
tion is employed. Relaxing any of these two assumptions restores the contributions from
the EFT loops:

PIR
n (m⃗) ⊃ 1

2πi

∫ ∞

0

dz
zn+1 Disc

z
FLIR(m⃗; z) , (51)

which would then cancel against additional contributions in the UV.
Similarly, we can show that the loop contribution from the arc at infinity vanishes

in dimensional regularisation (see e.g. [107]). The form factor is a sum of terms each
homogeneous in z in this |z| → ∞ limit. This is true even before the |z| → ∞ limit for the
massless EFT, while for the UV theory, it occurs after expanding in powers of M2

I /zsI .
Then, the loop contributions regulated dimensionally give rise to integrals of the form:

Res
z=∞

F loop, α
L (m⃗; z)
zn+1 = lim

sij/M2
ij→∞

F loop, α
L (m⃗)

∣∣∣∣∣
sJ →−sJ

1
2πi

∮
∞

dz
(−z)n+1−α+ϵ

,

∝ lim
r→∞

1
rα+n+ϵ

,

(52)

6The integrals are not scaleless with dimensionful regularisation parameters or for EFTs with light
massive states. Moreover, in the latter case we should be aware of the possibility of having anomalous
thresholds in the z complex plane. We leave this analysis for future investigation and limit ourselves to
the study of massless EFTs.
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where ϵ must be chosen carefully to make such integral convergent, which is then vanishing.
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