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Abstract

In this paper, we present a new method to efficiently generate jets in High Energy Physics
called PC-JeDi. This method utilises score-based diffusion models in conjunction with
transformers which are well suited to the task of generating jets as particle clouds due to
their permutation equivariance. PC-JeDi achieves competitive performance with current
state-of-the-art methods across several metrics that evaluate the quality of the generated
jets. Although slower than other models, due to the large number of forward passes re-
quired by diffusion models, it is still substantially faster than traditional detailed simu-
lation. Furthermore, PC-JeDi uses conditional generation to produce jets with a desired
mass and transverse momentum for two different particles, top quarks and gluons.
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1 Introduction

In high energy physics (HEP) experiments operating at the energy and intensity frontier, such
as the ATLAS and CMS experiments [1, 2], simulated proton-proton collision events play a
crucial role in precision measurements and searches for new physics phenomena. One of the
current challenges posed by the increasing data collected by these experiments is the required
computing resources for detailed simulated collisions. As a result, attention has turned to
the use of fast surrogate models to reduce the computational cost of both event and detector
simulation.

An object of particular interest at hadron colliders are jets. Jets are reconstructed from the
collimated shower of particles resulting from the hadronisation of a quark or gluon produced
in collisions, and are one of the most computationally intensive objects to simulate. These jets
are captured by particle detectors and are studied in detail as they carry information about
the particle which initiated the jet and the underlying physics of the hadronisation process.
In recent years, state-of-the-art algorithms for studying jets rely on highly accurate modelling
of their internal structure and extensively use machine learning (see Refs. [3, 4]). As such,
any fast surrogate model needs to be able to accurately reproduce the complex and stochastic
substructure observed in jets.

In this work we introduce a novel method for generating jets as particle clouds using trans-
formers trained to reverse a diffusion process, which we call PC-JeDi (Particle Cloud Jets with
Diffusion). With PC-JeDi we can generate new jets by first sampling noise for the momenta of
a set number of constituent particles, and applying subsequent denoising operations. We train
two PC-JeDi models to generate jets with large transverse momentum arising from two vastly
different elementary particles, top quarks and gluons. We evaluate the performance using a
variety of metrics used by previous approaches, and in addition look at the ability to capture
the distributions of commonly used substructure observables.

2 Related work

Fast surrogate and supplementary models have been an important area of study for particle
physics experiments operating at the energy and intensity frontier [5–7]. Detailed simulation
of both particle interactions as well as the detector response to incoming particles represents a
significant computational cost and many approaches are considered to supplement or replace
traditional methods.

Parametrised models have been studied as replacements for expensive Monte Carlo (MC)
simulation and detailed detector simulation, but in recent years deep generative models using

2



SciPost Physics Submission

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalising
Flows have been used for detector simulation [8–18], event simulation [19–30], and the gener-
ation of jet constituents [31,32]. Typically the particles and particle showers generated in these
approaches are represented by images or ordered vectors, and as such are not preserve permu-
tation invariance. Recently, instead of representing data as a structured grid or vector, point
clouds have been used to represent the data for generating jets in particle detectors [33–36],
which present a more natural way of describing the underlying processes.

Outside of HEP, diffusion and score-based models have recently been shown to achieve
state-of-the-art performance [37–40], and these have now been applied to detector simula-
tion [41] in high energy physics on image based representations. However, as yet they have
not been applied to point cloud generation in HEP, despite success in other fields such as pro-
tein and molecular generation [42,43].

In this work, both point cloud representation of jets and diffusion models are combined
to generate jets. Comparisons of performance are made between PC-JeDi and the MPGAN
approach introduced in Ref. [33]. Both methods are trained on the same dataset, however in
comparison to MPGAN, message passing graph layers are replaced with transformers and the
GAN is replaced by a diffusion model.

3 Generative diffusion models

Generative Diffusion Models are a broad family of probabilistic models which learn to reverse
a process in which data is progressively perturbed by the injection of noise. In the past cou-
ple of years these models have been very successful in image generation, overtaking GANs
in generation fidelity [37, 44]. One of the major strengths of diffusion models are the stabil-
ity of the training process, especially in comparison to GANs. The diffusion process can be
described in the context of score matching [45, 46], where the training objective is to model
the so-called score function of the data [47]. In the limit of an infinitesimal time step, the
perturbation and denoising operations can be framed as solutions to a stochastic differential
equation (SDE) [38].

We construct the forward diffusion process {x t}1t=0 of a variable x ∈ Rd , indexed by a
continuous time variable t ∈ [0,1]. The boundary conditions are chosen such that at the start
of the process points are drawn from the independently and identically distributed data distri-
bution x (t = 0)∼ pdata, while the final points follow some prior distribution x (t = 1)∼ pprior,
which is chosen to be a multivariate standard normal distribution. We also denote p(x t) as the
probability density of x t at any point in time t. The forward diffusion process can be modelled
as the solution to the SDE

dx t = f (x t , t)dt + g(t)dw, (1)

where f (x t , t) : Rd+1 → Rd and g(t) : R→ R are the diffusion and drift coefficients respec-
tively, dt represents an infinitesimal time step, and dw is the differential of a standard Wiener
process (Brownian motion).

If f (x t , t) is chosen to be an affine transformation of x t , then the perturbation kernel
of the SDE is a Gaussian distribution [48]. In this work, we set f (x t , t) := −1

2β(t)x t and
g(t) :=
p

β(t), following the variance preserving SDE [38]. This also corresponds the contin-
uous generalisation of the Denoising Diffusion Probabilistic Model [44]. Here, β(t) represents
the strength of the Gaussian perturbation kernel at each stage of the diffusion process, giving

dx t = −
1
2
β(t)x t dt +
Æ

β(t)dw . (2)

Typically, β(t = 0) = 0 and is a monotonically increasing function.

3



SciPost Physics Submission

New samples following x (t = 0) ∼ pdata can be generated by drawing from the prior and
reversing the entire diffusion process. This relies on the fact that for any diffusion SDE of the
form in Eq. (2), the reverse process is also an SDE [49] given by

dx t = −
1
2
β(t)
�

x t + 2∇x t
log p(x t)
�

dt +
Æ

β(t)dw̄, (3)

where dw̄ is the differential Wiener process when reversing the flow of time. The∇x t
log p(x t)

term is referred to as the score function [47]. It is the gradient of the log-probability of the
diffused data. The solution for the reverse SDE has the same marginal probabilities p(x t)
as the forward SDE. Alternatively, instead of generating new samples using the reverse SDE,
there exists a deterministic ordinary differential equation (ODE) which preserves p(x t). This
is called the probability-flow ODE [38], and is given by

dx t = −
1
2
β(t)
�

x t +∇x t
log p(x t)
�

dt. (4)

For a given choice of β(t), the only unknown term in either differential equation is the
score function ∇x t

log p(x t). If the score function can be determined, it is possible to gener-
ate samples under pdata by first sampling from pprior and using either the reverse SDE or the
probability-flow ODE in combination with either annealed Langevin dynamics [45], numerical
SDE solvers [38,50], or numerical ODE solvers [39,51–53].

3.1 Modelling the score function

Although the score function may not be well-defined, it is possible to learn an approximation
from data using a parametrised model known as a score-based model [45]. This is often a time
conditional neural network sθ (x t , t)≈∇x t

log p(x t) with parameters θ , and it can be trained
using the denoising score matching objective [54–56]. The training loss is defined by first
decomposing the expectation over the perturbed data density p(x t) = p(x 0)p(x t |x 0) and by
conditioning the score function on the original data∇x t

log p(x t |x 0). This conditional density
can be defined through the Gaussian perturbation kernel p(x t |x 0) = N (x t ;γ(t)x 0,σ(t)2 I),
where γ(t) and σ(t) are referred to as the signal rate and the noise rate respectively, and are
related to β(t) by

γ(t) = exp

�

−
1
2

∫ t

0

β(s)ds

�

and σ(t)2 = 1− exp

�

−
∫ t

0

β(s)ds

�

. (5)

As with Ref. [39, 57], we choose to define γ(t) and σ(t) directly, and then derive a form
for β(t). For the signal and noise rates we use a variant of the cosine diffusion schedule from
Ref. [57] but with a slight change in parameterization for the variance preserving SDE. We
define a maximum and a minimum signal rate, σmax and σmin, and use them to define the
schedules with

λa = arccos(σmax), (6)

λb = arccos(σmin), (7)

γ(t) = cos
�

λa + t(λb −λa)
�

, (8)

σ(t) = sin
�

λa + t(λb −λa)
�

. (9)

We find the best results with σmax = 0.999 and σmin = 0.02. Since σmax ≈ 1, we can use a
simple approximation for β(t), with

β(t)≈ 2(λb −λa) tan
�

λa + t(λb −λa)
�

. (10)
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We can sample from p(x t |x 0) using the re-parametrisation trick x t = γ(t)x 0 + σ(t)ε,
where ε∼N (0, I), and we can easily take the gradient of its logarithm leading to a tractable
expression for the conditional score function ∇x t

log p(x t |x 0) = −ε/σ(t). Using this, the
optimization problem becomes

min
θ
Et∼U(0,1)Ex 0∼p(x 0)Eε∼N (0,I)

1
σ(t)2

∥ε̂θ (x t , t)− ε∥2, (11)

where ε̂θ (x t , t) = −σ(t)sθ (x t , t) is a re-parametrization of the score-based model.
One major drawback of this optimisation process is that the σ(t)2 in the denominator

causes the loss to explode as σ(t) → 0. Loss reweighing schemes [39] introduce a positive
scalar weight λ(t) in front of the training objective and have been found to improve the quality
of generation. Setting λ(t) = σ(t)2 cancels out the term in the denominator, and the increased
stabilisation leads to good perceptual quality in image generation. On the other hand, setting
λ(t) = β(t) corresponds to training the model to maximize the log-likelihood of the data
through the negative evidence lower bound, but training still suffers from instability issues.
Our training objective uses a sum of these two terms with a relative weight hyperparameter
α [57].

Extending score-based models to conditional generative models can be performed by pro-
viding some conditional vector y to the score-based model and sampling from the joint distri-
bution of the data during training. Our final training objective is therefore given by

min
θ
Et∼U(0,1)Ex 0,y∼p(x 0,y)Eε∼N (0,I)

�

1+α
β(t)2

σ(t)2

�

∥ε̂θ (x t , t, y)− ε∥2. (12)

In practice we find that using Huber loss instead of the Frobenius norm results in faster
training and better generation quality. We performed a scan over α from 10−4 to 10−2 and
found the best generative performance with α= 10−3.

Thus, the neural network we use for the score function ε̂θ (x t , t, y) is trained to predict the
noise that has been introduced to produce the diffused data x t . This prediction is calculated
for a given time t ∈ [0,1] in the diffusion process and additional contextual information y
relating to the jet.

4 Generating jets with diffusion

In high energy collisions of protons at colliders such as the LHC, quarks and gluons (partons)
are produced in large quantities and from a wide range of processes. Partons cannot exist as
free states due to colour confinement, and instead radiate other partons before hadronising
into a shower of colour neutral hadrons. These collimated showers of hadrons subsequently
interact with the detector material, leaving signatures of electrically charged and neutral par-
ticles within a cone originating from the interaction point. After a clustering process, these
showers are reconstructed into single objects called jets. Due to the high multiplicity of parti-
cles, the complex and stochastic nature of the development of the shower, and the subsequent
interaction with detector material, jets are computationally expensive to simulate.

At the LHC, quarks can be produced in the decays of particles such as W/Z bosons, or top
quarks through their decay into a W boson and a b-quark. For the majority of energy scales the
two or three quarks from these decays produce jets which can be individually resolved in the
detector. However, as the momenta of the intermediate particles increase, the decay products
themselves start to collimate resulting in a single large-radius jet in the detector (the so-called
boosted regime). The vast majority of jets, however, are initiated by partons which are not the
decay products of other massive particles (QCD background).
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At the ATLAS and CMS experiments, constituents of jets are reconstructed from the tra-
jectories of charged particles and energy deposits in dedicated calorimeter systems using the
Particle Flow [58] algorithm; they are each represented by a four-momentum vector. These
constituents are clustered into jets using the anti-kt algorithm [59]. Typically, constituents are
clustered with a radius parameter R = 0.4 into small-radius (resolved) jets. However, in this
work we only consider jets in the boosted regime; a radius parameter of R= 0.8 is used.1 The
four-momentum vector of a jet is calculated from the vector sum of its constituents.

4.1 Jet substructure

Properties relating to the distribution of constituents within a jet are known as the substructure
of a jet, which can be used to identify the original seed particle [60]. This is particularly
interesting in the boosted regime, where several partons from the decay of another elementary
particle have overlapping showers.

One commonly used set of observables to describe jet substructure is its N-subjettiness [61],
denoted by τN . These are useful in identifying jets originating from processes with N prongs
as a result of the decay of the initial particle. A jet originating from a gluon is likely to have
a 1-prong substructure, whereas a W/Z boson decay is likely to produce a 2-prong jet, and
a jet originating from the all-hadronic decay of a top quark will tend to be 3-prong. Other
commonly used observables relate to the energy correlation functions of a jet and their ratios,
such as D2 [62, 63].2 A new set of features which have been found to be sensitive to the
underlying substructure of different jet types are the Energy Flow Polynomials (EFPs) [64].

Furthermore, when a seed particle decays, the observed opening angle of the decay prod-
ucts is strongly dependent on its mass and momentum. In jets, this means that the distribution
of constituent properties is strongly correlated to the overall invariant mass and transverse mo-
mentum pT.

Classification approaches applying cuts on the substructure features, as well as machine
learning algorithms trained using such features have been successfully employed in the ATLAS
and CMS collaborations to distinguish jets originating from W bosons (W -jets), top quarks
(top jets), gluons, and light quarks [65,66]. In recent years, more sophisticated classification
algorithms have been trained on the constituents themselves, either represented as ordered
vectors [65–68], images [69–71], or point clouds [72–80] (see Ref. [4] for a review).

These approaches are very sensitive to the substructure of jets originating from different
particles. As such, when using fast surrogate models it is crucial that they accurately capture
the distribution of the constituents within a jet and their correlations to the mass and pT.

4.2 Datasets

In this work we focus on the generation of two classes of jets defined by the particle they
originate from, gluons and top quarks. Gluon-initiated jets are the dominant background in
proton-proton colliders, while boosted top quarks produce jets with rich substructures due
to the nature of their decay. These jet types provide key benchmark datasets to probe the
behaviour of the model, and enable comparisons with other approaches.

For these studies we use the JetNet30 datasets [81] provided by the JetNet v0.2.2 package
introduced in Ref. [33], the same dataset used to train MPGAN. These datasets consist of large-
radius jets simulated in a generic detector at a proton-proton collider with a centre of mass
energy

p
s = 13 TeV. They are selected to have transverse momenta of approximately 1 TeV.

Each jet is described by its 30 leading pT constituents, which are themselves described by their

1This corresponds to the radius parameter used by the CMS collaboration.
2D2 is defined as the ratio of the three-point and cubed two-point energy correlation functions.
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three momentum vectors with coordinates relative to the jet (∆η, ∆φ, pT).3 The relative
pseudorapidity is defined as ∆η= ηconst.−ηjet, and the relative azimuthal angle is defined as
∆φ = φconst. −φjet.

For conditional generation, the combined mass and transverse momentum of the point
cloud (pjet

T , mjet) are provided during training and generation. These observables are calculated
from the four-momentum vectors of the selected jet constituents. As this dataset only uses a
subset of the original jet constituents, the true transverse momentum and invariant mass of
jets with more than 30 constituents are greater than pjet

T and mjet.
4 For a fair comparison to

MPGAN we use the same train and test splits chosen in Ref. [33].

4.3 PC-JeDi architecture and training

PC-JeDi is a conditional score-based diffusion model trained to predict the noise added to a
diffused particle cloud given two conditional properties of the jet, pjet

T and mjet. The choice of
neural network for the score model is open, though a desirable property for the set-to-set map-
ping is permutation equivariance. A wide variety of appropriate neural network architectures
can be used for PC-JeDi including graph neural networks [82] and deep sets [83]. For these
studies, we use attention based transformers [84] which are an efficient and expressive class
of neural networks based on the self-attention mechanism. Their operations are equivariant
under the permutation of the input tokens, which here are the jet constituents represented by
their kinematics.

TE-Block

TE-Block

TE-Block

Dense

Predicted
Noise: 
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Jet 
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Time:
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Figure 1: Diagram of the PC-JeDi training pro-
cedure. Data and noise are mixed together ac-
cording to the signal and noise schedulers. Then
the conditioned model is optimised via a distance
loss between the noise it predicts and the original
noise.

Generated
Constituents

TE-Block

TE-Block
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Encoding

N
orm

aliser

At start of loop

O/SDE
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Predicted
Noise: 

Time:

Conditioning
Variables

Figure 2: Diagram of the PC-JeDi generation pro-
cedure. Random noise is sampled at the begin-
ning of the loop from a standard normal distribu-
tion. Then any chosen integration sampler is iter-
atively applied in order to fully denoise the input
towards actual data, using the conditional model
as a noise predictor.

The model receives three inputs: the set of noise augmented constituents x t , the diffusion
time parameter t, and the conditional variables of the jet y := (pjet

T , mjet). The constituents are
represented by their relative coordinates and absolute pT values x t := (∆η,∆φ, log(pT + 1)).

3Jets with fewer than 30 constituents are zero-padded and a binary mask is provided in order to identify them.
4For application as a fast surrogate model, the pT and mjet calculated from all constituents would be used, and

the model would not be restricted to 30 constituents.
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The constituent pT is transformed with a log operation to improve reconstruction of low mo-
menta constituents.

The model is built using several chained Transformer-Encoder (TE) blocks [84], each em-
ploying multi-headed self-attention. An initial dense network is used to embed the input point
cloud into a larger space in order for the self-attention mechanism to be sufficiently expres-
sive. The final dense network reshapes the output tokens back to the original input dimen-
sion. To ensure that the dynamic range of the data is kept within reasonable bounds, the con-
ditional and constituent variables are passed through normalisation layers, which shift and
rescale each variable to zero mean and unit variance, with values calculated from the training
dataset. The diffusion time parameter is passed through a cosine encoding layer, producing an
M -dimensional vector of increasing frequencies v t =

�

cos(e0 tπ), cos(e1 tπ), ..., cos(eM−1 tπ)
�

.
Figure 1 shows the model and information flow during the training procedure. During

training, the network learns to predict how much noise has been used to perturb an input jet.
First, jet constituents in the form of a set x and the corresponding jet features y are sampled
from the data. For the noise, an equal sized set of points ε are sampled from a standard
normal distribution, and a diffusion time t ∼ U(0,1) is sampled from a uniform distribution.
To get the perturbed input x t = γ(t) x +σ(t)ε, a weighted sum of the jet constituents and
the noise is computed using the time-dependent signal and noise scales, γ(t) and σ(t). This
perturbed point cloud is passed to the network along with the conditional information and the
encoded time vector to get a prediction of the initial noise ε̂θ . A distance measure between
this prediction noise and the true noise is used as the objective function to train the network.

To generate new sets of jet constituents, the trained network is used to iteratively denoise
a point cloud that has been sampled from a standard normal distribution. This procedure is
shown in Fig. 2. First, the diffusion time is set to t = 1, the input point cloud is sampled from
a standard normal distribution x t=1 ∼N (0, 1), and the desired jet properties y are chosen. As
before, the model attempts to predict the noise component of x t . This output is used to model
the score-function of the data, which is needed by the integration solver to update x t for a
small negative time step∆t. The whole procedure is repeated until the diffusion time reaches
t = 0. The resulting output of the integration sampler x t=0 corresponds the fully generated
set of constituents, given the chosen jet features. Both the training and generation procedures
are summarised in Appendix A.

It is worth noting that the network, the training procedure, and choice of integration
method are independent pieces of the whole implementation. This leads to several advan-
tages. First, the solver can be selected after the training procedure is completed. This allows
for some level of optimisation and fine-tuning of the method without retraining the network.
Furthermore, as new solvers are developed, the existing trained network can still be used.
Second, the score-based training method can be used to train any network architecture for
predicting the noise, not just the transformer we present here.

In PC-JeDi separate networks are trained to generate either top quark or gluon jets for the
chosen transverse momentum and invariant mass. The hyperparameters for the model and
training setup are discussed in Appendix B, and the PC-JeDi source code is publicly available.5

4.4 Evaluation metrics

To evaluate the performance of PC-JeDi we use the same set of measures as introduced in
Ref. [33]. These include the distribution over reconstructed jet masses, the inclusive marginals
over constituent four momenta, and the average values of a subset of EFPs. As an extension to
these measures, we also look at the leading, sub-leading and sub-sub-leading constituent four
momenta of each jet, ordered in decreasing pT.

5https://github.com/rodem-hep/PC-JeDi
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In addition to the observables studied in Ref. [33], we also look at the jet N -subjettiness
ratios τ32 and τ21 distributions (τi j = τi/τ j) and the energy correlation function ratio D2
distributions. These observables are commonly used for the identification of top jets, and they
are strongly linked to the invariance mass and transverse momentum of the jets. We look at
the two-dimensional marginals of these distributions and the invariant mass of the jet in order
to observe whether the underlying correlations are correctly modelled.

To enable comparison to jets generated with MPGAN, we calculate observables using the
relative pT of constituents with respect to the jet. It is defined as pT/p

jet
T per constituent. We

denote kinematic and substructure observables calculated using prel
T in place of pT with the

superscript ‘rel’. This alters the scale of the resulting observable but tests the same underlying
physics. For the N -subjettinness ratios, the scale effects cancel.

As a quantitative measure we calculate the distributional distances between the MC and
generated jets using the averaged Wasserstein-1 distance metric W1. WM

1 is the distance be-
tween the distributions of the constituents relative mass mrel

j , WP
1 is the average distance be-

tween the distributions of the constituents three momentum (∆η,∆φ, prel
T ), and WEFP

1 is the
average W1 using the first five EFPs. The distances of the N -subjettiness ratios and D2 are
denoted by Wτ32

1 , Wτ21
1 and WD2

1 .
On top of the Wasserstein-1 distance of the distributions, we compute the Fréchet Parti-

cleNet distance (FPND) [33] which compares the mean and standard deviation of the penul-
timate layer of the ParticleNet model for the MC and generated jets [33, 72]. We also look
at the coverage (Cov) and the minimum matching distance (MMD) metrics as described in
Ref. [33].

5 Results

In order to generate jets with PC-JeDi it is first necessary to choose an integration sampler
for using in the generation procedure. The approach of formulating diffusion models as
SDEs/ODEs is still in active development, and there is no clear consensus on the best method
to use. To cover a broad range, we study one approach to solve the SDE in Eq. (3) and two
different methods to solve the ODE in Eq. (4). Additionally, we investigate the impact of a
solver designed specifically for generative diffusion models. However, these do not form an
exhaustive comparison. All approaches use the same trained network.

The Euler-Maruyama (EM) algorithm [85] is used for integrating the SDE, which yields the
exact solution to the reverse SDE. To solve the probability-flow ODE, we examine two solvers:
the standard Euler solver and the fourth-order Runge-Kutta (RK) method [53]. The RK method
is an extension of the Euler method, which considers multiple values of the integrated function
within the integration interval. It emphasises the midpoint value rather than the edges of the
integration step. Finally, we evaluate the DDIM solver [51]. This is a deterministic solver
specifically designed for diffusion generative models. It predicts x 0 directly at each stage of
the reverse process and uses it to define the update. The detailed algorithms for these four
integration samplers are provided in Appendix C.1.

In choosing a solver there is also a trade-off between the quality of the generated samples
and the generation speed. This arises in optimising the number of integration steps. Perform-
ing the integration over more steps requires more forward passes through the network. This
should result in higher quality generated jets, but increases the required generation time. This
trade-off is studied in Appendix C.2.

In the following results, we choose to focus on generation quality rather than speed of
generation. All jets are generated using 200 integration steps and we focus on the DDIM and
EM solvers. Negligible improvement in quality is observed beyond this number of steps, and
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at this point difference between solvers is small. A comparison of all solvers and additional
observables can be found in Appendix D.

5.1 Inclusive generation of jets

First we focus on the inclusive generation of jets following the same pjet
T and mjet distribu-

tions seen during training. This allows us to compare directly to the non-conditional MPGAN
model.6 For these comparisons we calculate the relative transverse momentum (prel

T ) of each
constituent using the full pT of the jet.
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Figure 4: The relative transverse momentum (left) and invariant mass (right) of top jets
generated with MPGAN (orange) and PC-JeDi (DDIM solver, green; EM solver, red) compared
to the MC simulation (shaded blue). Calculated from the leading 30 pT constituents using
the constituent prel

T instead of pT.

We look at the relative transverse momentum prel
T and relative invariant mass mrel

jet of the
reconstructed jet. These observables are calculated from the vector sum of the 30 (leading
in pT) jet constituents using prel

T in place of pT per constituent. These are shown in Figs. 3

6For fair comparisons we use the trained model provided by Ref. [33] and generate an equal number of jets
with both PC-JeDi and MPGAN and evaluate all metrics consistently for both models using the JetNet library
provided with the datasets.
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and 4 for gluon jets and top jets, respectively. The value of pjet, rel
T is not always exactly 1.0

due to selecting only the leading 30 constituents for each jet. However this is the maximum
physical value. All generative models struggle to capture the hard cut off at 1.0 in pjet, rel

T ,
though PC-JeDi with the DDIM solver is closest in agreement. Both PC-JeDi models outperform
MPGAN at reconstructing the top jet prel

T distribution. All three models perform similarly at
reproducing the mrel

jet for both top quarks and gluons.
It is also important that the individual constituents are accurately modelled. In Figs. 5

and 6 we see that the relative transverse momentum of the leading three constituents ordered
by pT are well reproduced by MPGAN and PC-JeDi for both gluon and top jets. However, both
PC-JeDi models show disagreements at low values of transverse momentum for gluon jets.
Here, MPGAN is better able to capture these values. The relative η and φ coordinates of the
constituents are found to be in good agreement with the MC simulation for all three models.
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Figure 5: Distributions of the leading (left), subleading (middle) and third leading (right)
constituent prel

T for the gluon jets generated with MPGAN (orange) and PC-JeDi (DDIM solver,
green; EM solver, red) compared to the MC simulation.
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Figure 6: Distributions of the leading (left), subleading (middle) and third leading (right)
constituent prel

T for the top jets generated with MPGAN (orange) and PC-JeDi (DDIM solver,
green; EM solver, red) compared to the MC simulation.

Finally, we look at the relative τ21, τ32 and D2 substructure observables in Figs. 7 and 8.
Both PC-JeDi and MPGAN are able to capture the D2 distributions, with MPGAN visually show-
ing better agreement. However all three models struggle to capture both τ21 and τ32 for gluon
jets. This is even more apparent for top jets, which have a bi-modal structure in all three ob-
servables.
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Figure 7: Relative substructure distributions τrel
21 (left), τrel

32 (middle) and Drel
2 (right) for

gluon jets generated with MPGAN (orange) and PC-JeDi (DDIM solver, green; EM solver,
red) compared to the MC simulation.
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Figure 8: Relative substructure distributions τrel
21 (left), τrel

32 (middle) and Drel
2 (right) for

top jets generated with MPGAN (orange) and PC-JeDi (DDIM solver, green; EM solver, red)
compared to the MC simulation.

12



SciPost Physics Submission

The performance is compared quantitatively in Table 1 for the metrics introduced in Ref. [33]
and Table 2 for the additional substructure distributions in Figs. 7 and 8. For each metric we
establish an ideal limit by comparing the training and test sets, which corresponds to the nat-
ural variation in the MC samples. Following the procedure defined by Ref. [33] uncertainties
for the Wasserstein based metrics are derived using bootstrap sampling, however we increase
the number of bootstrapped batches from 5 to 40 to reduce the run to run variance. The FPND
metric requires the entire test set and does not use bootsrapping so we do not quote an uncer-
tainty. PC-JeDi beats the current methods for several metrics and is competitive across several
others for both gluon and top jet generation. For top generation PC-JeDi has a notably lower
FPND and WP

1 scores than MPGAN yet performs worse in WM
1 and WEFP

1 . The metrics Cov and
MMD are essentially saturated by all models, as they are in agreement with the upper limit
defined by the natural variation in the MC samples. Some of the values seem to be in tension
with visual inspection. Most notably, WP

1 for gluon jets suggests PC-JeDi with the EM solver
outperforms MPGAN, despite the observed underestimation at low values of prel

T for the three
leading constituent. This shows the importance of studying a wide range of distributions, and
highlights a potential limitation in using aggregated W1 distances. It may also suggest that a
metric more sensitive to the behaviour in tails of distributions could be beneficial, for example
classifier-based weight approaches [86].

Table 1: Comparison of metrics introduced in Ref. [33] for the generated jets. Lower is better
for all metrics except Cov.

Jet Class Model Sampler (steps) FPND WP
1 (×10−3) WEFP

1 (×10−5) WM
1 (×10−3) Cov ↑ MMD (×10−2)

Top

MC - 0.01 0.40 ± 0.13 0.81 ± 0.35 0.32 ± 0.11 0.59 ± 0.02 7.13 ± 0.24
MPGAN - 0.36 2.17 ± 0.20 1.28 ± 0.49 0.64 ± 0.21 0.58 ± 0.02 7.11 ± 0.13

PC-JeDi
DDIM (200) 0.28 1.01 ± 0.11 4.12 ± 0.56 1.48 ± 0.31 0.59 ± 0.15 7.13 ± 0.23
EM (200) 0.15 1.21 ± 0.20 3.56 ± 0.49 1.36 ± 0.32 0.59 ± 0.18 7.11 ± 0.22

Gluon

MC - 0.01 0.41 ± 0.13 0.35 ± 0.12 0.44 ± 0.16 0.55 ± 0.03 3.67 ± 0.22
MPGAN - 0.13 1.03 ± 0.15 0.88 ± 0.24 0.82 ± 0.21 0.53 ± 0.03 3.60 ± 0.30

PC-JeDi
DDIM (200) 0.12 0.66 ± 0.25 0.50 ± 0.09 0.90 ± 0.18 0.54 ± 0.02 3.64 ± 0.27
EM (200) 0.10 0.58 ± 0.14 0.57 ± 0.11 0.57 ± 0.15 0.54 ± 0.01 3.62 ± 0.19

Table 2: Wasserstein-1 distances for substructure observables between the generated jets and
MC simulation, Wτ21

1 , Wτ32
1 , and WD2

1 , and the mean absolute error between the reconstructed
jet mass and transverse momentum and the target conditions MAEM and MAEpT . Lower is
better for all metrics.

Jet Class Model Sampler (steps) Wτ21
1 (×10−3) Wτ32

1 (×10−3) WD2
1 (×10−2) MAEM(×10−2) MAEpT(×10−2)

Top

MC - 2.01 ± 0.74 2.90 ± 1.59 1.23 ± 0.23 - -
MPGAN - 6.61 ± 0.92 17.41 ± 2.78 3.30 ± 0.50 - -

PC-JeDi
DDIM (200) 4.40 ± 1.03 32.04 ± 2.29 2.59 ± 0.41 0.06 0.44
EM (200) 4.55 ± 1.16 16.05 ± 1.31 2.10 ± 0.43 0.19 1.24

Gluon

MC - 3.79 ± 1.42 2.26 ± 0.51 3.93 ± 0.15 - -
MPGAN - 16.83 ± 2.08 25.27 ± 1.29 6.08 ± 0.90 - -

PC-JeDi
DDIM (200) 11.99 ± 1.12 20.38 ± 1.91 11.39 ± 1.42 0.05 0.44
EM (200) 12.48 ± 0.98 13.32 ± 0.96 10.20 ± 1.04 0.10 1.29

Capturing the correlations between jet substructure observables and the jet kinematics is
also a key measure of performance. Cuts on τ32 and D2 are applied to distinguish top jets from
gluon or quark jets in simple cut-based analyses [65, 66], with cut values are often derived
as a function of the jet mass. Similarly τ21 is important in W -jet identification. Figures 9
and 10 show the distributions of these observables alongside the two-dimensional marginals
for PC-JeDi with the EM solver and MPGAN. For gluon jets, PC-JeDi captures the correlations
between features better than MPGAN. For top jets, both MPGAN and PC-JeDi capture the bi-
modal structure of the top jets with MPGAN showing slightly better agreement.
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Figure 9: Mass and relative substructure distributions of the generated gluon jets using the
EM solver for PC-JeDi, and MPGAN. The diagonal consists of the marginals of the distribu-
tions. The off-diagonal elements are the joint distributions of the variables.
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Figure 10: Mass and relative substructure distributions of the generated top jets using the EM
solver for PC-JeDi, and MPGAN. The diagonal consists of the marginals of the distributions.
The off-diagonal elements are the joint distributions of the variables.
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5.2 Uncontained top jets

The bi-modal structure observed in top jets arises from a phenomenon in boosted top jet re-
construction where the stable particles from the b-quark decay are not contained within the
radius of the jet. These top jets are referred to as uncontained top jets, and they exhibit a
2-pronged structure and masses close to the mass of the W boson. This subset of jets is most
visible in the inclusive jet mass distribution in Fig. 4, which shows a notable two peak structure
corresponding to resonant W decay and the full top jet decay.
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Figure 11: Relative substructure distributions τ21 (left), τ32 (middle) and D2 (right) for
uncontained top jets (m j ∈ [60,100] GeV) generated with PC-JeDi (DDIM solver, green; EM
solver, red) compared to the MC simulation.
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Figure 12: Relative substructure distributions τ21 (left), τ32 (middle) and D2 (right) for
contained top jets (m j ∈ [140,200] GeV) generated with PC-JeDi (DDIM solver, green; EM
solver, red) compared to the MC simulation.

In Figs. 11 and 12, we look at the distributions of τ21 and τ32 of jets generated with PC-JeDi
in two mass windows. The first window (m j ∈ [60,100] GeV) corresponds to the W boson
mass peak, in order to select uncontained top jets, and the second (m j ∈ [140, 200] GeV) is at
the top quark mass peak to select fully contained top jets.

The EM solver reproduces the substructure distribution of the two populations fairly well
in the bulk. However, for substructure variables which are strongly dependent on the soft
constituent dynamics, such as τ32 and τ21, there are regions of phase space that deviate from
the nominal. We also see that the DDIM solver performs generally better at these observables
for uncontained top jets, whereas the opposite trend is true for EM. This demonstrates the
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difficulty in choosing the optimal solver, with some better suited to different areas of phase
space.

5.3 Conditional generation

As PC-JeDi is a conditional generation model, it is important to verify that the generated jets
match the target transverse momentum and invariant mass. In Figs. 13 to 16 we compare the
target and generated m30

jet and p30
T for gluon jets and top jets. In all cases, the DDIM solver

shows a more linear correspondence between target and generation. However, in Figs. 15
and 16 we see that the DDIM solver results in off diagonal artefacts following diagonal lines
for the p30

T distribution of both top jets and gluon jets. Nevertheless, these represent a much
smaller fraction of events than the spread observed for EM in the same figures, and is at most
1% of the total number of generated jets for either solver. Furthermore, in Fig. 14 we see that
both the DDIM and EM solvers exhibit an off diagonal spread in the generated top jet mass for
target values corresponding to the W mass peak of uncontained top jets.

We quantify the performance at conditional generation using the mean absolute error (MAE)
between the generated and conditional jet mass and pT values in Table 2.
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Figure 13: Two-dimensional histograms showing the correlation between the conditional and
generated jet mass for the gluon jets using DDIM and EM solvers.
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Figure 14: Two-dimensional histograms showing the correlation between the conditional and
generated jet mass for the top jets using DDIM and EM solvers.
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Figure 15: Two-dimensional histograms showing the correlation between the generated and
conditional jet mass for the top jets using the DDIM and EM solvers.
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Figure 16: Two-dimensional histograms showing the correlation between the generated and
conditional jet pT for the top jets using the DDIM and EM solvers.
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5.4 Timing comparison

To be used as fast surrogate models, the generation time required by a generative model is
a crucial factor. MPGAN only requires one forward pass of the generator network, whereas
PC-JeDi, as a diffusion model, requires several denoising steps. In Table 3 we compare the
time required for one forward pass and the full generation for both models. Here, the choice
of ODE/SDE solver in PC-JeDi plays a negligible role in generation time and therefore no dis-
tinction is made between them. We also look at the effect of batching the data and generating
multiple events simultaneously using a GPU.

Table 3: Time required for generation for the MPGAN and PC-JeDi using either a CPU or
a GPU. Generation times are calculated for a single forward pass through the network, as
well as for the 200 integration steps required by PC-JeDi as a diffusion model. The times
are also calculated for generation of a single jet, as well as batches of 10 and 1000 jets. The
generation times are calculated using a single core of an AMD EPYC 7742 CPU and a single
NVIDIA RTX 3080 GPU. The mean and standard deviations are calculated from 10 iterations.
The required time for the jet simulation from the traditional MC simulation is taken from
Ref. [33].

Model Hardware Batch Size # of forward calls Time (ms)
MC Simulation CPU – – 46.2

MPGAN

CPU 1 1 4.83± 0.04

GPU
1

1
3.52± 0.22

10 4.88± 0.08
1000 51.67± 1.47

PC-JeDi

CPU 1
1 5.98± 0.18

200 1023.91± 3.54

GPU

1
1 3.12± 0.04

200 498.44± 1.86

10
1 3.30± 0.12

200 515.76± 1.05

1000
1 24.48± 0.30

200 4721.58± 8.02

Although the time required for a single pass through the network is similar between MPGAN
and PC-JeDi for a single jet, the benefits of the transformer architecture become apparent as
the number of jets in a batch increases. For a single jet, a single network pass takes approx-
imately the same time, however for a batch size of 1000 we see that the transformer archi-
tecture requires half the time as the message passing graph layers in MPGAN. However, as
diffusion models require multiple passes through the same network for generation, the time
required to generate jets with PC-JeDi is O(100) greater than with MPGAN. With very large
batch sizes, PC-JeDi averages around 4.72 ms per jet, which represents a speed up factor of
O(10) compared to the time required for traditional MC generation.

6 Conclusion

In this work we present a novel conditional generative model for jets as particle clouds called
PC-JeDi. The method follows a score-based formulation of diffusion processes and integration
samplers which is highly customisable for future improvements. It is based on a permutation
equivariant transformer architecture allowing it to naturally handle the point cloud structure
of the data.

PC-JeDi is able to generate jet constituents with high fidelity, beating the state-of-the-art
approach in several metrics. We also assessed additional substructure metrics not presented
in the relevant literature so far, which we think are especially important for the downstream
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physics applications. Furthermore, by studying two-dimensional marginals and uncontained
top quark jets, we demonstrated that it is able to capture complex underlying correlations with
conditional generation.

While generation quality is competitive with the current state-of-the-art method, the time
required to generate samples with diffusion models is the main drawback of PC-JeDi. In addi-
tion, the ability for PC-JeDi to generate higher multiplicity particle clouds and the impact on
generation speed and fidelity needs to be understood.

However, thanks to the flexibility of the method there are several avenues that can be
considered to improve both the quality and the speed of the model. The conditional perfor-
mance could be improved by the addition of auxiliary supervised regression loss terms during
training, or by using more sophisticated guided diffusion techniques [87]. Furthermore, other
network architectures could be explored, such as deep sets, which would reduce the time of a
single pass through the network without a large trade-off in fidelity [36]. Moreover, one of the
main areas of focus with diffusion models is the development of smarter, more efficient solvers.
Within two years alone these models have gone from requiring O(1000) steps to generate high
quality image data [44, 57], to O(100) [51], or even O(20) steps [39, 52]. Combining these
two developments should improve the competitiveness of the generation speed of PC-JeDi and
hopefully preserve the fidelity of generated jets.

Acknowledgements

The authors would like to acknowledge funding through the SNSF Sinergia grant called "Ro-
bust Deep Density Models for High-Energy Particle Physics and Solar Flare Analysis (RODEM)"
with funding number CRSII5_193716 and the SNSF project grant 200020_212127 called "At
the two upgrade frontiers: machine learning and the ITk Pixel detector". They would also
like to acknowledge the funding acquired through the Swiss Government Excellence Scholar-
ships for Foreign Scholars and the Feodor Lynen Research Fellowship from the Alexander von
Humboldt foundation.

References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST
3, S08003 (2008), doi:10.1088/1748-0221/3/08/S08003.

[2] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3, S08004 (2008),
doi:10.1088/1748-0221/3/08/S08004.

[3] T. Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and
Model Independent Event Classification for the Large Hadron Collider, SciPost Phys. 12,
043 (2022), doi:10.21468/SciPostPhys.12.1.043.

[4] G. Kasieczka et al., The Machine Learning landscape of top taggers, SciPost Phys. 7, 014
(2019), doi:10.21468/SciPostPhys.7.1.014.

[5] A. Giammanco, The Fast Simulation of the CMS Experiment, Journal of Physics: Confer-
ence Series 513, 022012 (2014), doi:10.1088/1742-6596/513/2/022012.

[6] D. Müller et al., ReDecay: A novel approach to speed up the simulation at LHCb, Eur. Phys.
J. C 78(12), 1009 (2018), doi:10.1140/epjc/s10052-018-6469-6.

19

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.21468/SciPostPhys.12.1.043
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1088/1742-6596/513/2/022012
https://doi.org/10.1140/epjc/s10052-018-6469-6


SciPost Physics Submission

[7] The ATLAS Collaboration, The new Fast Calorimeter Simulation in ATLAS, ATL-SOFT-
PUB-2018-002 (2018), https://cds.cern.ch/record/2630434.

[8] L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in GAN-
Accelerated Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085(4),
042017 (2018), doi:10.1088/1742-6596/1085/4/042017.

[9] M. Paganini, L. de Oliveira and B. Nachman, Calogan : Simulating 3d high energy particle
showers in multilayer electromagnetic calorimeters with generative adversarial networks,
Phys. Rev. D 97(1), 014021 (2018), doi:10.1103/PhysRevD.97.014021.

[10] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with Generative Adver-
sarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters, Phys.
Rev. Lett. 120(4), 042003 (2018), doi:10.1103/PhysRevLett.120.042003.

[11] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter
showers using a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3(1),
4 (2019), doi:10.1007/s41781-018-0019-7.

[12] D. Belayneh et al., Calorimetry with deep learning: particle simulation and reconstruction
for collider physics, Eur. Phys. J. C 80(7), 688 (2020), doi:10.1140/epjc/s10052-020-
8251-9.

[13] E. Buhmann et al., Getting High: High Fidelity Simulation of High Granularity Calorimeters
with High Speed, Comput. Softw. Big Sci. 5(1), 13 (2021), doi:10.1007/s41781-021-
00056-0.

[14] C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of Calorimeter Showers
with Normalizing Flows (2021), https://arxiv.org/abs/2106.05285.

[15] C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
Showers with Normalizing Flows (2021), https://arxiv.org/abs/2110.11377.

[16] The ATLAS Collaboration, AtlFast3: the next generation of fast simulation in ATLAS, Com-
put. Softw. Big Sci. 6, 7 (2022), doi:10.1007/s41781-021-00079-7.

[17] The ATLAS Collaboration, Deep generative models for fast photon shower simulation in
ATLAS (2022), https://arxiv.org/abs/2210.06204.

[18] A. Adelmann et al., New directions for surrogate models and differentiable programming
for High Energy Physics detector simulation, In 2022 Snowmass Summer Study (2022),
https://arxiv.org/abs/2203.08806.

[19] S. Otten et al., Event Generation and Statistical Sampling for Physics with Deep Gener-
ative Models and a Density Information Buffer, Nature Commun. 12(1), 2985 (2021),
doi:10.1038/s41467-021-22616-z.

[20] B. Hashemi et al., LHC analysis-specific datasets with Generative Adversarial Networks
(2019), https://arxiv.org/abs/1901.05282.

[21] R. Di Sipio et al., DijetGAN: A Generative-Adversarial Network Approach for the Simulation
of QCD Dijet Events at the LHC, JHEP 08, 110 (2019), doi:10.1007/JHEP08(2019)110.

[22] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7(6), 075
(2019), doi:10.21468/SciPostPhys.7.6.075.

20

https://cds.cern.ch/record/2630434
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-021-00056-0
https://arxiv.org/abs/2106.05285
https://arxiv.org/abs/2110.11377
https://doi.org/10.1007/s41781-021-00079-7
https://arxiv.org/abs/2210.06204
https://arxiv.org/abs/2203.08806
https://doi.org/10.1038/s41467-021-22616-z
https://arxiv.org/abs/1901.05282
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.21468/SciPostPhys.7.6.075


SciPost Physics Submission

[23] J. Arjona Martinez et al., Particle Generative Adversarial Networks for full-event simulation
at the LHC and their application to pileup description, J. Phys. Conf. Ser. 1525(1), 012081
(2020), doi:10.1088/1742-6596/1525/1/012081.

[24] C. Gao et al., Event Generation with Normalizing Flows, Phys. Rev. D 101(7), 076002
(2020), doi:10.1103/PhysRevD.101.076002.

[25] Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-
Augmented and Transformed Generative Adversarial Network (FAT-GAN) (2020),
doi:10.24963/ijcai.2021/293.

[26] M. Bellagente et al., Invertible Networks or Partons to Detector and Back Again, SciPost
Phys. 9, 074 (2020), doi:10.21468/SciPostPhys.9.5.074.

[27] L. Velasco et al., cFAT-GAN: Conditional Simulation of Electron-Proton Scattering Events
with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversar-
ial Network, In 19th IEEE International Conference on Machine Learning and Applications,
pp. 372–375, doi:10.1109/icmla51294.2020.00066 (2020).

[28] A. Butter and T. Plehn, Generative Networks for LHC events (2020), https://arxiv.org/
abs/2008.08558.

[29] J. N. Howard et al., Learning to simulate high energy particle collisions from unlabeled
data, Sci. Rep. 12, 7567 (2022), doi:10.1038/s41598-022-10966-7.

[30] G. Quétant et al., Turbo-Sim: a generalised generative model with a physical latent space
(2021), https://arxiv.org/abs/2112.10629.

[31] B. Käch, D. Krücker, I. Melzer-Pellmann, M. Scham, S. Schnake and A. Verney-Provatas,
JetFlow: Generating Jets with Conditioned and Mass Constrained Normalising Flows
(2022), 2211.13630.

[32] B. Käch, D. Krücker and I. Melzer-Pellmann, Point Cloud Generation using Transformer
Encoders and Normalising Flows (2022), 2211.13623.

[33] R. Kansal et al., Particle cloud generation with message passing generative adversarial
networks, In Proceedings of Advances in Neural Information Processing Systems, vol. 34,
pp. 23858–23871 (2021), https://arxiv.org/abs/2106.11535.

[34] R. Kansal et al., On the evaluation of generative models in high energy physics (2022),
https://arxiv.org/abs/2211.10295.

[35] A. Hariri, D. Dyachkova and S. Gleyzer, Graph Generative Models for Fast Detector Simu-
lations in High Energy Physics (2021), https://arxiv.org/abs/2104.01725.

[36] E. Buhmann, G. Kasieczka and J. Thaler, EPiC-GAN: Equivariant Point Cloud Generation
for Particle Jets (2023), https://arxiv.org/abs/2301.08128.

[37] P. Dhariwal and A. Nichol, Diffusion models beat gans on image synthesis, In Proceedings
of Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021),
https://arxiv.org/abs/2105.05233.

[38] Y. Song et al., Score-based generative modeling through stochastic differential equations,
In Proceedings of the International Conference on Learning Representations (2021), https:
//arxiv.org/abs/2011.13456.

21

https://doi.org/10.1088/1742-6596/1525/1/012081
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.24963/ijcai.2021/293
https://doi.org/10.21468/SciPostPhys.9.5.074
https://doi.org/10.1109/icmla51294.2020.00066
https://arxiv.org/abs/2008.08558
https://arxiv.org/abs/2008.08558
https://doi.org/10.1038/s41598-022-10966-7
https://arxiv.org/abs/2112.10629
2211.13630
2211.13623
https://arxiv.org/abs/2106.11535
https://arxiv.org/abs/2211.10295
https://arxiv.org/abs/2104.01725
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456


SciPost Physics Submission

[39] T. Karras et al., Elucidating the design space of diffusion-based generative models, In Pro-
ceedings of Advances in Neural Information Processing Systems (2022), https://arxiv.org/
abs/2206.00364.

[40] A. Ramesh et al., Hierarchical text-conditional image generation with clip latents (2022),
https://arxiv.org/abs/2204.06125.

[41] V. Mikuni and B. Nachman, Score-based generative models for calorimeter shower simula-
tion, Phys. Rev. D 106, 092009 (2022), doi:10.1103/PhysRevD.106.092009.

[42] E. Hoogeboom et al., Equivariant diffusion for molecule generation in 3d, In International
Conference on Machine Learning, pp. 8867–8887. PMLR (2022).

[43] B. L. Trippe et al., Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem (2022), https://arxiv.org/abs/2206.04119.

[44] J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models, In Proceedings
of Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020),
https://arxiv.org/abs/2006.11239.

[45] Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution,
In Proceedings of Advances in Neural Information Processing Systems, vol. 32 (2019), https:
//arxiv.org/abs/1907.05600.

[46] Y. Song and S. Ermon, Improved techniques for training score-based generative models,
In Proceedings of Advances in Neural Information Processing Systems, vol. 33, pp. 12438–
12448 (2020), https://arxiv.org/abs/2006.09011.

[47] A. Hyvärinen, Estimation of non-normalized statistical models by score matching, JMLR
6(24), 695 (2005).

[48] S. Särkkä and A. Solin, Applied Stochastic Differential Equations, vol. 10, Cambridge
University Press (2019).

[49] B. D. Anderson, Reverse-time diffusion equation models, Stochastic Processes and their
Applications 12(3), 313 (1982).

[50] A. Jolicoeur-Martineau et al., Gotta go fast when generating data with score-based models
(2021), https://arxiv.org/abs/2105.14080.

[51] J. Song, C. Meng and S. Ermon, Denoising diffusion implicit models (2020), https://arxiv.
org/abs/2010.02502.

[52] C. Lu et al., Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in
around 10 steps (2022), https://arxiv.org/abs/2206.00927.

[53] L. Zheng and X. Zhang, Modeling and Analysis of Modern Fluid Problems, Academic Press
(2017).

[54] M. Raphan and E. Simoncelli, Learning to be bayesian without supervision,
In Proceedings of Advances in Neural Information Processing Systems, vol. 19,
doi:10.7551/mitpress/7503.001.0001 (2006).

[55] M. Raphan and E. P. Simoncelli., Least squares estimation without priors or supervision,
Neural Computation 2(23), 374 (2011), doi:10.1162/NECO_a_00076.

22

https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2204.06125
https://doi.org/10.1103/PhysRevD.106.092009
https://arxiv.org/abs/2206.04119
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2105.14080
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2206.00927
https://doi.org/10.7551/mitpress/7503.001.0001
https://doi.org/10.1162/NECO_a_00076


SciPost Physics Submission

[56] P. Vincent, A connection between score matching and denoising autoencoders, Neural Com-
putation 23(7), 1661 (2011), doi:10.1162/NECO_a_00142.

[57] A. Q. Nichol and P. Dhariwal, Improved denoising diffusion probabilistic models, In Proceed-
ings of the 38th International Conference on Machine Learning, vol. 139, pp. 8162–8171
(2021), https://arxiv.org/abs/2102.09672.

[58] The CMS Collaboration, Particle-flow reconstruction and global event description with the
CMS detector, JINST 12, P10003 (2017), doi:10.1088/1748-0221/12/10/P10003.

[59] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063
(2008), doi:10.1088/1126-6708/2008/04/063.

[60] R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev.
Mod. Phys. 91(4), 045003 (2019), doi:10.1103/RevModPhys.91.045003.

[61] J. Thaler and K. V. Tilburg, Identifying boosted objects with n-subjettiness, JHEP 03, 015
(2011), doi:10.1007/jhep03(2011)015.

[62] A. J. Larkoski, G. P. Salam and J. Thaler, Energy correlation functions for jet substructure,
JHEP 06, 108 (2013), doi:10.1007/jhep06(2013)108.

[63] A. J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12,
009 (2014), doi:10.1007/jhep12(2014)009.

[64] P. T. Komiske, E. M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear
basis for jet substructure, JHEP 04, 013 (2018), doi:10.1007/jhep04(2018)013.

[65] The ATLAS Collaboration, Performance of top-quark and W-boson tagging with ATLAS in
Run 2 of the LHC, Eur. Phys. J. C 79, 375 (2019), doi:10.1140/epjc/s10052-019-6847-8.

[66] The CMS Collaboration, Identification of heavy, energetic, hadronically decaying particles
using machine-learning techniques, JINST 15(06), P06005 (2020), doi:10.1088/1748-
0221/15/06/P06005.

[67] J. Pearkes et al., Jet constituents for deep neural network based top quark tagging (2017),
https://arxiv.org/abs/1704.02124.

[68] A. Butter et al., Deep-learned top tagging with a lorentz layer, SciPost Phys. 5(3) (2018),
doi:10.21468/scipostphys.5.3.028.

[69] L. de Oliveira et al., Jet-images — deep learning edition, JHEP 07, 069 (2016),
doi:10.1007/jhep07(2016)069.

[70] G. Kasieczka et al., Deep-learning top taggers or the end of QCD?, JHEP 05, 006 (2017),
doi:10.1007/jhep05(2017)006.

[71] S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning,
JHEP 10, 121 (2018), doi:10.1007/jhep10(2018)121.

[72] H. Qu and L. Gouskos, Jet tagging via particle clouds, Phys. Rev. D 101, 056019 (2020),
doi:10.1103/PhysRevD.101.056019.

[73] P. T. Komiske, E. M. Metodiev and J. Thaler, Energy Flow Networks: Deep Sets for Particle
Jets, JHEP 01, 121 (2019), doi:10.1007/JHEP01(2019)121, 1810.05165.

23

https://doi.org/10.1162/NECO_a_00142
https://arxiv.org/abs/2102.09672
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1103/RevModPhys.91.045003
https://doi.org/10.1007/jhep03(2011)015
https://doi.org/10.1007/jhep06(2013)108
https://doi.org/10.1007/jhep12(2014)009
https://doi.org/10.1007/jhep04(2018)013
https://doi.org/10.1140/epjc/s10052-019-6847-8
https://doi.org/10.1088/1748-0221/15/06/P06005
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/1704.02124
https://doi.org/10.21468/scipostphys.5.3.028
https://doi.org/10.1007/jhep07(2016)069
https://doi.org/10.1007/jhep05(2017)006
https://doi.org/10.1007/jhep10(2018)121
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1007/JHEP01(2019)121
1810.05165


SciPost Physics Submission

[74] E. A. Moreno et al., JEDI-net: a jet identification algorithm based on interaction networks,
Eur. Phys. J. C 80, 58 (2020), doi:10.1140/epjc/s10052-020-7608-4.

[75] F. A. Dreyer and H. Qu, Jet tagging in the Lund plane with graph networks, JHEP 03, 052
(2021), doi:10.1007/JHEP03(2021)052.

[76] M. J. Dolan and A. Ore, Equivariant Energy Flow Networks for Jet Tagging, Phys. Rev. D
103(7), 074022 (2021), doi:10.1103/PhysRevD.103.074022, 2012.00964.

[77] V. Mikuni and F. Canelli, Point cloud transformers applied to collider physics, Mach. Learn.
Sci. Tech. 2(3), 035027 (2021), doi:10.1088/2632-2153/ac07f6, 2102.05073.

[78] C. Shimmin, Particle Convolution for High Energy Physics (2021), 2107.02908.

[79] S. Gong et al., An efficient Lorentz equivariant graph neural network for jet tagging, JHEP
07, 030 (2022), doi:10.1007/JHEP07(2022)030.

[80] H. Qu, C. Li and S. Qian, Particle Transformer for Jet Tagging (2022), 2202.03772.

[81] R. Kansal et al., Jetnet, doi:10.5281/zenodo.6975118 (2022).

[82] P. Battaglia et al., Relational inductive biases, deep learning, and graph networks (2018),
https://arxiv.org/abs/1806.01261.

[83] M. Zaheer et al., Deep sets, In Proceedings of Advances in Neural Information Processing
Systems, vol. 30 (2017), https://arxiv.org/abs/1703.06114.

[84] A. Vaswani et al., Attention is all you need, In Proceedings of Advances in Neural Information
Processing Systems, vol. 30, pp. 5999–6009 (2017), https://arxiv.org/abs/1706.03762.

[85] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer Berlin (1992).

[86] R. Das, L. Favaro, T. Heimel, C. Krause, T. Plehn and D. Shih, How to Understand Limita-
tions of Generative Networks (2023), 2305.16774.

[87] J. Ho and T. Salimans, Classifier-free diffusion guidance (2022), https://arxiv.org/abs/
2207.12598.

[88] S. Shleifer, J. Weston and M. Ott, Normformer: Improved transformer pretraining with
extra normalization (2021), https://arxiv.org/abs/2110.09456.

[89] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, In Conference
Track Proceedings of the 3rd International Conference on Learning Representations (2015),
https://arxiv.org/abs/1412.6980.

24

https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1103/PhysRevD.103.074022
2012.00964
https://doi.org/10.1088/2632-2153/ac07f6
2102.05073
2107.02908
https://doi.org/10.1007/JHEP07(2022)030
2202.03772
https://doi.org/10.5281/zenodo.6975118
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1706.03762
2305.16774
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/1412.6980


SciPost Physics Submission

A Training and generation algorithms

Algorithm 1 Training

Require: γ(t), σ(t), L
while not converged do
(x , y)∼ pdata

ε∼N (0, I), t ∼ U(0, 1)
x ← Norm(x )
y ← Norm(y)
v t ← CosEnc(t)
x t ← γ(t) x +σ(t)ε
Optimise: L(ε, ε̂θ (x t , v t , y))

end while

Algorithm 2 Generation

Require: γ(t), σ(t), y , φ, ∆t
x t ∼N (0, I), t ← 1
y ← Norm(y)
while t > 0 do

v t ← CosEnc(t)
x t ← φ(x t , ε̂θ (x t , v t , y), t)
t ← t −∆t

end while
x 0← UnNorm(x t)
return x 0

B Network setup and hyperparameters

The TE block used in PC-JeDi is based on the Normformer [88] encoder block. It is depicted in
Fig. 17. The block is composed of a residual attention network followed by a residual dense
network. The attention network takes the point cloud as input tokens and performs a multi-
headed self-attention pass surrounded by layer normalisations. The intermediate tokens are
then added to the input tokens via a residual connection. The context properties c, which in
our case are the encoded time vector, jet mass, and jet pT, are concatenated to the features
of each individual token before being processed by the dense network. The dense network
comprises two fully connected linear layers. A sigmoid-linear-unit (SiLU) activation is applied
to the output of the hidden layer, layer normalisation is used to keep the gradients stable,
and dropout, as this is a supervised setting, is used for regularization. The output tokens are
then added to the intermediate tokens via another residual connection. The input and output
dimensions of the token features are the same, so several entire TE-Blocks can be chained
together.
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Figure 17: Our Transformer-Encoder block is made of a residual self-attention network fol-
lowed by a residual dense network. Context information is concatenated to the intermediate
tokens before they are passed to the dense network.

After running a hyperparameter grid search separately for top jets and gluon jets, the model
architecture which minimised the validation loss in each case comprises four transformer en-
coder blocks each with a base dimension size of 128. Each dense network has a single hidden
layer of size 256 and the dropout rate is set to 0.1. For the time embedding layer we use cosine
encoding with an output size of M = 16.

We use the Adam optimizer [89] with default settings, a batch size of 256, and set the
learning rate to ramp up linearly from 0 to 0.0005 over the first 10000 training iterations. The
best network is selected based on the minimum value of the loss on the validation dataset.
FPND and WM

1 values for jets generated using the EM sampler with 100 steps were tracked
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alongside the validation loss. They were found to follow the same trend as the validation loss,
and so only the latter was used for optimisation. For the plots and figures shown in Section 5,
we generate 50000 jets using conditional information sampled from the test set.

The input representations were also studied in a grid search, both for the constituent four
momenta and the jet conditional variables. PC-JeDi was trained both with and without condi-
tional information. Using the invariant mass and transverse momentum of the jet calculated
using all constituents and not just the leading 30 constituents was also studied. A negligible
impact on performance was observed when comparing these options. The values calculated
using only the leading 30 constituents were chosen in order to test for the diagonality of the
generated jet momenta and invariant masses. Whether to use the transverse momentum or
relative transverse momentum of the constituents was also studied in conjunction with log(pT)
and log(pT +1) transformations. Using log(pT +1) for the constituent momenta was found to
perform best in most metrics, and resulted in better agreement for low pT constituents.

C Integration Samplers

C.1 Detailed integration sampler algorithms

We detail here the four integration sampler algorithms used in our experiments for solving the
differential equations. All of them use a parametrised noise estimator ε̂θ which is conditioned
on the perturbed input x t , the diffusion time t and any other conditional variables y . However,
in our study this noise estimator is a neural network which takes a cosine encoded time v t
instead of t. The reader will make the correspondence accordingly when comparing to the
generic integration step φ used in the generation procedure shown in Fig. 2. The variance
preserving SDE expressed in Eq. (3) is integrated using the Euler-Maruyama solver shown in
Algorithm 3. For this procedure, the integration step x t ← φ(x t , ε̂θ , t) corresponds to Line 3
to Line 5. On the other hand, for the DDIM reverse diffusion solver shown in Algorithm 4 the
integration step corresponds to Line 3 to Line 6. Note that the time update t ← t −∆t for
DDIM uniquely takes place before the x t update.

Algorithm 3
Euler-Maruyama solver for VP SDE

Require: N , β(t), σ(t), y
1: ∆t ← 1

N , t ← 1, x t ∼N (0, I)
2: while t > 0 do
3: x t ← x t +

1
2β(t)
�

x t − 2 ε̂θ (x t ,t,y)
σ(t)

�

∆t
4: z ∼N (0, I)
5: x t ← x t +

p

β(t)∆t z
6: t ← t −∆t
7: end while
8: return x t

Algorithm 4
DDIM solver for reverse diffusion

Require: N , β(t), σ(t), γ(t), y
1: ∆t ← 1

N , t ← 1, x t ∼N (0, I)
2: while t > 0 do
3: ε̂← ε̂θ (x t , t, y)
4: x̂ 0←

x t−σ(t)ε̂
γ(t)

5: t ← t −∆t
6: x t ← γ(t)x̂ 0 +σ(t)ε̂
7: end while
8: return x̂ 0

The variance preserving ODE expressed in Eq. (4) is integrated using two different solvers.
For the Euler solver shown in Algorithm 5 the integration step x t = φ(x t , ε̂θ , t) corresponds
to Line 3. The Runge-Kutta fourth order solver shown in Algorithm 6 is slightly more involved
since it requires four network evaluations. Therefore, the integration step must be understood
as the whole block of Line 3 to Line 7, the four network evaluations being done with the
properly shifted x t and t. Notice that ignoring k2, k3 and k4 would lead to the Euler solver.
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Algorithm 5
Euler solver for VP ODE

Require: N , β(t), σ(t), y
1: ∆t ← 1

N , t ← 1, x t ∼N (0, I)
2: while t > 0 do
3: x t ← x t +

1
2β(t)
�

x t −
ε̂θ (x t ,t,y)
σ(t)

�

∆t
4: t ← t −∆t
5: end while
6: return x t

Algorithm 6
Runge-Kutta 4th order solver for VP ODE

Require: N , β(t), σ(t), y
1: t ← 1, ∆t ← 1

N , x t ∼N (0, I)
2: while t > 0 do
3: k1←

1
2β(t)
�

x t −
ε̂θ (x t ,t,y)
σ(t)

�

∆t

4: k2←
1
2β(t −

∆t
2 )
�

x t −
ε̂θ (x t+

k1
2 ,t−∆t

2 ,y)

σ(t−∆t
2 )

�

∆t

5: k3←
1
2β(t −

∆t
2 )
�

x t −
ε̂θ (x t+

k2
2 ,t−∆t

2 ,y)

σ(t−∆t
2 )

�

∆t

6: k4←
1
2β(t −∆t)
�

x t −
ε̂θ (x t+k3 ,t−∆t,y)

σ(t−∆t)

�

∆t

7: x t ← x t +
k1+2k2+2k3+k4

6
8: t ← t −∆t
9: end while

10: return x t

C.2 Choice of samplers

To understand the trade-off between the quality of the generated samples and the generation
speed, we test four different methods for sample generation using the same trained model.
These different methods, or solvers, are labelled: DDIM, Euler-Maruyama (EM), Euler and
Runge-Kutta (RK). We study the effect of the number of integration steps, or network passes,
on the samples quality using the metrics introduced in Section 4.4. We focus on two metrics
for brevity: Coverage (Cov), which is indicative of the diversity of the generated jets compared
to MC, and the Wasserstein-1 distance between the generated and real jet-mass distributions
�

W M
1

�

.
Figure 18 shows that the generation quality increases with a larger number of iteration

steps irrespective of the choice of ODE/SDE solver. However, the difference between the
solvers becomes negligible for these metrics beyond around 100 network passes compared to
run variations. We also notice little improvement in the quality of the generated jets beyond
200 network passes for all solvers.

Figure 18: Cov (higher is better) and W M
1 (lower is better) metrics verses the number of

network passes used in the full generation for four different solvers on the top jet dataset.
DDIM (green), EM (red), Euler (blue), RK (orange) all saturate near O(100) network passes.
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D Additional figures and tables

D.1 Relative constituent coordinates
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Figure 19: Distributions of constituent ∆η for the gluon jets.
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Figure 20: Distributions of constituent ∆φ for the gluon jets.

0

500

1000

1500

2000

2500

3000En
tri

es Top Jets
MC
MPGAN
DDIM 200
EM 200

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Leading constituent 

0.0

0.5

1.0

1.5

2.0

Ra
tio

 to
 M

C

0

500

1000

1500

2000

2500

3000

3500

En
tri

es Top Jets
MC
MPGAN
DDIM 200
EM 200

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
2nd leading constituent 

0.0

0.5

1.0

1.5

2.0

Ra
tio

 to
 M

C

0

500

1000

1500

2000

2500

3000

3500

En
tri

es Top Jets
MC
MPGAN
DDIM 200
EM 200

0.2 0.1 0.0 0.1 0.2
3rd leading constituent 

0.0

0.5

1.0

1.5

2.0

Ra
tio

 to
 M

C

Figure 21: Distributions of constituent ∆η for the top jets.
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Figure 22: Distributions of constituent ∆φ for the top jets.

D.2 Comparison of samplers

Table 4: Comparison of diffusion sampling methods for the metrics introduced in Ref. [33].
Lower is better for all metrics except Cov. Note that these metrics were taken using different
sample sizes and thus are not directly comparable with the values from in Table 1.

Jet Class Sampler (steps) WM
1 (×10−3) WP

1 (×10−3) WEFP
1 (×10−5) FPND Cov ↑ MMD (×10−2)

Gluon

DDIM (200) 0.78 ± 0.34 0.98 ± 0.53 0.83 ± 0.71 1.55 0.55 3.37
EM (200) 0.53 ± 0.19 0.61 ± 0.27 0.61 ± 0.53 1.45 0.55 3.38
Euler (200) 0.61 ± 0.22 0.81 ± 0.38 0.63 ± 0.48 1.47 0.55 3.41
RK (50) 0.56 ± 0.22 0.77 ± 0.35 0.71 ± 0.52 1.49 0.55 3.38

Top

DDIM (200) 0.59 ± 0.22 0.63 ± 0.35 2.57 ± 1.72 0.68 0.58 6.50
EM (200) 0.54 ± 0.15 0.99 ± 0.44 1.51 ± 1.28 0.38 0.58 6.48
Euler (200) 0.56 ± 0.17 0.74 ± 0.43 1.33 ± 1.06 0.49 0.59 6.47
RK (50) 0.57 ± 0.22 0.80 ± 0.37 1.35 ± 1.04 0.51 0.58 6.47

Table 5: Comparison of diffusion sampling methods for the substructure derived metrics.
Jet Class Sampler (steps) Wτ1

1 (×10−3) Wτ2
1 (×10−3) Wτ3

1 (×10−3) MAEM(×10−2) MAEpT(×10−2)

Gluon

DDIM (200) 0.79 ± 0.30 2.38 ± 0.18 1.82 ± 0.11 0.05 0.44
EM (200) 0.87 ± 0.27 0.92 ± 0.15 0.54 ± 0.07 0.10 1.29
Euler (200) 1.09 ± 0.29 1.20 ± 0.16 0.70 ± 0.07 0.10 1.23
RK (50) 1.01 ± 0.24 1.30 ± 0.17 0.75 ± 0.08 0.10 1.23

DDIM (200) 0.66 ± 0.19 3.37 ± 0.34 3.96 ± 0.13 0.06 0.44
EM (200) 0.72 ± 0.22 0.93 ± 0.30 1.07 ± 0.08 0.19 1.24
Euler (200) 0.78 ± 0.27 1.74 ± 0.38 1.48 ± 0.12 0.18 1.18
RK (50) 0.70 ± 0.19 2.04 ± 0.36 1.67 ± 0.11 0.18 1.18
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Figure 23: Mass and relative substructure distributions of the generated gluon (left) and top
(right) jets using the DDIM solver. The diagonal consists of the marginals of the distributions.
The off-diagonal elements are the joint distributions of the variables.
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Figure 24: Mass and relative substructure distributions of the generated gluon (left) and top
(right) jets using the Euler solver. The diagonal consists of the marginals of the distributions.
The off-diagonal elements are the joint distributions of the variables.
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Figure 25: Mass and relative substructure distributions of the generated gluon (left) and
top (right) jets using the Runge-Kutta solver. The diagonal consists of the marginals of the
distributions. The off-diagonal elements are the joint distributions of the variables.

30


	Introduction
	Related work
	Generative diffusion models
	Modelling the score function

	Generating jets with diffusion
	Jet substructure
	Datasets
	PC-JeDi architecture and training
	Evaluation metrics

	Results
	Inclusive generation of jets
	Uncontained top jets
	Conditional generation
	Timing comparison

	Conclusion
	References
	Training and generation algorithms
	Network setup and hyperparameters
	Integration Samplers
	Detailed integration sampler algorithms
	Choice of samplers

	Additional figures and tables
	Relative constituent coordinates
	Comparison of samplers


