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Abstract

We study topological defect lines (TDLs) in two-dimensional ZN -parafermoinic CFTs. Dif-
ferent from the bosonic case, in the 2d parafermionic CFTs, there exist parafermionic
defect operators that can live on the TDLs and satisfy interesting fractional statistics.
We propose a categorical description for these TDLs, dubbed as “para-fusion category",
which contains various novel features, including ZM q-type objects for M |N , and parafer-
moinic defect operators as a type of specialized 1-morphisms of the TDLs. The para-
fusion category in parafermionic CFTs can be regarded as a natural generalization of the
super-fusion category for the description of TDLs in 2d fermionic CFTs. We investigate
these distinguishing features in para-fusion category from both a 2d pure CFT perspec-
tive, and also a 3d anyon condensation viewpoint. In the latter approach, we introduce a
generalized parafermionic anyon condensation, and use it to establish a functor from the
parent fusion category for TDLs in bosonic CFTs to the para-fusion category for TDLs in
the parafermionized ones. At last, we provide many examples to illustrate the properties
of the proposed para-fusion category, and also give a full classification for a universal
para-fusion category obtained from parafermionic condensation of Tambara-Yamagami
ZN fusion category.
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1 Introduction

Global symmetry has been playing a central role since the years of the foundation of quantum
field theories. They provide not only guidelines in constructions of various QFTs, but also put
strong constraints on the dynamics of the theories. Recently, our understanding on symmetry
has been further significantly evolved [1]. In modern language, the global symmetries can be
interpreted as invertible topological defects supported on codimension-1 surfaces. Such defect
operators are called topological because any correlation functions with insertions of those
surface operators are invariant with respect to continuous deformations of them. As a result,
the topological surface operators commute with stress-energy tensor, and thus the Hamiltonian
of the system as they should be. The group elements multiplication and inverse associated to
the symmetry can be also re-interpreted as the fusions and orientations of the topological
surfaces. With the above conceptually advanced understandings, the notion of symmetry has
been greatly generalized along several directions, including higher-form/group symmetries,
and non-invertible symmetries, which nowadays are called generalized global symmetries. In
the former cases, all kinds of codimension-(p + 1) topological surface defects can be studied
in QFTs, which correspond to p-form symmetries, while the ordinary symmetries are of 0-
form. When there are non-trivial ’t Hooft anomalies among various p-form symmetries, they
will further lead to higher group or category structures [2–8]. On the other hand, for the
latter non-invertible symmetries, they are referred to as topological surface operators that are
not invertible [9–30]. Therefore these topological objects are characterized by the so-called
categorical symmetries that extend the notion of group symmetries by including topological
surface defects with no inverse under the fusion.

In two dimensions, the non-invertible symmetries are corresponding to 1d topological de-
fect lines (TDLs), which are ubiquitous in 2d conformal field theories. Historically, these defect
line objects were investigated because of their connections to boundary CFTs, twisted partition
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functions, orbifolds, and associated SymTFTs [31–34]. However, from a modern viewpoint,
the study of TDLs is providing us new tools and insights to understand various physical systems
and underlying mathematical structures. For example, the generalization of ’t Hooft anomalies
of these TDLs helps contrain the RG flows between conformal and gapped phases [10,35–38].
The collections of non-invertible TDLs together with ordinary invertible ones, for a given 2d
CFT or TFT, are described in the mathematical language of the fusion category [9,10,39–41].
Based on this language, one can also study generalized orbifolds and duality with respect to
categorical symmetries. The categorical structures can be further lifted to the framework of 3d
TFTs, where due to boundary-bulk correspondence, the 2d TDLs can be naturally interpreted
as anyons in three dimensions [42–48]. In this picture, the study of TDLs are closely related to
many interesting topics, such as the classification of topological orders, anyon condensation,
and etc., in the condensed matter community [49–56].

Along this line, in recent years, the investigation of categorical symmetries has been ex-
tended to fermionic CFTs where there are fermionic degrees of freedoms satisfying Fermi-Dirac
statistics [57–62]. A distinguished property of TDLs in the fermionic CFTs is that fermionic
defect operators can “live" on junctions of TDLs, or “move along" some of them. With this
novel feature, TDLs in fermionic systems have much richer and more involved structures from
various physics and mathematical aspects. For example, a well-known example is the 2d mass-
less Majorana theory obtained after fermionization from the Ising CFT, in which the famous
non-invertible Kramers-Wannier duality N -line in the Ising model is mapped to an invertible
but anomalous TDL, denoted by (−1)FL , which is counting the left-moving fermionic number in
the Majorana theory. Because of the existence of a fermionic defect operator living on (−1)FL ,
it thus admits a Z8-classification corresponding to Hom(Ωspin

3 (BZ2), U(1)) [63–66]. The math-
ematical structure behind TDLs in fermionic CFTs has been identified as a super-fusion cate-
gory encoding extra data of fermionic defect operators [57, 60, 67–69]. In a parallel manner,
fermionic TDLs can be lifted to 3d TFTs in terms of the so-called fermionic anyon condensation,
which has received extensive attention because of its intimate relation to the classification of
fermionic topological orders.

Motivated by the recent exciting progress, in this note, we aim to understand topological
defect lines in two-dimensionalZN -parafermionic CFTs, where fermoinic TDLs can be regarded
as a special case of N = 2. The ZN -parafermions, as continuous limits of lattice models, was
first introduced in the seminal work of Fateev and Zemolodchikov back in the 80’s of the last
century [70], see also [71] for a more modern perspective. The spectra of local operators
in the parafermion systems and their bosonization have been also thoroughly investigated
since [36]. TDLs of the corresponding bosonized theories were recently investigated in [72].
However, to our knowledge, various novel features of TDLs in parafermionic CFTs have not
been established, yet, except for the case of N = 2. Similar to the fermionic case, in the
parafermion system, there can be exotic parafermionic defect operators living on TDLs satisfy-
ing fractional statistics. Therefore we define a new type of mathematical structure, dubbed as
para-fusion category, to give a categorical description of these parafermionic TDLs as well as
the fractional defect operators. Beside the pure 2d CFT setup, we also introduce the concept of
parafermionic anyon condensation from a 3d anyon perspective. Using it, we show a type of
generalized pentagon identities, dubbed as para-pentagons, that the parafermionic TDLs have
to satisfy. To demonstrate various features of para-fusion categories, we give detailed examples
in parafermionic CFTs, where the F -symbols of parafermionic TDLs have been solved from the
proposed para-pentagons. Among these examples, we find an interesting class of para-fusion
categories that we named as “para-condensed ZN Tambara-Yamagami category", denoted by
pf-TYt,κ,β

ZN
. It can be obtained via parafermionic anyon condensation from the renowned ZN

Tambara-Yamagami category, or equivalently parafermionization of a bosonic CFT admitting
ZN self-duality. By solving para-pentagons, we give a full classification of pf-TYt,κ,β

ZN
for any N .
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The plan of the paper is as follows: In section 2, we review the concepts of orbifold-
ing, fermionization and parafermionization. After that, we introduce the defining proper-
ties of TDLs in parafermionic CFTs. In section 3, we lift the 2d CFTs into 3d TFT setup in
terms of anyons, and introduce the concept of parafermionic anyon condensation (or para-
condensation for short). Using para-condensation, we verify various important features pro-
posed in section 2 that the parafermionic TDLs need to satisfy. In section 4 and 5, we provide
many examples of TDLs in parafermionic CFTs to demonstrate our proposal. At last, in the
appendix, we summarize necessary mathematics materials for the proposed ZN para-fusion
category.

Note added: When the paper is about to finish, we were informed by Zhihao Duan, Qiang
Jia and Sungjay Lee that they are working on a possibly related subject [73]. We thank them
for coordinating the submission.

2 Topological Defect Lines in Parafermionic CFTs

2.1 Orbifolding, Fermionization and Parafermionization

In this subsection, we will briefly review the orbifolding, fermionization and parafermioniza-
tion of a given 2d bosonic CFT with a non-anomalous 0-form symmetry G = ZN .

Orbifolding It has been known for a long time that, for a given 2d CFT T with a non-
anomalous group symmetry G = ZN , one can gauge this symmetry and obtain the gauged
theory T ′ ≡ T /G, denoted as the ZN orbifolded theory. More specifically, putting T on a torus
consisting of temporal and spacial cycles, one can impose twisted boundary conditions on a
local operator O(x , t) of T along the space or time direction,

O(x + L, t) = g ·O(x , t) , or O(x , t + T ) = g ·O(x , t) , (1)

where g ∈ G is a group element. The former boundary condition allows us to evaluate the
partition function of the theory under the defect Hilbert space Hg twisted by g, while the latter
one serves to project states onto different symmetry sectors with respect to G. Overall, for ZN
symmetry, the Hilbert space can be splitted into N2 twisted and symmetric sectors.

In a more modern language, imposing boundary conditions onto spatial/temporal direc-
tions is equivalent to inserting different topological defect lines (TDLs) that correspond to the
Zn 0-form symmetries [1, 10], along the temporal/spatial directions respectively [9]. As the
orbifolded one is the G-gauged theory T , we can couple T to a background gauge field S,
and make it dynamical, denoted as s. Since the to-be-gauged symmetry is a finite group, the
background gauge field S is necessary flat, and thus we have S ∈ H1(M , G), where M can
be a generic Riemann surface, but for our purpose, only M = T2 is considered throughout
the paper. Rephrased in terms of topological defect lines, the background connection S can be
represented by a network of TDLs with trivalent junctions. When a TDL Lg sweeps past a local
operator O, we will have apporperiate g-action on the operator asin eq. (1). Therefore, plac-
ing two TDLs Lg and Lh along the spatial and temporal direction is equivalent to evaluating
the following twisted partition function

ZT [g, h] = TrHh
LgqL0−

c
24 q̄ L̄0−

c
24 . (2)

In this picture, it is also transparent to see how the Pontryagin dual symmetry Ĝ of G
emerges in the orbifold theory T ′ [9, 74]. After gauging the symmetry G, the corresponding
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TDLs will disappear. Instead, one has Wilson lines WR, corresponding to elements in Rep(G),
in the G-representation R in the orbifold theory T ′, served as the TDLs therein. For G non-
Abelian, Rep(G) is not necessary a group. However, in our setup for G = ZN , we have

Ĝ = Rep(ZN ) = ZN (3)

in T ′. One can once again turn on a flat connection T ∈ H1(M , Ĝ) and couple it to the dual
theory T ′, and further make it dynamical and gauge T ′ back to T . To sum up, we have the
following formula for the (twisted) partition functions of T and T ′,

ZT ′[T] =
1
p

|H1(M , G)|

∑

s∈H1(M ,G)

ei(T,s)ZT [s] , (4)

where (·, ·) is a bilinear map H1(M , Ĝ)× H1(M , G)→ R, s is the dynamical gauge field, and
we have summed up over all twisted partition functions of T with respect to s along different
cycles of M to gauge the symmetry. In the case of M = T2 and G = ZN , we make the orbifolding
formula more explicit as follows,

ZT ′[b1, b2] =
1
n

∑

a1,a2∈Zn

ωa1 b2−a2 b1 ZT [a1, a2] , (5)

whereω≡ e
2πi
N with gcd(p, N) = 1, and ai , bi corresponding to the (background) gauge fields

s and T along the two cycles of T2.

Main example. A primary example of such a theory with ZN -symmetry is the SU(2)N
U(1) coset

CFT with central charge c = 2(N−1)
N+2 . The theory consists of N(N+1)

2 primaries labeled by two
integers (l, m) which vary in the range

0≤ l ≤ N , −l + 2≤ m≤ l, l −m ∈ 2Z, (6)

with the following conformal weights

∆= ∆̄=
l(l + 2)

4(N + 2)
−

m2

4N
. (7)

The partition function in the main sector is given by

Z[0, 0] =
∑

l,m

χl,m(τ)χl,m(τ), (8)

where the characters χl,m satisfy the relations

χl,m = χl,m+2N , χl,m = χl,−m, χl,m = χN−l,N+m. (9)

The twisted sector are given by

Z[a1, a2] = e−2πia1a2/N
∑

l,m

e2πia2m/Nχl,mχl,m−2a1
. (10)

They satisfy the following S- and T -transformation properties

Z[a1, a2]|T = Z[a1, a1 + a2], Z[a1, a2]|S = Z[−a2, a1]. (11)
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Fermionization Beside orbifolding, for a given bosonic CFT with non-anomalous Z2 ⊂ Zn,
one can also fermionize the given theory. The most well-known example is the duality between
the Ising model and Majorana fermion realized via the Jordan-Wigner transformation. Re-
cently the idea of fermionization has been generalized to an arbitary CFT with non-anomalous
Z2 symmetry [58]. The standard procedure is to stack a Kitaev chain with a symmetry Z2 f
onto the CFT, and gauge the diagonal piece of Z2 ×Z2 f , i.e.

T f = T × Kitaev/Z2 . (12)

After fermionization, there is also an emergent Z2 symmetry in T f , denoted as (−1)F and
counting the fermionic number modulo 2.

Now in T f , when we turn on the background gauge field A for (−1)F , there is a subtlety:
Since the fermoinic theory will generically depend on a spin structure ρ on M , the background
gauge will shift the spin structure as ρ → ρ + A. One can thus redefine the spin structure ρ
appropriately and absorb the background gauge field into it. Finally, the partition function of
T f will depend on the spin structure ρ, and will be related to the bosonic one as

ZT f
[ρ] =

1
p

|H1(M , G)|

∑

a∈H1(M ,Z2)

(−1)Arf(ρ+a)ZT [a] , (13)

where the spin structure ρ along a cycle of M can take values of {0,1} corresponding to the
NS or Ramond sectors, respectively. In the case of M = T2, one can make this more explicit,

ZT f
[ρ1,ρ2] =

1
2

∑

a1,a2∈Z2

(−1)(ρ1+a1)(ρ2+a2)ZT [a1, a2] , (14)

or

ZT [a1, a2] =
1
2

∑

ρ1,ρ2∈Z2

(−1)(ρ1+a1)(ρ2+a2)ZT f
[ρ1,ρ2] . (15)

Notice that, from eq. (13), the Arf invariant is just the non-trivial topological order of the
Kitaev Majorana chain. It precisely means that our fermionization is defined by first stacking
the Kitaev chain onto the bosonic theory and then gauging the diagonal Z2 of the two systems.

One can combine the orbifolding and fermionization operations together, so that we can
first orbifold the theory T to T ′, and successively fermionize it to T ′f , and thus have

ZT ′f
[ρ] =

1
p

|H1(M , G)|

∑

a∈H1(M ,Z2)

(−1)Arf(ρ+a)+Arf(ρ)ZT ′[a] , (16)

or on T2,

ZT ′f
[ρ1,ρ2] =

1
2

∑

a1,a2∈Z2

(−1)(ρ1+a1)(ρ2+a2)+ρ1ρ2 ZT ′[a1, a2] . (17)

Furthermore, from eq. (13) and (16), we have the relations between T ′f and T f as

ZT ′f
[ρ] = (−1)Arf(ρ)ZT f

[ρ] , (18)
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implying the theroy T ′f is different from T f by stacking an additional SPT phase (−1)Arf(ρ).
The above relations can be summarized in the following diagram:

T T f

T ′ T ′f

fermionize
bosonize

fermionize
bosonize

gauge
Z2

stack
Arf

Parafermionization The idea of fermionization can be further generalized to parafermion-
ization, so long as the bosonic CFT admits a non-anomalous ZN symmetry. Parallel to the
discussion of fermionization where we stack a Kitaev Majorana chain onto the bosonic system,
here we also need an analogous ZN chain to perform the parafermionization. The ZN gener-
alization of the Ising model has been long known [70,75], where Fadeev and Zamolodchikov
studied the 1d lattice model with Hamiltonian

HN = −
L
∑

j=1

N−1
∑

m=1

αm

�

τ j

�m −
L−1
∑

j=1

N−1
∑

m=1

βm

�

σ†
jσ j+1

�m
, (19)

where αm and βm are certain parameters, and L is the number of sites of the lattice. The N×N
matrices τ j and σ j are generalized Pauli matrices at site j, satisfying

σN = τN = 1 , σ† = σN−1 , τ† = τN−1 , and στ=ωτσ , (20)

with ω= e2πi/N . A representation of the above algebra can be given by diagonalizing τ,

τ= diag{1,ω,ω2, . . . , ωN−1} , σ = δa+1,b , (21)

where a , b (mod N) label the entries of the matrix τ. The Hamiltionian is invariant under a
ZN action: σ j →ωσ j , and similar to the Ising chain, the corresponding symmetry generator
is defined as

ωP ≡
L
∏

j=1

τ†
j , (22)

satisfying
�

ωP
�N
= 1. The lattice model itself is interesting to study as it turns out to be

integrable in a certain range of parameters αm and βm, as well as admits conformal phases
described by the WZW coset model su(2)k/u(1). On the other hand, there is also a general-
ized Jordan-Wigner transformation, the Fradkin-Kadanoff transformation, that can recast the
bosonic lattice model into a parafermionic chain, by defining

γ2 j−1 ≡ σ j

∏

i< j

τi , and γ2 j ≡ω(N−1)/2σ j

∏

i≤ j

τi . (23)

With these new variables, one can show that the operators γ j satisfy the following statistics:

γn
j = 1 , γ†

j = γ
−1
j , and γ jγk =ω

sgn(l− j) γkγ j , for j ̸= k . (24)
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The last commutation relation turns out to have an interpretation from the anyon perspective
that we will show in the next section. Now, analogous to the Kitaev chain, the low energy
physics of the parafermionic chain is a ZN topological order [76,77]. Therefore one can simi-
larly stack this gapped phase to a bosonic system T with a non-anomalous ZN symmetry and
gauge the diagonal group of ZN ×ZN ,PF [71,78], i.e.

TPF = T × parafermionic chain/ZN . (25)

The resulting theory TPF will have an emergent ZN symmetry generated by the TDL of the
parafermionic chain we stacked on the original boson system.

At the level of the partition function of TPF , we can also find a para-spin structure1 ρ on
T2, and turn on background fields A for the ZN in TPF . Similar to the fermionic case, we spell
out the partition function of TPF on T2 as

ZTPF
[ρ] = ZTPF

[ρ1,ρ2] =
1
N

∑

s∈H1(T2,ZN )

ωArfN (ρ+s)ZT [s]

=
1
N

∑

a1,a2∈ZN

ω(ρ1+a1)(ρ2+a2)ZT [a1, a2] ,

ZT [a1, a2] =
1
N

∑

ρ1,ρ2∈ZN

ω̄(ρ1+a1)(ρ2+a2)ZTPF
[ρ1,ρ2] , (26)

where ω̄= e−
2πi
N , and the para-spin structure ρ along a cycle of T2 takes values in ZN defining

N different sectors. For N = 2, it gets us back to the familiar fermionic case where we have
NS and Ramond sectors. Once again, we can first orbifold T to T ′ and parafermionize it to
T ′PF , and have

ZT ′PF
[ρ1,ρ2] =

1
N2

∑

ai ,bi∈ZN

ω(ρ1+b1)(ρ2+b2)+a1 b2−a2 b1 ZT [a1, a2] . (27)

Using eq. (26), one can also establish the relation between T ′PF and TPF [78],

ZT ′PF
[ρ1,ρ2] =

1
N3

∑

ai ,bi∈ZN

ω(ρ1+b1)(ρ2+b2)+a1 b2−a2 b1−(τ1+b1)(τ2+b2)ZT [τ1,τ2]

= ZTPF
[ρ1,−ρ2]ω

ρ1ρ2 ≡ ZTPFc [ρ1,ρ2]ω
ρ1ρ2 , (28)

generalizing eq. (18). Overall the above relations can be also summarized as follows:

T T f

T ′ T ′f

parafermionize
bosonize

parafermionize
bosonize

gauge
ZN

conjugate
+stack ArfN

To get a better sense of parafermionization, let us now consider a simple example, the
3-Potts model as the m= 5 D-type minimal CFT. In terms of Virasoro algebra, the Potts model

1It is not clear so far on the existence of para-spin structures on a generic Riemann manifold.
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has eight Virasoro modules with conformal weight h = {0, 2
5 , 7

5 , 3, 1
15 , 1

15
∗
, 2

3 , 2
3
∗}, where the

superscript "∗" denotes that the two modules of same conformal weight are charge conjugate to
each other under a charge conjugation symmetry C. On the other hand, one can also think of
the model as a diagonal CFT in terms of the W3 algebra. In this picture, the primaries labeled
by (0, 3) and
�2

5 , 7
5

�

combine together and serve as irreducible modules of W3. Therefore there
are overall six W3-modules. At the level of the partition function, this translates to

ZT = |χ0|2 + |χ2/5|2 + |χ1/15|2 + |χ1/15∗ |2 + |χ2/3|2 + |χ2/3∗ |2 , (29)

where χh labels the character of a W3-module of conformal weight h. Associated to these
primaries, we have six Verlinde lines Lh, and among them the lines

�

L0, L2/3, L2/3∗
	

are cor-
responding to the Z3 symmetry of the 3-Potts. Now using eq. (27), we can obtain nine partition
functions of the parafermionized theory TPF with respect to different para-spin structures ρ.
We here, for simplicity, only list the partition function for ρi = 0,

ZTPF
[0, 0] =
�

χ0 +χ2/3 +χ2/3∗
�

χ̄0 +
�

χ2/5 +χ1/15 +χ1/15∗
�

χ̄2/5 , (30)

from which, one can easily read off operator spectra in the (0, 0)-sector of TPF : They are

φ0,0, φ 2
3 ,0, φ∗2

3 ,0
, φ 2

5 , 2
5
, φ 1

15 , 2
5
, φ∗1

15 , 2
5

. (31)

One can see that some of them have spin-2
3 (modulo 1), satisfying the unusual parafermionic

statistics. The other partition functions with different ρ’s will also display similar features, and
they are all related by modular transformations as summarized below following reference [71].

S- and T-transformations. As derived in [71], in the parafermionized theory the S- and
T -transformations take the following form:

ZTPF
[ρ1,ρ2](−1/τ) =

∑

ρ′1,ρ′2

S
ρ′1,ρ′2
ρ1,ρ2

ZTPF
[ρ′1,ρ′2](τ) (32)

ZTPF
[ρ1,ρ2](τ+ 1) =

∑

ρ′1,ρ′2

T
ρ′1,ρ′2
ρ1,ρ2

ZTPF
[ρ′1,ρ′2](τ), (33)

where

T
ρ′1,ρ′2
ρ1,ρ2

≡
1

N2

∑

a1,a2

ω(1+ρ1+a1)(1+ρ2+a2+a1)ω(1+ρ
′
1+a1)(1+ρ′2+a2), (34)

S
ρ′1,ρ′2
ρ1,ρ2

≡
1

N2

∑

a1,a2

ω(1+ρ1−a2)(1+ρ2+a1)ω(1+ρ
′
1+a1)(1+ρ′2+a2). (35)

2.2 TDLs in parafermionic CFTs

Now we turn to characterize the properties of topological defect lines in a parafermionic
CFT. Beside general features satisfied by TDLs [10], we here focus on the discussion of some
unique properties particular to the TDLs in parafermionic theories. In the special case of Z2-
parafermions, or say the usual fermion, these features have been highlighted and discussed
thoroughly in [61].
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2.2.1 Parafermion defect operators

A distinguished feature in parafermionic theories from bosonic ones is the existence of (parafermionic)
zero modes. The simplest example can be seen in the fermionized Ising spin chain. After
Jordan-Wigner transformation, the Ising chain is rephrased in terms of degrees of freedom of
Majorana fermions which were non-local stringy operators in the original model. In the open
boundary condition, one can show exactly that there are two normalized edge zero-energy
modes living at the ends of the lattice chain. On the same vein, for the parafermionization of
the spin chain (19), there also exist edge zero modes [76], dubbed as parafermionic defect
operators, satisfying the statistics (24). Recall that parafermionic theories are obtained by
stacking the ZN topological order onto the corresponding boson systems. Therefore they will
in general inherit these parafermionic defect operators as well.

In fermionic theories, the properties of the Z2-parafermionic defect operators have been
discussed at length in [61]. Here we will generalize it to the parafermionic case. In the case of
ZN -parafermionic theories, it is allowed to have parafermionic defect operators living on the
junctions of TDLs. By the virtue of eq. (24), the defect Hilbert space HL1,L2,L3

associated with
a 3-way junction in presence of a ZN -parafermionic defect operator,

ψk

L1 L2

L3

(36)

is in general N -folded. We thus can label the TDL junctions in terms of the type of parafermionic
defect operator denoted as ψa for a = 0, . . . , N − 1, dubbed as “colors" of the junction. Ap-
parently these junctions inherit the fractional statistics that a graph will pick up a phase when
two of the defect operators at their junctions are switched

ψa

ψb

= e2πiθ (a,b)

ψb

ψa

, (37)

where the phase θ (a, b)modulo unity is uniquely determined by the colors a and b. Similarly,
for the tensor product of two TDLs dressed with parafermionic defect operators, we also have

⊗

ψa

ψb

= e2πiθ (a,b) ⊗

ψa

ψb

(38)

In the case of N = 2, it is known that

e2πiθ (a,b) = (−1)ab , for a, b = 0, 1 , (39)

10
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corresponding to the fermionic statistics of the 1d Majorana zero modes when a, b = 1. For
generic N , we have

e2πiθ (a,b) =ωab
N ,k , for a, b = 0, 1, . . . , N − 1 , (40)

where ωN ,k = e2πi k
N is a primitive N -th root of unity with gcd(k, N) = 1, which is determined

by the conformal weights of the generator of ZN -TDLs in the original bosonic CFTs before the
parafermionization. There will be a clearer explanation on (40) when, in later section, we lift
the 2d story to 3d TFTs in terms of anyons, and this phase can be thus resorted to the non-trivial
braidings of the corresponding ZN -anyons. So far, we would rather give a heuristic argument
on (40): In a bosonic CFT with ZN -symmetries {La}a=0,1,...,N−1 that could be either anomalous
or non-anomalous. One can use these TDLs to prepare various defect Hilbert spaces, denoted
as HLa

, by inserting the TDL La along the temporal direction. In HLa
, it contains defect

operators ψa with conformal weight (ha, 0). The conformal weight ha can be classified as

ha =











k
N

a2 mod 1 , for odd N

k
2N

a2 mod 1 , for even N
, (41)

where k = 0, 1, . . . , N −1 or 0, 1, . . . , 2N −1 for odd or even N respectively. In the case of even
N , the ZN -symmetry is non-anomalous only when k is even, see more details in appendix A.
Therefore, for non-anomalous ZN -symmetry with both even and odd N , the defect operator
ψa has conformal weight ha =

k
N a2 mod 1, and thus fractional spin

sa =
k
N

a2 mod 1 . (42)

It leads to the non-trivial statistics when swapping two defect operators ψa and ψb as

ψaψb = e2πi
p

sasbψbψa = e2πi k
N abψbψa . (43)

For a generic 1
N -fractional spin, we also require k and N are coprime, i.e. gcd(k, N) = 1. After

parafermionization, theZN -TDLs are gauged away, but the defect operatorsψa are reminiscent
as the 1d parafermionic defect operators living on TDLs in the parafermionic theory, and satisfy
the novel statistics (40).

Clearly, due to (40), these parafermionic defect operators ψa cannot be treated as usual
local operators except for the case of Z2-parafermions. It can be easily seen that, by swapping
two defect operators twice, there will be a phase

e4πiθ (a,b) =ω2ab
N ,k ̸= 1 , (44)

that is generically non-unity, except for N = 2. In this sense, the parafermionic defects cannot
be regarded as local operators. In contrast, it would be necessary to always imagine that they
are “stringy-like objects" that the strings attached to them are braided after swapping, and
double braided for swapping twice to give the non-trivial phase in (44). In this picture, the
ways, clockwise or counter-clockwise, to switch two defect operators also need to been taken
into account, i.e.

ψa

ψb

= ωab
N ,k

ψb

ψa

, or

ψa

ψb

= ω−ab
N ,k

ψb

ψa

(45)

11
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In the note, we will stick to the convention of swapping two parafermionic defect operators in
the counter-clockwise fashion, and thus produce a phase as in (40). Since it is not canonical
for 2d TDLs to have braiding structures, the non-locality feature of the parafermionic defect
operators will be more clearly characterized when we lift the 2d theory up to 3d in terms of
anyons. We will come back to this point in the next section.

2.2.2 ZN Para-fusion category

Now we are ready to propose an axiomatic description of ZN para-fusion category CN ,p for
TDLs in the parafermionic CFTs. Most features of parafermionic TDLs are analogous to their
bosonic cousins. On the other hand, contrary to usual fusion categories, there are two kinds
of TDLs called m-type and q-type defined by parafermionic defect operators.

1. TDLs (Objects): An object L ∈ CN ,p in a ZN para-fusion category, is an oriented topolog-
ical line operator defined on a path C , L(C), whose expectation value can be computed
by inserting it in the path integral, and the dependence on C is topological.

2. Defect Operators (Morphisms): The morphisms in CN ,p correspond to topological de-
fect operators between two oriented lines L and K. In contrast to ordinary fusion cate-
gories where the defect operators are required to be local, we here extend the notion to
include the set of non-local parafermionic defect operators {ψa}. The defect operators
form a (graded) vector space denoted by Hom(L, K). In addition, given defect operators
µ ∈ Hom(L, K) and ν ∈ Hom(K, J ), there is a composition of defect operators µ and ν,
denoted as ν◦µ ∈ Hom(L, J ), that can be thought to shrink the segment of topological
line K to bring the two defect operator µ and ν together. Especially, for the composition
of two parafermionic defect operators, we have

ψa ◦ψb =ψa+b mod N . (46)

3. Additive Structure: Given two TDLs L and K, we define a new TDL as the sum of L
and K, denoted by L⊕K, such that

〈· · · (L⊕K) (C) · · · 〉= 〈· · ·L(C) · · · 〉+ 〈· · ·K(C) · · · 〉 . (47)

4. Simplicity, Semisimplicity, and Finiteness: A simple TDL in a para-fusion category
CN ,p is defined as lines that cannot be decomposed as a sum of other TDLs. Further, CN ,p
is semisimple if any TDL in it is isomorphic to a sum of simple lines in it. At last, we
require finiteness of CN ,p in the sense that the number of simple lines in CN ,p is finite.

5. m-type and q-type of TDLs: A simple m-type TDL Lm is defined as a simple line whose
defect space Hom(Lm, Lm) only contains the trivial parafermionic defect ψ0, and thus
we have

Hom(Lm, Lm) = Span{ψ0} ≃ C

N
︷ ︸︸ ︷

1|0| · · · |0 , (48)

where the Hom space is N -graded and the subscription ofC labels the type of parafermionic
defect operators, dubbed as “colors". At last, a simple q-type TDL Lq is defined as a sim-
ple line whose defect space Hom(Lq, Lq) contains at least a non-trivial parafermionic
defect ψa for a ̸= 0. An interesting feature of the q-type TDLs can be established from
(46): Given a parafermionic defect ψa ̸=0 ∈ Hom(Lq, Lq), consider the TDL Lq dressed
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with two such ψa defect operators. One can shrink the segment of Lq between the two
ψa ’s and bring them together. Using (46), one can show that

ψa ◦ψa =ψ2a mod N ∈ Hom(Lq, Lq) . (49)

Repeating this procedure, we can find a collection of {ψa}, with a ∈ ZM and M dividing
N , in Hom(Lq, Lq). In general, for Hom(Lq, Lq) spanned by a collection of S = {ψa},
one can always find a smallest ψM of order M generating the whole set S = 〈ψM 〉. We
thus denote such a TDL as a “ZM q-type TDL". For example, for a ZN q-type TDL Lq, its
Hom space is given by

Hom(Lq, Lq) = Span{ψ1} ≃ C

N
︷ ︸︸ ︷

1| · · · |1 . (50)

6. Fusion: Given two TDLs J and K, one can bring them close enough to fuse them as a
single line, denoted by J ⊗K. By semisimplicity, J ⊗K can be decomposed as a sum of
simple TDLs {Li}, which is determined by the Hom space, Hom(J ⊗K, L). Obviously
parafermionic defect operators {ψa} in Hom(J ⊗K, L) define the colors of the 3-way
junction.

7. Associativity Structure: The fusion operation is associative in the sense that (I ⊗J )⊗K
and I ⊗ (J ⊗K) are isomorphic by an associator

FI,J ,K ∈ Hom ((I ⊗J )⊗K, I ⊗ (J ⊗K)) , (51)

where the associator F is also called F -symbol. In the para-fusion category CN ,p, it is col-
ored because of the four 3-way junctions in Hom ((I ⊗J )⊗K, I ⊗ (J ⊗K)). Expanded
in a base S = {Li} of simple lines, we have

ψa

ψb

I J K

Lk

Li

=
∑

j; c,d

FI,J ,K
Lk

�

Li , L j; a, b, c, d
�

ψc

ψd

I J K

Lk

L j

,

(52)

where we have used {Li} to decompose the fusions of I⊗J , Li⊗K, J ⊗K, and I⊗L j .
In addition, there is a selection rule imposed on the colors of a given F -symbol element
because of the emergent ZN -symmetry (22), that

FI,J ,K
Lk

�

Li , L j; a, b, c, d
�

= 0 , if a+ b ̸= c + d mod N . (53)

8. Para-fusion Pentagons: As in a usual fusion category, F -symbols in para-fusion cat-
egories need to satisfy pentagon identities. The novel feature here is that there are
different colors in each 3-way junction. When swapping the positions of these junctions,
there are extra phases produced due to (40). In the case of Z2-parafermions, the phase
is simply “−1", and the pentagons are modified to super-pentagons [57, 65]. We here
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generalize it to arbitary ZN -parafermions. Consider the following diagrams with five
external TDLs,

b

a

c

I J
K

M

N

Li

L j e

d

c

I J K
M

N

Lm

L j f

d

t

I J K

M

N

Lm

Ll

a

r

g

I J

K M

N

Li

Lk
a

r

g

I
J

K
M

N

Li

Lk

s
r

t

I J K
M

N

Ll

Lk

,

F

F

F

F

ωar
N ,p F

where, when switching the position of colors “a" and “r" from the first to the second
diagram of the second line, we have employed (37) and (40) to pick up a phase ωar

N ,p.
The two routes, to bring the above diagrams from left top corner to the right bottom
one, give us constraints on the F -symbols, denoted as the para-pentagon equations in
CN ,p. In the base S = {Li}, the para-pentagons of above diagrams spell as

∑

m; d,e, f

FI,J ,K
L j

(Li ,Lm; a, b, d, e) FI,Lm,M
N
�

L j ,Ll ; e, c, f , t
�

FJ ,K,M
Ll

(Lm,Lk; d, f , r, s)

=
∑

g

ωar
N ,p F

Li ,K,M
N
�

L j ,Lk; b, c, r, g
�

FI,J ,Lk
N (Li ,Ll ; a, g, s, t) , (54)

where we have projected the para-pentagon equations to the diagram with internal TDLs
(Lk,Ll), and colors (r, s, t).

3 Categorical Parafermionic Anyon Condensation

In previous sections, we discussed parafermionization in 2d CFTs. However, parafermioniza-
tion can also be applied to 3d models, which can be viewed as the bulk of the 2d CFTs. By
incorporating a 3d bulk model into our analysis, we gain new insights into the behavior of
parafermionic anyons in 3d and their relation to parafermionization in 2d. This leads to a
more complete understanding of the underlying mechanisms at play, providing valuable in-
sights into the behavior of the 3d bulk topological order and its 2d boundary in general.

In this section, we will explore how parafermionic anyon condensation in a 3d bulk Turaev-
Viro-Levin-Wen string-net model [79,80] is related to the parafermionization of the 2d bound-
ary theory. Parafermionic anyon condensation provides us with a categorical understanding
of the parafermionization, allowing us to better understand the relation of TDLs of the models
before and after parafermionization.

The main result is that, if the TDLs in the original 2d theory are described by a fusion
category C, then after the bosonic/fermionic/parafermionic anyon condensation of the algebra
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A under several conditions, the TDLs of the condensed theory will be a bimodule category ACA,
which is a fusion/super-fusion/para-fusion category. From the point of view of 3d topological
orders, the generalized Turaev-Viro-Levin-Wen string-net model before and after condensation
are constructed with the input fusion category C and fusion/super-fusion/para-fusion category

ACA or CA, respectively. There is a gapped domain wall between these two topological orders.

3.1 Bosonic anyon condensation

Bosonic anyon condensation was first discussed in the mathematical community [81,82] and
was later independently discovered as a phenomenon that can occur in 3d topological or-
ders [53–56]. In 3d topological orders, spatial point-like topological excitations, called anyons,
can fuse and braid with each other. The process of fusing and braiding anyons can be mathe-
matically described using a unitary modular tensor category (UMTC) framework [83]. Anyon
condensation is then a procedure in which a new UMTC is obtained from an old one by con-
densing some bosonic anyons. It is also recognized that the condensation of bosonic anyons
in 3d topological order is intimately connected to the conformal extension of 2d CFTs [53].

Apart from considering anyon condensation as a phase transition from one topological
order to another, one can also view it as a gapped domain wall separating two distinct topo-
logical orders [84, 85]. As a special case, the gapped boundary of a topological order can be
seen as the domain wall between the topological order and the vacuum state. In this way, we
can understand both the domain wall and the boundary on equal terms.

In fact, we can differentiate between two types of bosonic anyon condensations, which
will be discussed separately in the following. The first type is more commonly discussed in
the condensed matter physics literature. It occurs in a UMTC B, where both the fusion and
braiding of the anyons are defined. The second type, which will be more focused on in this
paper when discussing TDLs, occurs in the unitary fusion category (UFC) C where there are
no braiding operations in general. In the following, we will use the notation B for a UMTC to
indicate that it is braided. On the contrary, a fusion category without braiding will be denoted
as C.

3.1.1 Bosonic anyon condensation in UMTC B

In a quantum field theory, boson condensation or Bose-Einstein condensation occurs when a
boson b is condensed by changing its effective mass to negative. In the condensed phase, the
boson b can be created or annihilated arbitrarily in the new vacuum. For this new vacuum
to be consistent, the self-braiding of b must be trivial, meaning that b should be a boson.
Otherwise, creating, braiding, and annihilating a pair of b will result in a nontrivial phase
factor that is ambiguous for the vacuum.

The concept of boson condensation is generalized to 3d topological orders or anyon models
described by a unitary modular tensor category (UMTC) B [53–56, 81]. Given a subset A of
anyons in B, we can perform anyon condensation by identifying A as the new vacuum in the
condensed phase. To ensure the consistency of this identification, certain technical conditions
must be satisfied such that A forms a connected commutative separable algebra in B [55,81].
For example, if we intend to condense a single Abelian boson b with Z2 fusion rule, the algebra
A could be represented as 1⊕ b.

When we perform an anyon condensation of A by identifying A as the new vacuum, we
obtain an intermediate phase described by a fusion category BA (without braidings in general).
The fusion category BA consistes of A-modules and module morphisms. The total quantum
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B B0
ABA

(a)

Figure 1: Bosonic anyon condensation in 3d topological order of UMBC B. A is a
connected commutative separable algebra in B. The red domain wall that separates
the topological orders before and after the condensation is described by the fusion
category BA of the right A-modules. Subsequently, the condensed phase is character-
ized by the UMTC B0

A which consists of local (or dyslectic) right A-modules in B.

dimension of BA is related to that of B by

dim(BA) :=
∑

a∈BA

d2
a =

dimB
dim A

. (55)

Physically, this intermediate phase can be considered as a 2d gapped domain wall between the
original and final 3d phases of the condensation procedure. The objects in BA correspond to
the excitations localized at the domain wall.

The condensed phase resulting from anyon condensation by A gives rise to a 3d topological
order that can be described by a UMTC B0

A. Unlike the intermediate fusion category phase BA,
B0

A possesses braidings as part of its structure. To obtain B0
A, we select the local or dyslectic A-

modules [86] from BA. The key principle is that anyons in B0
A should have trivial full braidings

with A since A is new vacuum. Any anyons that exhibit nontrivial full braidings with A become
confined in the condensed phase due to the quantum interference of Aharonov-Bohm effects.
It can be shown that the total quantum dimension of B0

A is given by

dim(B0
A) =

dim(BA)
dim A

=
dimB
(dim A)2

. (56)

3.1.2 Bosonic anyon condensation in UFC C

Anyon condensation can be defined not only in braided tensor category B but also in fusion
category C. In this case we will obtain another fusion category from a given fusion category C
by condensing an algebra A with some conditions.

In 2d theory, anyon condensation of an algebra A in C has a physical interpretation as a
generalized notion of gauging [9]. Suppose we have a 2d theory with fusion category sym-
metry C, which means that the TDLs of the theory are labeled by objects in C. Gauging an
algebra A in C involves labeling all lines of a fine enough mesh in 2d spacetime with A. In the
subsequent discussion, it becomes clear that the resulting theory exhibits an emergent fusion
category symmetry ACA, depicted on the upper surface of Figure 2(a).

In the context of 3D bulk theory, the physical interpretation of anyon condensation within
a fusion category becomes most clear when considering the topological order of Levin-Wen
string-net models [80]. The string-net model is essentially a Hamiltonian version on a 2D spa-
tial manifold that corresponds to the Turaev-Viro state sum construction used for calculating
the 3D partition function [79]. The input data for the Hamiltonian is a fusion category C, and
the output topological order is a 3d TQFT with UMTC Z(C) of Reshetikhin-Turaev type [87].
The process of condensation enables the creation of a gapped domain wall that separates two
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distinct Levin-Wen models, one before the condensation and one after. Depending on the
details of the algebra A, the input category for the Hamiltonian of the condensed Levin-Wen
model can be either ACA or AC [see Figures 2(a) and 2(b)]. In the following, we will discuss
these two types of condensation in a fusion category C separately.

C

Z(C)

ACA

Z(ACA)

CA

≃

(a)

C

Z(C)

CA

Z(CA) = [Z(C)]0A

CA

(b)

Figure 2: Two types of bosonic anyon condensation in UFC C corresponding to a 2d
boundary or UMTC Z(C) associated with a 3d bulk topological order. The 2d bound-
ary can be understood from two different perspectives: as a 2d spatial manifold used
to define the Hamiltonian, or as a 1+1d boundary through a Wick rotation. (a) A is an
algebra in fusion category C. The domain wall CA has no monoidal/tensor structure
in general. The original fusion category C and the bimodule category ACA are Morita
equivalent, i.e., Z(C) ≃ Z(ACA). So the red domain wall between them is invertible
or an equivalence of bulk UMTC. A prototypical example is C = VecG , A = C[G],
CA = Vec and ACA = Rep(G), where the two sides are related by gauging/condensing
A. (b) A is a central commutative algebra, i.e., a commutative algebra in Z(C). The
category of right-A modules already has a monoidal/tensor structure. The bulk of C
and CA are related by Z(CA) = [Z(C)]0A [88]. So the 3d red domain wall corresponds
to anyon condensation of topological orders from UMTC Z(C) to [Z(C)]0A.

(a) A is an algebra of C [see Figure 2(a)]
Let’s begin by assuming that A is an algebra within the fusion category C, which charac-

terizes the TDLs of a 2D theory, whether it’s a gapped system or a gapless one like a CFT.
Physically, condensing A means gauging or orbifolding A in the original 2d theory [9]. To be
more precise, gauging or condensing A means summing over all configurations of TDLs labeled
by A on the 2d spacetime. Therefore, the final 2D theory is defined on a 2D spacetime with a
fine enough mesh, where all lines are labeled by A.

We can inquire about the fusion category symmetry exhibited by the condensed theory.
The TDLs of the condensed theory are lines that can absorb or emit A lines from both the left
and right sides. Mathematically, they form the fusion category ACA of A-bimodules. It is fusion
because we can define the tensor structure ⊗A over A. On the domain wall separating the two
theories, the A lines can only merge from the right-hand side. Therefore, the 1d domain wall
is labeled by objects in the category (not necessarily a fusion category) CA of right A-modules.
In fact, CA is a (C,ACA)-bimodule category since TDLs in C and ACA can fuse to it from the left
and right-hand sides, respectively.

Let us delve into more details about the A-module category CA [41]. For any right A-module
M ∈ CA, there exists an object X ∈ C and a surjection X⊗A→ M . Consequently, any irreducible
right A-module in CA is a quotient of a module of the form X ⊗ A. The object X ⊗ A possesses
a natural right A-module structure given by the composition of the associator in C and the
multiplication of A: (X ⊗A)⊗A→ X ⊗(A⊗A)→ X ⊗A. Therefore, we have a C-module functor
−⊗ A : C→ CA, X 7→ X ⊗ A. There is another C-module functor For g : CA→ C that forgets the
A-module structure of an object. In fact, these two functors are adjoint to each other, meaning
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that the Hom spaces are related as follows:

HomCA
(X ⊗ A, M) = HomC(X , For g(M)). (57)

Sometimes, we abuse the notation by letting M denote For g(M) ∈ C. It is a consequence of
the special case that HomCA

(A, M) = HomC(1, M) for any M in CA.
The adjoint relation of the two functors helps us understand the relations of objects in CA

in terms of those in C. Let’s take the example of A= 1⊕ b to illustrate this. We have:

HomCA
(X ⊗ A, Y ⊗ A) = HomC(X , Y ⊗ A)

= HomC(X , Y )⊕HomC(X , Y ⊗ b). (58)

We see that the Hom space of CA after the A= 1⊕ b condensation is a direct sum of two Hom
spaces from the original category C. The physical interpretation is that we do not distinguish
between Y and Y ⊗ b after the condensation, as b is considered to be in the new vacuum. If
we set X = Y , we can also use it to calculate

EndCA
(X ⊗ A) := HomCA

(X ⊗ A, X ⊗ A) = HomC(X , X ⊗ A). (59)

C CA ACA C CA ACA

Figure 3: Physical interpretation of the fusion category equivalence

ACA ≃ FunC(CA,CA). The fusion category C and ACA describe the TDLs of the
left original theory and the right A-condensed theory in 2d, respectively. They are
separated by a (red) domain wall in the middle. The domain wall is labeled by
objects in the module category CA. When moving a (yellow) TDL M ∈ ACA from the
right condensed theory to the middle (red) domain wall labeled by object in CA,
the domain wall is changed to another (orange) one in CA. This process of fusing
M ∈ ACA provides a functor from CA to itself, establishing an equivalence between
the TDLs in ACA and the boundary condition changing processes in FunC(CA,CA) from
CA to itself.

As previously mentioned, the TDLs of the condensed theory are described by the fusion
category symmetry ACA. In terms of right module category, this bimodule category can also
be understood as the right Aop ⊗ A-module, where Aop is A with the opposite tensor product.
Another way to understand this bimodule category is through module categories, which is
represented by the monoidal equivalence [41]

ACA ≃ FunC(CA,CA). (60)

Here, FunC(CA,CA) is the category of C-module functors between CA and CA with certain tech-
nical conditions. The tensor structure of this category comes from the composition of functors.
In this case, the equivalence between the two fusion categories is established by mapping an
A-bimodule M to −⊗A M , forming a functor from CA to CA. This mapping has a physical in-
terpretation as moving a TDL in the condensed theory ACA to the domain wall labeled by CA,
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resulting in another type of domain wall. The equivalence ACA ≃ FunC(CA,CA) indicates that
all domain wall-changing processes can be obtained in this manner (see Figure 3).

Another way to relate the A-bimodule category and the left/right A-module category is
through the equivalence [89]

ACA ≃ (AC)⊠C (CA). (61)

Here, the right-hand side involves the relative Deligne tensor product of two module categories
over C. The physical meaning of this relation can be understood as follows. Consider the
original 2d theory with the geometry of a stripe and TDLs labeled by C. Let us condense A to
obtain a new theory with TDLs in ACA from both the left and right sides. As a result, there are
two domain walls, AC and CA, separating three 2d theories: ACA, C, and ACA. By shrinking the C
stripe or fusing the two domain walls, we obtain a 1d topological line that lives in the 2d theory

ACA. This line should also be labeled by objects in ACA. The fusion process is mathematically
represented by the relative Deligne tensor product (AC) ⊠C (CA). Consequently, we find the
equivalence of the two fusion categories (AC)⊠C (CA) and ACA.

The standard example of such anyon condensation in a fusion category is the case of
C = VecG , where G is a finite group [9]. The algebra to be condensed is the group ring
A= C[G]. The process of condensing the algebra A can be understood as physically gauging
the symmetry group G. This interpretation arises because summing over all possible flat con-
nections of G is equivalent to introducing additional A lines into the space. In this context, the
resulting gapped domain wall CA is simply CA = Vec, indicating that there is only one nontrivial
simple excitation on the domain wall. The gauged phase corresponds to ACA = Rep(G), which
represents the category of G representations. It’s worth noting that it is widely recognized that
Z(VecG) ≃ Z(Rep(G)). This equivalence establishes that the two fusion categories VecG and
Rep(G) are Morita equivalent.

(b) A is a central commutative algebra of C [see Figure 2(b)]
Mathematically, the condensed subset A is an algebra (without braidings) within the fusion

category C, not an "anyon" as anyons in 3D exhibit braidings. However, we term it "anyon"
as our primary focus is on situations where A is a central commutative algebra within C. This
means that we can lift A to be an object in Z(C), and ensure that A maintains commutativity
within Z(C). In this way, A in fact has the braiding structure with all objects in C. It is also this
case when considering generating it to fermionic or parafermionic cases later.

Let’s now assume that A is a central commutative algebra within C. In a similar manner
as before, condensing A gives rise to a domain wall consisting of right-A modules, collectively
forming a category denoted as CA. The key aspect here is that the requirement for A to be a
commutative algebra within Z(C) enables us to braid A from the left side of an object X ∈ CA
to its right side, subsequently acting on X from the right. As a result, a right-A module auto-
matically becomes a left-A module as well.

Consequently, CA can be understood as a subcategory of ACA, where the monoidal/tensor
structure is naturally present within CA. This observation implies that, following the conden-
sation, the original fusion category C transforms into a theory exhibiting a fusion category
(sub-)symmetry represented by CA.

3.1.3 Relation between condensations in C and B = Z(C)

Previously, we approached the topic of bosonic anyon condensation within C from a 2d theory
viewpoint. Alternatively, it is also possible to investigate anyon condensation from a 3d bulk
theory perspective by employing Levin-Wen string-net models [as illustrated in Figure 2].

Rather than contemplating a 1+1d CFT boundary, we can apply a Wick rotation to consider
the boundary as a 2d spatial manifold. In this setup, the fusion category C governing the TDLs
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within the boundary serves as the input data for constructing the Levin-Wen Hamiltonians.
The anyonic excitations present in the 3d topological order can then be described through the
Drinfeld center Z(C).

The condensation process of A in C on the 2d boundary can also be related to anyon con-
densation within the underlying UMTC Z(C) in the 3d bulk. In the subsequent discussions, we
will delve into an exploration of the two distinct types of A condensation separately.

(a) A is an algebra of C [see Figure 2(a)]
For a given input fusion category C, its objects are used to label the string types within the

Levin-Wen string-net model. In the condensed model, the string types are labeled by objects
from ACA. In the context of the 3d bulk view, the anyonic excitations on the left and right sides
correspond to Drinfeld centers Z(C) and Z(ACA), respectively. These two sides are separated
by a gapped domain wall, depicted as the red line in Figure 2(a).

A natural question emerges: what is the relationship between the anyons in the left and
right Levin-Wen models? An important mathematical result establishes the equivalence be-
tween these two UMTCs:

Z(C)≃ Z(ACA), (62)

known as Morita equivalence. Consequently, the red domain wall surface depicted in Figure 2
is invertible. It represents a self-duality wall within the same 3D topological order.

(b) A is a central commutative algebra of C [see Figure 2(b)]
When considering the scenario where A is a central commutative algebra within C, the

fusion category on the right-hand side can be selected as CA. We now have two Levin-Wen
string-net models with input fusion categories C and CA. In this situation, the topological
orders described by Z(C) and Z(CA) on the two sides are not equivalent. Instead, the latter
can be interconnected through the anyon condensation process within the initial UMTC Z(C).
Schauenburg’s theorem [88] reveals that

Z(CA)≃ [Z(C)]0A. (63)

Here, the A on the right-hand side is treated as a commutative algebra within Z(C), thereby
allowing us to perform anyon condensation within this UMTC.

In fact, lattice models for bosonic anyon condensation have also been formulated [90,91].
One can explicitly demonstrate that the complete Hamiltonian, including those on both sides
as well as the one on the intermediate domain wall, are solvable as commuting projector
Hamiltonian.

3.2 Fermionic anyon condensation

3.2.1 Fermionic anyon condensation in UMTC B

A topological order can encompass a fermion f as an object characterized by nontrivial self-
braiding. In a braided tensor category B, it’s possible to carry out fermionic anyon condensa-
tion following the methodology detailed in Ref. [92].

To perform fermion condensation in a UMTC B, we introduce another minimal fermionic
system F0 with two objects 1,ψ, where ψ is a simple fermion with fusion rule ψ×ψ= 1. We
then consider the stacked model B⊠F0 of B and F0, where a new boson ( f ,ψ) arises from the
fusion of the fermion f in B and ψ in F0. The fermionic anyon condensation is defined as the
bosonic anyon condensation introduced previously by modding out the boson ( f ,ψ) in B⊠F0.
In other words, we choose the condensable algebra to be A = (1, 1) ⊕ ( f ,ψ) in B ⊠F0, and
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the condensed phase is given by the category (B⊠F0)0A. This condensed phase is not modular
because the fermion ψ is deconfined in the condensation process and has trivial full braidings
with all anyons. The total quantum dimension of the condensed phase is related to that of the
original phase by

dim((B⊠F0)
0
A) =

dimB× dimF0

(dim A)2
=

1
2

dimB, (64)

where dimF0 = 2 and dim A= 2.

3.2.2 Fermionic anyon condensation in UFC C

Let’s now explore the process of condensing a fermion within a fusion category C. In this
context, a fermion f in C means that when lift to the level of the Drinfeld center Z(C), it
exhibits fermionic behavior.

The challenge arises due to the nontrivial self-braiding of fermions, preventing their ar-
bitrary creation or annihilation within a vacuum. However, we can circumvent this issue by
employing fermion creation and annihilation operators to terminate fermionic worldlines. This
process elevates a fermionic object to the status of a fermionic morphism. Consequently, we
can perform fermion condensation [57,60]within a fusion category, resulting in a super-fusion
category — a category featuring Z2-graded Hom spaces.

If we consider the fusion category as the input for a Levin-Wen string-net model, the con-
densed super-fusion category becomes the input data in constructing a 3D fermionic string-net
model. Hence, fermion condensation serves as a method to generate fermionic topological or-
der from a bosonic one. The study of fermionic string-net models originated with the fermionic
toric code model [67] and its extensions [68]. This concept evolved further to encompass
Majorana-type fermionic string-net models [57,60]. It’s worth noting that fermionic string-net
models can also be interpreted as gauging of the bosonic subgroup of a fermionic symmetry-
protected topological phase (FSPT). The classification of FSPT is addressed using group super-
cohomology theory [93–96] or spin cobordism [64], revealing both complex fermion and Ma-
jorana fermion layers within the FSPT classification.

In a super-fusion category, the Hom spaces exhibit a Z2-graded structure. The even and
odd components correspond to bosonic and fermionic operators, respectively. Specifically,
for an object X within the super-fusion category, the End(X ) space becomes a super division
algebra, with only two distinct irreducible types: the complex numbers themselves C and the
Clifford algebra Cl1 = C1|1. Objects possessing End(X ) = C and Cl1 are referred to as m-type
and q-type objects, respectively [57].

Now, let’s assume that there exists a fermion f within a fusion category C. This fermion
has the fusion rule f × f = 1. The algebra we intend to condense is Af = 1⊕ f . This algebra
should be associative, meaning that the Z2 symmetry generated by f is non-anomalous. Upon
completion of the condensation process, a super-fusion category denoted as CAf emerges.

At the object level, the fermion f is effectively identified with the vacuum object 1. In
general, an object X should be identified with X ⊗ f in the super-fusion category CAf . So an
object [X ] within CAf corresponds to X ⊗ Af in terms of the original fusion category C.

At the level of morphisms, analogous to the bosonic anyon condensation given by Eq. (57),
we should have the following relation for fermionic anyon condensation:

HomCAf
(X ⊗ Af , Y ⊗ Af ) = HomC(X , Y ⊗ Af )

= HomC(X , Y )⊕HomC(X , Y ⊗ f ). (65)

This equation connects the Hom spaces of the condensed super-fusion category to those of
the original fusion category. From this relation, we can discern two types of objects that arise
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after the condensation. The first type encompasses objects a ∈ C such that a ̸≃ a × f . In
this scenario, the endomorphism EndCAf

([X ]) = HomCAf
(X ⊗ Af , X ⊗ Af ) is simply C. This

corresponds to the m-type object within CAf . Conversely, if X remains unchanged under the
fusion with f , then both terms on the right-hand side of Eq. (65) contribute. In this case, the
endomorphism EndCAf

([X ]) corresponds to Cl1 = C1|1. Thus, the fixed point object X with
X ≃ X ⊗ f will lead to the condensation of a q-type object within CAf .

At the next level of natural transformations involving the associator, we can proceed to
construct the F symbols of the super-fusion category using the F symbols of the original fusion
category C. A comprehensive explanation of this construction is provided in section 3.5 in the
general ZN case.

As an example, we can consider C to be the Ising category with objects 1,ψ and σ. The
endomorphism of [σ] = σ⊗ Af after the condensation of Af = 1⊕ψ is

EndCAf
([σ]) = HomCAf

(σ⊗ Af ,σ⊗ Af ) = HomC(σ,σ⊗ Af ) = HomC(σ,σ⊗ (1⊕ψ))

= HomC(σ,σ⊕ (σ⊗ψ)) = HomC(σ,σ)⊕HomC(σ,σ⊗ψ) = C1|1. (66)

So [σ] = σ ⊗ A ∈ CAf is a q-type object. The condensed super-fusion category has only two
simple objects [1] and [σ].

The total quantum dimension of the super-fusion category can be defined as

dim(CAf ) =
∑

a∈CAf

d2
a

dimEnd(a)
=
∑

a∈m type

d2
a +

1
2

∑

a∈q type

d2
a . (67)

By segregating the objects in C into those that are either non-fixed or fixed points of fusion f ,
it becomes evident that the dimensions prior to and post the fermion condensation are related
by

dim(CAf ) =
1
2

dim(C). (68)

It exhibits similarities to the dimension of fermion condensation in a UMTC B, as seen in
Eq. (64).

We can also explore fermion condensation in a fusion category from the perspective of 3d
TQFT. Similar to previous discussions, the original fusion category C serves as the input for
the Hamiltonian of the Levin-Wen string-net model. After fermion condensation, the resulting
super-fusion category CAf can be employed to construct a fermionic string-net model [60].
The excitations in this model should be described by a fermionic analog of the Drinfeld center,
denoted as Z f (CAf ). In practice, tube algebras can be used as tools to analyze the properties
of these fermionic excitations [57,67].

The fermionic condensation from the fusion category C to the super-fusion category CAf im-
plies the existence of a gapped domain wall between the bosonic Levin-Wen string-net model
Z(C) and the fermionic string-net model Z f (CAf ). This raises the question of whether fermion
condensation in the fusion category C can be connected to fermion condensation in the bulk
UMTC Z(C). In the special case where C = B is a UMTC with a fermion, we have a rela-
tion [57]:

Z f (BAf ) = B⊠ (BAf ), (69)

However, in the general scenario of a fusion category, this relation remains to be established.
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3.3 Parafermionic anyon condensation in UMTC B

In a manner similar to fermion condensation in a braided category [92], we can extend the
concept of condensation from Z2 fermions to ZN parafermions.

Let us assume that B is a UMTC. There is a ZN parafermion labeled as f with the fusion
rule f N = 1. So there is a subcategory of B with fusion ring ZN . As elaborated in Appendix B,
a comprehensive classification of braided tensor categories with a fusion ring corresponding
to ZN can be derived. This classification consists of pre-metric groups C(ZN , k) associated with
group ZN , where k is an integer falling within a certain range that depends on the parity of N .

When N is an odd integer, the parameter k of the pre-metric group C(ZN , k) can range from
0 to N −1. This results in a set of N distinct braided tensor categories, each characterized by a
fusion ring following the ZN structure. In contrast, when N is an even integer, k has a broader
range of values, spanning from 0 to 2N − 1.

As detailed in Appendix B, once a value for k is specified, all the fusion and braiding
properties become determined and well-defined. The modular matrices that govern these
properties are also established. In particular, the F symbol in Eq. (166) serves as a tool to
comprehend the anomaly conditions associated with the ZN symmetry:

non-anomalous subcategory C(ZN , k)⇐⇒ N is odd or k is even. (70)

Hence, determining the precise value of the parameter k within a given UMTC B holds sig-
nificant significance. The simplest method to accomplish this is by examining the topological
spin of the ZN generator. Its relationship with k is expressed as follows:

h1 =
k

gcd(2, N)N
, (71)

as shown in Eq (165).
Now, let’s assume that the subcategory C(ZN , k) within B is non-anomalous. Similar to the

process of fermion condensation described in [92], we can introduce another parafermionic
system denoted as F0 = C(ZN ,−k). This system consists of N objects 1,ψ, ...,ψN−1. Notably,
the generator ψ represents a parafermion with a fusion rule of ψN = 1, and it possesses
an opposite spin compared to the previous parafermion f . By adopting this approach, the
composite model B⊠F0 exhibits a boson ( f ,ψ).

The concept of parafermionic anyon condensation is established by employing the same
principles as bosonic anyon condensation, but applied to the boson ( f ,ψ) within B ⊠ F0.
This entails condensing the algebra A = (1, 1) ⊕ ( f ,ψ) ⊕ ... ⊕ ( f N−1,ψN−1) within B ⊠ F0,
resulting in the emergence of a condensed phase characterized by the category (B⊠F0)0A. By
a straightforward calculation, the total quantum dimension of the condensed phase is given
by the formula:

dim((B⊠F0)
0
A) =

dimB× dimF0

(dim A)2
=

1
N

dimB, (72)

where dimF0 = N and dim A= N . It generalizes the fermion case in a straightforward manner.
A special case arises when we have a specific value of k such that C(ZN , k) becomes a

modular category. As shown in Appendix A, this condition can be stated as follows:

C(ZN , k) is modular⇐⇒ qk is non-degenerate⇐⇒ gcd(k, N) = 1. (73)

If the UMTC B contains such ZN subcategory that is modular, then B can be decomposed as
follows:

B = C(ZN , k)⊠B′, (74)
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where B′ is another subcategory of B that is also modular. Since the anyons in C(ZN , k) and B′
are unrelated and have trivial mutual braidings, the parafermion condensation is independent
of B′. Therefore, the condensed phase is solely determined by the parafermion condensation
within the category C(ZN , k):

(B⊠F0)
0
A = (C(ZN , k)⊠B′ ⊠F0)

0
A = (C(ZN , k)⊠F0)

0
A⊠B

′ = B′. (75)

In the last step, we start by identifying f i withψN−i for 1≤ i ≤ N−1 through the condensation
of A. This implies that the right A-module (C(ZN , k)⊠F0)A becomes equivalent to C(ZN , k). As
this category is modular, all nontrivial objects possess nontrivial full braidings with f . Conse-
quently, the only deconfined anyon in this context is the vacuum. So (C(ZN , k)⊠F0)0A is trivial.
In summary, when the ZN part of B is modular, the condensed phase simplifies to B′ which
can be considered orthogonal to ZN due to the decomposition B = C(ZN , k)⊠B′.

3.4 Parafermionic anyon condensation in UFC C

In this section, we will explore the parafermionic anyon condensation in a fusion category C.
Similar to the fermion condensation, we will also use the term "parafermion" to refer to an
object f that can be lifted to a parafermion within the Drinfeld center Z(C).

As discussed in the previous section, the ZN parafermion f should generate an algebra
Ap f ≃ C(ZN , k) which forms a braided tensor subcategory of Z(C). Although the fusion cate-
gory C might not exhibit braiding, the parafermion f still has a half-braiding with all objects
in C.

The parafermion condensation can be understood as elevating the parafermionic object
to the parafermionic (ZN -graded) Hom space. Consequently, after the condensation of Ap f , a
fusion category C transforms into a para-fusion category denoted as CAp f .

Before delving into the concept of condensation, it’s important to establish an understand-
ing of the simple objects within a para-fusion category. In a super-fusion category, we encoun-
tered both m-type and q-type simple objects, each associated with a distinct super division
algebra for their endomorphisms. For para-fusion categories, the simple objects should pos-
sess ZN -graded division algebras as their endomorphism algebras. As outlined in Appendix B,
these objects can be classified using C[ZM ], where M is a divisor of N . This classification
introduces various layers of q-type objects within the para-fusion category.

Now, let’s assume that there exists a ZN parafermion f within a fusion category C. The
algebra we intend to condense is Ap f = C(ZN , k) = 1⊕ f ⊕ ...⊕ f N−1. This algebra should be
associative, meaning that the ZN symmetry generated by f is non-anomalous. This also give
us the condition Eq. (70).

At the object level, the parafermion f should be effectively treated as the vacuum object
1. In this context, any object X gets identified with X ⊗ f within the para-fusion category CAp f .
This means that an object [X ] within CAp f essentially corresponds to X ⊗ Ap f in the original
fusion category C.

At the level of morphisms, similar to the bosonic anyon condensation discussed in Eq. (57),
the relation for parafermionic anyon condensation can be expressed as follows:

HomCAp f
(X ⊗ Ap f , Y ⊗ Ap f )

= HomC(X , Y ⊗ Ap f )

= HomC(X , Y )⊕HomC(X , Y ⊗ f )⊕ ...⊕HomC(X , Y ⊗ f N−1). (76)

This equation establishes a connection between the Hom spaces of the condensed para-fusion
category and those of the original fusion category.
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Moving to the next step, we delve into the realm of natural transformations that involve
the associator. In this phase, we embark on constructing the F symbols of the para-fusion
category using the pre-existing F symbols derived from the original fusion category C. To fully
comprehend this intricate process, we consolidate the entire construction in section 3.5.

Similar to the super-fusion category, we can define the total quantum dimension of a para-
fusion category as follows:

dim(CAp f ) =
∑

a∈CAp f

d2
a

dimEnd(a)
. (77)

The connection between the dimensions before and after parafermion condensation can be
expressed as:

dim(CAp f ) =
dim(C)

N
. (78)

From a 3d TQFT perspective, we can represent the Levin-Wen string-net model on the left
using the fusion category C as input data. On the right-hand side, the para-fusion category CAp f

corresponds to a parafermionic string-net model. Between these two models, there exists a
gapped domain wall. This domain wall serves as a boundary separating the two phases, so it is
a (C,CAp f )-bimodule category. However, the specific relationship between anyon condensation
in the fusion category C and the analogous process in Z(C) still requires further investigation
and study.

3.5 A functor from fusion category to para-fusion category

Now using the parafermionic condensation, we can establish a relationship between the F -
symbols of para-fusion category and its parent fusion one. More specifically, consider the
following move:

a

b

[I] [J ] [K]

[L]

[M] =
∑

[N ]; c,d

F [I], [J ], [K][L] ([M], [N ]; a, b, c, d)
c

d

[I] [J ] [K]

[L]

[N ] ,

(79)

where lines of [I] to [N ] are TDLs in the para-fusion category condensed from lines of I to N
in the parent fusion category, and the parafermionic defects a, b, c and d are the reminiscent
of the condensed ZN -anyons in the parent theory. We aim to find how F [I], [J ], [K][L] can be
obtained from the data of its parent fusion category. The stradegy is to lift the LHS of (79)
back to the original category, then perform a series of F-moves, and finally condense back to
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the para-fusion one in the RHS of (79):

a

b

[I] [J ] [K]

[L]

lift
=⇒

I J K

L

−a

−b

=

I J K

L

−a

−b+ d

−d

F
−→

I J K

L

−a

−b+ d

−d

=

I J K

L

−c

−d

F
−→

I J K

L

−c

−d

F
−→

I J K

L

−c

−d

β
−→

I J K

L

−c

−d

F
−→

I J K

L

−c

−d

cond.
=⇒

c

d

[I] [J ] [K]

[L]

,

(80)

where the braiding operation “β" in the third line requires the knowledge of half braidings
between the to-be-condensed ZN -anyons and the others defined through a morphism

β ∈ Hom (a⊗L, L⊗ a) , (81)

i.e.

a b

≡ βa(b)
a b

a

and
a L

≡ βa(L)
a L

a

. (82)

The half braiding data are encoded in the Drinfeld center Z(C) of the parent fusion category
C. Therefore, to sum up, using (80) we establish a map from the F -symbols and half-braiding
data of the fusion category C to the F -symbols in the para-condensed fusion category C/ZN .
In practice, we can either apply (80) or directly solve para-pentagon equations (54) to find the
F -moves in the para-fusion category. It would be interesting to show the equivalence between
(54) and (80) that we will leave in the future work. On the other hand, in the following
sections, we use both of them to study various examples and demonstrate the consistency of
the two approaches case by case.

4 Examples: Verlinde Lines

4.1 Parafermionic Z3

The first example for us to demonstrate the para-fusion category is the Verlinde lines in the
parafermionization of 3-Potts model. As discussed at the end of section ??, the 3-Potts model
has partition function

ZT = |χ0|2 + |χ2/5|2 + |χ1/15|2 + |χ1/15∗ |2 + |χ2/3|2 + |χ2/3∗ |2 . (83)

Correspondingly, one has six Verlinde lines, denoted by

C =
�

L0, L2/3, L2/3∗ , L2/5, L1/15, L1/15∗
	

, (84)

26



SciPost Physics Submission

where the first three lines form the Z3 symmetry, while the rest are non-invertible lines. The
fusion rules in C can be easily obtained by Verlinde formula, from which one can study the
orbits of
�

L2/5, L1/15, L1/15∗
	

under the Z3-action. It turns out that

L2/3 ·L2/5 = L1/15 , L2/3 ·L1/15 = L1/15∗ , L2/3 ·L1/15∗ = L2/5 , (85)

implying that the set
�

L2/5, L1/15, L1/15∗
	

form a 3-orbit, i.e. an orbit with 3 steps, under
the Z3-action. Therefore, after parafermionization, the three Verlinde lines will condense to a
single line in the Z3-parafermionic theory, whose fusion rule can be once again determined by
its parent 3-Potts theory. Notice that

L2/5 ·L2/5 = L0 +L2/5 . (86)

The sub-category

C′ =
�

L0, L2/5

	

(87)

is of Fibonacci type. If we choose L0 and L2/5 as the representatives after condensing the Z3
lines, the para-fusion category

eC1 ≡
�

[L0] ,
�

L2/5

�	

(88)

is isomorphic to C′ with the fusion rule
�

L2/5

�

·
�

L2/5

�

= C1|0|0 [L0] +C1|0|0 �L2/5

�

, (89)

where C1|0|0 implies that the TDL
�

L2/5

�

is of m-type, and the trivial parafermionic defect ψ0
is located at the junctions of trivialent graphs for the fusion of TDLs. Since there are only
trivial parafermionic defects in the choice of the representatives, the F -symbols satisfy usual

pentagon identities, and the only non-trivial F -symbol is F[L2/5],[L2/5],[L2/5]
[L2/5]

given by,



















ψ0

ψ0

ψ0

ψ0



















=

�

ζ−1 1
ζ−1 −ζ−1

�

·



















ψ0

ψ0

ψ0

ψ0



















, (90)

where the dashed and solid lines denote the TDLs [L0] and
�

L2/5

�

respectively, ζ=
p

5+1
2 , and

we have uses the gauge freedom to fix the entry of the F -symbol,

F[L2/5],[L2/5],[L2/5]
[L2/5]

�

[L0] ,
�

L2/5

��

= 1 . (91)

The F -symbol in (91) is related to the standard F -symbol of Fibonacci Anyons by a similarity
transformation (see for example [97]).

Instead, one can choose a different representatives, say [L0] and
�

L1/15

�

for example,
denoted as

eC2 ≡
�

[L0] ,
�

L1/15

�	

(92)

Notice the fusion rule

L1/15 ·L1/15 = L1/15∗ +L2/3∗ = L2/3 ·L1/15 +L2/3∗ ·L0 , (93)
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implying the following fusion rule after condensation

L1/15 L1/15

L2/3∗

= L2/3∗

L1/15 L1/15

L0

L2/3∗

cond.
=⇒

�

L1/15
�

�

L1/15
�

[L0]

ψ1 (94)

and

L1/15 L1/15

L1/15∗

= L2/3

L1/15 L1/15

L1/15

L1/15∗

cond.
=⇒

�

L1/15
�

�

L1/15
�

�

L1/15
�

ψ2 , (95)

where the orientation of the red lines need to be further inverted to condense them in according
to (85). The red dots ψi denote the 1d parafermionic defects as the remnants of condensing
the Z3-symmetry. They also specify the morphisms, Hom(Li ⊗ L j , Lk) of the fusion of two
TDLs in the parafermoinic theory. In the case at hand, we have

�

L1/15

�

·
�

L1/15

�

= C0|1|0 [L0] +C0|0|1 �L1/15

�

. (96)

With the above fusion rule, we can solve the para-pentagon equation with the choice of

ω= e
2πi
3 , (97)

and find the solutions to the non-trivial F -symbols F ,

ψ2

ψ1

= ω
ψ2

ψ1

, (98)

and


















ψ1

ψ0

ψ2

ψ2



















=

�

ω−1ζ−1 1
ζ−1 −ωζ−1

�

·



















ψ1

ψ0

ψ2

ψ2



















, (99)

where the dashed and solid lines stand for the TDLs [L0] and
�

L1/15

�

respectively. Solving

the para-pentagons, one can find two solutions with ζ= 1±
p

5
2 . Spin selection rules [10] imply

that ζ= 1+
p

5
2 and ζ= 1−

p
5

2 correspond to the existence of defect operators with spin s = ±2
5

and s = ±1
5 respectively. Therefore the solution with ζ= 1+

p
5

2 need to be picked up.
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Quantum dimensions. The quantum dimensions of [L2/5] and [L1/15] can be determined
through the largest eigenvalue of their fusion matrices, respectively. In the case of L2/5 this is
straightforward and gives d[2/5] = ζ. In the case of L1/15 the fusion matrix is

N[L1/15]
a
b
=

�

0 1
ω ω2

�

, a, b ∈ {L0,L1/15}, (100)

and hence the eigenvalues are ω−1 1+
p

5
2 and ω−1 1−

p
5

2 . The absolute value of the largest
eigenvalue then gives

dL1/15
=

1+
p

5
2

= ζ. (101)

Isomorphism of C1 and C2 As C1 and C2 are different only due to different choices of rep-
resentatives, they are expected to be isomorphic to each other. One can establish a natural
transformation between them by lifting them to the parent fusion category and then condense
back. For example, for (98), we lift the LHS of the equation, perform a series of F-moves in
the parent fusion category, and finally condense back to the RHS of (98):

2

1

lift
=⇒

2

2

1

=
2

2

1

= ω
2

2

1

= ω
2

2

1

cond.
=⇒ ω

ψ2

ψ1

, (102)

where the prefactor “ω" is precisely captured by the half-braiding between lines L 1
15

and L 2
3
∗ .

One can similarly work out the map from (89) to (99) that we will omit for brevity, and thus
establish the isomorphism between C1 and C2.

4.2 Parafermionic Z4

Our second exmaple is theZ4 parafermionization of theZ2 orbifold theory of the c = 1 compact
boson at special radius R=

p
6 which can be also realized as a SU(2)4/U(1) coset model. The

original bosonic CFT is rational, and has 10 primaries with conformal weights,
§

0,
3
4

, 1,
3
4

∗
,

1
16

,
1
16

∗
,

9
16

,
9

16

∗
,

1
3

,
1

12

ª

, (103)

where the “∗" denotes charge conjugation as before. The 10 primaries implies that there are
10 Verlinde lines labeled by the conformal weights as well,

C ≡
¦

L0, L 3
4
, L1,L 3

4
∗ , L 1

16
, L 1

16
∗ , L 9

16
, L 9

16
∗ , L 1

3
, L 1

12

©

. (104)

By studying their fusion rules, one can find the first four lines in C form the to-be-condensed
Z4 symmetry. On the other hand, the rest are non-invertible TDLs, and can be grouped by the
orbits of the Z4-actions. One finds that the set

S1 =
¦

L 1
16

, L 1
16
∗ , L 9

16
, L 9

16
∗

©

(105)
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form a 4-orbit, and the set

S2 =
¦

L 1
3
, L 1

12

©

(106)

form a 2-orbit, i.e. the two elements in S2 are Z2 fixed points out of Z4.
Now, after we parafermionize the bosonic theory to the Z4 parafermionic one, we end up

with a para-fusion category consisting of three TDLs,

eC =
¦

[L0] ,
�

L 1
3

�

,
�

L 1
16

�©

, (107)

where [L0],
�

L 1
3

�

and
�

L 1
16

�

are representatives of the Z4-symmetry category, lines in S2 and

S1 respectively. Since S2 is a 2-orbit, the TDL
�

L 1
3

�

is a Z2 q-type object, whereas
�

L 1
16

�

is of

m-type because elements in S1 are transitive with respect to Z4. The fusion rules of TDLs in eC
can be read off from their parent category C,











L 1
3
·L 1

3
= L0 +L1 +L 1

3
, L 1

3
·L1 = L 1

3

L 1
3
·L 1

16
= L 1

16
+L 9

16
= L 1

16
+L1 ·L 1

16
,

L 1
16
·L 1

16
= L 1

12
+L 3

4
∗ = L 3

4
·L 1

3
+L 3

4
∗ ·L0 .

(108)

The first two equations in (108) simply imply that
�

L 1
3

�

is a Z2 q-type object after condensa-

tion. Put differently, the junctions between
�

L 1
3

�

and the other TDLs can have two types of
parafermionic defect operators ψ0 and ψ2, i.e.

�

L1/3
�

[Li ]

�

L j
�

ψ0 and

�

L1/3
�

[Li ]

�

L j
�

ψ2 , (109)

where [Li] and
�

L j

�

are objects in eC, and the presence of parafermionic defect operators ψ0
and ψ2 are due to the condesation of line L0 and L1. In the same fashion, the third equation
in eq. (108) implies that

L1/16 L1/16

L1/12

= L3/4

L1/16 L1/16

L1/3

L1/12

cond.
=⇒

�

L1/16
�

�

L1/16
�

�

L1/3
�

ψ3 (110)

and

L1/16 L1/16

L3/4∗

= L3/4∗

L1/16 L1/16

L0

L3/4∗

cond.
=⇒

�

L1/16
�

�

L1/16
�

[L0]

ψ1 . (111)
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Notice also in eq. (110), the TDL L1/3 is in addition invariant by fusing L1,

L 3
4
·L 1

3
= L 3

4
∗ ·L 1

3
(112)

Therefore after condensation, the parafermionic defect ψ1 can be also located at the junction,
i.e.

�

L1/16
�

�

L1/16
�

�

L1/3
�

ψ1 (113)

To summarize, we have the following fusion rules for eC:

[Li] ·
�

L j

�

=
�

L j

�

· [Li] , [L0] · [Li] = [Li] ,
�

L1/3

�

·
�

L1/3

�

= C1|0|1|0 [L0] +C1|0|1|0 �L1/3

�

,
�

L1/3

�

·
�

L1/16

�

= C1|0|1|0 �L1/16

�

,
�

L1/16

�

·
�

L1/16

�

= C0|1|0|0 [L0] +C0|1|0|1 �L1/3

�

. (114)

Quantum dimensions. Similarly to the Z3-case, we can solve for the quantum dimensions
by studying the largest eigenvalue of the fusion matrix. Neglecting the dimensionality of the
vertex, one finds from the above fusion rules

d[L0] = 1, d[L1/3] =
1+
p

5
2

, d[L1/16] =
p

2. (115)

Based on the fusion rule, we can solve the para-pentagon equations they need to satisfy. It
turns out that there are 16 solutions to para-pentagons. One can compute their spin selection
rules to further determine which one is for the parafermionic category eC. Here, for brevity,
we only spell out the two non-trivial F-moves with four legs of all

�

L1/3

�

or
�

L1/16

�

. For

F[L1/3],[L1/3],[L1/3]
[L1/3]

, we found
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, (116)
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and for F[L1/16],[L1/16],[L1/16]
[L1/16]

we have
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, (117)

where the dotted, black and blue lines denote the [L0],
�

L1/3

�

and
�

L1/16

�

TDLs respectively,
and the red dots and numbers stand for the parafermionic defects ψi . One can verify that

the ranks of F[L1/3],[L1/3],[L1/3]
[L1/3]

and F[L1/16],[L1/16],[L1/16]
[L1/16]

are 6 and 3. This is because the

parafermionic defects can “move” along the Z2 q-type TDL
�

L1/3

�

.

4.3 Parafermionization of SU(8)4
At last, we use the parafermionized SU(8)4 to illustrate that its para-fusion category contains
two Z2 q-type objects and one Z4 q-type object. Let us consider the Verlinde lines in SU(8)4,
which contains 330 simple objects characterized by the integrable representations of the affine
Lie algebraÖsu(8)4. Although there are too many lines to spell out their F -symbols in details,
one can still understand the structures of the para-fusion category after para-condensation of
the SU(8)4. First notice that, in these Verlinde lines, there are 8 simple currents corresponding
to the non-anomalous Z8-symmetry. One can study all other TDLs under the action of the
Z8-symmetry. The upshot is that the 330 TDLs are divided into three sectors consisted of forty
8-orbits, two 4-orbits, and a single 2-orbits. Therefore, after parafermionization respect to
the Z8-symmetry, it suggests that we will have a para-fusion category containing forty m-type
objects, two Z2 q-type objects, and a single Z4 q-type object.

5 Example: Para-condensed TY(ZN) Category

Beside various Verlinde lines we have seen so far, there are much richer TDLs in these parafermionic
ZN theories. Among them, there is an interesting class of non-Verlinde TDLs, which only com-
mute with the Virasora algebra and admit N different types of parafermionic defects opeartor
living on them. These TDLs can be obtained from para-condensation of the non-invertible du-
ality defect N -lines of their parent bosonic WZW model su(2)N/u(1). Recall that, at the con-
formal fixed points, these theories are self-dual with respect to gauging their ZN symmetries.
Therefore, one might gauge the ZN symmetry only on the half plane [78], and the interface
N between the gauged/ungauged planes turns out to be a non-invertible TDL, satisfying the
fusion rule,

N ·N =
∑

a∈ZN

a and N · a = a ·N =N , for a ∈ ZN . (118)

The N -line together with the ZN symmetry combined are the well-known Tambara-Yamagami
category TYt,κ

ZN
, where t, satisfying 1 ≤ t ≤ N − 1 and gcd(t, N) = 1, defines a symmetric
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bi-character χt as

χt(a, b) = e
2πi tab

N ≡ωab
N ,t , for a, b ∈ ZN , (119)

and κ = ±1 is the Frobius-Schur indicator. The ZN TY category is completely determined by
the two parameters t and κ. The non-trivial F -symbols are given as below:














































































a b

= F a,N , b
N

a b

, F a,N , b
N = χt(a, b) ,

a

b

= FN , a,N
b

a

b

, FN , a,N
b = χt(a, b) ,

a =
∑

b∈ZN

�

FN ,N ,N
N

�

ab
b ,
�

FN ,N ,N
N

�

ab
= κp

N
χ−1

t (a, b) ,

(120)

where the black and red lines in the graphs denote the TDLs for N -line and ZN -lines respec-
tively. For the bosonic su(2)N/u(1) model, the N -line combined with ZN symmetry specify
one of TYt,κ

ZN
’s. For example, in the case of Z2, su(2)2/u(1)≃ Ising, so the TY category is given

by TY1,+1
ZN

.
After para-condensation, the ZN -TDLs are all condensed to the trivial line. The category

thus only contains two objects2

{1 , N } , (121)

with the fusion rule

N ·N = C

N
︷ ︸︸ ︷

1|1| · · · |11 , and N ·1= 1 ·N =N (122)

Apparently, the fusion (122) condensed from (118) implies that there are N different types of
1d parafermionic defects, denoted as “color", that can live on the N -line.

In this subsection, we aim to propose a classification for all ZN para-condensed TYt,κ
ZN

,

dubbed as “pf-TYt,κ,β
ZN

", where the additional parameter β will be explained below in length.
Following the fusion rule, only those F -symbols with even number ofN -lines are non-vanishing,
¦

F1,1,1
1 , F1,1,N

N , F1,N ,1
N , F1,N ,N

1 , FN ,1,1
N , FN ,1,N

1 , FN ,N ,1
1 , FN ,N ,N

N

©

. (123)

Since, at trivalent junctions involving the N -line, there could be N different colors, these F -
symbols are generically matrices. For example, for F1,1,N

N ,

= F1,1,N
N , (124)

2By abuse of notation N denotes the duality line in both the parent TYt,κ
ZN

category and its para-condensation.
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where the dashed and solid lines denote the trivial and N -line, respectively, and the red dot
implies there are N different colors at each junction. Therefore the F -symbol F1,1,N

N is an
N × N2 matrix. We denote the entries of the F -symbol as FL,L,L

L (a, b, c, d). Notice that,
because of the parafermionic parity (22),

FL,L,L
L (a, b, c, d) = 0 , if a+ b ̸= c + d mod N . (125)

5.1 Half braiding structure

For parafermionic condensation of TYt,κ
ZN

, we need to introduce a consistent braiding structure

for some elements in TYt,κ
ZN

. In fact, there is no such a structure for the whole TYt,κ
ZN

category
except for N = 2. However a half braiding structure does exist for elements in ZN and N -line.

We define the braiding between ZN -anyons a and b, and ZN -anyon a and N as

a b

≡ βa(b)
a b

a

and
a N

≡ βa(N )
a N

a

, (126)

where the braiding βa(b), for consistency, needs to be identical to the braiding structure of
ZN -anyons, i.e.

βa(b) =ω
ab
N ,t = e

2πi tab
N . (127)

On the other hand, for βa(N ), first note that

a N

=
a− 1 N

1
= β1(N )βa−1(N )

a− 1 N
1

a− 1
1

= β1(N )βa−1(N )χt(−1, a− 1)
a− 1 N
1

a− 1
1

= β1(N )βa−1(N )χt(−1, a− 1)
a N

a

, (128)

where we have used the following F-move

a

b

=

a

b

−a
= χt(−a, b)

a

b

−a
= χt(−a, b)

a

b

(129)

in the third equality. Therefore we have, from (128),

βa(N ) = β1(N )aω
−
∑a−1

j=1 j
N ,t = β1(N )aω

− a(a−1)
2

N ,t , (130)

i.e. the braiding β1(N ) determines all other braiding data between the N - and ZN -anyons.
To find consistent braiding data β1(N ), the naturality conditions have to be imposed:

1 a

N

N

=

1 a

N

N

(131)
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The LHS of the above graph gives

1 a

N

N

= β1(a)

1 a

1N

N

, (132)

while the RHS gives

1 a

N

N

= β1(N )2

1

1

1

a

N

N

= β1(N )2

1

1

1

a

N

N

= β1(N )2χt(1, a+ 1)

1

1

1

a

N

N

= β1(N )2χt(1, a+ 1)

1 a

1N

N

. (133)

Therefore, for consistency, we have

β1(a) = β1(N )2χt(1, a+ 1) =⇒ β1(N ) = ±e−
πi t
N , (134)

as the allowable values, where we have used (127). Using (128), one arrives at

βa(N ) = (±1)aω
− a2

2
N ,t . (135)

We need to further require that

βN (N ) = (±1)N (−1)tN ≡ β0(N ) = 1 . (136)

Obviously, for even N , (136) will be automatically satisfied. Therefore β1(N ) can be assigned
±e−

πi t
N as (134). On the other hand, for odd N , β1(N ) has to be assigned as (−1)t e−

πi t
N . In

sum, we have

β ≡ β1(N ) =

(

(−1)t e−
πi t
N for odd N

±e
−πi t

N for even N
(137)

With these preparations, we can compute the braiding coefficient B(a,N ) introduced in
(149). Notice that

Na

a

=

N
a

a

−a

−a
= β−a(N )

N
a

a

−a

−a

= β−a(N )χ−1
t (a,−a)

Na

a

= βa(N )χt(a, a)

Na

. (138)
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We thus have

B(a,N ) = βa(N )χt(a, a) . (139)

5.2 Parafermionic condensation

All of the F -symbols are constrained by the para-pentagon equations we proposed in sec.3.
Subject to Ocneanu rigidity, after gauge fixings, there are only finite number of solutions.
However, since the number of para-pentagon equations grows in terms of O(N6), only for the
case of N = 2, i.e. the fermionic case, can these para-pentagons be solved in such a brutal
force way. Instead, we will use the data in TYt,κ

ZN
to simplify the F -symbols in its condensed

pf-TYt,κ,β
ZN

. During this procedure, a “half-braiding" structure has to be introduced as we will
see soon.

We separate all F -symbols (123) into three sectors:

S1 =
�

F1,1,1
1

	

,

S2 =
¦

F1,1,N
N , F1,N ,1

N , F1,N ,N
1 , FN ,1,1

N , FN ,1,N
1 , FN ,N ,1

1

©

,

S3 =
¦

FN ,N ,N
N

©

. (140)

The F -symbol F1,1,1
1 in S1 is trivially solved by the para-pentagon consisted of five trivial

lines,

F1,1,1
1 = 1 . (141)

Now we will establish some linear relations among entries of each F -symbol in S2. Notice
that the 1d parafermionic defects can “move" along the q-type N -line. We can thus merge two
different colors of defects by lifting them to the parent TYt,κ

ZN
, performing F-moves, and then

condensing back,

a

b

N

pf-TY

lift
=⇒

a

b

N

TY

= b

a

a+ b

N

TY

cond.
=⇒

a+ b

N

pf-TY

, (142)

where we have used the F-move (120) in TYt,κ
ZN

.

For a trivalent junction in pf-TYt,κ,β
ZN

, we can also use (142) to define its lifting in TYt,κ
ZN

.
Notice that there are three trivalent junctions involving N -line from (122),

, , (143)

There are ambiguities when one tries to lift the above junctions to TYt,κ
ZN

. For example we can
lift the first junction in (143) in two different ways as

a
lift
=⇒

0

a or a
lift
=⇒

0

a
, (144)
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where we have chosen 1= [0] as the representative of ZN . However by the F-move in (120),
we have

0

a
= χt(a, 0)

0

a =

0

a . (145)

Therefore there is actually no ambiguity for the lifting of (144). We now look at the second
junction in (143), and have

a
lift
=⇒

0

a or a
lift
=⇒

0

a
. (146)

The two ways of lifting can be related in the following F-move and braiding,

0

a
=

0

a
= B(a, 0)

0

a
= B(a, 0)

0

a

=

0

a , (147)

where the coefficient B(a, 0) denotes the braiding of anyon “a" and trivial line, which is always
unity. Therefore there is no ambiguity either in (146). Finally let’s come to the third junction
in (143), and its two ways of lifting,

a
lift
=⇒

0

a
or a

lift
=⇒

0

a
. (148)

Similar to the previous calculation, we can establish the relation between the two liftings,

0

a
= χt(a, 0)−1

0

a
= B(a,N )

0

a
, (149)

where B(a,N ) is the braiding coefficient between anyon “a" and N -line.
Because of the ambiguity in (148), let us assign the lifting of the trivalent junctions (143)

37



SciPost Physics Submission

in the following way:



































































































a
lift
⇐⇒
cond.

0

a =

0

a
,

a
lift
⇐⇒
cond.

0

a =

0

a
,

a
lift
⇐⇒
cond.

0

a
=

0

a .

(150)

Here we briefly remark that one can also use the second equation in (148) to define the lifting
and condensation. The two ways are actually equivalent up to a gauge transformation by
redefining the trivalent junction.

Now, using (150), we can proceed to establish various linear relations for the components
of F -symbols in S2.

For F1,1,N
N ,

a

b

lift
=⇒

00

a

b

=

00

a

b

=

00

a+ b

cond.
=⇒

0

a+ b

=⇒ F1,1,N
N (0, a+ b, a, b) = F1,1,N

N (0, a+ b, 0, a+ b) (151)

For F1,N ,1
N ,

a

b

lift
=⇒

00

a

b

=

00

a

b

=

00

a+ b

cond.
=⇒

0

a+ b
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and

a

b

lift
=⇒

00

a

b

=

00

a

b

=

00

a+ b

cond.
=⇒

0

a+ b

=⇒ F1,N ,1
N (a, b, c, d) = F1,N ,1

N (0, a+ b, 0, c + d) , for a+ b = c + d mod N
(152)

For F1,N ,N
1 ,

a

b

lift
=⇒

0

0

a

b

=

0

0

a

b

=

0

0

a+ b

cond.
=⇒

0

a+ b

=⇒ F1,N ,N
1 (a, b, a+ b, 0) = F1,N ,N

1 (0, a+ b, a+ b, 0) (153)

For FN ,1,1
N ,

a

b

lift
=⇒

00

a

b

=

00

a

b

=

00

a+ b

cond.
=⇒

0

a+ b

=⇒ FN ,1,1
N (a, b, 0, a+ b) = FN ,1,1

N (0, a+ b, 0, a+ b) (154)
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For FN ,1,N
1 ,

a

b

lift
=⇒

0

0

a

b

=

0

0

a

b

=

0

0

a+ b

cond.
=⇒

0

a+ b (155)

and

a

b

lift
=⇒

0

0

−b

a

b

= B(a,N )χt(a, b)

0

0

−b

a

b

= B(a,N )χt(a, b)

0

0

a

b

= B(a,N )χt(a, b)

00

a+ b

cond.
=⇒ B(a,N )χt(a, b)

0

a+ b

=⇒ FN ,1,N
1 (a, b, c, d) = B(c,N )χt(c, d) FN ,1,N

1 (0, a+ b, 0, c + d) ,

for a+ b = c + d mod N (156)

At last, for FN ,N ,1
1 ,

a

b

lift
=⇒

0

0

−b

a

b

= B(a,N )χt(a, b)

0

0

−b

a

b

= B(a,N )χt(a, b)

0

0

a

b

= B(a,N )χt(a, b)

0

a+ b

0

cond.
=⇒ B(a,N )χt(a, b)

0

a+ b

=⇒ FN ,N ,1
1 (a+ b, 0, a, b) = B(a,N )χt(a, b)FN ,1,N

1 (a+ b, 0, 0, a+ b) (157)
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5.3 Gauge fixings and solutions to pf-TYt,κ,β
ZN

Using the condensation equations (152)−(158), one can dramatically simplify the para-pentagon
equations. However there are many gauge freedoms to re-define various trivalent junctions.
One has to fix all of them to fully solve all para-pentagons. For pf-TYt,κ,β

ZN
, there are overall

3N −1 gauge freedoms which can be counted by the method discussed in [61]. Among them,
3(N−1) gauges have been secretly fixed by (150), because choosing different condensations is
equivalent to re-defining the trivalent junctions by using their corresponding gauge freedoms.
The number 3(N − 1) is due to the fact that there are three types of junctions with N − 1
different colors except for the color “0” condensed from trivial line. Therefore specifying their
condensations will uniquely fix 3(N−1) gauges. After that, we still have 3N−1−3(N−1) = 2
more gauges to fix. For convenience, we choose

F1,1,N
N (0,0, 0,0) = FN ,1,1

N (0, 0,0, 0) =
1
p

N
. (158)

Solving pentagons with two external N -lines, one can find all F-moves in S2 as,


















































































F1,1,N
N (0, a+ b, a, b) = 1p

N

F1,N ,1
N (a, b, c, d) = 1

N , for a+ b = c + d mod N

F1,N ,N
1 (a, b, a+ b, 0) = 1p

N

FN ,1,1
N (a, b, 0, a+ b) = 1p

N

FN ,1,N
1 (a, b, c, d) = 1

N βc(N )χt(c, a+ b) , for a+ b = c + d mod N

FN ,N ,1
1 (a, b, 0, a+ b) = 1p

N
βa(N )χt(a, a+ b) .

(159)

Finally, solving pentagons with four external N -lines, we find the F-move FN ,N ,N
N in S4,

FN ,N ,N
N (a, b, c, d) =

κ
p

N
βc(N )χt(a, c) , for a+ b = c + d mod N (160)

Therefore, we have shown that pf-TYt,κ,β
ZN

, the parafermionic condensation of TYt,κ
ZN

category,
is uniquely determined by the data t, κ and half-braiding β . For example, in the case of N = 2,
i.e. the fermionic condensation of TY(Z2), we have t = 1, κ = ±1 and β = ±i as in (137).
Therefore, overall there are 4 gauge independent solutions that have been found in [61].
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A Pre-metric group C(G, q)

In this appendix, we will introduce the concept of the pre-metric group C(G, q), associated
with an Abelian group G that forms a pre-modular category. The simple object of C(G, q) is
labeled by an element of the group G. A quadratic form q : G → C is a function such that
q(g) = q(g−1) and the function

b(g, h) :=
q(gh)

q(g)q(h)
(161)

is a bicharacter, i.e., b(g1 g2, h) = b(g1, h)b(g2, h). The pre-metric group is related to the
topological orders of Abelian anyons, wherein the quadratic form q(g) plays the role of the
self-half-braiding θg of the anyons.

Form now on, we will focus on the case of G = ZN = {0,1, ..., N − 1}. The pre-metric
group C(ZN , k) = C(ZN , qk) is characterized by an integer parameter k with quadratic form qk
defined as:

qk(n) = (ωN ,k)
n2
=

¨

e2πi k
2N n2
(k = 0,1, ..., 2N − 1), if N is even

e2πi k
N n2
(k = 0, 1, ..., N − 1), if N is odd

, (162)

where for simplicity we introduced the phase factor

ωN ,k := e2πi k
gcd(2,N)N . (163)

In particular, the generator of ZN has self-statistics

qk(1) =ωN ,k, (164)

or topological spin

h1 =
k

gcd(2, N)N
. (165)

From this expression, we can determine the parameter k for C(ZN , qk) based on the conformal
spins of primary fields in a CFT. This allows us to identify the corresponding pre-metric group
for the ZN subcategory of primary fields in the CFT.

To comprehend the conditions under which theZN symmetry is non-anomalous and amenable
to gauging or orbifolding, we must examine the associator or F symbol of the fusion category
C(ZN , qk). Notably, we can demonstrate that the F symbols are as follows:

F a,b,c =

¨

(−1)ka⌊ b+c
N ⌋, if N is even

1, if N is odd
. (166)

From this expression, we can observe that the conditions for the ZN symmetry to be anomalous
or non-anomalous (F = 1) are:

ZN anomalous⇐⇒ N is even and k is odd, (167)

ZN non-anomalous⇐⇒ N is odd or k is even. (168)

The category C(ZN , qk) is not only fusion but also braided. The quadratic form of the
pre-metric group is related directly to the twist of the braided tensor category

θn = Rn,n = qk(n) = (ωN ,k)
n2

, (169)
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as stated before. The braiding data R is given by

Rm,n = (ωN ,k)
mn. (170)

As a result, the pre-metric group C(ZN , qk) is in fact a pre-modular category with both fusion
and braiding structures.

One can also derive the modular matrices of the pre-modular category C(ZN , qk) from the
general relation

Sαβ =
1
D

∑

γ

Nγ
αβ

θγ

θαθβ
dγ = Sβα, D =

√

√

∑

α

d2
α, (171)

Tαβ = θαδαβ . (172)

The final results are

Sm,n =
1
p

N

qk(m+ n)
qk(m)qk(n)

=
1
p

N
(ωN ,k)

2mn =

(

1p
N

e2πi k
N mn, if N is even

1p
N

e2πi k
N 2mn, if N is odd

, (173)

Tm,n = qk(n)δmn. (174)

The physical meaning of the bicharacter Eq. (161) is in fact the monodromy matrix as

b(m, n) =
q(m+ n)
q(m)q(n)

= Mm,n =
SmnS00

S0mS0n
= (ωN ,k)

2mn. (175)

From the modular matrices, one can also determine when the pre-metric group (or pre-
modular category) C(ZN , qk) is metric (or modular). In fact, we have the condition

C(ZN , k) is modular⇐⇒ qk is non-degenerate⇐⇒ gcd(k, N) = 1. (176)

In practice, the structure of the pre-metric group C(ZN , qk) provides us with valuable in-
sights into the properties of the ZN subcategory of primary fields within a CFT. For example,
when we have the conformal dimension h1 of the ZN primary field generator, Eq. (165) comes
into play, allowing us to deduce the parameter k. This parameter uniquely defines the pre-
metric group or pre-modular category C(ZN , qk). Once we have determined the value of k,
Eq. (168) becomes instrumental in identifying when the ZN symmetry is non-anomalous. It is
crucial in deciding whether we can engage in process of orbifolding, gauging, or condensing
this symmetry. Furthermore, the condition given by Eq. (176) aids in uncovering the structure
of the primary field category within a CFT. If the C(ZN , qk) subcategory also holds modularity,
then the entire category can be represented as the Deligne product of C(ZN , qk) and another
subcategory.

B ZN -graded division algebra and qM -type simple object in para-
fusion category

In a fusion category, the endomorphism algebra of any simple object must be a division algebra
according to Schur’s lemma. Similarly, if X is a simple object in aZN -graded fusion category (or
para-fusion category) C, then End(X ) = HomC(X , X ) should be a ZN -graded division algebra.

In the context of a fusion category, a simple object X is associated with the endomorphism
algebra End(X ) = C, as the only division algebra over C is itself. However, the situation
changes when dealing with more complicated structures, such as Z2-graded fusion categories
or super-fusion categories. In these cases, the endomorphism algebra End(X ) can expand to
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include the two-dimensional Clifford algebra Cl1 = C1|1, which contains both even and odd
generators. To gain a deeper understanding of the simple objects within para-fusion categories,
it becomes crucial to explore the classification of ZN -graded division algebras .

The classification theorem is as follows [98,99]:

Theorem 1. Let R = ⊕g∈ZN
Rg be a finite-dimensional ZN -graded algebra over C. Then R is a

graded division algebra if and only if R is isomorphic to the group algebra C[ZM ] = ⊕h∈ZM
Ch,

where ZM is a finite subgroup of ZN , i.e., M is a divisor of N.

Consequently, in a ZN para-fusion category, there may exist several distinct types of q-type
objects. The count of these types is determined by the divisor function τ(N), which represents
the number of divisors of N . For instance, a few examples of τ(N) for small values of N are:
τ(N) = 1, 2,2, 3,2,4, 2,4, 3,4 for 1≤ N ≤ 10.

For instance, let’s consider the case of N = 2. In this scenario, there are τ(2) = 2 subgroups
of Z2, leading to two distinct types of End(X ) for simple object X . The algebra C[Z1] = C
corresponds to the m-type simple object, while C[Z2] = C1|1 = Cl1 (the first complex Clifford
algebra) corresponds to the q-type simple object.

If End(X ) = C[ZM ] within a ZN -graded fusion category, we will say X to be a qM -type
object. It’s worth noting that when M = 1, q1-type is equivalent to what we refer to as an
m-type object in super-fusion category.
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