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Ferrofluids are a synthetic magnetic colloid consisting of magnetized nanoparticles surrounded by
a repulsive surfactant layer. When subjected to an external magnetic field the ferrofluid acquires a
macroscopic magnetization density which leads to magnetic behavior that is intricately coupled to
the ambient fluid dynamics. Ferrofluids share several features with the chiral active fluids composed
of unidirectionally spinning hematite cubes, which have been shown to possess a 2D non-dissipative
odd viscosity term (Nature Physics, 15, 1188–1194 (2019)). In standard ferrofluid dynamics, 3D
versions of parity breaking terms are not commonly observed, partly because of the small size of the
magnetic particles. In this work, we investigate if there are unique mechanisms in ferrofluids that
can lead to a 3D odd viscosity term. Our results show that coupling the fluid vorticity (ω⃗) to the

magnetization (M⃗) with a term proportional to ω⃗ · M⃗ leads to parity breaking terms in ferrofluid
hydrodynamics, and results in a three dimensional odd viscosity term when the magnetization is
relaxed to the direction of a uniform and static applied field. Hele-Shaw cells are commonly used
devices to investigate ferrofluids and we demonstrate that this coupling reproduces the parity odd
generalization of Darcy’s Law discussed in a recent work (Phys. Rev. Fluids 7, 114201 (2022)).
A potential experimental setup is discussed which may reveal the presence of this coupling in a
ferrofluid confined to a Hele-Shaw cell.

I. INTRODUCTION

Parity violation is ubiquitous in physical systems, from
astronomical and geological phenomena at the largest of
scales [1–3], to the superfluid and quantum hall prop-
erties of electrons in condensed matter systems [4–20].
In describing the collective dynamics of many particle
systems, parity breaking effects typically originate from
the presence of intrinsic angular momentum at the level
of the constituent particles. Recently much theoretical
work has focused on describing so called “active mat-
ter”, systems in which energy is not conserved at the mi-
croscopic level. These systems naturally exhibit parity-
breaking (parity odd) behavior [21–23]. Parity odd be-
havior in active matter systems can be described in a
variety of ways. Odd elasticity is a framework that aims
to capture these effects by studying the relation between
stresses and strains for non-conservative microscopic in-
teractions [24], while odd ideal gas descriptions study chi-
ral collisions within a kinetic theory framework [25]. Ad-
ditionally, many chiral active systems are best described
using a fluid description [26, 27].

In contrast to ordinary incompressible fluids, these ac-
tive fluids manifest additional transport coefficients be-
yond shear viscosity. Perhaps the most famous of them is
the rotational viscosity, which acts as a relaxation mecha-
nism for the fluid particle angular momenta. In 2D, there
is an extra viscosity known as “odd” or “Hall” viscosity,
which preserves the fluid isotropy. Different from the
other viscosity coefficients, odd viscosity is neither dis-
sipative nor invariant under parity symmetry. Further-
more, its effects are only present for particular boundary
conditions, such as free surface problems [28–30]. On
the other hand, parity breaking in 3D is incompatible

with isotropy, leading to a much larger class of trans-
port coefficients [31]. However, we recently showed that
within a Hele-Shaw cell, the 3D parity breaking effects in
incompressible fluids are revealed in a strikingly simple
fashion [31, 32].

A ferrofluid is a type of 3D active matter fluid sys-
tem that appears to possess several characteristics asso-
ciated with parity-odd behavior. It is made up of mag-
netic nanoparticles coated in a hydrophobic surfactant
layer and suspended in a carrier fluid. Each nanoparticle
has an intrinsic magnetic moment, which is the sum of
the magnetic moments generated by the atoms within it.
Without an external magnetic field, thermal fluctuations
prevent alignment of these moments, and the fluid is non-
magnetic. When a substantial magnetic field is applied,
the nanoparticles show collective behavior and the fluid
becomes magnetized. For a detailed description of fer-
rofluids see Refs. 33–39. Two common laboratory setups
are that of a steady applied field, where the magnetiza-

tion density M⃗ aligns with the external field [40, 41], and

a rotating applied field, in which M⃗ rotates with the ex-
ternal field with the same angular frequency but with a
phase lag [42–44].

The case of a rotating applied field, typically termed
‘spin-up’ flow, in principle should result in parity odd be-
havior as the rotating field causes the magnetic particles
to rotate, which introduces intrinsic angular momentum
into the system at the microscopic level. However, in
the limit of vanishing moment of inertia per particle, due
to its small size (I ∼ r2 → 0), the microscopic angular
momentum does not manifest itself at the hydrodynamic
scale. Thus, there is no parity breaking behavior for fer-
rofluids in this setup. This should be contrasted to the
configuration investigated in the recent chiral active col-
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loids of Soni et al [27], where the magnetic colloids, which
are orders of magnitude larger than ferrofluid nanoparti-
cles, shows experimental signatures of parity odd effects
in the form of 2D odd viscosity. Furthermore, the case of
steady applied field trivially does not lead to any parity
odd transport coefficients, since no net angular momen-
tum is generated at the macroscopic level.

Thus, it seems that in order for ferrofluids to manifest
a 3D analog of odd viscosity, one needs the magnetiza-
tion to play the role of the fluid intrinsic angular momen-
tum, since the latter usually gets washed out due to the
small size of the ferrofluid particles. Following this intu-
ition, in this paper we propose a coupling between mag-

netization density M⃗ and fluid vorticity ω⃗, which after
relaxing the direction of magnetization leads to the 3D
odd viscosity in the case of a steady applied field. This
coupling is motivated by the recent work of Markovich
and Lubensky [22], where they have considered the in-
trinsic angular momentum coupling to fluid vorticity us-
ing a Poisson bracket formalism. The key feature of the
magnetization-vorticity coupling is that the appearance
of parity odd behavior at the macroscopic scales does
not necessarily result from the angular momentum of the
ferrofluid nanoparticles. In fact, this behavior should be
present even in the limit of vanishing particle angular
momentum.

The equations of motion for ferrohydrodynamics are
usually derived from a detailed analysis of the micro-
scopic forces and torques acting on the fluid [33]. How-
ever, to understand the origins of the magnetization-
vorticity coupling it’s more insightful to use a Poisson
bracket (PB) formalism [45, 46], where the dissipative
terms are incorporated through a dissipation function.
Within this setup the relevant three dimensional parity
breaking arises when we add the following intrinsic term
to the ferrohydrodynamic Hamiltonian

HMω =
γ

2

�
d3r ω⃗ · M⃗, (1)

where ω⃗ is the fluid vorticity, M⃗ is the magnetization per
particle and γ is a coupling constant that depends on the
microscopic properties of the ferrofluid nanoparticles. As
pointed out before, this term is analogous in form to that
seen in Markovich and Lubensky [22], with the intrinsic

angular momentum ℓ⃗ replaced by γ M⃗ . In that analy-
sis it was seen that such term leads to what the authors
referred to as 3D odd viscosity. This 3D odd viscosity
breaks the fluid isotropy, hence, the corresponding vis-
cosity term contains a transverse part (with respect to

M⃗), which has the same form as the 2D odd viscosity,
and a longitudinal part, which is only present in three
dimensional systems.

When this term is included in a ferrofluid system it can
lead to a variety of parity-breaking behaviors. However,
this paper will focus specifically on the case of a con-
stant external field, and when the ferrofluid is confined
to a Hele-Shaw cell. In this scenario the system is de-
scribed by a modified version of Darcy’s law, which was

previously derived for general parity-odd flows in Ref. 32.
Using a Hele-Shaw cell provides a reliable experimental
setup to measure the strength of this new coupling.
This paper is organized as follows. In section II we

review the standard equations describing ferrofluids, and
show how they can arise from a Hamiltonian and PB
structure. In section III we introduce a vorticity mag-
netization term into the ferrofluid Hamiltonian and give
the modified equations of motion. In section IV we con-
fine the ferrofluid to a Hele-Shaw cell and examine the
modification to Darcy’s Law.

II. REVIEW OF STANDARD FERROFLUID
DYNAMICS

In order to understand the significance of our modifi-
cation, this section will provide an overview of the stan-
dard ferrofluid system and its governing equations. The
ferrofluid nanoparticles are assumed to be evenly dis-
tributed throughout the carrier fluid, and the effects of
the surfactant layer surrounding each particle are typi-
cally not considered. The ferrofluid is treated as a single
entity with a constant density ρ, velocity vi, pressure
P , particle angular velocity Ωi, and magnetization per
particle Mi. The applied field is denoted by Bi, and
throughout this paper we will employ Einstein summa-
tion notation on repeated indices.
The fluid is assumed to be incompressible with good

approximation, ∂ivi = 0, and satisfy

Dtvi + ∂iP = ν∇2vi +Mj∂jBi − Γϵijk∂j (ωk − 2Ωk) ,
(2)

where the material derivative is defined asDt = ∂t+vj∂j ,
ϵijk is the Levi-Civita symbol, ν is the kinematic shear
viscosity, and Γ is the kinematic rotational viscosity,
which creates a drag force whenever the local particle
rotation differs from (half) the local vorticity ωi. Note
that in the above equation, and throughout this paper,
the pressure P has been scaled by the density, which has
subsequently been set to unity. Conservation of local an-
gular momentum gives the equation of motion for Ωi to
be

IDtΩi = ϵijkMjBk + 2Γ (ωi − 2Ωi) , (3)

where I is the moment of inertia per particle, given by
I ∼ r2, with r being the typical radius of the ferrofluid
particles. For the sake of simplicity, in our analysis we
assume the nanoparticles are spherical, since the general
case does not add much complexity. The governing equa-
tion for Mi assumes that the magnetization is ‘frozen’ in
to the particle, and so the particles rotate as rigid objects,

DtMi = ϵijkΩjMk. (4)

A key assumption in ferrofluids is that the constituent
particles are vanishingly small, and so we take the limit
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I → 0. From Eq. (3) we see that this assumption implies
that magnetic torque balances rotational friction

2Γ (ωi − 2Ωi) = −ϵijkMjBk. (5)

We now solve Eq. (5) for Ωi and substitute into (2) and
(4), which gives

Dtvi + ∂iP = µ∇2vi +Mj∂jBi +
1

2
ϵijk∂j (ϵklmMlBm) ,

(6)

DtMi =
1

2
ϵijkωjMk − 1

4Γ
ϵijkMj (ϵklmMlBm) .

(7)

Due to the smallness of the magnetic nanoparticles, ther-
mal fluctuations can destroy the fluid magnetization for
sufficiently low magnetic fields. A simplified model, ap-
propriate for low magnetic field strengths, adds to Eq.
(7) a dissipation term of the form −(Mi −M0

i )/τ , where
τ is a characteristic relaxation time. The magnitude of
the equilibrium magnetization M0

i is given in terms of
the Langevin function

M0
i =

µBi

B

[
coth

(
µB

kBT

)
− kBT

µB

]
, (8)

where µ is the magnetic moment of each particle. In the
absence of an external applied field, or for high tempera-
tures, the magnetic moments of each particle is ‘random-
ized’ and the magnetization Mi vanishes [43, 46]. A more
detailed analysis takes the particle orientations to be ran-
dom variables governed by Eq. (3), and averages over all
angles. Taking the limit I → 0 and substituting ⟨Ωi⟩T
into the equation for Mi yields a similar dissipation term,
and modifies the rotational viscosity term [33, 37]. For
the purposes of this paper, either analysis will do, since
the parity odd effects that we discuss are general and do
not rely on specific microscopic details of the model.

The above equations of motion can also be derived
starting from a Hamiltonian framework in combination
with a dissipation function [45, 46]. Since the ferrofluid
is assumed to be incompressible, we will scale the Hamil-
tonian by 1/ρ [47] and write the system in terms of
the velocity vi and the angular momentum per particle
ℓi = IΩi. Starting from a Hamiltonian of the form

H =

�
d3r

[
1

2
vivi +

1

2I
ℓiℓi −MiBi

]
(9)

and Poisson brackets give by

{vi(r⃗ ), vj(r⃗ ′)} = ϵijk ωk(r⃗ ) δ(r⃗ − r⃗ ′) , (10)

{vi(r⃗ ), ℓj(r⃗ ′)} = ∂iℓj(r⃗ ) δ(r⃗ − r⃗ ′) , (11)

{vi(r⃗ ),Mj(r⃗
′)} = ∂iMj(r⃗ ) δ(r⃗ − r⃗ ′) , (12)

{ℓi(r⃗ ), ℓj(r⃗ ′)} = ϵijk ℓk(r⃗ ) δ(r⃗ − r⃗ ′) , (13)

{ℓi(r⃗ ),Mj(r⃗
′)} = ϵijk Mk(r⃗ ) δ(r⃗ − r⃗ ′) , (14)

one can derive the equations of motion (2-4) using the
following form of Hamilton’s equations

∂tvi = {vi, H} − δR

δvi
− ∂iλ, (15)

∂tℓi = {ℓi, H} − δR

δℓi
, (16)

∂tMi = {Mi, H} − δR

δMi
, (17)

where the effects of viscosity and dissipation are included
by use of a dissipation function of the form

R =

�
d3r
[1
2
ν (∂ivj + ∂jvi)

2
+

1

2
Γ (2Ωi − ϵijk∂jvk)

2

+
1

2τ

(
Mi −M0

i

)2 ]
. (18)

The equation of motion (15) is shifted by the gradient
of a scalar function λ, which up to some redefinitions
will be related to the fluid pressure. For incompressible
fluids, the pressure does not follow from an equation of
state, but works as a Lagrange multiplier to ensure that
the velocity field dynamics is compatible with the in-
compressibility condition. Hence, the pressure function
is completely determined by the flow and not an inde-
pendent variable. Equations of motion (15-17) with the
choice of Hamiltonian (9) and dissipation function (18)
lead to equations (2-4) with the aforementioned relax-
ation term −(Mi − M0

i )/τ added to the magnetization
dynamics (4).
In the standard ferrofluid analysis, the assumption of

vanishing moment of inertia per particle I is imposed
before setting τ → 0. In other words, the nanoparticle
angular momenta relax much earlier than their magneti-
zation. For uniform magnetic field, the resulting equation
is simply the Navier-Stokes equation

Dtvi = ν∇2vi − ∂iP , (19)

together with the incompressibility condition

∂ivi = 0 . (20)

III. PARITY BREAKING IN FERROFLUIDS
VIA VORTICITY-MAGNETIZATION COUPLING

The Hamiltonian and PB framework of ferrofluids pro-
vides a straightforward way to add modifications to the
system. While many additional terms are in principle
possible, not all terms are relevant or lead to interesting
behavior. For example, one may add the term seen in
Markovich et al [22]

Hℓω =

�
d3r

1

2
ℓiωi, (21)

which couples fluid vorticity to intrinsic angular momen-
tum density. While this does lead parity breaking terms
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in the stress tensor, they are washed out under the fer-
rofluid assumption of vanishing moment of inertia. In
our analysis we will keep this term to compare and make
contact with our modification. As discussed earlier, this
term is relevant in chiral active fluids of Soni et al, where
the constituent particles are orders of magnitude larger
than the conventional ferrofluids. One may also add
quadratic terms of the form

HMM =

�
d3r

1

2
MiMi, (22)

however without modifying the brackets (10) - (14), this
term does not contribute to the equations of motion. If
we wish to describe magnetic solids, or any motion of
the magnetization relative to the particle orientation, we
may add a nonvanishing bracket between Mi and Mj in
the following way

{Mi(r⃗ ),Mj(r⃗
′)} =

1

γ
ϵijk Mk(r⃗ ) δ(r⃗ − r⃗ ′) . (23)

With the inclusion of this term, the equation of motion
for Mi becomes the Landau-Lifshitz-Gilbert equation,
which would more precisely track the relaxation of the
magnetization [48]. In this work, we ignore the bracket
(23) and assume the magnetization is ‘frozen’ into the
ferrofluid particles. Physically this represents the fact
that when attempting to align with the external mag-
netic field, it is more favorable for the particle to rotate
than for the magnetization to rotate independently.

The full Hamiltonian we will study, including both
HMω given in (1) and Hℓω given in (21), is then

H =

�
d3r

[
1

2
vivi +

1

2I
ℓiℓi +

1

2
ℓiωi +

γ

2
ωiMi −MiBi

]
.

(24)

For our analysis we leave the coupling constant γ as a
free parameter to be investigated experimentally or from
some more microscopic description. However, a heuristic
analysis of the structure of the ferrofluid nanoparticles,
and the atoms within, shows γ to be inversely propor-
tional to the molecule Landé g-factor.
We now compute the governing equations resulting

from the Hamiltonian (24), using the brackets (10) - (14),
along with the dissipation function (18). We obtain

Dtvi + ∂iP = ν∇2vi +Mj∂iBj − Γϵijk∂j (ωk − 2Ωk)

+
1

2
ωj∂j (IΩi + γMi) , (25)

IDtΩi =ϵijkMjBk + 2Γ (ωi − 2Ωi)

+
1

2
ϵijkωj (IΩk + γMk)

− I

2
ϵjkm∂jΩi∂k (IΩm + γMm) , (26)

DtMi = ϵijkΩjMk +
1

2
ϵijkωjMk − 1

τ
(Mi −M0

i )

− 1

2
ϵjkm∂jMi∂k (IΩm + γMm) . (27)

where P = λ − 1
2vivi −

I
2ΩiΩi + MiBi is the modified

pressure. The terms involving IΩi+ γMi stem from Hℓω

and HMω, while the second term on the right hand side
of (27) comes from Hℓω alone. The set of equations (25)
- (27) model a wide class of magnetic fluids, of any par-
ticle size and any orientation of the magnetic field and
magnetization.
Upon taking the ferrofluid limit (I → 0), Eq. (26)

gives the modified torque balance equation

2Γ (ωi − 2Ωi) + ϵijkMjBk +
γ

2
ϵijkωjMk = 0 , (28)

which shows that in the limit of vanishing particle size
rotational friction is balanced not only by the magnetic
torque, but also the torque coming from the misalignment
of fluid vorticity and magnetization. Upon solving (28)
for Ωi and substituting into the rest of the equations of
motion, we get the final form of the modified ferrofluid
equations

Dtvi + ∂iP = Mj∂iBj + ν∇2vi +
γ

2
ωj∂jMi

+ ϵijk∂j

(
1

2
ϵklmMlBm +

γ

4
ϵklmωlMm

)
,

(29)

DtMi = ϵijkωjMk − 1

4Γ
ϵijkMj (ϵklmMlBm)

+
γ

8Γ
ϵijkMj (ϵklmMlωm)− 1

τ

(
Mi −M0

i

)
− γ

2
ϵjkm∂jMi∂kMm (30)

In the case of a uniform magnetic field applied in the
positive z direction, the small magnetic relaxation time

τ sets Mi = |M⃗0|δiz, with M⃗0 given by (8). Equation
(29) can then be written as

Dtvi + ∂iP = ν∇2vi +
γ

4
M0∂zωi. (31)

This last term breaks parity and is similar to the term
obtained by Markovich and Lubensky after taking the in-
compressible limit, albeit with Mz replacing the intrinsic
angular momentum term ℓz = IΩz.

IV. FERROFLUIDS IN HELE-SHAW CELL:
EXPERIMENTAL PROPOSAL

A Hele-Shaw (HS) cell is a simplified experimental
setup that could potentially test the presence of vorticity-
magnetization coupling leading to parity breaking effects
in ferrofluids. A HS cell consists of two parallel plates
separated by an infinitesimally small gap h, with the hy-
drodynamic variables assumed to vary in the xy plane
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𝜕Ω(𝑡)

𝑞

Γ = −
𝑞𝛾𝑀0

4𝜇

𝜕Ω(𝑡)

𝑞

Γ = 0
𝛾 = 0 𝛾 ≠ 0

𝑎 without parity breaking 𝑏 with parity breaking

Figure 1. Schematic picture of injection of a test fluid (blue) into a ferrofluid (black), with a distinct interface ∂Ω formed
between them. (a) In the absence of the parity breaking coupling γ, the ferrofluid flows radially outward and has no far field
circulation (Γ = 0). (b) When the parity breaking coupling γ is nonzero the ferrofluid acquires a spiral behavior everywhere in
the domain. In the far field the circulation can be computed even without knowing the details of the interface.

at much larger length scales than the distance between
the two plates. Confining ferrofluids to a HS cell has
much experimental and theoretical background [49–52].
A remarkable example is that of the labyrinthine insta-
bility [40]. For our purposes, we use the HS cell as a way
to measure this new coupling constant γ.
Following the analysis seen in [32], we take the coordi-

nates to scale as

t ∼ 1

ϵ
, x ∼ 1

ϵ
, y ∼ 1

ϵ
ȳ , z ∼ ϵ0 , (32)

where ϵ = h/L, with L being some characteristic length
in the xy plane. The hydrodynamic variables scale as

P ∼ 1

ϵ
, vx ∼ ϵ0 , vy ∼ ϵ0 , vz ∼ ϵ . (33)

Using the relaxed form of our system, Eq. (31), the gov-
erning equations become

0 = ∂xvx + ∂yvy + ∂zvz, (34)

∂xP = µ∂2
zvx − γ

4
M0∂2

zvy, (35)

∂yP = µ∂2
zvy +

γ

4
M0∂2

zvx, (36)

∂zP = 0, (37)

The solutions for velocity that satisfy the no-slip and no-
penetration boundary conditions on the plates are

vx =
6z

h2
(h− z)Vx(x, y), (38)

vy =
6z

h2
(h− z)Vy(x, y), (39)

vz = 0, (40)

and pressure is now independent of z. We then substitute
these solutions into (34) - (36) and average over the plate
separation, which gives

0 = ∂xVx + ∂yVy, (41)

−h2

12
∂xP = µVx − γ

4
M0Vy, (42)

−h2

12
∂yP = µVy +

γ

4
M0Vx, (43)

The above set of equations is Darcy’s law, the standard
governing equation of flow within a HS cell, with an extra
term coming from M0. This equation is of the same form
as that seen in Ref. 32, with γM0/4 playing the role of
the parity odd parameter seen there.
The experimental setups discussed in Ref. 32 provide

methods to measure this coupling. Here we will only
describe a simplified setup that highlights a key feature
of parity odd flows. Consider HS cell with a central in-
jection point, where a fluid (or air) is injected with a
constant rate q (see Fig 1). Details of the inside fluid
are not important for this discussion, since the following
effect is independent of any intricate interface features or
instabilities.
Equations (41-43) indicate that the ferrofluid flow is

irrotational and the pressure is a harmonic function, that
is,

∂xVy − ∂yVx = 0 , (44)

∇2P = 0 . (45)

It is not hard to see that V (ζ) ≡ Vx(x, y) − iVy(x, y),
with ζ = x + iy, is an analytic complex function, since
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the Cauchy-Riemann conditions become the incompress-
ibility and the irrotational equations (41,44). Assuming
that the ferrofluid domain Ω(t) starts at the fluid in-
terface and extends out to infinity, the analytic velocity
function V (ζ) can be expanded in Laurent series as

V (ζ) =

∞∑
n=1

cn
ζn

, (46)

where the coefficients cn are determined by the boundary
conditions at the fluid interface. From the residue theo-
rem, one can determine the coefficient c1 by integrating
V (ζ) over the fluid interface ∂Ω, i.e,

2πic1 =

�
∂Ω

V (ζ)dζ = Γ− i
dA
dt

, (47)

where Γ is the fluid circulation and dA/dt = −q is the
rate of change of the area occupied by the ferrofluid.

From the expression (46) it is possible to determine the
ferrofluid pressure, which becomes

P = − 3

h2
Re

[
(4µ− iγM0)

(
q − iΓ

2π
ln ζ −

∞∑
n=1

cn+1

nζn

)]
.

(48)
Since the pressure must be a single-valued function, this
imposes that (4µ− iγM0)(q − iΓ) must be a real coeffi-
cient. This shows that the ferrofluid circulation must be
proportional to

Γ = −qγM0

4µ
. (49)

The existence of non-zero circulation in the outer region
(far field flow of ferrofluids) can be used to directly mea-
sure the coupling constant γ, and serves as a straight-
forward way to test for the presence or absence of the
vorticity-magnetization coupling in ferrofluids. We em-
phasize that the far field circulation, represented by the
variable Γ, is independent of the two fluid interface. The
physics at the boundary between two fluids can vary

greatly depending on the viscosity of the fluid being in-
jected. For example, when a less viscous fluid such as an
air bubble is injected into a ferrofluid, the Saffman-Taylor
fingering instabilities can occur. These instabilities are
not present when a more viscous fluid is injected. The
advantage of this proposal is that the circulation in the
far field, away from the interface, is not affected by the
intricate and complex physics that occur near the inter-
face.

V. CONCLUSION

In this work we introduced a new coupling in ferrofluids
between fluid vorticity and magnetization. This mod-
ification is introduced in the context of a Hamiltonian
and PB framework, and after following the standard fer-
rofluid assumptions we arrive at a modified set of govern-
ing equations containing extra parity-odd terms. When
confined to a HS cell, these extra terms manifest as off
diagonal components of Darcy’s Law, and provide a ro-
bust experimental setting in which to measure this new
coupling.
An important conclusion from our analysis is that sim-

ply includingHℓω is not enough to capture the parity-odd
effects in ferrofluids due to the small size of the particles.
Additionally, the coarse-graining procedure outlined in
Ref. 22 can be used to determine the specifics of γ from
a microscopic perspective. Future research in this direc-
tion will depend heavily on experimental confirmation of
the existence of parity-breaking terms in ferrofluids.
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