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Ferrofluids are synthetic magnetic colloids consisting of magnetized nanoparticles surrounded by
a repulsive surfactant layer. When subjected to an external magnetic field the ferrofluid acquires a
macroscopic magnetization density which leads to magnetic behavior that is intricately coupled to
the ambient fluid dynamics. Ferrofluids share several features with the chiral active fluids composed
of unidirectionally spinning hematite cubes, which have been shown to possess a 2D non-dissipative
odd viscosity term [1]. In standard ferrofluid dynamics, 3D versions of parity-breaking terms are
not commonly observed, partly because of the small size of the magnetic particles. In this work,
we investigate if there are unique mechanisms in ferrofluids that can lead to a 3D odd viscosity
term. Our results show that coupling the fluid vorticity (ω⃗) to the magnetization (M⃗) with a term

proportional to ω⃗ · M⃗ leads to parity breaking in ferrofluid hydrodynamics, and results in a three-
dimensional odd viscosity term when the magnetization is relaxed along the direction of a uniform
and static applied field. Hele-Shaw cells are commonly used devices to investigate ferrofluids and we
demonstrate that this coupling reproduces the parity odd generalization of Darcy’s Law discussed
in a recent work [2]. A potential experimental setup is discussed which may reveal the presence of
this coupling in a ferrofluid confined to a Hele-Shaw cell.

I. INTRODUCTION

Parity violation is ubiquitous in physical systems, from
astronomical and geological phenomena at the largest of
scales [3–5], to the superfluid and quantum hall prop-
erties of electrons in condensed matter systems [6–22].
In describing the collective dynamics of many particle
systems, parity breaking effects typically originate from
the presence of intrinsic angular momentum at the level
of the constituent particles. Recently much theoretical
work has focused on describing so-called “active mat-
ter”, systems in which energy is not conserved at the mi-
croscopic level. These systems naturally exhibit parity-
breaking (parity odd) behavior [23–25]. Parity odd be-
havior in active matter systems can be described in a
variety of ways. Odd elasticity is a framework that aims
to capture these effects by studying the relation between
stresses and strains for non-conservative microscopic in-
teractions [26], while odd ideal gas descriptions study chi-
ral collisions within a kinetic theory framework [27]. Ad-
ditionally, many chiral active systems are best described
using a fluid description [1, 28].

In contrast to ordinary incompressible fluids, these ac-
tive fluids manifest additional transport coefficients be-
yond shear viscosity. Perhaps the most famous of them is
the rotational viscosity, which acts as a relaxation mecha-
nism for the fluid particle angular momenta. In 2D, there
is an extra viscosity known as “odd” or “Hall” viscosity,
which preserves the fluid isotropy. Different from the
other viscosity coefficients, odd viscosity is neither dis-
sipative nor invariant under parity symmetry. Further-
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more, its effects are only present for particular boundary
conditions, such as free surface problems [29–31]. On
the other hand, parity breaking in 3D is incompatible
with isotropy, leading to a much larger class of trans-
port coefficients [32]. However, we recently showed that
within a Hele-Shaw cell, the 3D parity breaking effects in
incompressible fluids are revealed in a strikingly simple
fashion [2, 32].

In this work, we investigate one particular 3D incom-
pressible fluid that appears to possess several character-
istics associated with parity-odd behavior, namely, fer-
rofluids. Briefly, ferrofluids consist of magnetic nanopar-
ticles coated in a hydrophobic surfactant layer which are
suspended in a carrier fluid. Each nanoparticle has an
intrinsic magnetic moment, which is the sum of the mag-
netic moments generated by the atoms within it. With-
out an external magnetic field, thermal fluctuations pre-
vent the alignment of these moments, and the fluid is
non-magnetic. When a substantial magnetic field is ap-
plied the nanoparticles show collective behavior and the
fluid becomes magnetized. For a detailed description of
ferrofluids see [33–39]. Two common laboratory setups
are that of a steady applied field, where the magnetiza-

tion density M⃗ aligns with the external field [40, 41], and

a rotating applied field, in which M⃗ rotates with the ex-
ternal field with the same angular frequency but with a
phase lag [42–44].

The case of a rotating applied field, typically termed
‘spin-up’ flow, in principle should result in parity odd be-
havior as the rotating field causes the magnetic particles
to rotate, which introduces intrinsic angular momentum
into the system at the microscopic level. However, in the
limit of the vanishing moment of inertia per particle, due
to its small size (I ∼ r2 → 0), the microscopic angular
momentum does not manifest itself at the hydrodynamic
scale. Thus, there is no parity-breaking behavior for fer-
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rofluids in this setup. This should be contrasted to the
configuration investigated in the recent chiral active col-
loids of Soni et al [1], where the magnetic colloids, which
are orders of magnitude larger than ferrofluid nanopar-
ticles, show experimental signatures of parity odd effects
in the form of 2D odd viscosity. Furthermore, the case of
steady applied field trivially does not lead to any parity
odd transport coefficients, since no net angular momen-
tum is generated at the macroscopic level.

Thus, it seems that in order for ferrofluids to manifest
a 3D analog of odd viscosity, one needs the magnetization
to play the role of the fluid intrinsic angular momentum,
since the latter usually gets washed out due to the small
size of the ferrofluid particles. Following this intuition, in
this paper we propose a coupling between magnetization

density M⃗ and fluid vorticity ω⃗, which after relaxing the
direction of magnetization leads to the 3D odd viscosity
in the case of a steady applied field. This coupling is
motivated by the recent work of Markovich and Luben-
sky [24], where they have considered the intrinsic angu-
lar momentum coupling to fluid vorticity using a Pois-
son bracket formalism. The key feature of the vorticity-
magnetization coupling is that the appearance of parity
odd behavior at the macroscopic scales does not neces-
sarily result from the angular momentum of the ferrofluid
nanoparticles. This behavior should be present even in
the limit of vanishing particle angular momentum.

The equations of motion for ferrohydrodynamics are
usually derived from a detailed analysis of the micro-
scopic forces and torques acting on the fluid [33]. How-
ever, to understand the origins of the magnetization-
vorticity coupling it’s more insightful to use a Poisson
bracket (PB) formalism [45, 46], where the dissipative
terms are incorporated through a dissipation function.
Within this setup, the relevant three-dimensional parity
breaking arises when we add the following intrinsic term
to the ferrohydrodynamic Hamiltonian

HMω =
γ

2

ˆ
d3r ω⃗ · M⃗, (1)

where ω⃗ is the fluid vorticity, M⃗ is the magnetization per
particle and γ is a coupling constant that depends on the
microscopic properties of the ferrofluid nanoparticles. As
pointed out before, this term is analogous in form to that
seen in Markovich and Lubensky [24], with the intrinsic

angular momentum ℓ⃗ replaced by γ M⃗ . In that analy-
sis it was seen that such term leads to what the authors
referred to as 3D odd viscosity. This 3D odd viscosity
breaks the fluid isotropy, hence, the corresponding vis-
cosity term contains a transverse part (with respect to

M⃗), which has the same form as the 2D odd viscosity,
and a longitudinal part, which is only present in three
dimensional systems.

When this term is included in a ferrofluid system it can
lead to a variety of parity-breaking behaviors. However,
this paper will focus specifically on the case of a con-
stant external field, and when the ferrofluid is confined

to a Hele-Shaw cell. In this scenario the system is de-
scribed by a modified version of Darcy’s law, which was
previously derived for general parity-odd flows in Ref. 2.
Using a Hele-Shaw cell provides a reliable experimental
setup to measure the strength of this new coupling.
This paper is organized as follows. In section II

we review the standard equations describing ferrofluids
and show how they can arise from a Hamiltonian and
PB structure. In section III we introduce a vorticity-
magnetization term into the ferrofluid Hamiltonian and
give the modified equations of motion. In section IV we
review some aspects of the anisotropic viscosity tensor
in 3D, and in section V we confine the ferrofluid to a
Hele-Shaw cell to examine the modification to Darcy’s
Law.

II. REVIEW OF STANDARD FERROFLUID
DYNAMICS

To understand the significance of our modification,
this section will provide an overview of the standard
ferrofluid system and its governing equations. The
ferrofluid nanoparticles are assumed to be evenly dis-
tributed throughout the carrier fluid, and the effects of
the surfactant layer surrounding each particle are typ-
ically not considered [47]. The ferrofluid is treated as
a single entity with a constant density ρ, velocity vi,
pressure P , particle angular velocity Ωi, and magneti-
zation density Mi. The applied field is denoted by Bi,
and throughout this paper, we will employ Einstein sum-
mation notation on repeated indices.
The fluid is assumed to be incompressible with good

approximation, ∂ivi = 0, and satisfy

Dtvi + ∂iP = ν∇2vi +Mj∂jBi − Γϵijk∂j (ωk − 2Ωk) ,
(2)

where the material derivative is defined asDt = ∂t+vj∂j ,
ϵijk is the Levi-Civita symbol, ν is the kinematic shear
viscosity, and Γ is the kinematic rotational viscosity,
which creates a drag force whenever the local particle
rotation differs from (half) the local vorticity ωi. Note
that in the above equation, and throughout this paper,
the pressure P has been scaled by the density, which has
subsequently been set to unity. Conservation of local an-
gular momentum gives the equation of motion for Ωi to
be

IDtΩi = ϵijkMjBk + 2Γ (ωi − 2Ωi) , (3)

where I is the moment of inertia per particle, given by
I ∼ r2, with r being the typical radius of the ferrofluid
particles. For the sake of simplicity, in our analysis, we
assume the nanoparticles are spherical since the general
case does not add much complexity. The governing equa-
tion for Mi assumes that the magnetization is ‘frozen’
into the particle, and so the particles rotate as rigid ob-
jects,

DtMi = ϵijkΩjMk. (4)
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A key assumption in ferrofluids is that the constituent
particles are vanishingly small, and so we take the limit
I → 0. From Eq. (3) we see that this assumption implies
that magnetic torque balances rotational friction

2Γ (ωi − 2Ωi) = −ϵijkMjBk. (5)

We now solve Eq. (5) for Ωi and substitute into (2) and
(4), which gives

Dtvi + ∂iP = µ∇2vi +Mj∂jBi +
1

2
ϵijk∂j (ϵklmMlBm) ,

(6)

DtMi =
1

2
ϵijkωjMk − 1

4Γ
ϵijkMj (ϵklmMlBm) .

(7)

Due to the smallness of the magnetic nanoparticles, ther-
mal fluctuations can destroy the fluid magnetization for
sufficiently low magnetic fields. A simplified model, ap-
propriate for low magnetic field strengths, adds to Eq.
(7) a dissipation term of the form −(Mi −M0

i )/τ , where
τ is a characteristic relaxation time. The magnitude of
the equilibrium magnetization M0

i is given in terms of
the Langevin function

M0
i =

µnBi

B

[
coth

(
µB

kBT

)
− kBT

µB

]
, (8)

where µ is the magnetic moment of each particle and
n is the number of magnetic moments per unit of vol-
ume. In the absence of an externally applied field, or for
high temperatures, the magnetic moments of each par-
ticle are ‘randomized’, and the magnetization M0

i van-
ishes [43, 46]. A more detailed analysis takes the particle
orientations to be random variables governed by Eq. (3),
and averages over all angles. Taking the limit I → 0 and
substituting ⟨Ωi⟩T into the equation for Mi yields a simi-
lar dissipation term and modifies the rotational viscosity
term [33, 37]. For this paper, either analysis will do, since
the parity odd effects that we discuss are general and do
not rely on specific microscopic details of the model.

The equations of motion above can also be derived
starting from a Hamiltonian framework in combination
with a dissipation function [45, 46]. Starting from a
Hamiltonian of the form

H =

ˆ
d3r

[
1

2ρ
gci g

c
i +

1

2Iρ
ℓiℓi −MiBi + U(ρ)

]
(9)

and the non-vanishing Poisson brackets given by

{gci (r⃗ ), ρ(r⃗ ′)} = ρ(r⃗ ) ∂i δ(r⃗ − r⃗ ′) , (10)

{gci (r⃗ ), gcj(r⃗ ′)} =
[
gcj(r⃗ ) ∂i − gci (r⃗

′) ∂′
j

]
δ(r⃗ − r⃗ ′) , (11)

{gci (r⃗ ), ℓj(r⃗ ′)} = ℓj(r⃗ ) ∂i δ(r⃗ − r⃗ ′) , (12)

{gci (r⃗ ),Mj(r⃗
′)} = Mj(r⃗ ) ∂i δ(r⃗ − r⃗ ′) , (13)

{ℓi(r⃗ ), ℓj(r⃗ ′)} = ϵijk ℓk(r⃗ ) δ(r⃗ − r⃗ ′) , (14)

{ℓi(r⃗ ),Mj(r⃗
′)} = ϵijk Mk(r⃗ ) δ(r⃗ − r⃗ ′) , (15)

one can derive the equations of motion (2-4) using the
following form of Hamilton’s equations

∂tg
c
i = {gci , H} − δR

δgci
, (16)

∂tℓi = {ℓi, H} − δR

δℓi
, (17)

∂tMi = {Mi, H} − δR

δMi
, (18)

where the effects of viscosity and dissipation are included
by the use of a dissipation function of the form

R =

ˆ
d3r
[1
2
ν (∂ivj + ∂jvi)

2
+

1

2
Γ (2Ωi − ϵijk∂jvk)

2

+
1

2τ

(
Mi −M0

i

)2 ]
. (19)

In deriving the equations of motion we use the relation
between center of mass momentum density and velocity
gci = ρvi (for brevity we simply use vi for the center of
mass velocity), and the relation between angular momen-
tum density and particle rotation ℓi = IρΩ. Equations
of motion (16-18) with the choice of Hamiltonian (9) and
dissipation function (19) lead to equations (2-4) with the
aforementioned relaxation term −(Mi−M0

i )/τ added to
the magnetization dynamics (4).
Note that one may also add quadratic terms of the

form

HMM =

ˆ
d3r

1

2
MiMi , (20)

however with the brackets (11) - (15), this term only
modifies the pressure definition in the in the incompress-
ible limit. In this regime, the equation of state becomes
singular and the pressure becomes fully determined by
the flow. In other words, the terms coming from HMM

do not contribute to the equations of motion.
In the standard ferrofluid analysis, the assumption of

the vanishing moment of inertia per particle I is imposed
before setting τ → 0. In other words, the nanoparticle
angular momenta relaxes much earlier than their mag-
netization. For a uniform magnetic field, the resulting
equation is simply the Navier-Stokes equation

Dtvi = ν∇2vi − ∂iP , (21)

together with the incompressibility condition ∂ivi = 0. If
we write Eq. (21) in the formDtvi = ∂jTij , and write the
stress tensor in terms of a viscosity tensor Tij = −Pδij +
ηijkl∂kvl, we have

ηijkl = ν (δikδjl + δilδjk) , (22)

which is even under the exchange ij → kl. Thus, there is
no parity breaking in this setup within standard ferrohy-
drodynamics. We will reserve a more complete discussion
on the matter to Sec. IV.
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III. PARITY BREAKING IN FERROFLUIDS

This section investigates under which conditions
parity-breaking terms emerge in effective ferrofluid dy-
namics. The Hamiltonian and PB framework of ferroflu-
ids provides a straightforward way to add modifications
to the system. While many additional terms are in prin-
ciple possible, not all terms are relevant or lead to inter-
esting behavior.

A. Absence of Parity Breaking in Ferrofluids with
Vorticity-Angular Momentum Coupling

As an example, one may add the term seen in
Markovich et al [24]

Hℓω =

ˆ
d3r

1

2
ℓiωi, (23)

which couples fluid vorticity to intrinsic angular momen-
tum density. This term is particularly relevant to the
chiral active fluids of Soni et al [1], where the constituent
particles are orders of magnitude larger than the conven-
tional ferrofluids. While this does lead to parity-breaking
terms in the stress tensor, they are washed out under the
ferrofluid assumption of the vanishing moment of inertia.
To show this, we now compute the governing equations
resulting from the Hamiltonian H +Hℓω, where H is de-
fined in Eq. (9). Using the brackets (10) - (15), along
with the dissipation function (19), we obtain

Dtvi = − ∂iP + ν∇2vi +Mj∂iBj +
I

2
ωj∂jΩi

− Γϵijk∂j (ωk − 2Ωk) , (24)

IDtΩi = ϵijkMjBk + 2Γ (ωi − 2Ωi) +
I

2
ϵijkωjΩk

− I2

2
ϵjkm∂jΩi∂kΩm , (25)

DtMi = ϵijkΩjMk +
1

2
ϵijkωjMk − 1

τ
(Mi −M0

i )

− I

2
ϵjkm∂jMi∂kΩm . (26)

Here we have already taken the incompressible limit, and
for brevity have set ρ = 1. Upon taking the ferrofluid
limit (I → 0), Eq. (25) gives the same expression as
in Eq. (5). Therefore, the presence of the term (23) in
the ferrofluid Hamiltonian does not modify the effective
ferrohydrodynamic equations. Physically this indicates
that the angular momentum relaxes much faster than
the characteristic time scales in which parity-odd effects
can be observed.

B. Parity Breaking in Ferrofluids from
Vorticity-Magnetization Coupling

Magnetism in iron atoms occurs due to unpaired elec-
trons in their electron configuration, which gives rise to
a magnetic moment. Neglecting any contribution from
the atomic nucleus, the atomic magnetic moment can be
written as gJµB

√
j(j + 1), where j is the total angular

momentum quantum number, gJ is the Landé g-factor,
and µB is the Bohr magneton. From a quantum me-
chanics point of view, the total angular momentum of
the ferrofluid particle can be split into molecular orbital
and atomic angular momentum, which can be expressed
in terms of the atom’s magnetic moment. Therefore, un-
der the replacement ℓi → ℓi + γMi, where γ ∼ ℏ

gJµB
, the

Hamiltonian term Hℓω becomes Hℓω+HMω, where HMω

is defined in Eq. (1).
In the following, we will study the ferrofluid system

described by the Hamiltonian

H =

ˆ
d3r

[
1

2ρ
gci g

c
i +

1

2Iρ
ℓiℓi +

1

2
ℓiωi +

γ

2
ωiMi −MiBi

]
.

(27)

The above argument suggests that γ ≈ me

e , however for
the rest of our analysis we will leave the coupling constant
γ as a free parameter to be investigated experimentally.
Even though the numerical value of γ may be quite small,
with a large enough external magnetic field the combi-
nation γM0, where M0 is the equilibrium magnetization
defined in Eq. (8), can in principle be arbitrarily large.
We now compute the governing equations resulting

from the Hamiltonian (27), using the brackets (10) - (15),
along with the dissipation function (19). We also take the
incompressible limit and set ρ = 1 for brevity. We obtain

Dtvi = − ∂iP + ν∇2vi − Γϵijk∂j (ωk − 2Ωk)

+Mj∂iBj +
1

2
ωj∂j (IΩi + γMi) , (28)

IDtΩi = 2Γ (ωi − 2Ωi)−
I

2
ϵjkm∂jΩi∂k (IΩm + γMm)

+ ϵijkMjBk +
1

2
ϵijkωj (IΩk + γMk) , (29)

DtMi = ϵijkΩjMk +
1

2
ϵijkωjMk − 1

τ
(Mi −M0

i )

− 1

2
ϵjkm∂jMi∂k (IΩm + γMm) . (30)

The terms involving IΩi+γMi stem from Hℓω and HMω,
while the second term on the right-hand side of (30)
comes from Hℓω alone. The set of equations (28-30)
model a wide class of magnetic fluids, of any particle
size and any orientation of the magnetic field and mag-
netization.
Note that, even though we have associated the quan-

tity γMi to spin degrees of freedom, it algebra does not
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satisfy the spin algebra, since {Mi(r⃗),Mj(r⃗
′)} = 0. If we

wish to describe magnetic solids, or any motion of the
magnetization relative to the particle orientation, we may
add a nonvanishing bracket between Mi and Mj , such
that, {Mi(r⃗ ), Mj(r⃗

′)} = 1
γ ϵijk Mk(r⃗ ) δ(r⃗ − r⃗ ′). With

the inclusion of this term, the equation of motion for
Mi becomes the Landau-Lifshitz-Gilbert equation, which
would more precisely track the relaxation of the magne-
tization [48]. In this work, we assume the magnetization
is ‘frozen’ into the ferrofluid particles. Physically this
represents the fact that when attempting to align with
the external magnetic field, it is more favorable for the
particle to rotate than for the magnetization to rotate
independently. This allows us keep {Mi(r⃗),Mj(r⃗

′)} = 0
throughout this analysis. This is justified when the phe-
nomenological parameter γ becomes large.

Upon taking the ferrofluid limit (I → 0), Eq. (29)
gives the modified torque balance equation

2Γ (ωi − 2Ωi) + ϵijkMjBk +
γ

2
ϵijkωjMk = 0 , (31)

which shows that in the limit of vanishing particle size
rotational friction is balanced not only by the magnetic
torque but also by the torque coming from the misalign-
ment of fluid vorticity and magnetization. Upon solving
(31) for Ωi and substituting into the rest of the equations
of motion, we get the final form of the modified ferrofluid
equations

Dtvi = − ∂iP +Mj∂iBj + ν∇2vi +
γ

2
ωj∂jMi

+ ϵijk∂j

(
1

2
ϵklmMlBm +

γ

4
ϵklmωlMm

)
, (32)

DtMi = ϵijkωjMk − 1

4Γ
ϵijkMj

[
ϵklmMl

(
Bm − γ

2
ωm

)]
− 1

τ

(
Mi −M0

i

)
− γ

2
ϵjkm∂jMi∂kMm . (33)

In the case of a uniform magnetic field applied in the
positive z direction, the small magnetic relaxation time

τ sets Mi = |M⃗0|δiz, with M⃗0 given by (8). Eq. (32) can
then be written as

Dtvi + ∂iP = ν∇2vi +
γ

4
M0∂zωi. (34)

This last term breaks parity and is similar to the term
obtained in [24] after taking the incompressible limit, al-
beit with Mz playing the role of the intrinsic angular
momentum ℓz = IΩz. We emphasize that this parity-
breaking term is unique to three-dimensional fluids and
has no analog in a 2D system. However, in the litera-
ture, the term ‘odd viscosity’ is used for certain parity-
breaking terms in both 2D and 3D. In the following, we
draw a comparison between the parity-breaking terms in
3D and 2D.

IV. ANISOTROPIC VISCOSITY TENSOR IN 3D

The term − 1
4γM

0 is referred to in recent literature
as 3D odd viscosity [24]. Before discussing the proposed
Hele-Shaw experiment, it is convenient to clarify this ter-
minology by briefly reviewing the form of the viscosity
tensor for a 3D incompressible fluid with rotational in-
variance along one axis. In this section, this axis will be
taken to be the z-axis for simplicity.
Note that, after the magnetization relaxes, the only

dynamical variable in the system is the fluid velocity. In
general, the incompressible hydrodynamic equation can
be expressed as

∂ivi = 0 , (35)

Dtvj + ∂jP = ∂i (ηijkl∂kvl) . (36)

Taking the scalar product of Eq. (36) with vi and using
the incompressibility condition (35), we find the energy
equation:

∂t
(
1
2v

2
j

)
+ ∂i

[(
1
2v

2
j + P

)
vi − ηijklvj∂kvl

]
= −ηijkl∂ivj∂kvl . (37)

Since the left-hand side is a quadratic form, energy is
dissipated when ηijkl = ηklij > 0. However if ηijkl =
−ηklij , the system is non-dissipative, and the sign of ηijkl
is not determined.
For an isotropic incompressible system, there are only

two viscosity coefficients, namely

ηijkl = ν (δikδjl + δilδjk) + Γϵijmϵklm . (38)

Note that, both ν and Γ are not invariant under time
reversal, but they do not break parity symmetry. All
components of ηijkl break time reversal, however, only
some of them lead to dissipation. In general, terms that
are odd under time reversal and do not spoil energy con-
servation are also odd under parity symmetry, as long as
they are invariant under the combined PT -symmetry.
So, instead of focusing on a general viscosity tensor, we

will only focus on PT -symmetric terms. That is, the co-
efficients such that ηijkl = −ηklij . In a fully isotropic sys-
tem, all of these coefficients vanish, however, if we impose
rotational invariance only on the xy plane we find that
the viscosity tensor admits non-zero coefficients. Fur-
thermore, since we have assumed that the angular mo-
mentum has already relaxed, one should expect the stress
tensor to be symmetric, which imposes that ηijkl = ηjikl.
There are only two viscosity coefficients that satisfy all
these conditions, i.e., ηijkl = −ηklij = ηjikl, together
with rotational invariance in the xy-plane. They are

ηPT
ijkl ∂kvl = ν⊥o [ϵikz (δjm − δjzδmz) ∂kvm

+ϵjkz (δim − δizδmz) ∂mvk]

+ ν∥o (ϵikzδjz + ϵjkzδiz) (∂kvz + ∂zvk) . (39)

As shown in Ref. [21], ν⊥o and ν
∥
o are also the two viscosity

coefficients that remain non-zero in the collisionless limit
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of a relativistic plasma subjected to an external magnetic
field.

The term multiplying ν⊥o has the same form as the 2D

odd viscosity stress tensor. The coefficients ν⊥o and ν
∥
o

are in principle unrelated, however, for relativistic colli-

sionless plasma in the magnetic field, ν
∥
o = − 1

2ν
⊥
o . This

relation is also observed in Ref. [24], which indicates that
it is a sufficient condition for Hamiltonian systems. In ad-
dition, this relation seems to simplify substantially the
expression for the lift force on a circular object inside an
incompressible flow with parity-odd viscosity coefficients,
as pointed out in Ref. [32].

Under assumption ν
∥
o = − 1

2ν
⊥
o , the term ∂zωi in the

momentum equation can be associated to the in-plane

odd viscosity. In principle, for ν⊥o ̸= 2ν
∥
o , we have

∂i
(
ηPT
ijkl ∂kvl

)
=
(
2ν∥o + ν⊥o

)
(∂j∂zvz + δjz∂zωz)

− ν⊥o ∂jωz − ν∥o∂zωj , (40)

for incompressible fluids. The term −ν⊥o ∂jωz modifies

the fluid pressure, whereas −ν
∥
o∂zωj correspond to the

extra term in Eq. (34), if we set ν
∥
o = − 1

4γM
0. There-

fore, in this case, referring to parity-odd viscosity coef-
ficients by 3D odd viscosity is only accurate upon the

identification ν⊥o = −2ν
∥
o .

V. FERROFLUIDS IN HELE-SHAW CELL:
EXPERIMENTAL PROPOSAL

A Hele-Shaw (HS) cell is a simplified experimental
setup that could potentially test the presence of vorticity-
magnetization coupling leading to parity-breaking effects
in ferrofluids. A HS cell consists of two parallel plates
separated by an infinitesimally small gap h, with the hy-
drodynamic variables assumed to vary in the xy plane
at much larger length scales than the distance between
the two plates. Confining ferrofluids to a HS cell has
much experimental and theoretical background [49–52].
A remarkable example is that of the labyrinthine insta-
bility [40]. For our purposes, we use the HS cell as a way
to measure this new coupling constant γ.

Following the analysis seen in [2], we take the coordi-
nates to scale as

t ∼ 1

ϵ
, x ∼ 1

ϵ
, y ∼ 1

ϵ
ȳ , z ∼ ϵ0 , (41)

where ϵ = h/L, with L being some characteristic length
in the xy plane. The hydrodynamic variables scale as

P ∼ 1

ϵ
, vx ∼ ϵ0 , vy ∼ ϵ0 , vz ∼ ϵ . (42)

Using the relaxed form of our system, Eq. (34), the gov-

erning equations become

0 = ∂xvx + ∂yvy + ∂zvz, (43)

∂xP = ν∂2
zvx − γ

4
M0∂2

zvy, (44)

∂yP = ν∂2
zvy +

γ

4
M0∂2

zvx, (45)

∂zP = 0, (46)

The solutions for velocity that satisfy the no-slip and no-
penetration boundary conditions on the plates are

vx =
6z

h2
(h− z)Vx(x, y), (47)

vy =
6z

h2
(h− z)Vy(x, y), (48)

vz = 0, (49)

and pressure is now independent of z. We then substitute
these solutions into (43) - (45), which gives

0 = ∂xVx + ∂yVy, (50)

−h2

12
∂xP = νVx − γ

4
M0Vy, (51)

−h2

12
∂yP = νVy +

γ

4
M0Vx, (52)

The above set of equations is Darcy’s law, the standard
governing equation of flow within an HS cell, with an
extra term coming from M0. This equation is of the
same form as that seen in Ref. 2, with γM0/4 playing
the role of the parity odd parameter seen there.
The experimental setups discussed in Ref. 2 provide

methods to measure this coupling. Here we will only
describe a simplified setup that highlights a key feature
of parity odd flows. Consider HS cell with a central in-
jection point, where a fluid (or air) is injected with a
constant rate q (see Fig 1). Details of the inside fluid
are not important for this discussion, since the following
effect is independent of any intricate interface features or
instabilities.
Equations (50-52) indicate that the ferrofluid flow is

irrotational and the pressure is a harmonic function, that
is,

∂xVy − ∂yVx = 0 , (53)

∇2P = 0 . (54)

It is not hard to see that V (ζ) ≡ Vx(x, y) − iVy(x, y),
with ζ = x + iy, is an analytic complex function, since
the Cauchy-Riemann conditions become the incompress-
ibility and the irrotational equations (50,53). Assuming
that the ferrofluid domain Ω(t) starts at the fluid in-
terface and extends out to infinity, the analytic velocity
function V (ζ) can be expanded in the Laurent series as

V (ζ) =

∞∑
n=1

cn
ζn

, (55)
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𝜕Ω(𝑡)

𝑞

Γc = −
𝑞𝛾𝑀0

4𝜈

𝜕Ω(𝑡)

𝑞

Γc = 0
𝛾 = 0 𝛾 ≠ 0

𝑎  without parity breaking 𝑏  with parity breaking

Figure 1. Schematic picture of injection of a test fluid (blue) into a ferrofluid (black), with a distinct interface ∂Ω formed
between them. (a) In the absence of the parity-breaking coupling γ, the ferrofluid flows radially outward and has no far field
circulation (Γ = 0). (b) When the parity-breaking coupling γ is nonzero the ferrofluid acquires a spiral behavior everywhere in
the domain. In the far field, the circulation can be computed even without knowing the details of the interface.

where the coefficients cn are determined by the boundary
conditions at the fluid interface. From the residue theo-
rem, one can determine the coefficient c1 by integrating
V (ζ) over the fluid interface ∂Ω, i.e,

2πic1 =

ffi
∂Ω

V (ζ)dζ = ΓC − i
dA
dt

, (56)

where ΓC is the fluid circulation and dA/dt = −q is the
rate of change of the area occupied by the ferrofluid.

From the expression (55) it is possible to determine the
ferrofluid pressure, which becomes

P = − 3

h2
Re

[
(4ν − iγM0)

(
q − iΓC

2π
ln ζ −

∞∑
n=1

cn+1

nζn

)]
.

(57)
Since the pressure must be a single-valued function, this
imposes that (4µ− iγM0)(q− iΓC) must be a real coeffi-
cient. This shows that the ferrofluid circulation must be
proportional to

ΓC = −qγM0

4ν
. (58)

The existence of non-zero circulation in the outer region
(far field flow of ferrofluids) can be used to directly mea-
sure the coupling constant γ and serves as a straight-
forward way to test for the presence or absence of the
vorticity-magnetization coupling in ferrofluids. We em-
phasize that the far-field circulation, represented by the
variable Γ, is independent of the details of the two-fluid
interface. The physics at the boundary between two flu-
ids can vary greatly depending on the viscosity of the
fluid being injected. For example, when a less viscous

fluid such as an air bubble is injected into a ferrofluid, the
Saffman-Taylor fingering instabilities can occur. These
instabilities are not present when a more viscous fluid is
injected. The advantage of this proposal is that the cir-
culation in the far field, away from the interface, is not
affected by the intricate and complex physics that occurs
near the interface.

VI. CONCLUSION

In this work, we introduced a new coupling in ferroflu-
ids between fluid vorticity and magnetization. This mod-
ification is introduced in the context of a Hamiltonian
and PB framework, and after following the standard fer-
rofluid assumptions we arrive at a modified set of govern-
ing equations containing extra parity-odd terms. When
confined to a HS cell, these extra terms manifest as off-
diagonal components of Darcy’s Law and provide a ro-
bust experimental setting in which to measure this new
coupling.

An important conclusion from our analysis is that sim-
ply includingHℓω is not enough to capture the parity-odd
effects in ferrofluids due to the small size of the particles.
Additionally, the coarse-graining procedure outlined in
Ref. [24] can be used to determine the specifics of γ from
a microscopic perspective. Future research in this direc-
tion will depend heavily on experimental confirmation of
the existence of parity-breaking terms in ferrofluids.
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