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Abstract

A qubit made up of an ensemble of atoms is attractive due to its resistance to atom
losses. In this work, we consider an experimentally feasible protocol to coherently load
a spin-dependent optical lattice from a spatially overlapping Bose–Einstein condensate.
Identifying each lattice site as a qubit, with an empty or filled site as the qubit basis,
we discuss how high-fidelity single-qubit operations, two-qubit gates between arbitrary
pairs of qubits, and nondestructive measurements could be performed. In this setup, the
effect of atom losses has been mitigated, the atoms never need to be removed from the
ground state manifold, and separate storage and computational bases for the qubits are
not required, all of which can be significant sources of decoherence in many other types
of atomic qubits.
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1 Introduction

Quantum computers are of interest primarily because they could be used to efficiently solve
problems that would be intractable on a classical computer [1]. One promising candidate for a
scalable quantum computer researchers have been pursuing is trapped neutral atoms [2–6]. In
optical lattices, or arrays of microtraps, atoms are confined to individual traps, and the spatial
[7,8] or internal [2–4,9,10] state of the atoms is used to define the qubit. Qubits made up of an
ensemble of atoms are more resistant to atom losses and require lower Rabi frequencies than
qubits made up of a single atom, but gate operations can be more difficult due to the qubits
not being exactly identical to each other, or even the same between realizations [10–14].

Two-qubit gates in lattices can be realized by bringing different qubits close together [3,
15,16], mediating the interaction using a quantum bus (such as an optical cavity [17,18], spin
chain [19], or marker atoms [20]), or by using the dipole-dipole interaction between distant
Rydberg atoms [4, 17, 21–24]. Qubit gates based on shuttling atoms around or using spin
chains are often slower, whereas the Rydberg and optical cavity approaches are faster, but can
be prone to a greater variety of errors. Measurements in lattice-based qubits are usually based
on resonant absorption or fluorescence in high-resolution optical imaging systems, which allow
each qubit to be measured with very high accuracy, but can cause heating [25–28].

Researchers have also considered realizing cold atom qubits using Bose–Einstein conden-
sates (BECs) [29–33], and these proposals are often analogous to different types of supercon-
ducting Josephson junction qubits. Although these platforms may be less scalable and suffer
from longer gate times compared to lattice-based approaches, it can be easier to read out their
states without using resonant light because BECs are mesoscopic objects [34–38]. Additionally,
it can be easier to couple BECs (rather than single atoms) to photonic flying qubits [39].

In [40], a BEC in a harmonic trap was used to measure the temperature of atoms confined
to an overlapping spin-dependent optical lattice. In [41, 42], atoms hopping between a spin-
dependent optical lattice and a harmonic trap were investigated theoretically. In this work,
we propose using a BEC in a harmonic trap and atoms in a spatially overlapping optical lattice
to realize a quantum register. The goal is to combine the scalability and qubit connectivity of
lattice-based platforms with the resistance to atom losses and nondestructive readout available
on BEC-based ones.

We begin by discussing a model system and Hamiltonian in section 2, how single and two-
qubit gates, and nondestructive measurements, can be realized using this model in section
3, how to achieve such a system experimentally in section 4, and finally several sources of
decoherence in section 5.
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2 The model system

Our goal is to use a system of trapped bosonic atoms as a quantum computer. The Hamiltonian
that describes such a system is given by [30,43],

Ĥ =
∑

i

∫

dr ψ̂†
i (r )

�

−
ħh2

2m
∇2 + Vi(r ) +ħhωi

�

ψ̂i(r )

+
∑

i,j

∫

drdr ′ψ̂†
i (r )ψ̂

†
j (r
′)Ũij(r , r ′)ψ̂i(r )ψ̂j(r

′)

−
∑

i̸=j

∫

dr
�

ħhΩ̃ij(r , t)ψ̂†
i (r )ψ̂j(r ) + h.c.

�

, (1)

where the sums are performed over all the internal states, i, of the atoms, ψ̂i(r ) is the
bosonic field operator for atoms in state i, m is the mass of each atom, Vi(r ) is the external
potential for atoms in i, ħhωi is the energy of the atom’s internal state, Ũij is the two-body in-
teraction potential for any pair of atoms, Ω̃ij(r , t) is the Rabi frequency of any field connecting
states i and j, and h.c. denotes the Hermitian conjugate. Note that three-body interactions
have been neglected in Eq. (1) [44,45].

The first term in Eq. (1) is the single-particle Hamiltonian, the second accounts for intra-
and interparticle interactions, and the last term allows for transitions between the atomic
levels. In writing down Eq. (1), we have assumed that the spacing of the internal energy
levels, ħhωi, is sufficiently anharmonic that it is impossible for multiple atoms to collide and all
simultaneously change their internal states [40,46–48].

The two-body interaction potential in Eq. (1) is [46,47]

Ũij(r , r ′) =
4πħh2aij

m
δ(r − r ′)(1−

δij

2
), (2)

where aij is the s-wave scattering length for the pair of atoms, δ(r − r ′) is the Dirac delta,
and δij is the Kronecker delta function.

Eqs. (1) & (2) apply generally to cold bosonic atoms in an external potential. We now
specifically consider the potential due to a 3D isotropic harmonic oscillator (HO) and multiple
sinusoidal lattices,

Vi(r ) =
1
2

mω2
HOr 2 +

∑

l=x ,y,z

Vil cos(2kl · r ), (3)

whereωHO is the HO frequency, Vil is the state-dependent lattice potential an atom in state
i feels due to the lattice along axis l, and kl is the wavevector of the lattice (which sets the
lattice period, π/|kl|). Note that all atoms, regardless of their internal state, see the same HO
potential. To further simplify our model, and to use the system as a quantum register, we now
assume that the lattice potential amplitudes, Vil, are all either negligibly small, or larger than
all other energy scales in the problem.

For atoms in states that see a large lattice potential, we can ignore the (small) HO term
in Eq. (3), and if |kl| and Vil are sufficiently large then multiple atoms in the same lattice site
will interact very strongly. This means that it will be energetically prohibitive for more than
one atom to occupy any of the lattice sites. Additionally, there will be negligible interaction
between atoms in adjacent sites because of the large energy barrier, Vil, between sites.

These assumptions allow us to use the tight binding model to expand the field operators
in the Wannier basis [49–53]. We obtain ψ̂i(r ) =

∑

s wi(r − rs)â
†
si, where s denotes different
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Figure 1: The energy levels, spatial states and fields of the model system. Atoms in
internal states |0〉 and |2〉 see the HO potential, and their many-body ground state,
φ(r ), was obtained using the TF approximation. Atoms in |1〉 see a 3D lattice poten-
tial and their spatial states are the Wannier function, w(r ). The fields that connect
the three states together are shown, along with the detuning,∆, of Ω01 and Ω12 from
resonance. The Hamiltonian that describes this system is given by Eq. (5).

lattice sites located at positions rs, wi(r − rs) are the Wannier functions, and â†
si is the creation

operator for an atom in state i and site s. This basis is desirable because each Wannier function
is maximally localized to an individual lattice site (see Fig. 1).

For atoms in the internal states where all Vil ≪ ħhωHO (i.e. for atoms that only see the
HO), we assume that our system is initialized with the large majority of these atoms in the
many-body ground state of the HO (i.e. that the atoms have condensed into a BEC) [50,54].
Transfer into and out of this highly populated ground state, unlike transfer to the higher-lying
levels, will be enhanced by the

p
N bosonic creation/annihilation factor, where N is the ground

state population. We can therefore, to good approximation, ignore the higher-lying levels and
replace the bosonic field operators with one creation/annihilation operator that adds/removes
atoms from the many-body ground state of the HO. We obtain ψ̂i(r ) = φi(r )â

†
i , where â†

i
creates an atom in the internal state i, and the spatial state φi(r ). Following [50, 54], we
use the Thomas–Fermi (TF) approximation to find the many-body ground state wavefunction,
φi(r ), from Eq. (1) in the mean-field limit (also known as the Gross–Pitaevskii equation).
φi(r ) is plotted in Fig. 1.

By substituting Eqs. (2) and (3) into (1), expanding the field operators as discussed above,
and then integrating over all space, we obtain [30,50–53]

Ĥ =
∑

i,s

 

1
2

Uis,isn̂is(n̂is − 1) + εisn̂is +
∑

i ̸=j,r

�

Uis,jrn̂isn̂jr −ħh
�

Ωis,jr(t)â
†
isâjr + h.c.

��

!

, (4)

where i and j denote internal states, r and s denote the spatial states of the atoms (given
by either the Wannier or the TF wavefunctions), Uis,jr is the interaction strength between an
atom in state i, s and one in j, r, n̂is = â†

isâis where â†
is is the creation operator for atoms in state

i, s, εis is the total energy of an atom in state i, s, and Ωis,jr is the Rabi frequency for a transition
between states i, s and j, r. Note that for atoms that see the lattice potential, the summations
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over r and s are over all the sites of the lattice, while for the atoms in the HO, r and s can only
denote a single state (the many-body ground state).

For most of our analysis, it will be sufficient to restrict our attention to three internal
states, labeled i = 0,1, 2, and a single lattice site (which we now explicitly restrict to have an
occupancy of at most one atom). If atoms in states |0〉 and |2〉 only see the HO, and atoms in
|1〉 see both the HO and the lattice, then Eq. (4) simplifies to

Ĥ =
1
2

U00n̂0(n̂0 − 1) +
1
2

U22n̂2(n̂2 − 1)

+U01n̂0σ̂1 + U12n̂2σ̂1 + U02n̂0n̂2 +ħh∆σ̂1

−ħh
�

Ω01â†
0σ̂− +Ω12â2σ̂+ +Ω02â†

0â2 + h.c.
�

, (5)

where σ̂+ and σ̂− are the creation and annihilation operators for atoms in state |1〉,
σ̂1 = σ̂+σ̂− is the number operator for atoms in state |1〉, and ∆ is the detuning of the fields
Ω01 and Ω12 from resonance (see Fig. 1). Note that we assumed Ω01 and Ω12 are detuned
the same (small) amount from resonance, and that Ω02 has no detuning. This allowed us to
make the rotating-wave approximation to both remove the time-dependence from the Rabi
frequencies, and to adjust the energies of the internal states [55, 56]. This means that each
lattice site will have a slightly different ∆ due to the spatially varying HO potential, whose
contribution is contained in ∆.

We note that the interaction energies and Rabi frequencies given in Eq. (5) are related to
those in (1) by the Franck–Condon-like factors,

Uij =

∫

drdr ′ψ†
i (r )ψ

†
j (r
′)Ũij(r , r ′)ψi(r )ψj(r

′),

Ωij =

∫

drψ†
i (r )Ω̃ij(r )ψj(r ), (6)

where

ψi(r ) =

¨

φ(r ), i= 0,2

w(r − r0), i= 1
,

and r0 is the location of the lattice site occupied by atoms in |1〉.
We therefore see that the coupling strengths Ω01 and Ω12 will be reduced from their free-

space analogs, Ω̃01(r ) and Ω̃12(r ) (the bare Rabi frequencies), by an amount set by the overlap
between the TF wavefunction, φ(r ), and the Wannier function, w(r−r0). Earlier, we assumed
that the lattice potentials that are nonzero are much greater than the harmonic oscillator
energy (Vil ≫ ħhωHO), which implies that the length scale of the TF wavefunction, φ(r ), is
much greater than the length scale of the Wannier function, w(r − r0). This implies that there
will be significant spatial overlap betweenφ(r ) and the Wannier functions, w(r−rs), for many
lattice sites, s. In section 4, this spatial overlap will make it possible for us to realize a fully
connected register of 1,000 qubits.

We will next show how to use the Hamiltonian given by Eq. (5) to realize a quantum
register upon which arbitrary one and two-qubit operations, and nondestructive qubit state
readout, can be performed.
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3 Qubit operations

3.1 Single-qubit gates

To implement single-qubit gates, we begin by only turning on the field Ω01, in which case
state |2〉 can be removed from the dynamics. We also restrict our attention to a single lattice
site, which we will use as our qubit. The Hilbert space will therefore be spanned by only two
Fock states, which we define to be our two qubit states: |↓〉=|n0, 0, n2〉 and |↑〉=|n0 − 1,1, n2〉,
where the first number in each state is the number of atoms in state |0〉, the second is the num-
ber of atoms in |1〉, and the third the number of atoms in |2〉. In matrix form, the Hamiltonian
given by Eq. (5) is now

H1 =
|↓〉
|↑〉





(U00 − U01)( n0 − 1) + (U02 − U12) n2 −
p

n0 ħhΩ∗01

−
p

n0 ħhΩ01 ħh∆



 , (7)

and we see that we can in principle create any arbitrary superposition of qubit states by
tuning Ω01 and ∆ [1]. This choice of qubit states means that single-qubit gates correspond
to coherently taking one atom out of the BEC in the HO and placing it in a particular lattice
site, or vice versa. Each single-qubit operation leads to every atom in the BEC being placed
in the same superposition of occupying or not occupying that particular lattice site. A second
single-qubit operation on a different site will produce an even larger superposition in which
every atom has some probability of occupying each of the two lattice sites. In this way, the BEC
acts as a reservoir of excitations for the array of qubits. In sections 4 and 5, we discuss several
of the advantages and disadvantages of defining the computational basis states in this way. In
section 4.2, we also discuss how different sites may be individually addressed in our lattice,
and thus how a quantum register with multiple, independently controllable qubits could be
realized.

3.2 CNOT gate

In order to entangle multiple qubits in the lattice together, we consider using the BEC as a
native quantum bus. Using a bus to mediate the interaction between atoms in the lattice is
necessary because, in order to derive our model Hamiltonian given by Eq. (5), we assumed
that atoms in neighboring sites do not interact. In this section, we show how to realize a CNOT
gate, which flips the state of one (target) qubit in the register if and only if another (control)
qubit is in the |↑〉 state. Note that the control and target qubits correspond to different sites in
the lattice. We chose the CNOT gate as an example because arbitrary one-qubit gates plus the
CNOT gate form a universal gate set [1,57].

In the first step of the protocol, we entangle the BEC with the control qubit by connecting
the BEC states, |0〉 and |2〉, via a two-photon virtual transition through the lattice state, |1〉,
using theΩ01 andΩ12 fields (see Fig. 2). This is similar to the two-photon Raman process com-
monly used in atomic physics [58–60]. Examining Eq. (5), we see that ifΩ01

p
n0,Ω12

p
n2≪∆

then the energy spectrum will be well-separated into two distinct manifolds. The first mani-
fold contains the Fock states where the control qubit is in the state |↓〉 (i.e. the lattice site is
empty, σ1 = 0), and the second manifold the states where the control qubit is in the state |↑〉
(i.e. the site is filled, σ1 = 1).

We may calculate two effective Hamiltonians that each act on one of these manifolds by
treating the Ω01 and Ω12 terms as a perturbation in Eq. (5). The result, valid to second order
in perturbation theory, (which could also be obtained from a Schrieffer–Wolff transformation
[61]) is [56]
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Figure 2: The two-photon process used to couple the BEC state to the state of the
control qubit. In (a) the control qubit is in |↓〉, which means that when the Ω01 and
Ω12 fields are applied there is (to first order) only one intermediate state. For large
∆, the system will undergo virtual transitions and there will be significant population
flow between the two BEC states. In (b) the control qubit is in |↑〉 and consequently
there are now two paths by which an atom could transfer between the BEC states. For
the appropriate choice of∆, there will be complete destructive interference between
these two paths, and there will be no population flow.

〈n0,σ1, n2| Ĥ
σ1
eff |n

′
0,σ1, n′2〉=En0,σ1,n2

δn0n′0
δn2n′2

+
1
2

∑

s1 ̸=σ1

∑

m0,m2

〈n0,σ1, n2| Ω̂ |m0, s1, m2〉 〈m0, s1, m2| Ω̂ |n′0,σ1, n′2〉

×

�

1
En0σ1n2

− Em0s1m2

+
1

En′0σ1n′2
− Em0s1m2

�

, (8)

where

En0,s1,n2
= 〈n0, s1, n2| Ĥ |n0, s1, n2〉

=
1
2

U00n0(n0 − 1) +
1
2

U11s1(s1 − 1) +
1
2

U22n2(n2 − 1)

+ U01n0s1 + U12n2s1 + U02n0n2 +ħh∆s1,

Ω̂=−ħh
�

Ω01â†
0σ̂− +Ω12â2σ̂+ + h.c.

�

,

the double summation is over every state outside theσ1 manifold (s1 runs over the possible
numbers of atoms in state |1〉 excluding σ1, and m0 and m2 run over all the possible numbers
of atoms in states |0〉 and |2〉, respectively). The effective Hamiltonian, Ĥσ1

eff , tells us how the
populations of |0〉 and |2〉 will respond to the Ω01 and Ω12 fields for a fixed qubit state (σ1 = 0
or 1). Note that the vast majority of the terms of the double summation in Eq. (8) are zero,
since Ω̂ only connects states where a single atom has moved from |0〉 or |2〉 and into |1〉.
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Whenσ1 = 0, each state, |n0, 0, n2〉, will be connected to two states by Eq. (8): |n0 − 1,1, n2〉
and |n0, 1, n2 − 1〉, which will also be connected to |n0 − 1, 0, n2 + 1〉 and |n0 + 1, 0, n2 − 1〉 (see
Fig. 2(a)). In the limit of large detuning, we therefore see that population may be able to flow
between |0〉 and |2〉 via a two-photon process.

We now assume that n0, n2≫ 1 during the dynamics (i.e. that the BEC components in |0〉
and |2〉 never approach 1 as they exchange population), and that Ω01 = Ω12 = Ω. In this case,
the coupling terms connecting |n0, 0, n2〉 to |n0 ± 1,0, n2 ∓ 1〉, calculated using Eq. (8), will be
much larger than the differential AC Stark shifts between these three states (the Stark shift for
the state |n0, 0, n2〉 is given by the summation term in in Eq. (8) when n′0 = n0 and n′2 = n2).
Using Eq. (8), we find that the transition elements in Ĥ0

eff are given by

〈n0, 0, n2| Ĥ0
eff |n0 + 1, 0, n2 − 1〉=

1
2ħh

2Ω2
p

(n0 + 1)n2

−ħh∆+ (N − 1)(U02 − U12) + n0(U00 − U01 − U02 + U12)

+
1
2ħh

2Ω2
p

(n0 + 1)n2

−ħh∆+ (N − 1)(U22 − U12) + n0(U02 − U01 − U22 + U12)
,

where we substituted N = n0+n1. The denominator of each fraction contains three terms,
and only the last one, which is proportional to n0, will change for different choices of n0 and
n2. For the 87Rb atoms we consider in section 4, the interaction energies U02, U01, U22 and
U12 will all be almost identical, and as a result, the denominators will be dominated by the
first two terms (and thus be nearly constant).

If the terms proportional to n0 are dropped completely, then we obtain

〈n0, 0, n2| Ĥ0
eff |n0 + 1,0, n2 − 1〉 ≈ J0

Æ

(n0 + 1)n2, (9)

where

J0 =
1
2
ħh2Ω2

�

1
−ħh∆+ (N − 1)(U02 − U12)

+
1

−ħh∆+ (N − 1)(U22 − U12)

�

is not a function of n0 or n2. We can do an identical calculation for the AC Stark shift of
each Fock state. After making the same approximations we did above, we find

〈n0, 0, n2| Ĥ0
eff |n0, 0, n2〉−〈n0 + 1,0, n2 − 1| Ĥ0

eff |n0 + 1,0, n2 − 1〉 ≈ En0,0,n2
−En0+1,0,n2−1 (10)

(i.e. the energy differences between states separated by one atom hopping between |0〉
and |2〉 are approximately equal to their unperturbed values).

Using the approximations in Eqs. (9) & (10), Ĥ0
eff is analogous to the Hamiltonian of the

internal Josephson effect/double-well [43,53,62,63]. Under the single-mode approximation
[64], the entire population may be continuously transferred between the two wells/internal
states [65]. The dynamics under Eq. (8) are plotted in Fig. 3. Almost complete population
transfer between |0〉 and |2〉 occurs in the σ1 = 0 case.

In the σ1 = 1 case, |n0, 1, n2〉 will be connected to four states by Eq. (8): |n0 + 1,0, n2〉,
|n0, 0, n2 + 1〉, |n0 − 1,2, n2〉 and |n0, 2, n2 − 1〉. These four states will further be connected to
|n0 ± 1,1, n1 ∓ 1〉 (see Fig. 2(b)), which means that, as when σ1 = 0, population may be able
to flow between |0〉 and |2〉 via a far-detuned two-photon process.

As before, we assume n0, n2 ≫ 1, set Ω01 = Ω12 = Ω, and use Eq. (8) to calculate the
transition elements of Ĥ1

eff, which are given by
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𝑁
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Figure 3: BEC dynamics under the Hamiltonian given by Eq. (8). The dynamics
were obtained in the mean-field limit by replacing the atomic creation and annihila-
tion operators in Eq. (8) with complex numbers, and then numerically solving the
Heisenberg equations of motion for the population imbalance and relative phase be-
tween |0〉 and |2〉 [53,62]. The experimental parameters that were used to generate
the plot are given in section 4.2.

〈n0, 1, n2| Ĥ1
eff |n0 + 1, 1, n2 − 1〉=

ħh2Ω2
p

(n0 + 1)n2

−ħh∆+ (N/2)(U00 − U01 + U02 − U12) + U01 − U02 − U11 + U12 − n0(U00 − U01 − U02 + U12)

+
ħh2Ω2

p

(n0 + 1)n2

−ħh∆+ (N/2)(−U01 + U02 − U12 + U22)− U11 − U22 + 2U12 − n0(U02 − U01 − U22 + U12)

+
1
2ħh

2Ω2
p

(n0 + 1)n2

ħh∆+ (N/2)(−U00 + U01 − U02 + U12) + n0(U00 − U01 − U02 + U12)

+
1
2ħh

2Ω2
p

(n0 + 1)n2

ħh∆+ (N/2)(U01 − U02 + U12 − U22) + U01 − U02 − U12 + U22 + n0(U02 − U01 − U22 + U12)
.

As in theσ1 = 0 case, each term that is proportional to n0 will be negligibly small, allowing
us to write

〈n0, 1, n2| Ĥ1
eff |n0 + 1,1, n2 − 1〉 ≈ J1

Æ

(n0 + 1)n2,

where

J1 =

ħh2Ω2

−ħh∆+ (N/2)(U00 − U01 + U02 − U12) + U01 − U02 − U11 + U12

+
ħh2Ω2

−ħh∆+ (N/2)(−U01 + U02 − U12 + U22)− U11 − U22 + 2U12

+
1
2ħh

2Ω2

ħh∆+ (N/2)(−U00 + U01 − U02 + U12)

+
1
2ħh

2Ω2

ħh∆+ (N/2)(U01 − U02 + U12 − U22) + U01 − U02 − U12 + U22
,
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Figure 4: Steps to implement a CNOT gate. The first column shows the possible two-
qubit combinations, and the initial BEC populations. The first step of the protocol
(second column) is the same process that is shown in Fig. 2. The next step (third
column) is to perform a single-qubit operation on the target (see section 3.1). Since
n0 is now a function of the state of the control qubit, this effectively couples the
control and target qubits together. During this step, the field is left on just long
enough so that the target qubit’s state is flipped if the control was in |↑〉.

which is not a function of n0 or n2. The difference between J0 and J1 arises from the
interference between the two paths by which an atom may hop between |0〉 and |2〉 in the
σ1 = 1 case (see Fig. 2). For an appropriate choice of ∆, this interference will be destructive
and J1 will be close to zero while J0 remains nonzero (see Fig. 3). Thus, the BEC population
in |0〉 and |2〉 will be a function of the control qubit’s state.

Although not explicit in our discussion so far, the above analysis is conditional on the
population of states |0〉 and |2〉 always being much greater than the population of the higher-
lying levels of the HO. This is to avoid significant coupling between state |1〉 and these higher-
lying levels over the timescales of interest. Assuming all of the population initially begins in
either |0〉 or |2〉, a significant fraction may initially be transferred directly to the other state
using the Ω02 field. The two-photon process described above may then be used to entangle
the BEC with the control qubit. As discussed in section 4.3, being able to quickly entangle the
state of the BEC with a qubit provides a convenient method for nondestructively measuring
the state of any qubit in our register.

Finally, we wish to change the state of the target qubit based on the state of the BEC. This
can be done using the single-qubit protocol from section 3.1. In Eq. (7) the Rabi frequency
for single-qubit operations is proportional to

p
n0. Since n0 is now a function of the state of

the control qubit, performing a single-qubit operation on the target will lead to the state of the
target qubit being dependent on the state of the control one.

In order to realize a CNOT gate, we initialize the system with n0= 4N/5 and n2= N/5,
where N is the total BEC population (see Fig. 4). Using Ω01 and Ω12, we then drive the two-
photon transition connecting levels |0〉 and |2〉 as shown in Fig. 2. We leave the fields on until
n0= N/5 and n2= 4N/5 (assuming the control qubit is in |↓〉). If the control qubit is in |↑〉,
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Figure 5: The 87Rb level spectrum. The far-detuned optical beams are shown on
the left. The HO beams create the harmonic trap, the OL beams the lattice, and the
IA beams are used to individually address the qubits. The three levels in the 52S1/2
ground state manifold and coupling fields that were chosen to realize the model
system in section 2 are shown on the right.

then there will be no population change.
If the control qubit is in the |↓〉 state, then the BEC population in state |0〉will be n0= 4N/5.

Plugging this into Eq. (7), we turn on the Ω12 field just long enough to perform a 2π pulse
on the target qubit (thus leaving its state unchanged). If the control qubit is in the |↑〉 state,
however, then n0= N/5, so we see by Eq. (7) that the Rabi frequency will only be half as large
in this case. The result is that the target will experience a π pulse if and only if the control is
in the |↑〉 state. After we reset the BEC populations (by repeating the operation shown in the
second column of Fig. 4), we will have successfully realized a CNOT gate.

4 Experimental realization

4.1 The platform

Thus far, we have discussed a simplified model of bosons confined to a spin-dependent lattice
and harmonic potential, which we showed could be used as a quantum register capable of
universal quantum computation. In this section, we consider how the model system could
be well approximated using an experimentally realistic setup, and confirm that the realistic
system will behave analogously to the model one using computations.

Alkali atoms are workhorses of atomic physics experiments, and although in our computa-
tions we consider the particular case of 87Rb atoms, we note that the model in section 2 could
also be applied to other bosonic alkali species [66, 67]. In order to realize the Hamiltonian
given by Eq. (5), we must first trap the atoms in a potential that resembles Eq. (3), which is
usually done using optical fields [40–42,66,68].

A neutral atom in an optical field that is far-detuned from any resonances can be treated
as an electric dipole [69]. If the oscillating electric field is a perturbation, and only the 2P1/2
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and 2P3/2 fine structure levels of alkali atoms are taken into account (see Fig. 5), then to
second-order in perturbation theory the conservative potential due to the AC Stark shift felt
by an alkali atom in its ground state will be [69]

VHO(r ) =
πc2Γ

2ω3
0

�

2+ P gFmF

∆2
+

1− P gFmF

∆1

�

I(r ), (11)

where c is the speed of light, Γ is the spontaneous emission rate of the excited state, ω0
is the transition frequency, P = 0,±1 denotes whether the light is linearly or σ± circularly
polarized, gF is the Landé g-factor, mF denotes which Zeeman sublevel the atom is in, ∆1 is
the detuning of the optical field from the 2S1/2 → 2P1/2 transition, ∆2 is the detuning from
the 2S1/2→ 2P3/2 transition, and I(r ) is the intensity of the beam of light. Note that the Γ/ω3

0
factor is only approximately the same for the two transitions [70].

The isotropic harmonic trapping potential considered in Eq. (3) may be achieved using
two crossed optical beams with Gaussian intensity profiles [69]. If ∆1,∆2 < 0 (red-detuning,
see the HO beams in Fig. 5), then the atoms will be attracted to areas of greater intensity.
Thus, near the intersection point of the two beams (where the total intensity is greatest),
the atoms will see an approximately harmonic trapping potential. And if both beams are
linearly polarized (P = 0), then all atoms in the 2S1/2 manifold will see approximately the
same harmonic potential. This assumes that any interference effects will be negligible (i.e. that
the dipole potentials due to each beam, calculated using Eq. (11), may be added together).

In our computations, we created the isotropic harmonic trap using two crossed λ= 808 nm
beams, each with a total power of 100 mW. One beam had waists of 120 µm and 90 µm, while
the other had 132 µm and 87.3 µm waists. These result in a harmonic trapping frequency of
ωHO = 2π× 100 Hz.

To realize the 3D spin-dependent lattice potential part of Eq. (3), we follow [40] and
consider three pairs of nearly counterpropagating (Gaussian) beams. Each beam is linearly
polarized, and one beam in each pair has had its polarization vector rotated by an angle θ
with respect to its partner beam. In this case, the dipole potential due to each pair of beams
is given by [40]

VOL(r ) =
πc2 I0Γ

ω3
0











2

∆′2

+
1

∆′1



 (1+ cos(θ ) cos(2k · r ))

+gFmF





1

∆′2

−
1

∆′1



 (k̂ · B̂) sin(θ ) sin(2k · r )







, (12)

where I0 is the intensity at the center of each beam at its waist, ∆′1,2 are the detunings
of the OL beam from each transition, k is the wavevector of each beam, B is the magnetic
field, and k̂ and B̂ are the wavevector and magnetic field’s unit vectors. Note that |k|= 2π/λ,
where λ is the wavelength of each beam.

Eq. (12) describes the sinusoidal dipole potential due to two counterpropagating beams
if both beams have the same frequency, and thus interfere with each other. To create the
spin-dependent lattice used in section 2, we require two atomic states that will see no lattice
potential (|0〉 and |2〉), and one state that does see a lattice (|1〉). To achieve this using Eq.
(12), we select |0〉 = |F= 1, mF = 0〉, |1〉 = |F= 1, mF = −1〉, and |2〉 = |F= 2, mF = 0〉 (see
Fig. 5). We also set θ = 90◦, and align the magnetic field, B, so that its components are equal
along all three lattice directions. In this case, Eq. (12) becomes (up to a constant)
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Figure 6: Experimental setup. The pair of OL beams that create the lattice potential
along the y-axis are shown intersecting at an angle φ. One beam passes through
a half-wave plate and has its polarization vector rotated by θ = 90◦. The atoms
in states |0〉 and |2〉, which see an isotropic harmonic potential but no lattice, are
shown having condensed into a dilute BEC. Atoms in |1〉, which do see the 3D lattice
potential, are tightly trapped in a cubic array. The two tightly focused, crossed beams
that are used to individually address atoms in the lattice are labelled IA.

VOL(r ) =
πc2 I0Γp

3ω3
0

gFmF





1

∆′2

−
1

∆′1



 sin(2k · r ). (13)

With three pairs of beams propagating along orthogonal directions a 3D lattice potential
is obtained. |0〉 and |2〉 will see the potential VHO only, while |1〉, which has mF ̸= 0, will see
the total potential VHO + VOL, which is consistent with Eq. (3). Note that we are restricted
in the choice of wavelength, λ, because it must be close to the 2P1/2 and 2P3/2 transitions.
Otherwise, 1/∆2 − 1/∆1 in Eq. (13) will be too small and the intensities of the beams would
need to be unreasonably large.

The arrangement of beams discussed above is shown in Fig. 6. Note that if each pair of
beams intersect at an angle φ, then in Eq. (13) k will be changed to k sin(φ/2) [40,71, 72].
By tuning φ the effective lattice spacing may be increased, but to maintain consistency with
the assumptions in section 2 the lattice spacing must be much less than the length scale of the
HO.

In the computations, the 3D optical lattice was formed by 3 pairs of nearly counterpropa-
gating λ = 790 nm beams. This ‘magic’ wavelength was chosen so that atoms in |0〉 and |2〉
won’t see the lattice potential even if the beams are imperfectly polarized (because 2/∆′2 + 1/∆′1 = 0
in Eq. (12)). Each beam had a total power of 67 mW, and a beam waist of 150 µm in each
direction, which leads to a lattice depth of 800 kHz. We only consider the 10×10×10= 1, 000
lattice sites closest to the trap center to use as qubits.

Initializing a gas of bosonic atoms into a BEC has two main steps: laser cooling and forced
evaporative cooling [50, 73–76]. A common way to then prepare all of the atoms in a single
Zeeman sublevel is to turn on a purely magnetic gradient with a local minimum, in which
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case only atoms with mF < 0 will see a trapping potential (due to the Zeeman effect), and
atoms with mF ≥ 0 will be expelled from the trapping region. It is also possible to instead use
optical pumping lasers to force all of the atoms into a single spin state [77]. Once every atom
is loaded into the |0〉 state, the qubit register will have been initialized with every qubit in |↓〉.

Note that in our system the lattice does not need to be initialized with one atom in each site
before computations can begin, which is not the case in other lattice-based qubit platforms.
Typically, initialization requires loading exactly one atom into each site. This is not trivial
because loading schemes usually rely on atoms in the same site colliding, leading both to be
ejected from the trap. This results in each lattice site randomly having zero or one atom(s).
Thus, qubit registers usually need to be initialized by then rearranging the atoms in the lattice
so that a subsection of the lattice has perfect unit filling [78–80].

In our computations, we initialized our system with 106 87Rb atoms at T = 300 nK (which
is representative of the number of atoms that can be loaded into a harmonic trap at this tem-
perature [40, 54, 60]). The BEC fraction will be about 70%, which means that there will be
N = 7× 105 BEC atoms in the trap (and 3× 105 noncondensed, thermal atoms).

The scattering lengths, aij, in Eq. (2) for atoms in states |0〉, |1〉 and |2〉 are a00 = 5.34 nm,
a11 = 5.31 nm, a22 = 5.00 nm, a01 = 5.31 nm, a02 = 5.23 nm, and a12 = 5.16 nm [46–48].
For the given choice of the lattice and harmonic trap beam parameters, the corresponding
interaction strengths in Eq. (5) will be U00/ħh= 0.0197 Hz, U11/ħh= 13.0 kHz, U22/ħh= 0.0184
Hz, U01/ħh= 0.0342 Hz, U12/ħh= 0.0332 Hz, and U02/ħh= 0.0193 Hz.

4.2 Qubit gates

The second step to implement the model Hamiltonian in Eq. (5) is to realize the coupling terms
between the atomic states: Ω01, Ω12, and Ω02. As shown in Fig. 5, Ω01 connects two Zeeman
sublevels in the same hyperfine manifold. If we apply a uniform magnetic field, |B|= 5.40 G,
then the energy difference between |0〉 and |1〉will be 3.78 MHz [70]. State |2〉 is in a different
hyperfine manifold than |0〉 and |1〉, which makes the energy difference between these states
much larger (6.835 GHz) [70].

The transitions between these three atomic states can be driven using radiofrequency (RF)
and microwave (MW) fields. The most common methods of addressing an individual qubit
in a lattice while using MW and RF fields are to either generate the fields using an atom
chip [66, 81, 82], or to apply tightly focused optical beams to preferentially shift the energy
levels of the addressed qubit relative to its neighbors (see Fig. 6) [83–85].

The intersection angle of the lattice beams, φ, was chosen so that the lattice spacing will
be 532 nm, which is sufficient to allow the lattice sites to be individually addressed by tightly
focused optical beams [83–85] (although alternative approaches for addressing individual sites
exist [86]). The individual addressing beams were chosen to have λ = 790 nm with beam
waists of 0.6 µm and circular polarization. This ‘magic’ wavelength guarantees that atoms
in |0〉 and |2〉 won’t see the addressing beams, but atoms in |1〉 will. It is assumed that the
addressing beams can be rapidly reconfigured to focus on any qubit in the 3D lattice, for
instance, by using a lens on a translation stage and MEMS mirrors as in [84,85,87].

Given the harmonic trap and lattice potential described in section 4.1, we obtain φ(r )
[50, 54] and w(r ) [49, 51, 53]. Then, using Eq. (6), we find Ωij = Ω̃ij/364, where Ω̃ij(r ) in
Eq. (6) was assumed to be a square pulse with amplitude Ω̃ij. The effective Rabi frequency for
single-qubit gates is

p
n0Ωij (from Eq. (7)), and since

p
n0∼ 837, we find that the effective Rabi

frequency will be about 837/364 = 2.30 times larger than the free-space Rabi frequency, Ω̃ij.
Smaller field strengths will therefore be needed to drive transitions in our system compared
to an analogous single-atom system, which is one of the advantages of ensemble qubits. We
note, however, that this enhancement is significantly smaller than in most ensemble qubits
(due to the small overlap between φ(r ) and w(r )) [10–14, 32]. In our computations, we
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chose
p

n0Ω01 = 2π×100 Hz, which yields a π-pulse time of 5.03 ms. This was computed for
qubits farthest from the center of the trap (i.e. qubits for which Ω01 is smallest, and thus the
gate time will be longest).

To realize the CNOT gate discussed in section 3.2, we chose Ω01 = Ω12 = 2π × 192 Hz,
and ∆ = 12.9 kHz. For the first step of the protocol, where we couple the BEC to the control
qubit (Fig. 2), the effective Rabi frequency will be Ω01Ω12/∆ = 2π × 18.0 Hz, with a pulse
time of 11.1 ms. The second step is to perform a π-pulse on the target qubit (third column
of Fig. 4), which will take 5.03 ms. And the last step is to reset the BEC bus, which will take
another 11.1 ms, yielding a total CNOT gate time of ∼ 27.2 ms.

We note that the CNOT time is primarily limited by the small overlap between φ(r ) and
w(r ) in Eq. (6), and that reducing this gate time would require larger free-space Rabi fre-
quencies, Ω̃01, Ω̃12 > 1 MHz. It is also worth noting that unlike Rydberg-based schemes for
realizing a CNOT gate [4], using the BEC as a quantum bus means that we cannot perform the
gate operation on multiple pairs of qubits in parallel.

In the first step of the CNOT protocol, a single qubit is entangled with the BEC. This may
be done using either an atom chip [66,81,82], or a pair of tightly focused optical beams that
selectively shift that qubit’s transition frequencies relative to its neighbors [83–85,87]. In the
second step, a single-qubit gate must be performed on a different qubit in the lattice, which
requires either an atom chip or that the addressing optical beams be rapidly reconfigurable.

4.3 Nondestructive state readout

We propose a method to read out the state of any individual qubit in our array by coupling the
qubit to the BEC, and then nondestructively measuring the state of the BEC. This can be done
using first step of the protocol given in section 3.2 (see Fig. 2). Ω01 and Ω12 are used to drive
population between levels |0〉 and |2〉, which will be successful if and only if the qubit to be
measured is in |↓〉. The period of the BEC population oscillations would be 11.1 ms.

There are several methods to nondestructively detect population oscillations in a BEC. It
was shown in [34] that Rabi oscillations between |0〉 and |2〉 in 87Rb atoms may be observed
by measuring the MW impedance of the atoms. In [37], BEC atoms coherently exchanged
photons with two optical beams, and the resulting intensity fluctuations in the beams were
observed on a CCD camera. To address an individual qubit in the lattice, either an atom chip
or a pair of tightly focused optical beams may be used (as discussed in section 4.2).

Compared to more conventional measurement approaches [25–27], in the one proposed
here there is little chance of the qubit atoms being heated or lost during the imaging pro-
cess, and no high-resolution optics are required. The qubit is also never removed from the
computational basis. However, only one qubit can be measured at a time, and there will be
decoherence introduced to the BEC during readout. We also note that the state of the qubits
in our system could instead be read out with the usual fluorescence-based approaches; the
method described here is just a second option not available to other lattice-based qubits.

5 Sources of Decoherence

5.1 Sensitivity to atom losses

One of the most important sources of error in cold atom qubit platforms are atom losses. In
cold atom qubits where the quantum information is stored within a single atom [2–8], each
atom loss completely destroys a qubit and is therefore a significant source of decoherence for
these platforms.
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There are, however, schemes to detect and correct such errors [88–90]. Atomic losses
are less problematic for qubits made up of ensembles of atoms, because the loss of an atom
does not mean that all of the quantum information contained in that qubit has been destroyed.
Although, for ensemble qubits based on Rydberg excitations [4,10,13], the size of the ensemble
is typically at most 100 atoms, which means atom losses in these systems are not entirely
negligible either.

In our proposed qubit register, the qubit atoms will be drawn from an ensemble of N atoms.
The qubits states were defined to be an empty lattice site (|↓〉) and a filled site (|↑〉). This choice
means that atom losses do not destroy our qubits, but rather represent an energy relaxation
process that results in bit flips |↑〉 → |↓〉.

To quantify the effect of atom losses on the quantum information stored in our qubit reg-
ister, we follow the approach in [12]. When η < N atoms are lost from the system, the
probability that a lattice atom was lost (which is the only type of atom loss that results in the
destruction of information) can be found by calculating the ratio between the number of states
in which at least one lattice atom was lost, and the total number of states.

If m qubits in the register are in the state |↑〉, then we can write out the state of all N atoms
by noting that each of the N atoms is equally likely to have been excited to each of the m
lattice sites. The (unnormalized) superposition state is thus

|12...m00...0〉+ |12...0m0...0〉+ ... |00...012...m〉 , (14)

where 1, 2, ..., m denote which lattice site that atom is in, and 0 denotes that the atom is
in the harmonic trap. We observe that there are a total of P(N , m) states in the superposition
given by Eq. (14) (where P(N , m) denotes m-permutations of N).

We consider what happens, without loss of generality, when the first η < N atoms are
lost. In P(N − η, m) of the states in Eq. (14), the first η atoms do not carry any quantum
information. Thus, the probability of at least one lattice atom being lost, Pη, is equal to the
probability that the system is not in one of those states,

Pη = 1−
P(N −η, m)

P(N , m)
= 1−

m−1
∏

j=0

�

1−
η

N − j

�

. (15)

For N ≫ m,

Pη ≈ 1−
�

1−
η

N

�m
. (16)

For η≪ N , we have Pη ≈ mη/N , where mη/N is the expected number of compromised
qubits after η losses.

Pη is plotted in Fig. 7 using N = 7×105 atoms, and m= 103 qubits in |↑〉 (i.e. every qubit
is excited). We observe that, as compared to platforms where each qubit is made up of a single
atom, in the scheme proposed here the quantum register will be well protected against atom
losses that are much smaller than the size of the ensemble.

In the proposed system, we expect losses will primarily arise from atoms scattering photons
from the optical lattice beams (expected lifetime of 0.522 sec) [69], heating due to momentum
diffusion in the spin-dependent lattice (4.99 sec) [40], collisions with the background gas (5.0
sec) [91,92], and three-body losses in the BEC (18.3 sec) [45].

5.2 Coupling to states outside the computational basis

In the simple model introduced in section 2, atoms can occupy only three states: atoms in |0〉
and |2〉 occupy the many-body ground state of the harmonic trap, and atoms in |1〉 lie in the
lowest Bloch band of one of the lattice sites. In the realistic system described in section 4,
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Figure 7: Probability of a bit flip occurring, Pη, as a function of the number of atom
losses, η. The curve labeled ‘full’ corresponds to Eq. (15), and ‘approximate’ to Eq.
(16). N = 7× 105 atoms and m = 1, 000 qubits in the |↑〉 state were used to make
the plot.

however, there are more states in the Hilbert space than just three, which can lead to qubits
being forced out of the computational basis (compare Figs. 1 and 8). This can happen if
multiple atoms occupy a single lattice site, or if atoms in the lattice transition to higher-lying
HO states, other Bloch bands, or other atomic levels. In this section, we explore the primary
ways by which these can happen.

For a deep optical lattice, there will be strong s-wave interactions between atoms in the
same site, U11/ħh = 13.0 kHz. While performing the qubit operations described by Eq. (7),
we therefore require

p
n0Ω01 ≪ U11/ħh to avoid double occupation of the lattice site. This is

the most stringent constraint on the single-qubit and CNOT gate speeds of our system. If two
atoms do end up sharing a single site, then they will most likely collide and both be ejected
from the trap within one millisecond [91, 92]. If the second atom came from the BEC or the
background gas of thermal (noncondensed) atoms, then this is an energy relaxation process
that maps |↑〉 → |↓〉.

It is also possible for atoms to tunnel through the potential barrier between lattice sites. If
an atom tunnels into another, occupied, lattice site, then the two atoms will collide and both
will be lost from the trap. Tunneling therefore maps |↑↑〉 → |↓↓〉 if both sites were initially
occupied, or |↑↓〉 → |↓↑〉 if only one site was occupied. The lattice beam parameters given
in section 4.1 lead to a tunneling energy of 0.09 Hz [50–52]. Tunneling between lattice sites
could be suppressed by using a deeper lattice, or by applying a potential gradient [93] (i.e. by
aligning the lattice with gravity, applying a magnetic field, or accelerating the lattice).

We defined an empty lattice site to be |↓〉, and because of this, when multiple atoms occupy
the same lattice site, the system will eventually return to the computational basis of its own
accord. This may be compared to the situation in many other lattice-based qubits, where atoms
losses must be manually detected and corrected [88–90]. This inherent protection against
atoms losses (see section 5.1) comes at the cost of those losses being more frequent in our
system because the BEC and thermal atoms must be co-trapped with the lattice atoms, leading
to increased opportunities for them to collide with each other and be lost from the trap.

In addition to collisions between atoms, during qubit operations we must also contend with
atoms being transferred to both the higher-lying levels of the HO, and the higher Bloch bands
of the lattice. This population transfer occurs because the spatial wavefunctions of atoms in
the lattice (w(r )) overlap with the higher-lying modes of the harmonic trap, and the many-
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Figure 8: Coupling between the computational basis states and other states. The
three basis states in the simplified model in Fig. 1 are shown, along with their cou-
pling to states that lie outside this basis. Desired couplings that are used to perform
qubit operations are shown with solid arrows, all undesired couplings are displayed
with dashed arrows. Atoms in the BEC couple to other Zeeman sublevels, higher
Bloch bands in the optical lattice, and states with multiple atoms per site. Qubit
atoms in the lattice may couple to the excited levels of the harmonic trap, or multi-
ply filled sites due to inter-site tunneling.

body wavefunction of the BEC atoms (φ(r )) also overlaps with the spatial modes of the higher
Bloch bands in the lattice (see Fig. 8).

The thermal atoms will be distributed over the excited levels of the 3D HO according to
the Bose–Einstein distribution [36, 50, 54]. The coupling strengths between the qubit states
and these excited levels will be proportional to

p
ne, where ne is the number of thermal atoms

in the excited level e. According to the Bose–Einstein distribution, the first excited level will
have the largest population, ne= 62 atoms. Since n0= 5×105, the coupling strength between
the qubit levels will be approximately

p

n0/ne= 106 times larger than the maximum coupling
strength to the first excited level of the HO.

To minimize the coupling to the higher Bloch bands of the lattice,
p

n0Ω01 and
p

n2Ω12
must be much less than the frequency difference between Bloch bands (which is 190 kHz for
our lattice [50,51]). Coupling to the excited levels of the HO and coupling to the higher bands
of the lattice are both drawbacks that are unique to our proposed system. These are not issues
faced by most other lattice-based qubits, because on those platforms the spatial mode of the
qubits is usually not changed significantly during qubit operations.

The Ω01, Ω12, and Ω02 fields are used to drive transitions between |0〉, |1〉 and |2〉. As can
be seen in Fig. 5, the ground state manifold of 87Rb contains five other Zeeman sublevels, all
of which could in principle be populated while we perform qubit operations. Spin-changing
collisions between pairs of atoms can also cause undesired population transfer to other Zeeman
levels [40,46–48,64]. To prevent either of these from happening, a moderate magnetic field,
B, must be applied so that the energy spacing of the Zeeman sublevels will be anharmonic,
allowing us to only drive the transitions shown in Fig. 5. For |B| = 5.4 G there will be an
anharmonicity of over 13 kHz [64].

We are also aided by the fact that three out of the five undesired Zeeman levels will see
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a lattice potential that is 180◦ out of phase with the lattice potential seen by the atoms in |1〉
(because, for atoms in those states, gFmF in Eq. (12) will have the wrong sign). Direct cou-
pling between |0〉, |1〉 and |2〉 with these three levels will therefore be severely reduced before
the nonlinear Zeeman effect is even taken into account. This means that |1〉 is not directly
coupled to any of the undesired Zeeman levels, and |0〉 and |2〉 are only directly coupled to
|F= 2, mF = 1〉. However, in most cold atom qubit platforms, only one or two of the Zeeman
sublevels in the ground state manifold are used to encode the quantum information. This
makes population transfer out of the desired basis a much more significant problem in our
case, although we note that it has been demonstrated that composite pulses may be used to
reduce population leakage [94].

5.3 Decoherence due to the BEC and thermal atoms

Using the BEC to mediate qubit operations will introduce noise into the system. All of the error
channels discussed in this section are due to co-trapping the BEC and thermal atoms with the
qubit atoms in the lattice. Consequently, none of these sources of decoherence are present in
other lattice-based qubits.

There are several impacts of the fact that we can only have a finite number of atoms,
N =n0 + n1 + n2, in the system. First, the Rabi frequency for qubit operations (the off-diagonal
term in Eq. (7)) goes as

p
n0. For trapped atoms, there will be fluctuations in N (and thus n0)

between experimental realizations that go as
p

N because it’s a Poisson process [95]. In order
for the Rabi frequency in Eq. (7) to be robust against these shot-to-shot fluctuations in N , we
require N >∼ 600 atoms. The qubit transition frequency (the difference between the diagonal
terms in Eq. (7)) will also vary due to these

p
N shot-to-shot fluctuations. For N = 7× 105

atoms, there will be an uncertainty of ≤ 0.376 Hz in each qubit’s Rabi frequency, and ≤ 28.7
Hz in each qubit’s transition frequency (these will be largest for the qubits closest to the center
of the harmonic trap).

The CNOT gate, which is described by a Hamiltonian whose elements are given by Eq. (8),
will also be sensitive to fluctuations in N . The first step of the CNOT gate is to initialize the BEC
with n0= N/5 and n2= 4N/5, which cannot be done perfectly given our limited knowledge
of N . If, as suggested in section 3.2, we apply the field Ω02 = 1 kHz to drive population
between |0〉 and |2〉, then

p
N fluctuations between realizations will introduce an uncertainty

of 2.11 × 10−7 in the fraction of atoms in n0 and n2. The next step of the CNOT gate is to
entangle the BEC with the first qubit. For an uncertainty in N of

p
N , the error in the fractions

of BEC atoms in |0〉 and |2〉 during this gate step will be 1.31%. The last step of the CNOT gate
wil have the same uncertainty due to fluctuations in N between realizations as the single-qubit
gate discussed already.

Decoherence due to finite N also arises because n0 and n2 will vary slightly depending
on how many qubits in the register are in the state |↑〉. We require N be much greater than
the number of qubits in our register, otherwise the parameters of each qubit will depend on
the state of every other qubit. Since, in our proposal, we’re considering 1, 000 qubits, andp

N ≈ 1, 000, the decoherence from this source will be similar to the decoherence due to shot-
to-shot fluctuations in N discussed above. We also note that there are many general techniques
for minimizing the impact of fluctuating or unknown qubit parameters [96–101].

The final drawback of finite N is that atom losses in the BEC will lead N to decrease over
time, which in turn will cause each qubit’s transition frequency, and sensitivity to the driving
fields, to vary in time (see section 5.1). If the loss rate of BEC atoms over time can be estimated,
then the decoherence introduced to the system from this error channel may be minimized by
correcting for these losses when setting the gate times and field frequencies. Additionally,
techniques to continuously reload a BEC to counter the effects of atom losses have already
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been demonstrated experimentally [102].
There are several approaches which could be used to reduce the decoherence introduced

by uncertainty in N . The interactions between the BEC atoms and all other atoms in the
system could be reduced by decreasing the BEC density. However, this would also decrease
the gate speed. In [103], hundreds of ensembles of atoms with sub-Poissonian atom number
fluctuations were created. And in [104], the authors proposed a method to estimate the size
of an atomic ensemble using multiple pulses and measurements of Rydberg excitations.

During the CNOT gate, BEC population is transferred between |0〉 and |2〉. This will leave
the spatial state of the atoms unchanged, which is problematic because the change in the
population of atoms in different atomic states will cause their spatial states to no longer be
eigenstates of the Hamiltonian. As a result, during the CNOT gate operation, the wavefunc-
tions of atoms in |0〉 and |2〉 will evolve in time. Uncertainty in the gate time will therefore
result in uncertainty in the qubit parameters in Eq. (7). We simulated these dynamics us-
ing a fourth-order Runge–Kutta method to solve the Gross–Pitaevskii equation for a spinor
BEC [50,54]. It was found that, for an uncertainty in pulse length of 1.81 µs, the error in the
effective Rabi frequency should always be less than 0.001.

The change in populations of |0〉 and |2〉 will also change the condensation temperature,
Tc of atoms in these two states, since Tc ∝ N1/3 [50, 54]. Any decrease in Tc due to popu-
lation transfer will increase the thermal component of the BEC [40]. During the CNOT gate,
the population of one of the BEC components is reduced to N/5, thus lowering the conden-
sation temperature by 41.5%, which will result in the loss of some of the BEC atoms until the
condensate returns to thermal equilibrium.

The optical lattice will slowly drift relative to the BEC and harmonic trap [105], which will
cause the interaction and coupling strengths between atoms in the lattice and those in the BEC
to fluctuate over time, and between realizations. In our computations, we assumed that, with a
proper feedback system, the lattice position could be stabilized to within 0.1λ/2 [83,105]. The
BEC has a TF radius of 18.1 µm≫ λ. Consequently, we find that the effects of the uncertainty
in the lattice position on coupling to the BEC during gate operations should be negligible.

Finally, the background gas of thermal atoms can interact with the BEC and the lattice
atoms [54]. The number of thermal atoms and their (non-uniform) density profile will fluc-
tuate over time and between experimental realizations [106, 107]. This will introduce extra
noise to the qubit parameters in Eq. (7) due to interactions between the thermal atoms and
the atoms in |0〉, |1〉 and |2〉.

5.4 Uncertainty in the control fields

The last set of error channels are due to noise in the optical, MW and RF fields that are used to
trap and perform operations on our qubits. The first drawback is the necessity of using a spin-
dependent optical lattice to realize the model system described in section 2. This introduces
several problems that other lattice-based qubits can (mostly) avoid.

The first is that fluctuations in the magnetic field, B, will cause the qubit transition fre-
quency to change as well, because the energy difference between |0〉 and |1〉 (see Fig. 5) is set
by the Zeeman effect [70]. If the magnetic field has an uncertainty of ±4.3 nT [108], then the
qubit transition frequency will fluctuate by ±30 Hz. The second problem is that intensity fluc-
tuations in the lattice beams (±312 mW/cm2) will also cause the qubit transition frequency to
vary (±28 Hz). In lattice-based qubit platforms that do not require a spin-dependent lattice,
the fields and the atomic levels that correspond to the qubit states may be chosen such that
the transition frequency will be (to good approximation) intensity and magnetic-field insensi-
tive [109–111].

Any errors in the rotation of the lattice beams’ polarization vectors, θ , will cause the am-
plitude of the lattice potential to change (see Eq. (12)). For atoms in |1〉, an uncertainty in
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θ of ±π/150 will result in an uncertainty in the qubit transition frequency of ±11.2 Hz (its
impact on the Rabi frequency will be negligible). Our choice to use lattice beams with λ= 790
nm ensures that BEC atoms should not see a lattice potential regardless of θ .

Finally, we discuss errors that arise when addressing individual qubits. We note that these
errors arise in all lattice-based qubits, and are no different in our platform than any other.
Single-qubit gates in a 3D optical lattice with 5 µm spacing have been realized using a pair
of tightly focused optical beams with an average gate fidelity of 0.9962 for target atoms, and
an average crosstalk fidelity of 0.9979 [85]. In [83], single sites in a 2D 532 nm lattice were
addressed using an optical beam and MW field, which had a 95% gate fidelity and a negligible
impact on nontarget atoms. We note that our scheme does not require a 532 nm lattice, and
that the qubit atoms could instead be contained in an optical dipole trap array with a larger
spacing between qubits to reduce crosstalk [103,112].

6 Conclusion

We have proposed using a 3D spin-dependent optical lattice as a quantum register, and a spa-
tially overlapping BEC in a harmonic trap as a reservoir of atoms. Single-qubit operations
would be realized by loading single atoms from the BEC into individual lattice sites. By cou-
pling the qubits to the BEC, we showed how a CNOT gate could be implemented between
arbitrary pairs of qubits without the atoms ever being brought outside of the two-level qubit
basis. We also discussed how nondestructive measurements could be carried out without heat-
ing up the atoms, and what the various sources of decoherence in such a system would be.

Compared to Rydberg-based qubits, this platform has slower gate times and computa-
tional states that have greater sensitivity to fluctuations in both the magnetic field and the
lattice beams. However, our qubits are much better protected against decoherence due to
atom losses, they never need to be removed from the ground state manifold, can be measured
nondestructively, and a register of over 1, 000 fully-connected qubits is achievable.

The proposed system represents a new pathway for realizing a neutral atom quantum
computer, which attempts to address many of the problems currently facing cold atom-based
qubits, but there is much research still to be done. Work on addressing individual qubits by
coupling them to a non-uniform BEC (thereby removing the need for tightly focused optical
beams), and using the BEC as a sensor to probe changing experimental parameters so that
computation errors may be corrected in real-time, is already underway. In the future, we
hope to experimentally realize this system and demonstrate its potential to help push the field
forward.
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