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Abstract

Conformal interfaces separating two conformal field theories (CFTs) provide maps between

different CFTs, and naturally exist in nature as domain walls between different phases. One

particularly interesting construction of a conformal interface is the renormalization group

(RG) domain wall between CFTs. For a given Virasoro minimal model Mk+3,k+2, an RG

domain wall can be generated by a specific deformation which triggers an RG flow towards

its adjacent Virasoro minimal model Mk+2,k+1 with the deformation turned on over part of

the space. An algebraic construction of this domain wall was proposed by Gaiotto in [1].

In this paper, we will provide a study of this RG domain wall for the minimal case k = 2,

which can be thought of as a nonperturbative check of the construction. In this case the

wall is separating the Tricritical Ising Model (TIM) CFT and the Ising Model (IM) CFT.

We will check the analytical results of correlation functions from the RG brane construction

with the numerical density matrix renormalization group (DMRG) calculation using a lattice

model proposed in [2, 3], and find a perfect agreement. We comment on possible experimental

realizations of this RG domain wall.

1Email: cogburn@bu.edu
2Email: fitzpatr@bu.edu
3Email: haogeng@fas.harvard.edu



Contents

1 Introduction and Summary 2

2 RG Brane Lattice Construction 3

2.1 General Strategy 3

2.2 Lattice Model for Tricritical Ising to Ising RG Brane 4

3 The Computation of Correlators In the Presence of the RG Brane 6

3.1 The General Strategy 7

3.2 ⟨ϵTIM ϵTIM ⟩RG 8

3.3 ⟨ϵIM ϵIM ⟩RG 12

3.4 Branching Rule and Two-point Function for ϵ′TIM 13

4 Comparison of Lattice and CFT Calculations 16

4.1 Mapping of Operators 16

4.2 Numeric Comparisons 18

5 Experimental Realizations 21

5.1 Engineering the RG Domain Wall on the Boundary of a Topological Supercon-

ductor 21

5.2 Engineering the RG Domain Wall in a Rydberg Chain 22

A Algebraic Construction for Minimal Models and Their Tensor Product 24

A.1 Coset Construction of Unitary Virasoro Minimal Models 24

A.2 Hidden Symmetry in the Tensor Product of Consecutive Minimal Models 25

A.2.1 The Hidden Symmetry 26

A.2.2 Another Representation of the B̃ with an Explicit Supersymmetry 27

B Review of Gaiotto’s Proposal For RG Brane 28

B.1 Useful Properties of Topological Defects 28

B.2 RG Flow of the Topological Defect D(k+2)
r,1 29

B.3 Extended Symmetry Algebra on RG Domain Wall from Topological Defect 30

B.4 Explicit Construction of the RG Domain Wall 31

B.5 Computation of One-Point Functions 33

C Topological Superconductors and Majorana Fermions 35

C.1 A Toy Hamiltonian and Its Topological Properties 36

C.2 Localized Majorana Modes on the Boundary– The Ising Model 39

1



1 Introduction and Summary

A useful concept in the study of Quantum Field Theory (QFT) is the idea of a ‘space of QFTs’

[4]. If we view QFTs as Renormalization Group (RG) flows between Conformal Field Theory

(CFT) fixed points, then the space of QFTs can be envisioned as a network of CFT points

connected to each other by paths along which a family of quantum field theories are defined

interpolating between an ultraviolet (UV) CFT and an infrared (IR) CFT. These QFTs are

parameterized by the energy scale along the RG flow. In general, the dynamics along such

flows is complicated and does not benefit from the relative rigidity of its CFT endpoints.

Instead of studying the full RG flows themselves, an appealing construction is that of ‘RG

branes’ (aka RG Domain Walls), which capture much of the information of an RG flow but in

a simpler setting. RG branes are constructed by taking a relevant deformation that triggers

the RG flow from the UV CFT to the IR CFT and turning it on over only part of space, so

that in the infrared regime one obtains the ‘IR CFT’ in one spatial region and the ‘UV CFT’

everywhere else. The boundary between these two regions is the RG brane, which thereby

collapses the entire RG flow to the geometric action of moving across this boundary. Moreover,

symmetric choices of the boundary can preserve a subset of the conformal symmetries of the

CFT endpoints.

Another advantage of RG branes is that they are relatively easy to engineer in practice.

In the context of numerical simulations, for instance with a computation on a lattice, one

simply has to choose parameters in the underlying theory to pick out the UV CFT on half

of the space and the IR CFT on the rest of the space. In fact, this approach will be one

of our main tools for studying RG branes in this paper. Moreover, this technique translates

into a well-defined protocol for creating an RG brane experimentally, assuming one has the

flexibility to tune to a critical point over only part of space.

Our main goal in this paper will be to compute physical observables in an interesting

class of RG branes. We will focus on two-point correlation functions, partly for simplicity

but also partly with an eye towards the potential connection to experimental measurements

in the future. In CFTs, two-point functions in the presence of a boundary are comparable

in complexity to four-point functions in its absence, so the theoretical calculation of them

provides the opportunity to predict a fairly complicated set of observables that might be

measurable in practice.

We will focus on a specific RG brane scenario that brings together two remarkable pieces

of work, one from a CFT perspective and one from an underlying microscopic perspective.

The first of these is a recent proposal [2, 3] for an experimental realization, as well as an

explicit lattice Hamiltonian describing it, of a supersymmetric quantum critical point that

can be obtained by tuning only a single parameter. The specific instance of this proposal that

we will use produces a phase diagram with two distinct phases, one gapped and one gapless,

separated by a critical point. Moreover, the gapless phase is described in the IR by the 2d

Ising Model CFT, and the critical point between the phases is decribed by the Tricritical

Ising Model CFT. This lattice Hamiltonian can therefore be used to construct an RG brane
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separating the 2d Ising Model (IM) CFT from the Tricritical Ising Model (TIM) CFT, and

will give us the first numeric handle for computing observables numerically.

The second result we will use [1] is a proposal for the RG brane between consecutive

Virasoro minimal models, directly within the CFT description.4 The first two Virasoro min-

imal models are exactly the Ising Model CFT and the Tricritical Ising Model CFT, with

central charges c = 1
2 and c = 7

10 respectively. This proposal will give us a second handle

for computing observables, this time directly in the IR limit. In particular, we will compute

two-point functions of operators in the presence of the RG brane using the CFT proposal of

[1], and compare to computations using a DRMG analysis of the lattice Hamiltonian from

[3]. We will find remarkably good agreement.

The paper is organized as follows. In section 2 we spell out how the RG brane in our paper

in constructed on the lattice. In section 3, we compute several energy-energy correlators near

the RG domain wall between the Tricritical Ising Model CFT and the Ising Model CFT. In

section 4, we compare our analytical results in 3 with the numerical results obtained from the

lattice construction in 2. In section 5, we discuss potential experimental consequences and

other future directions. We review many technical details of the RG brane proposal in [1] in

a series of appendices: in section A we review the coset (Sugawara) construction of minimal

Virasoro models, and in section B, we review the construction of the RG brane itself. In

section C we review some useful properties of topological superconductors relevant to our

experimental proposal.

2 RG Brane Lattice Construction

2.1 General Strategy

We are interested in RG branes connecting a “UV” CFT on one side to an “IR” CFT on the

other side. To construct such an RG brane in a lattice model, we need to be able to dial the

parameters of the lattice Hamiltonian such that for some parameters, the low energy limit of

the lattice model is described by the UV CFT, and for other parameters the low energy limit

is described by the IR CFT. The “UV” and “IR” labels of the two CFTs in this context are

solely relative to each other, as both of them describe the physics at infrared scales compared

to the underlying lattice spacing. In order for the UV CFT to be able to have an RG flow

to the IR CFT, there must exist a relevant deformation of the UV CFT that triggers this

RG flow. In the space of lattice parameters, this means that points describing the UV CFT

require tuning (at least) one parameter to a critical point (or surface). Moreover, it is then

possible to detune away from this point in some direction such that the low energy limit is

described by the IR CFT. We can choose to parameterize this direction as a coupling h in

our Hamiltonian:

H = H1 + hH2, (2.1)

4See [5–7] for the extension of the construction to other 2d CFTs and [8] for an interesting construction of

a domain wall between different symmetry-protected topological (SPT) phases in the same spirit.
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Figure 1. Phase diagram required for the construction of the RG brane. At a critical value h∗ of

the coupling, the low-energy limit is described by the “UV” CFT, whereas for h > h∗ it is described

by the “IR” CFT. The RG brane is constructed by tuning h to h∗ on half of the space, and taking h

slightly greater than h∗ on the other half of the space. The specific behavior at h < h∗ is irrelevant

for our discussion.

such that h = h∗ is the critical value that produces the UV CFT at low energies, and h > h∗
produces the IR CFT at low energies. This setup is depicted in Fig. 1.

Given a Hamiltonian with these properties, it is then straightforward to construct the

RG brane in terms of the lattice theory: one simply has to tune h = h∗ on part of the space,

and take h > h∗ on the rest of the space,5 and the RG brane lies on the boundary separating

these two regions.

2.2 Lattice Model for Tricritical Ising to Ising RG Brane

Although the general setup described in the previous subsection should be possible to be

realized in many different examples, in this work we will focus mostly on the specific lattice

system proposed in [2, 3]. Following their notation, the Hamiltonian is H = H1 + hH2 with

H1 =
∑
i

[
σzi σ

z
i+1 + σxi + J

(
µzi,aµ

z
i,b + µzi,bµ

z
i+1,a

)
+ g

(
σxi µ

z
i,a − σzi σ

z
i+1µ

z
i,b

)]
,

hH2 = −h
∑
i

(µxi,a + µxi,b),

(2.2)

where µi,a, µi,b and σi are all Pauli matrices for spin-1/2 spins. The virtue of this model is

that, due to an underlying symmetry of the theory, only one tuning is necessary in order to

reach the (supersymmetric) Tricritical Ising Model fixed point.

5One should not choose h to be too close to or too far from h∗. If h−h∗ is too small, then this corresponds

to setting a very tiny coefficient in front of the relevant deformation of the UV CFT, so that the IR CFT is

only reached at very long distances. For an infinite sized lattice, this would not present any problem, but in

a finite-sized system it would prevent one from reaching the IR CFT. On the other hand, if h − h∗ is taken

to be too large, then it is no longer clear that detuning h away from h∗ can be described as a local relevant

deformation of the UV CFT.
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To roughly understand why, as explained in [3], first note that if we neglect the terms

proportional to J , g, and h, the Hamiltonian is just that of the critical Ising Model,

H∗ =
∑
i

σzi σ
z
i+1 + σxi , (2.3)

which describes a gapless free fermion. The coupling between σ and µ in general could gap

out the system, but does not as long as h is sufficiently large. The reason is that at large

(positive) h, the µ spins do not order along the z direction, in which case the vanishing mass

gap is protected by an unbroken Z2 symmetry that flips the sign of µz (µzi,a → −µzi,b and

µzi,b → −µzi+1,a) and acts nontrivially (essentially, as the high-temperature/low-temperature

duality map) on σi (σ
z
i σ

z
i+1 ↔ σxi ). As h is decreased, eventually there is a phase transition

to the ordered phase where ⟨µz⟩ ̸= 0. At this critical point, the order parameter behaves as

a massless scalar degree of freedom, allowing for a supersymmetric spectrum. For smaller

values of h, the theory is gapped.

The upshot is that for any value of model parameters J and g, there is a critical value

of h where the low-energy limit is described by the Tricritical Ising Model, and for larger

values of h the low energy limit is described by the critical Ising Model CFT. The authors

of [2] found that for the specific choice of J = 1, g = 1
2 , this critical value is approximately

h∗ = 1.62. 6

In field theory language, the theory can be described as a single chiral superfield Φ with

a superpotential given by

W (Φ) = κΦ+ rΦ3. (2.4)

Supersymmetry is broken spontaneously if W ′(Φ) ̸= 0. Semiclassically, at r
κ < 0 the vacuum

has ⟨Φ⟩ ≠ 0 andW ′(Φ) = 0, so supersymmetry is preserved but a Z2 symmetry under which Φ

changes sign is spontaneously broken and the theory is gapped; by contrast, at r
κ > 0, ⟨Φ⟩ = 0

and W ′(Φ) ̸= 0, so the supersymmetry of the theory is broken spontaneously, producing a

massless fermionic Goldstino, which is the massless Majorana fermion of the c = 1/2 critical

Ising Model. This semiclassical picture continues to hold at the quantum level (see e.g. [11]),

and the critical point between the two phases is again described by the Tricritical Ising Model

CFT.

We numerically solve for the RG brane using a Density Matrix Renormalization Group

(DMRG) method based on the iTensor library [12, 13]. This DMRG algorithm is controlled

by a few key parameters, as explained in the documentation. For our simulations we found

the parameter values of nsweeps = 15, maxdim = [10, 20, 100, 175, 250], and cutoff = 1E -

12 were sufficient for even large (eg. N = 300) lattices. In setting up the lattice, periodic

boundary conditions are enforced. Therefore the spacetime geometry is such that we have a

tube, the boundary of which is a circle. On this circle the RG brane is placed at 0 and 180

degrees, with the Ising model (h = 2) on one side and the Tricritical Ising Model (h = 1.62)

on the other.
6We notice that the O’Brien-Fendley lattice model [9, 10] provides another example where we can drive a

system from the Ising fixed point to the Tricritical Ising fixed point by tuning a single parameter.
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Discretizing a system on a lattice inherently introduces lattice spacing and finite volume

effects. In Sec. 4.1 we expand the µ lattice operator in terms of the CFT operators, the coeffi-

cients of which are found by computing the finite volume two-point function when the lattice

is entirely in either the Ising CFT phase or Tricritical Ising CFT phase. These coefficients

precisely determine the overall normalization between the numerical lattice calculation and

the analytic CFT calculation, the result of which is shown in Sec. 4.2.

3 The Computation of Correlators In the Presence of the RG Brane

In this section, we extend the study of the RG domain wall in [1] to the computation of

specific four-point functions (in the unfolded picture). These four-point functions reduce to

two-point functions of composite operators in the folded description. We firstly spell out our

general strategy in computing the relevant four-point functions using Gaiotto’s construction

of the RG domain wall. We then explicitly consider the case of the RG domain wall of the

Tricitical Ising Model. We compute two such four-point functions following our strategy,

compare the results with numerical calculation by DMRG and find precise agreement.

A priori, it is not at all obvious that one should be able to do analytic computations of

correlation functions in the presence of the RG brane. In general, even if the UV and IR CFTs

are rational, so that all their correlators can be computed analytically, it will not necessarily

be the case that the RG brane between them is also rational, and one might have to accept

that the resulting correlators cannot be computed based on the algebra alone. A class of

interfaces that do preserve the individual algebras of the UV and IR CFTs are called rational

interfaces. From this point of view, what is special about rational interfaces is that they

satisfy boundary conditions that glue the chiral sector of the algebra of the theory T L×TR to

the anti-chiral sector by an automorphism (i.e. the map preserves the commutation relations

between the symmetry generators). With the automorphism specified the rational interfaces

can be classified by Cardy’s algebraic description. However, there is an inherent tension

between preserving the UV and IR CFT algebras and simultaneously coupling them together

in a nontrivial way. The reason is that the UV and IR CFT algebras strongly constrain

the allowed form of the correlators of the theory, and in fact the reason why rational CFTs

are analytically tractable is that the algebra almost completely determines their correlators.

Consequently, if the algebra completely factorizes into the UV and IR CFT algebras, then

their correlators also factorize into UV and IR CFT correlators. In more technical terms,

the automorphism that maps the chiral and anti-chiral algebras into each other across the

RG brane usually doesn’t mix the L and R sectors of the algebra. In order to mix them

in a nontrivial way, there must be a hidden symmetry that relates the L and R sectors.

Naively, our setup has no hidden symmetry and therefore one might expect that the RG

brane is not related to any rational interface. Fortunately, this expectation is too pessimistic,

and Gaiotto [1] has proposed a remarkably elegant construction of RG interfaces between

consecutive 2d Virasoro minimal model CFTs using rational interfaces by identifying the RG

branes as the rational interfaces of a different 2d CFT than T L × TR which contains a larger
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symmetry algebra. This construction is based on the observation that the larger symmetry

algebra is B̃ (that we review in detail in Sec. A.2) and it extensively uses results reviewed

in App. A. The basic observation that leads to the realization of B̃ as the proper algebra is

from the considerations of topological defects [14] and the perturbative results of the RG flow

[15, 16]. We also review Gaiotto’s algebraic proposal for the RG brane in detail in App. B.

The proposal can be roughly summarized as the statement that the RG brane is simply the

product of a conformal interface that maps operators from the tensor product theory to the

‘B’ theory with the enhanced B̃ chiral algebra, times a Cardy boundary condition with respect

to this algebra.

3.1 The General Strategy

Our main goal is to compute correlation functions of local operators in the presence of the

RG brane between nearest neighbor minimal models, Mk+3,k+2 and Mk+2,k+1. We will

mostly focus on the case of the RG brane between TIM and Ising (i.e. k = 2), though the

generalization to other minimal models is conceptually straightforward. The simplest kind of

two-point function one might try to consider is that of two operators in, say, Mk+2,k+1:
7

⟨ϕ(k+1)
r,s (x1, x1)ϕ

(k+1)
r,s (x2, x2)⟩RG. (3.2)

However, it will be useful to instead start with correlators where each local operator is a

product of one operator from Mk+2,k+1 and one from Mk+3,k+2:

⟨(ϕ(k+1)
r,s ϕ

(k+2)
s,t )(x1, x1)(ϕ

(k+1)
r,s ϕ

(k+2)
s,t )(x2, x2)⟩RG . (3.3)

When (s, t) = (1, 1), this reduces to the former type of two-point function (and similarly

if (r, s) = (1, 1)). However, our strategy for computing correlators will be first to map

operators from the tensor product, or “A”, theory Mk+2,k+1 ×Mk+3,k+2 (which arises from

the folded description) into operators in the “B̃” theory, which can be described in terms of

the Ising model times the (k − 1)-th supersymmetric minimal model SMk+1,k+3. For k = 2,

both descriptions are (loosely speaking) TIM × Ising, but the mapping of operators is still

nontrivial.

We will work out in detail the two-point function of ϵ from Ising and the two-point

function of ϵ from TIM. These operators are represented in the B̃ theory as follows [17]:

(ϵTIM )A ∝ (σIMσTIM )B, (ϵIM )A ∝ (σIMσ′TIM )B. (3.4)

More generally, the strategy of computing such two-point function is the following:

7The individual operators in TIM and Ising sit in the Kac table as follows:

1IM = ϕIM
(1,1) = ϕIM

(2,3) , ϵIM = ϕIM
(2,1) = ϕIM

(1,3) , 1TIM = ϕTIM
(1,1) = ϕTIM

(3,4) ,

ϵTIM = ϕTIM
(1,2) = ϕTIM

(3,3) , ϵ′TIM = ϕTIM
(1,3) = ϕTIM

(3,2) , ϵ′′TIM = ϕTIM
(1,4) = ϕTIM

(3,1) .
(3.1)
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1. Use the branching rule to map the composite operator (ϕ
(k+1)
r,s ϕ

(k+2)
s,t )(x1, x1) from the

Mk+2,k+1 × Mk+3,k+2 description to [r, d′; t] ⊗ [d, d̃; d′] in the SMk+3,k+1 × M4,3 de-

scription.8

2. Do the bulk OPE expansion for SMk+3,k+1 and M4,3 separately to have [r, d′; t] ×
[r, d′; t] → [r, d′; t] and [d, d̃; d′] ⊗ [d, d̃; d′] → [d, d̃; d′] with known conformal block and

OPE coefficients.

3. Project the [r, d′; t]⊗ [d, d̃; d′]’s which can not be mapped back to the OPE spectrum of

ϕ
(k+1)
r,s ϕ

(k+2)
s,t with itself in the Mk+2,k+1 ×Mk+3,k+2 description.

4. Look for the boundary operator expansion (BOE) coefficient of [r, d′; t]⊗ [d, d̃; d′] from

the exact Cardy state Equ. (B.7).

5. Multiply the BOE coefficients with the corresponding bulk conformal blocks and bulk

OPE coefficients, and sum over all possible r, d, d′, t and d̃.

This procedure fixes the final correlator up to an overall proportionality constant. This con-

stant comes from the mapping in the first step, and can be fixed by the one-point function

calculated using the method in Sec. B.5.9 Alternatively, the overall coefficient can be deter-

mined simply by fixing the leading OPE singularity of the two-point function.

In general, the prediction for the correlators in the presence of the RG brane will take

the form

⟨(ϕ(k+1)
r,s ϕ

(k+2)
s,t )(x1, x1)(ϕ

(k+1)
r,s ϕ

(k+2)
s,t )(x2, x2)⟩RG

=
′∑
i,j

⟨(ϕ(k+1)
i ϕ

(k+2)
j )B|RG⟩C(k+1)

(r,s),(r,s),iC
(k+2)
(s,t),(s,t),jG

(k+1)
(r,s),(r,s),i(z)G

(k+2)
(s,t),(s,t),j(z),

(3.5)

where the Cs and Gs are OPE coefficients and conformal blocks in the ‘B’ theory, respectively,

the conformal cross ratio z is defined below, and the prime on the sum indicates that certain

terms in the sum are discarded.

3.2 ⟨ϵTIM ϵTIM ⟩RG

First, we will calculate the two-point function of the TIM ϵ operator in the presence of the

RG brane, using the branching rule we have (1IM ϵTIM )A ∝ (σIMσTIM )B from the A to

the B̃ theory. Therefore, using the folded description, our task is to compute the following

8This mapping, though nontrivial, is constrained by preserving total conformal weight and the fact that

r+ t even lives in the NS sector of the SMk+3,k+1 and odd in the R sector; in subsection 3.4 we demonstrate

how to use this constraint to work out the branching map for ϵ′TIM .
9Note that there are operators for which the overall constant cannot be fixed by the last step. These are

operators ϕ
(k+1)
r,s ϕ

(k+2)
s,t whose one-point function is zero (for example r + t is odd).
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×
O(x1)

×
O(x2)

Figure 2. An illustration of the calculation where O(x) ≡ 1IM × ϵTIM (x) and we do the bulk OPE

first then compute the resulting one point function due to the appearance of the Cardy boundary.

correlator in the B̃-theory

⟨(σIMσTIM )(x1, x1)(σ
IMσTIM )(x2, x2)⟩RG

= ⟨(σIMσTIM )(x1)(σ
IMσTIM )(x1)(σ

IMσTIM )(x2)(σ
IMσTIM )(x2)⟩ .

(3.6)

The correlator in the unfolded description is a sum over four-point conformal blocks, where

the four external operators are (σIMσTIM ) as written above. These conformal blocks are

simply products of the conformal blocks of σIM and σTIM in the Ising model and TIM,

respectively, which are known in closed form (see below). To compute the coefficient of each

conformal block, we first perform the operator production expansion (OPE) in the bulk, which

is inherited from the individual Ising and TIM factors:

[σIM ]×[σIM ] = [1IM ]+[ϵIM ] , [σTIM ]×[σTIM ] = [1TIM ]+[ϵTIM ]+[ϵ′TIM ]+[ϵ′′TIM ] . (3.7)

The OPE of the products of chiral components of the fields in the B theory is, roughly

speaking, a sort of “square root” of the products of OPE of the non-chiral fields from the Ising

Model and the Tricritical Ising Model, as explained in [17] and described in more detail below.

Finally, to obtain the coefficient of the conformal block, we perform the bulk-to-boundary

expansion of each operator in the bulk OPE, which simply contributes an additional factor

of the bulk operator’s one-point function. This OPE,

⟨O(x)×O(y)⟩RG =
∑
i

COOi(x, y)⟨Oi(y)⟩RG, (3.8)

is depicted in Fig.2. In principle, we could evaluate the above expression by doing a brute-

force numerical sum over all operators Oi in the bulk OPE of ϵTIM × ϵTIM in the tensor

product theory. The advantage of using the full chiral algebra of the B̃ theory is that there

are only a finite number of primary operators, and so by computing the full conformal blocks

we reduce the sum to a finite number of terms. A useful consistency check that we will

perform of our method is that it reproduces the prediction we get for these terms purely from

using the standard bulk OPE for ϵTIM in TIM, times the RG brane one-point functions, and

in fact we will check enough terms this way to independently fix all the coefficients of the B̃
theory conformal blocks.

To evaluate the correlator (3.6), we need to use the OPE of the chiral components

(σIMσTIM ) in the B̃ theory, in order to sum over the corresponding conformal blocks. As
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explained in [17],10 this OPE is not just a simple product of the OPEs of the scalar σIM×σIM

and σTIM ×σTIM OPEs in the IM and TIM theories, but instead involves both a projecting-

out of certain cross-products between the two OPEs as well as taking a square root of the

non-holomorphic OPE coefficients. Of the eight operators one would naively get in the prod-

uct of the two OPEs in (3.7), four get projected out. A convenient way to infer this is that the

OPE must be consistent with the A theory OPE ϵTIM × ϵTIM ∼ 1TIM + ϵ′TIM +descendants,

and therefore only products of operators where the total dimension of the product is equal that

of 1TIM or ϵ′TIM plus integers can appear. As a result, only conformal blocks corresponding to

the appearance of 1IM1TIM , 1IM ϵ′TIM , ϵIM ϵTIM and ϵIM ϵ′′TIM in the σIMσTIM ×σIMσTIM

OPE survive. The correlator is given by the following formula

⟨(σIMσTIM )(x1, x1)(σ
IMσTIM )(x2, x2)⟩RG =

1

|x1 − x2|2/5
GTIMϵϵ

(∣∣∣∣x1 − x2
x1 − x2

∣∣∣∣2
)
,

GTIMϵϵ (z) ≡ z1/5
′∑

ϕi=1,ϵ

ϕj=1,ϵ,ϵ′,ϵ′′

⟨(ϕIMi ϕTIMj )B|RG⟩CIMσσϕiC
TIM
σσϕj

GIMσσϕi(z)G
TIM
σσϕj

(z).

(3.9)

where the prime on the sum indicates that only the products of conformal blocks described

above are included. The Ising model conformal blocks GIMσσϕi(z) are

GIMσσ1(z) =
1√

2(z(1− z))1/8

√
1 +

√
1− z, GIMσσϵ(z) =

√
2

(z(1− z))1/8

√
1−

√
1− z, (3.10)

and the TIM conformal blocks GTIMσσϕi
(z) are [18]

GTIMσσ1 (z) =
1

z3/40

(√√
1− z + 1 2F1

(
−2

5 ,
1
5 ;

2
5 ; z
)

√
2(1− z)3/40

+
z(1− z)1/40 2F1

(
1
5 ,

4
5 ;

7
5 ; z
)

2
√
2
√√

1− z + 1

)
,

GTIMσσϵ (z) = z
1
40

(√√
1− z + 1(1− z)1/40 2F1

(
−1

5 ,
2
5 ;

3
5 ; z
)

√
2

+

√
2z(1− z)21/40 2F1

(
4
5 ,

7
5 ;

8
5 ; z
)

3
√√

1− z + 1

)

GTIMσσϵ′ (z) = z
21
40

(
2
√
2

√√
1− z + 1(1− z)21/40 2F1

(
4

5
,
7

5
;
8

5
; z

)
−

3
√
2(1− z)1/40 2F1

(
−1

5 ,
2
5 ;

3
5 ; z
)√√

1− z + 1

)

GTIMσσϵ′′ (z) = z17/40

(
28

√
2 2F1

(
−2

5 ,
1
5 ;

2
5 ; z
)√√

1− z + 1(1− z)3/40
− 14

√
2

√√
1− z + 1(1− z)1/40 2F1

(
1

5
,
4

5
;
7

5
; z

))
.

(3.11)

10See for instance, their equation (3.6) and surrounding text.
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The relevant OPE coefficients are [19–21]

CIMσσ1 = 1 ,

CIMσσϵ =
1

2
,

CTIMσσ1 = 1 ,

CTIMσσϵ =

5
√
21Γ

(
−7

4

)
Γ
(
3
4

)2
Γ
(
6
5

)(Γ( 7
10)Γ(

5
4)

Γ( 3
10)

)3/2

23/10π2Γ
(
4
5

) ,

CTIMσσϵ′ =
5

6

(
Γ
(
2
5

)
Γ
(
1
5

)
Γ
(
3
5

))3/2√
Γ

(
4

5

)
Γ

(
6

5

)
,

CTIMσσϵ′′ =

√
Γ(− 7

4)
21 Γ

(
3
4

)
Γ
(
5
4

)3/2
Γ
(
7
4

)
2π2

,

(3.12)

and the relevant one-point functions (or the boundary operator expansion coefficients) can

be found in Equ. (B.7) and Equ. (B.8):

⟨(1IM1TIM )B|RG⟩⟩ =
1

2

√
S
(1)
0,0S

(3)
0,0 = ω− , ⟨(1IM ϵ′TIM )B|RG⟩⟩ =

1

2

√
S
(1)
0,0S

(3)
0,2 = ω+ ,

⟨(ϵIM ϵTIM )B|RG⟩⟩ = −1

2

√
S
(1)
0,0S

(3)
0,2 = −ω+ , ⟨(ϵIM ϵ′′TIM )B|RG⟩⟩ = −1

2

√
S
(1)
0,0S

(3)
0,0 = −ω− ,

where ω± =
1

2

(
5±

√
5

40

) 1
4

, and S(k)
r,s =

√
2

k + 2
sin

(
π(r + 1)(s+ 1)

k + 2

)
.

(3.13)

As mentioned above, a fully independent calculation of the coefficients of the conformal blocks in (3.9) can

be obtained by instead matching its short-distance expansion to a calculation of (3.8) using the standard TIM

bulk OPE coefficients together with the RG brane one-point functions. There are four independent coefficients

to be fixed, one for each conformal block appearing in the sum. One of these is simply a normalization which

we can factor out. The small z expansion of GTIM (z) is

GTIM (z) ∝ z−1/5

1−
√
2(11 + 5

√
5)

1
10 π

3
4Γ

(
2
5

) 3
2

3
√

Γ
(
1
5

)
Γ
(

3
10

) 3
2 Γ

(
4
5

) z3/5(1 +
3z

10
) +

3

280
z2 + . . .

 (3.14)

The coefficient of z3/5 should be exactly Cϵϵϵ′ times ⟨(ϵ′TIM )A⟩RG
⟨(1)A⟩RG

. The OPE coefficient Cϵϵϵ′ is given in equation

(3.30). The one-point functions ⟨(ϵ′TIM )A⟩RG and ⟨(1)A⟩RG are in [1] equation (2.56), giving ⟨(ϵ′TIM )A⟩RG
⟨(1)A⟩RG

=

− 1
2

(
5
8
+

√
5

8
5
8
−

√
5

8

)1/4

, in agreement with the coefficient of z3/5 above. The coefficient of z2 follows from the OPE

coefficient and one-point function for the stress tensor. It can easily be calculated using the usual Virasoro

conformal blocks, where the coefficient of z2 is 2h2

c
. In this case, there is an additional suppression for the

11



one-point function of T in the presence of the RG brane, and this suppression can be read off from (A.19)

where we see that TTIM s overlap with itself reflected across the RG brane picks up a factor of 3
k(k+2)

= 3
8
.

Therefore, the prediction for the coefficient of z2 is 3
8

2h2

c
= 3

280
since h = hTIM

ϵ = 1
10

and c = cTIM = 7
10
.

Again this agrees with the coefficient of z2 above. Finally, we can fix one more coefficient by using the long-

distance limit ⟨ϵ(x1, x1)ϵ(x2, x2)⟩RG ∼ ⟨ϵ(x1, x1)⟩RG⟨ϵ(x2, x2)⟩RG = 0 at x1 − x2 → ∞. And indeed, there is

a nontrivial cancellation among the four conformal blocks in GTIM so that the leading large z term vanishes.

This condition completes the independent derivation of all the coefficients in GTIM .

To get the correlator at finite volume, we can conformally map the correlator from the

upper half plane (UHP) to the strip. Without loss of generality, we can choose units where the

volume is 2π, and reintroduce an arbitrary volume later by scaling. The conformal mapping

from the UHP to the strip is (tE being Euclidean time)

x = etE+iθ, (3.15)

so that the RG brane located at Im(x) = 0 gets mapped to θ = 0, π. In the folded description,

both TIM and Ising are in the UHP, and get mapped to the range 0 < θ < π, whereas in

the unfolded description, TIM is in, say, the UHP whereas Ising is in the lower half-plane

(LHP), so that they get mapped to 0 < θ < π and π < θ < 2π, respectively. When we set up

our DMRG calculation, we will choose periodic boundary conditions, in order to match the

unfolded description in finite volume. It is straightforward to evaluate the CFT expression for

the correlator at arbitrary times, but we will focus on the case of equal-time correlators and

set tE = 0. Then, in terms of the function GTIMϵϵ (z) from (3.9), the finite-volume two-point

function of ϵTIM in the presence of the RG brane is

⟨ϵTIM (θ1)ϵ
TIM (θ2)⟩RG ∝

 1

sin2
(
θ1−θ2

2

)
 1

5

GTIMϵϵ

sin2
(
θ1−θ2

2

)
sin2

(
θ1+θ2

2

)
 . (3.16)

The proportionality constant in the above equation depends on the normalization of ϵTIM

and can easily be fixed by matching the OPE singularity at θ1 ∼ θ2.

3.3 ⟨ϵIM ϵIM ⟩RG

The calculation of the two-point function of the ϵ operator on the Ising model side of the RG

brane closely follows the derivation of that on the TIM side in the previous subsection. The

difference is that ϵIM maps in the B̃ theory to the operator (σIMσ′TIM )B, and so we need to

use the TIM σ′ OPE coefficients and conformal blocks. The TIM σ′ × σ′ OPE only contains

two primary operators, 1 and ϵ′′. Because σ′ has a null descendant at level 2, its conformal

blocks can easily be calculated by standard methods. They are

GTIMσ′σ′1(z) =
(1− z)5/8 2F1

(
−1

4 ,
5
4 ;−

1
2 ; z
)

z7/8
, GTIMσ′σ′ϵ′′(z) = (1− z)5/8z5/8 2F1

(
5

4
,
11

4
;
5

2
; z

)
.

(3.17)
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The corresponding OPE coefficients are

CTIMσ′σ′1 = 1, CTIMσ′σ′ϵ′′ =
7

8
. (3.18)

As before, the full correlator is a sum over these conformal blocks with coefficients given by

the bulk OPE coefficients times the RG brane one-point functions:

⟨(σIMσ′TIM )(x1, x1)(σ
IMσ′TIM )(x2, x2)⟩RG =

1

|x1 − x2|2
GIMϵϵ

(∣∣∣∣x1 − x2
x1 − x2

∣∣∣∣2
)
,

GIMϵϵ (z) ≡ z
′∑

ϕi=1,ϵ

ϕj=1,ϵ′′

⟨(ϕIMi ϕTIMj )B|RG⟩CIMσσϕiC
TIM
σ′σ′ϕjG

IM
σσϕi

(z)GTIMσ′σ′ϕj (z).

(3.19)

The sum on ϕi, ϕj includes only two terms in total, the combination (ϕi = 1, ϕj = 1) and

(ϕi = ϵ, ϕj = ϵ′′). The one-point functions were given explicitly in (3.13). The finite-volume,

equal-time correlator is

⟨ϵIM (θ1)ϵ
IM (θ2)⟩RG ∝ 1

sin2
(
θ1−θ2

2

)GIMϵϵ
sin2

(
θ1−θ2

2

)
sin2

(
θ1+θ2

2

)
 . (3.20)

3.4 Branching Rule and Two-point Function for ϵ′TIM

Finally, let us work out the CFT prediction for a slightly more complicated example, that of

the RG brane two-point function of ϵ′TIM . Now, the operator maps to a linear combination

of primaries in the B̃ theory, which we can work out using the action of the chiral algebra in

the A and B̃ descriptions. The branching rule tells us that 1IM ϵ′TIM (x)A = 1IM ϵ′TIM (x)B ⊕
ϵIM ϵTIM (x)B + 1IM ϵ′TIM (x)B ⊕ ϵIM ϵTIM (x)B. Our task now is to determine the precise

decomposition coefficients a and b for

1IM ϵ′TIM (x)A = a1IM ϵ′TIM (x)B + bϵIM ϵTIM (x)B. (3.21)

This can be done by using the first equation in Equ. (A.19), which tells us that

LIM0;A =
5

8
LTIM0;B +

√
15

8
(Gψ)0 +

1

8
LIM0;B , (3.22)

together with

LIM0;A1
IM ϵ′(x)A = 0 . (3.23)

We have

0 = (
3a+

√
15b
√
2hϵTIM

8
1IM ⊗ ϵ′TIM +

5
√
15
√

2hϵTIMa+ 5b

40
ϵIM ⊗ ϵTIM ) , (3.24)

and so √
3a+ b = 0 . (3.25)
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Hence we have the decomposition up to an overall constant.

Translating to the B-theory, the correlator that we are interested in is

⟨
(
1IM (x1)ϵ

′TIM (x1)−
√
3ϵIM (x1)ϵ

TIM (x1)
)(

1IM (x2)ϵ
′TIM (x2)−

√
3ϵIM (x2)ϵ

TIM (x2)
)
⟩

=⟨1IM (x1)ϵ
′TIM (x1)1

IM (x2)ϵ
′TIM (x2)⟩+ 3⟨ϵIM (x1)ϵ

TIM (x1)ϵ
IM (x2)ϵ

TIM (x2)⟩

−
√
3⟨1IM (x1)ϵ

′TIM (x1)ϵ
IM (x2)ϵ

TIM (x2)⟩ −
√
3⟨ϵIM (x1)ϵ

TIM (x1)1
IM (x2)ϵ

′TIM (x2)⟩ ,
(3.26)

and we will compute the resulting four correlators separately.

To compute these correlators, we follow the same procedure as for Equ. (3.6) doing the

operator production expansion (OPE) in the bulk first and computing the resulting one-point

functions (as indicated in Fig.2). The OPE is given by the (tensor product of the) OPE from

the Ising model and the Tricritical Ising Model. The conformal blocks we get are those for

chiral four point functions in the Ising model and tricitical Ising model. These bulk OPE

expansions can be read from

[ϵIM ]× [ϵIM ] = [1IM ] , [ϵTIM ]× [ϵTIM ] = [1TIM ] + [ϵTIM ] ,

[ϵ′TIM ]× [ϵ′TIM ] = [1TIM ] + [ϵ′TIM ] , [ϵTIM ]× [ϵ′TIM ] = [ϵTIM ] + [ϵ′′TIM ] .
(3.27)

The results are given by

⟨1IM (x1)ϵ
′TIM (x1)1

IM (x2)ϵ
′TIM (x2)⟩

=
z

2
5 (1− z)

2
5

(
HI

11(z) +HI
1ϵ′(z)

)
(x1 − x2)

1
15 (x1 − x1)

1
15 (x1 − x1)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15 (x2 − x2)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15

,

⟨ϵIM (x1)ϵ
TIM (x1)ϵ

IM (x2)ϵ
TIM (x2)⟩

=
z

2
5 (1− z)

2
5

(
HII

11 (z) +HII
1ϵ′(z)

)
(x1 − x2)

1
15 (x1 − x1)

1
15 (x1 − x1)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15 (x2 − x2)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15

,

⟨1IM (x1)ϵ
′TIM (x1)ϵ

IM (x2)ϵ
TIM (x2)⟩

=
z

2
5 (1− z)

2
5

(
HIII
ϵϵ (z) +HIII

ϵϵ′′ (z)
)

(x1 − x2)
1
15 (x1 − x1)

1
15 (x1 − x1)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15 (x2 − x2)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15

,

⟨ϵIM (x1)ϵ
TIM (x1)1

IM (x2)ϵ
′TIM (x2)⟩

=
z

2
5 (1− z)

2
5

(
HIV
ϵϵ (z) +HIV

ϵϵ′′ (z)
)

(x1 − x2)
1
15 (x1 − x1)

1
15 (x1 − x1)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15 (x2 − x2)

1
15 (x2 − x1)

1
15 (x1 − x2)

1
15

,

(3.28)
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where the relevant conformal blocks are

HI
11(z) = ⟨(1IM1TIM )B|RG⟩⟩CTIMϵ′ϵ′1

(
z2 − z + 1

)
2F1

(
−2

5 ,
1
5 ;

2
5 ; z
)

z6/5(1− z)6/5
,

HI
1ϵ′(z) = ⟨(1IM ϵ′TIM )B|RG⟩⟩CTIMϵ′ϵ′ϵ′

(
z2 − z + 1

)
2F1

(
1
5 ,

4
5 ;

8
5 ; z
)

z3/5(1− z)6/5
,

HII
11 (z) = ⟨(1IM1TIM )B|RG⟩⟩CIMϵϵ1 CTIMϵϵ1

1− z + z2

z(1− z)

2F1

(
−2

5 ,
1
5 ;

2
5 ; z
)

5
√
z 5
√
1− z

,

HII
1ϵ′(z) = ⟨(1IM ϵ′TIM )B|RG⟩⟩CIMϵϵ1 CTIMϵϵϵ′

1− z + z2

z(1− z)

2F1

(
1
5 ,

4
5 ;

8
5 ; z
)

z−
2
5

5
√
1− z

,

HIII
ϵϵ (z) = ⟨(ϵIM ϵTIM )B|RG⟩⟩CTIMϵ′ϵϵ

1

1− z

2F1

(
−6

5 ,
1
5 ;−

2
5 ; z
)

5
√
1− zz3/5

,

HIII
ϵϵ′′ (z) = ⟨(ϵIM ϵ′′TIM )B|RG⟩⟩CTIMϵ′ϵϵ′′

1

1− z

z4/5 2F1

(
1
5 ,

8
5 ;

12
5 ; z

)
5
√
1− z

,

HIV
ϵϵ (z) = ⟨(ϵIM ϵTIM )B|RG⟩⟩CTIMϵ′ϵϵ

1

1− z

2F1

(
−6

5 ,
1
5 ;−

2
5 ; z
)

5
√
1− zz3/5

,

HIV
ϵϵ′′ (z) = ⟨(ϵIM ϵ′′TIM )B|RG⟩⟩CTIMϵ′ϵϵ′′

1

1− z

z4/5 2F1

(
1
5 ,

8
5 ;

12
5 ; z

)
5
√
1− z

.

(3.29)

The OPE coefficients are

CIMϵϵ1 = 1 ,

CTIMϵ′ϵ′1 = 1 ,

CTIMϵ′ϵ′ϵ′ =
π5/4Γ

(
2
5

)
Γ
(
11
5

)
5
√
2Γ
(

9
10

) (
Γ
(
1
5

)
Γ
(
13
10

))3/2√
3Γ
(
7
5

) ,
CTIMϵϵ1 = 1 ,

CTIMϵϵϵ′ =

√
Γ(− 3

10)Γ(
2
5)Γ(

7
5)

Γ(− 2
5)Γ(

3
10)Γ(

8
5)

23/5
,

CTIMϵ′ϵϵ =

√
Γ(− 3

10)Γ(
2
5)Γ(

7
5)

Γ(− 2
5)Γ(

3
10)Γ(

8
5)

23/5
,

CTIMϵ′ϵϵ′′ =
3

7
,

(3.30)
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and the boundary operator expansion coefficients are

⟨(1IM1TIM )B|RG⟩⟩ =
1

2

√
S
(1)
0,0S

(3)
0,0 ,

⟨(1IM ϵ′TIM )B|RG⟩⟩ =
1

2

√
S
(1)
0,0S

(3)
0,2 ,

⟨(ϵIM ϵTIM )B|RG⟩⟩ = −1

2

√
S
(1)
0,0S

(3)
0,2 ,

⟨(ϵIM ϵ′′TIM )B|RG⟩⟩ = −1

2

√
S
(1)
0,0S

(3)
0,0 .

(3.31)

4 Comparison of Lattice and CFT Calculations

In this section, we numerically study the RG brane system using a DMRG analysis. Following

[3], we apply DMRG to the Hamiltonian (2.2). Recall that for (2.2) when h = 2 the system

is in the IM phase whereas for h = 1.62 the system is in the TIM phase, and the RG brane

system is realized on the lattice by tuning h = 2 on half the lattice sites and h = 1.62 on the

other half, with periodic boundary conditions taken at the endpoints.

As mentioned in Sec. 2.2, the DMRG algorithm is controlled by a few key parameters.

For the results below we use a lattice with N = 180 distinct sites (540 total sites, since

each physical site requires a separate site for µi,a, µi,b and σi) unless otherwise noted. First

we will find the map between lattice operators and CFT operators. Then, we numerically

compute one-point and two-point functions in DMRG, and compare them with the analytic

CFT predictions from Sec. 3.

4.1 Mapping of Operators

Because the lattice is a microscopic structure versus the continuum field theory that we aim

to compare it to, we need to verify what lattice operators correspond to what CFT operators.

We do this by expanding the lattice operators in terms of the CFT operators and then

determining the expansion coefficients. In our case, the µ lattice operator (i.e. µzi,b and µ
z
i,a)

in the Ising domain can be expanded as

µz = A(I)
ϵ ϵ+A

(I)
∂2ϵ

∂2ϵ+ · · · (4.1)

where ϵ is the Ising CFT energy density operator, the As are the expansion coefficients and

the dots are higher decedent operators. In the tricritical Ising domain the expansion is,

µz = A(T )
ϵ ϵ+A

(T )
ϵ′ ϵ′ +A

(T )
∂2ϵ

∂2ϵ+ · · · (4.2)

where ϵ, ϵ′, etc., are the tricritical CFT energy density operators. The fact that the lattice

µ operator expands to energy operators can be understood as follows. Adding
∑

i µ
z
i,b (or∑

i µ
z
i,a) to the Hamiltonian Equ. (2.2) breaks the Z2 symmetry which acts on the µ-sector
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as sending µzi,a to −µzi,b and µzi,b to −µzi+1,a and on the σ-sector as the high-temperature/low-

temperature duality transform σzi σ
z
i+1 ↔ σxi . Hence when are in the Ising phase this defor-

mation breaks the high-temperature/low-temperature duality symmetry11 which maps ϵ to

−ϵ so this is equivalent at leading order to an ϵ deformation. On the other hand, when we

are at the critical point (h = h∗) the low-energy theory is TIM and such a deformation would

gap out the system. Hence this is a relevant deformation. However, in the TIM case a Z2

symmetry we have is

ϵTIM → −ϵTIM , ϵ′TIM → ϵ′TIM , and ϵ′′TIM → −ϵ′′TIM , (4.3)

which suggests that the expansion of the lattice µ operator is given by the ϵTIM , ϵ′′TIM and

their descendants.

To determine the coefficients we use DMRG to calculate finite-volume two-point functions

on the lattice in the IM and TIM phases. The equal-time finite-volume two-point function of

a primary operator O is given by

⟨O(x1)O(x2)⟩ =
( πL)

2∆O

sin
(
πx12
L

)2∆O
∼ 1

x2∆O
12

, (4.4)

where we have chosen the canonical normalization of O so that its short-distance OPE singu-

larity is x−2∆O
12 , as shown. Therefore, for the case of (4.1), we fit numeric data to a function

of the form

⟨µ(x1)µ(x2)⟩TIM ≈ (A(T )
ϵ )2

( πL)
2∆ϵ

sin
(
πx12
L

)2∆ϵ
. (4.5)

with ∆ϵ = 1
5 , and similarly with the Ising case using ∆ϵ = 1. Doing this we find, using a

N = 180 site lattice,

A(I)
ϵ = 0.81 , A(T )

ϵ = 0.61 . (4.6)

In Fig. 3, we show a comparison of the form (4.5) to the result of our DMRG computation

for the ⟨µiµj⟩ two-point function on the TIM and Ising side, verifying a similar comparison

in [3].

It is more difficult to obtain very precise results for the coefficients of the subleading op-

erators in (4.1) and (4.2). However, such contributions should be parameterically suppressed

by |i− j|2 compared to the leading contribution at long distances. Empirically, we find that

this suppression is roughly a factor of
b

|i− j|2
(4.7)

11In the free fermion representation this is the time-reversal symmetry which prevents the system from being

gapped.
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Figure 3. DMRG computation of the ⟨µiµj⟩ two-point function for the lattice model Equ. (2.2) in

the Tricritical Ising (h = 1.62) and Ising (h = 2) phases.

(relative to the leading contribution) with b ∼ 20 for Ising and b ∼ 1 for TIM.12 So we see

that the lattice µ operators flow to a linear combination of the energy density operators, with

the dominant CFT operator being the ϵ energy density in the respective phase, as expected.

Moreover, lattice corrections from subleading operators in (4.1) and (4.2) should be small for

|i − j| ≳ 5 for Ising and |i − j| ≳ 1 for TIM. Indeed this is consistent with what we will see

in Fig. 4 when we compare the CFT and lattice calculations of the µi two-point function in

the presence of the RG brane.

4.2 Numeric Comparisons

We start by using DMRG to compute one-point functions. In [1] one-point functions were

verified using conformal perturbation theory for large k Virasoro minimal CFTs; using DMRG

allows us to check these formulas at finite k (in our case k = 1).

To compute the one-point function, we fit the DMRG data of the two-point function

⟨µj∗+xµj∗−x⟩RG, where j∗ is the location of the RG brane, to the form

⟨µj∗−xµj∗+x⟩RG = A(I)
ϵ A(T )

ϵ ⟨ϵTIM (x)ϵIM (−x)⟩RG = A(I)
ϵ A(T )

ϵ B

(
π
L

sin
(
2xπ
L

))∆

, (4.8)

where ∆ = ∆IM
ϵ + ∆TIM

ϵ = 1.2 and Aϵs are taken from the fits in the previous subsection.

As usual, we have performed a conformal map to take into account finite volume effects. We

obtain the result

B = 0.64± 0.01, (4.9)

12A possible explanation for the smallness of this value of b in TIM is as follows. We expect that the

coefficient Aϵ′ actually vanishes due to the generalization of Kramers-Wannier symmetry to TIM (i.e., the

N̂ Verlinde line [22]), so the only contribution to b comes from ∂2ϵ in both Ising and in TIM. Then, the

cross-terms ⟨ϵ∂2ϵ⟩ are parametrically suppressed relative to the leading terms ⟨ϵϵ⟩ by ⟨ϵ∂2ϵ⟩
⟨ϵϵ⟩ ∼ ∆2

ϵ , which is 1

in Ising and 1/25 in TIM.
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where we have estimated the error by performing the fit over different ranges of lattice points.

Now we want to compare this numerical result with the prediction from the RG brane

construction. TheA-theory operator ϵIM (x)ϵTIM (x) can be written as ϕ
(k+1)
r,s ϕ

(k+2)
s,t where k =

2, r = 2, s = 1 and t = 2. This tells us that d = 2, d̃ = 2 and d′ = 1 or 3. Hence this A-theory

operator translates into the B̃-theory as the linearly combination of the operators [2, 1; 2] ⊗
[2, 2; 1] = ϵTIM ϵIM (x) and [2, 3; 2]⊗ [2, 2; 3] = G− 1

2
G− 1

2
ϵTIM1IM (x) = ϵ′TIM1IM (x).13 Let’s

write

ϵIM ϵTIM (x)A = αϵTIM ϵIM (x)B + βG− 1
2
ϵTIM1IM (x) , (4.10)

where we only focus on the holomorphic part and the normalization of the operator gives the

constraint

1 = α2 + 2β2hϵTIM = α2 +
1

5
β2 . (4.11)

We can find the coefficients α and β as in Equ. (3.21) using the following relation

LIM0;A =
5

8
LTIM0;B +

√
15

8
(Gψ)0 +

1

8
LIM0;B , (4.12)

which tells us that √
15

40
β =

3

8
α ,

1

8
β =

√
15

8
CIMϵϵ1 α . (4.13)

The fact that CIMϵϵ1 = 1 tells us that this two equations are consistent. Then combining with

Equ. (4.11) we have

α =

√
5

8
, β = 5

√
3

8
. (4.14)

As a result, we have

⟨⟨(ϵIM ϵTIM )A|RG⟩⟩ = (−α2 + 2hϵTIMβ2)

√
S
(1)
0,1S

(3)
0,1

S
(2)
0,0

=
1

2

√
S
(1)
0,1S

(3)
0,1

S
(2)
0,0

, (4.15)

where the minus sign in the first step comes from the fact that the RG brane maps ψ (i.e.

the homolorphic part of ϵIMB ) to −ψ (i.e. the antiholomorphic part of ϵIMB ). Moreover, there

is one more step before we can match the numerical result Equ. (4.9). We have to take into

account of the fact that in numerics the identity operator is normalized to one and so we have

to consider instead

⟨⟨(ϵIM ϵTIM )A|RG⟩⟩
⟨⟨(1IM1TIM )A|RG⟩⟩

=
1

2

√
S
(1)
0,1S

(3)
0,1

S
(2)
0,0

S
(2)
0,0√

S
(1)
0,0S

(2)
0,0

=
1

2
(
5 +

√
5

5−
√
5
)
1
4 ∼ 0.63601 , (4.16)

which perfectly matches the numerical result Equ. (4.9).

13Here we used the fact that the B̃-theory is the supersymmetric representation of the Tricritical Ising Model

for our case k = 2. G− 1
2
and G− 1

2
are the first creation operators of the supersymmetry generators G and G

in the NS sector.
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Equ. (3.9). Top: The IM side. Bottom: The TIM side.
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Finally, we can compare our CFT result Equ. (3.9) for ⟨ϵϵ⟩RG in the presence of the

RG brane to the DMRG calculation. Fig. 4 shows the result of this comparison for the

computing ⟨µiµj⟩ on the Ising and Tricritical Ising sides of the RG brane, respectively, and

shows remarkably good agreement between the CFT and DMRG calculations. This is one

of the main results of the paper, and provides a highly nontrivial check of our methods for

computing correlators in RG brane backgrounds.

5 Experimental Realizations

In this section, we comment on potential experimental realizations of the RG domain wall we

studied in this paper, based on some experimental proposals in the literature for obtaining

the Tricritical Ising Model fixed point. There are two types of systems that we will focus on

and they each have their own pros and cons. The first type of systems we will consider is

(2+1)-dimensional Type IIID topological superconductors [2, 3, 23] and the second type of

systems we are interested in is the (1+1)-dimensional Rydberg chain [24].

5.1 Engineering the RG Domain Wall on the Boundary of a Topological Super-

conductor

Let’s consider the edge of a (2+1)-dimensional Type III D topological superconductor with

the bulk in the gapped topological phase (a discussion of the physics in a toy model for such

systems is given in Appendix.C).14 For such a system we have two Majorana modes χL and

χR on the edge whose gap is protected by a time-reversal symmetry. The Lagrangian is given

by

L =
i

2

∫
dx
[
χR(x, t)(∂t + ∂x)χR(x, t) + χL(x, t)(∂t − ∂x)χL(x, t)

]
, (5.1)

which is the (1+1)-d Ising Model conformal field theory. The two Majorana fermions χR
and χL are respectively of spin down and spin up and the time-reversal symmetry exchanges

these two Majorana fermions and meanwhile it protects the system from being gapped (see

Appendix.C). Hence the spontaneous breaking of the time-reversal symmetry (or the mag-

netic ordering) provides a portal to realize a different phase (the trivial gapped phase) and

the critical point of the phase transition between this new gapped phase the gapless phase

Equ. (5.1) provides a chance to realize a different CFT. Such a phase transition can be char-

acterized by an order parameter ϕ(x, t) which transforms under the time-reversal symmetry

by a minus sign. The dynamics of such an order parameter is universally controlled by the

14We thank Tarun Grover for discussions of this approach, and suggestions for how to implement the RG

brane in this context.
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usual ϕ4-model. The full Lagrangian of the system is given by

Ltot =
i

2

∫
dx
[
χR(x, t)(∂t + ∂x)χR(x, t) + χL(x, t)(∂t − ∂x)χL(x, t)

]
+
1

2

∫
dx
[
(∂tϕ)

2(x, t)− (∂xϕ)
2(x, t) +m2ϕ2(x, t)− uϕ4(x, t) + igϕ(x, t)χR(x, t)χL(x,−t)

]
,

(5.2)

For large positive u the order parameter ϕ has a zero vev and the time-reversal symmetry

is not spontaneously broken so the low energy dynamics is controlled by the free massless

Majorana fermions which is the Ising Model. By contrast, for sufficiently small u the order

parameter would have a nonzero vev which signals the spontaneous breaking of the time-

reversal symmetry and the Majorana fermions are gapped by the Yukawa term (the last term

in Equ. (5.2)) and the low energy dynamics is trivial with a nonvanishing gap. Hence for a

fixed value of g there is a critical value uc for u where the phase transition happens and the

physics is captured by a different CFT (see Fig.5 for the phase diagram). It is shown in [3]

that this CFT is the Tricritical Ising Model whose central charge is c = 7
10 . As a result, we

can use this system to engineer the RG brane that we studied in this paper. We can tune the

parameter u to uc first and then tune it above uc on half of the space. In practice, one could

try to tune u by putting the material between two plates of a capacitor in order to turn on a

background electric field, which preserves the time-reversal symmetry and so should still be

described by the same phase diagram.

In real materials the time-reversal symmetry breaking is achieved by magnetic ordering

which sets a preferred direction of the electron spin. In the Ising Model language, this can be

realized by taking into account the fermion interactions, for example dipole-dipole interactions

between Cooper paired fermions. The orientation of the dipole moments can be driven by

an external electric field which could potentially be used to tune to or away from the point

of magnetic ordering. The advantage of this approach is that we just have to tune a single

parameter to reach the TIM critical point. However, at the moment there are no clear (1+1)-

d candidate experimentally accessible systems. For example the usual systems that realize a

topological superconductor of our interest are (2 + 1)-d boundaries of (3 + 1)-d systms, but

because they sit at the extremely low temperature regime (for example superfluid He3-B) it

is likely to be quite challenging to use them to create (1 + 1)-d boundaries of, say, (2 + 1)-d

films. And, despite various proposals, there are currently no known intrinsically (2 + 1)-d

materials that are widely accepted to be Type DIII topological superconductors. For more

details of the experimental viability and difficulties we refer the readers to [3].

5.2 Engineering the RG Domain Wall in a Rydberg Chain

Another system that one might use to engineer the RG domain wall is the Rydberg atoms

chain [24, 25]. This system consists of a one-dimensional chain of bosons (neutral atoms) with

each boson as a two-level quantum mechanical system and the two energy levels are coupled

to each other by a resonant laser field with a Rabi frequency Ω. Nevertheless the interesting
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Figure 5. The phase diagram of the system Equ. (5.2) for a fixed value of g. At large positive u we

enter a gapless phase of two Majorana fermions which is described by the Ising Model CFT. At large

negative u the system is trivially gapped. Thus there is a critical value uc at which the second order

phase transition happens and the physics is described by the Tricritical Ising Model CFT.

part of system is that the Rydberg atoms are interacting if they are in the excited state and

the interaction is from the dipole-dipole interaction for neaby excited atoms. Hence the whole

Hamiltonian of the chain can be written as (we will follow the notations in [24])

H =
∑
j

[Ω
2
(bj + b†j)−∆nj + V1njnj+1 + V2njnj+2

]
, (5.3)

where Ω is the Rabi frequency of the external resonant laser field that couples the ground state

and the excited state of each atom, b†j(bj) is the creation (annihilation) operator for the atom

at site j to go from the ground (excited) state to the excited (ground) state15, nj = b†jbj is

the number operator at site j which can be either zero or one, ∆ describes the detuning from

the Rydberg state, V1 denotes the nearest neighbour dipole-dipole interaction and V2 denotes

the next-nearest neighbour dipole-dipole interaction and we have ignored higher neighbour

dipole-dipole interactions which are suppressed. As [25] pointed out this system has a nice

phase diagram when V1 = ∞. The phase diagram is nicely plotted in [24] (see Fig.1 in [24]).

Depending on the values of V2Ω and ∆
Ω there are two phases of the system– a disordered phase

⟨nj⟩ = 0 and a Z2 ordered phase with ⟨nj⟩ and ⟨nj+1⟩ alternatively zero and one. There is

a critical line separating the two phases which describes the phase transition between them.

The interesting aspect of this critical line is that it has a tri-critical point separating the

second order phase transition and the first order phase transition. This tri-critical point is

described by the Tricritical Ising Model and the second order phase transition is described

by the Critical Ising Model. Hence we can construct the RG domain wall in this paper by

firstly tune the Rydberg chain to the tricritical point and then tune half of them away from

the tricritical point to a nearby critical point for the second order phase transition between

the ordered and disordered phases.

The Rydberg chain has been proposed to be a reliable platform to simulate exotic many-

body spin quantum systems due to its stability and the precise tunability of the parameters

[26, 27] and some of these Rydberg chains have been realized experimentally [28]. Hence the

advantage of this construction is that the tuning can be done very precisely in real experi-

mental systems of Rydberg chain and a slight disadvantage is that we have to tune multiple

15In the single particle Hilbert space at site j, we have bj = |0⟩ ⟨1| and b†j = |1⟩ ⟨0| so the single particle

Hamiltonian Hj = Ω
2
(bj + b†j) =

Ω
2
(|0⟩ ⟨1| + |1⟩ ⟨0|) is indeed the two level coupled Hamiltonian driven by an

external electric field in standard quantum mechanics.
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parameters to locate the tricritical point and then tune multiple parameters simultaneously to

drive half of the space away from it to a nearby critical point for the second phase transition.
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Rashmish Mishra, Anatoli Polkovnikov, Lisa Randall, Ruben Verresen, Ashvin Vishwanath,

and Juven Wang for discussions. We would like thank Davide Gaiotto, Tarun Grover, Ami

Katz and Ruben Verresen for comments on the draft. CVC and ALF are supported by the US

Department of Energy Office of Science under Award Number DE-SC0015845, and the Simons

Collaboration on the Non-Perturbative Bootstrap. HG is supported by the grant (272268)

from the Moore Foundation “Fundamental Physics from Astronomy and Cosmology”.

A Algebraic Construction for Minimal Models and Their Tensor Product

In this section, we review relevant results in the coset construction of unitary minimal models

and their tensor product. This provides the relevant background to understand the construc-

tion of RG brane by [1] which we review in Sec.B.

A.1 Coset Construction of Unitary Virasoro Minimal Models

Let’s firstly review the coset construction of the Virasoro minimal models. Virasoro minimal

models in 2d are the only unitary conformal field theories in 2d with central charge c less

than one. They are denoted as Mk+3,k+2 with integers k ≥ 1 and for a given k the central

charge is

c = 1− 6

(k + 2)(k + 3)
, (A.1)

the operator spectrum is finite and can be uniquely determined by solving the bootstrap

equation.16 Their unitarity can be understood as a consequence of existing exact unitary

realization of them using the coset construction of the current algebra (i.e. the gauged Wess-

Zumino-Witten (WZW) model in the Lagrangian description) as

Mk+3,k+2 =
su(2)k × su(2)1

su(2)k+1
. (A.2)

Here su(2)k denotes the su(2) Kac-Moody algebra at level k with which we can construct a

Virasoro algebra using the Sugawara construction whose central charge is

csu(2)k =
3k

k + 2
. (A.3)

16In this paper, we only consider minimal models whose operator spectrum is diagonal modular invariant.

We denote such an operator content of Mk+3,k+2 as Tk+2.
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Therefore we can check that the central charge of the coset construction from Equ. (A.2) is

given by

c =
3k

k + 2
+

3

1 + 2
− 3(k + 1)

k + 3
= 1− 6

(k + 2)(k + 3)
, (A.4)

which exactly matches that in Equ. (A.1).

Now we will spell out the map between the operator spectrums from the minimal model

to that of its coset construction. A primary representation |h, l⟩k of the current algebra su(2)k
is specified by two quantum numbers h and l where h is the conformal weight and l denotes

the spin- l2 representation of the su(2) algebra. The structure of the su(2)k algebra puts a

constraint

0 ≤ l ≤ k , (A.5)

and the conformal weight h is related to l as

h =
l(l + 2)

4(k + 2)
, (A.6)

and for later convenience we will denote this representation as (l)k. A primary representation

hr,s(k + 2) of the minimal model Mk+3,k+2 is specified by two integer quantum numbers r

and s which satisfies the constriants

1 ≤ r ≤ k + 1 , 1 ≤ s ≤ k + 2 . (A.7)

A primary representation of the tensor product current algebra su(2)k × su(2)1 is a tensor

product of the primary representations of each of them and it can be decomposed as a direct

sum of the primary representations of the current algebra su(2)k+1 and the minimal model

Mk+3,k+2:

(r − 1)k ⊗ (d− 1)1 = ⊕0≤(s−1)≤k+1
r+s+d=1 mod2

[
(s− 1)k+1 ⊗ hr,s(k + 2)

]
. (A.8)

As a result, we can denote the minimal model representation hr,s(k + 2) using the symbols

from the current algebra as [r, d; s] where 1 ≤ r ≤ k + 1, 1 ≤ s ≤ k + 2, d = 1, 2 and

r + s + d = 1 mod2. The rule Equ. (A.8) is called the branching rule and can be used to

compute the modular S-matrix of the minimal model in terms of those of the current algebra

as

S[r,d;s],[r′,d′;s′] = S
(k)
r−1,r′−1S

(1)
d−1,d′−1S

(k+1)
s−1,s′−1 , (A.9)

where S
(k)
p,p′ =

√
2

k+2 sin
(
π(p+1)(p′+1)

k+2

)
is the modular S-matrix between the primary represen-

tations (p)k and (p′)k of the su(2)k current algebra.

A.2 Hidden Symmetry in the Tensor Product of Consecutive Minimal Models

The folding trick description of the RG brane as a conformal interface necessities the study of

the direct product of two adjacent minimal models Mk+2,k+1 ×Mk+3,k+2.
17 Using the coset

17A conformal interface between two CFTs can be described as a conformal boundary of the tensor product

of the two CFTs if we fold the spacetime with respect to the interface.
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construction Equ. (A.2) we are studying the following cosets of the current algebras

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)1

su(2)k
× su(2)k × su(2)1

su(2)k+1
, (A.10)

where cancelling the common su(2)k factors in the denominator and numerator we get

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)1 × su(2)1

su(2)k+1
. (A.11)

This is the relation between the apparent symmetry generators. Nevertheless, since we only

consider diagonal modular invariant operator spectrum we have to be careful about whether

the identity of Equ. (A.11) can be established for the operator spectrum. We denote the

diagonal modular invariant spectrum of
su(2)k−1×su(2)1×su(2)1

su(2)k+1
as TB.

Now let’s understand the difference between their spectrum. Using the branching rule

Equ. (A.8) we can study the decomposition of the primary representations of the current

algebras to those of the minimal models

(r − 1)k−1 ⊗ (d− 1)1 ⊗ (d̃− 1)1 = ⊕0≤(s−1)≤k
r+s+d=1 mod2

[
(s− 1)k ⊗ hr,s(k + 1)

]
⊗ (d̃− 1)1

= ⊕0≤(s−1)≤k
r+s+d=1 mod2
0≤(t−1)≤k+1

s+t+d̃=1 mod2

hr,s(k + 1)⊗ hs,t(k + 2)⊗ (t− 1)k+1 .

(A.12)

Hence we can use the minimal model symbols to denote the primary representations of the

tensor product of the current algebra
su(2)k−1×su(2)1×su(2)1

su(2)k+1
:

[r, d, d̃; t] = ⊕s,r+s+d=1 mod2

s+t+d̃=1 mod2

hr,s(k + 1)⊗ hs,t(k + 2) , (A.13)

where we emphasize that d, d̃ = 1, 2. As a result, the diagonal modular invariant spectrum

TB of
su(2)k−1×su(2)1×su(2)1

su(2)k+1
is different from the tensor product Tk+1 × Tk+2 of the diagonal

modular invariant spectrums of Mk+2,k+1 and Mk+3,k+2. Moreover, Equ. (A.13) tells us that

the (Kac-Moody) primary representations in TB is only a subsector of the (Virasoro) primary

representations in Tk+1 × Tk+2:

TB = ⊕s=1,2,··· ,k+1
r=1,2··· ,k

t=1,2,··· ,k+2

hr,s(k + 1)⊗ hs,t(k + 2) . (A.14)

A.2.1 The Hidden Symmetry

We have seen that the representation space TB is smaller than Tk+1 × Tk+2 and this usually

means that the symmetry in TB is larger than those of Tk+1 ×Tk+2. For a given pair of (r, t)

these additional symmetries will classify hr,s(k + 1)⊗ hs,t(k + 2) into [r, d, d̃; t] for all values
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of s as in Equ. (A.13). In other words, they have to classify the quantum number s which

takes value in {1, 2, · · · , k + 1} into four subsets labeled by d, d̃ = 1, 2 as r + s+ d = 1 mod2

together with s+ t+ d̃ = 1 mod2. This can be achieved by including the primary operators

ϕ
(k+1)
1,l ϕ

(k+2)
l,1 for ∀ odd l ∈ {1, 2, · · · , k + 1} to the current algebra.18 Hence we see that TB

enjoys this enlarged chiral algebra which we denote by B.
Interestingly, the enlarged symmetry we just uncovered for TB can be further enlarged by

assembling the two possible d, d̃ configurations of [r, d, d̃; t] for a given pair of r, t19 into a single

multiplet [r; t]. This can be done by further including the primary operators ϕ
(k+1)
1,l ϕ

(k+2)
l,1

∀ even l ∈ {1, 2, · · · , k + 1} to the current algebra. Nevertheless, these new current algebra

generators have half-integral conformal weights which means that they are fermionic. Using

the facts that the conformal weight of the primary ϕ
(k+1)
r,s ϕ

(k+2)
s,t is

(r − s)2

4
+

(s− t)2

4
+

r2 − 1

4(k + 2)
− t2 − 1

4(k + 3)
, (A.16)

and the fermionic currents ϕ
(k+1)
1,l ϕ

(k+2)
l,1 (i.e. l is even) change the quantum number s by

odd integers, we can see that the change in the conformal weight Equ. (A.16) under such an

action is an integer if r + t is odd and a half-integer if r + t is even. We can conclude that

the representation [r; t] is in the NS sector of this further enlarged algebra if r + t is an even

integer and R sector if r + t is an odd integer. We will denote this new chiral algebra by B̃.
Furthermore, we notice that there is an obvious Z2 symmetry in the algebra B which

exchanges the two su(2)1’s in Equ. (A.11). This symmetry will mix the representations of

Mk+2,k+1 and Mk+3,k+2 as it is obvious from Equ. (A.10) and Equ. (A.11).

A.2.2 Another Representation of the B̃ with an Explicit Supersymmetry

To make the Z2 symmetry manifest, we try to combine the two su(2)1’s together in Equ. (A.10)

by cancelling the common su(2)k factor and introducing an su(2)2 factor and:

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)2

su(2)k+1
× su(2)1 × su(2)1

su(2)2
, (A.17)

which can be seen as the tensor product of an N = 1 supersymmetric minimal model and the

Ising model SMk+3,k+1 × M4,3. With this it is obvious that the Z2 symmetry exchanging

the two su(2)1’s is the usualy Z2 symmetry in the Ising model which maps the free Majorana

fermion ψ to −ψ. This can be seen by realizing that the fermion composite ψψ in the

18It is easy to see this using the fusion rules that s is changed by an even integer under this symmetry

algebra so only representations with the same (d, d̃) transform to each other under this symmetry algebra.

Moreover ϕ
(k+1)
1,l ϕ

(k+2)
l,1 is a legitimate current algebra as its conformal weight can be calculated

h =
(1− l)2

4
+

(l − 1)2

4
+

12 − 1

4(k + 2)
− l2 − 1

4(k + 3)
+

l2 − 1

4(k + 3)
− 12 − 1

4(k + 4)
=

(1− l)2

2
, (A.15)

as an integer for odd l.
19Remember from Equ. (A.13) for a given r, t there are only two possible configurations of d, d̃.
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Ising model sector (remember our operator spectrum is always diagonal modular invariant) is

ϕ
(k+1)
1,2 ϕ

(k+2)
2,1 which has conformal weight h = h = 1

2 from Equ. (A.16) and is invariant under

the transformation d ↔ d̃. This can also be seen from the fusion of two ϕ
(k+1)
1,2 ϕ

(k+2)
2,1 (the

result should be projected to that satisfies the constraint of operators in TB i.e. of the form

ϕ
(k+1)
r,s ϕ

(k+2)
s,t ) which only contains two primaries ϕ

(k+1)
1,1 ϕ

(k+2)
1,1 (of conformal weight h = 0) and

ϕ
(k+1)
1,3 ϕ

(k+2)
3,1 (of conformal weight h = 2).

The representation [r, d, d̃; t] is decomposed into the representation [r, d′; t] in SMk+3,k+1

tensor product [d, d̃; d′] in the Ising model where d′ = 1, 2, 3, d + d̃ + d′ = 1 mod2 and

r + d′ + t = 1 mod2. This tells us that we either have the tensor product between the NS

sector of SMk+3,k+1 with 1, ϵ in the Ising model or the tensor product between the R sector of

SMk+3,k+1 and σ in the Ising model for representations in TB (remember from the Sec. A.2.1

that r + t even is the NS sector and odd is the R sector).

Moreover, it is easier to use the stress-energy tensor to figure out how the representations

in one description is transformed to those in another. We are more interested in the trans-

formation from Mk+2,k+1 ×Mk+3,k+2 to SMk+3,k+1 ×M4,3. For this purpose, we give the

relations between all their chiral currents of conformal weight two:

T (k+1) =
k + 3

2k + 4
TSM +

√
(k + 1)(k + 3)

2k + 4
Gψ +

k − 1

2k + 4
Tψ

T (k+2) =
k + 1

2k + 4
TSM −

√
(k + 1)(k + 3)

2k + 4
Gψ +

k + 5

2k + 4
Tψ

ϕ
(k+1)
1,3 ϕ

(k+2)
3,1 = (k + 1)(k + 3)TSM − 3

√
(k + 1)(k + 3)Gψ − 3(k − 1)(k + 5)Tψ ,

(A.18)

where TSM is the holomorphic stress-energy tensor of SMk+3,k+1, Tψ is the holomorphic

stress-energy tensor of the Ising model, G is the superconformal current of SMk+3,k+1. From

here we can see that the total stress-energy tensor T (k+1)+T (k+2) in theMk+2,k+1×Mk+3,k+2

equals to the total stress-energy tensor TSM + Tψ in SMk+3,k+1 ×M4,3.

For later convenience, we give the Z2 (ψ → −ψ) transform of the two stress-energy

tensors of Mk+2,k+1 ×Mk+3,k+2:

T (k+1) → 3

(k + 2)(k + 4)
T (k+1) +

(k − 1)(k + 3)

k(k + 2)
T (k+2) +

1

k(k + 2)(k + 4)
ϕ
(k+1)
1,3 ϕ

(k+2)
3,1

T (k+2) → (k + 1)(k + 5)

(k + 2)(k + 4)
T (k+1) +

3

k(k + 2)
T (k+2) − 1

k(k + 2)(k + 4)
ϕ
(k+1)
1,3 ϕ

(k+2)
3,1 .

(A.19)

B Review of Gaiotto’s Proposal For RG Brane

B.1 Useful Properties of Topological Defects

Toplogical defects in a CFT are totally transmissive interfaces to the symmetry currents

which can hence be arbitrarily deformed (without passing through any operators) while they
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are inserted into any correlators of the CFT operators. Mathematically, we can denote a

topological defect as an operator D which satisfies

[D,Jn] = 0 , [D,J n] = 0 , (B.1)

where Jn and J n are the holomorphic and anti-holomorphic modes of any symmetry current

of the CFT. Since we only consider diagonal modular invariant CFT’s, the topological defects

allow Cardy’s algebraic classification [29] (see [30] for a different perspective from string

theory).

Hence, in a minimal model Mk+3,k+2 a topological defect can be denoted as D(k+2)
r,s

associated to a Cardy’s state |r, s⟩⟩Cardy and acts as map

D(k+2)
r,s =

∑
r′,s′

S[r;s],[r′;s′]

S[1;1],[r′;s′]

∑
n

∣∣r′, s′;n〉 〈r′, s′;n∣∣ , (B.2)

in the diagonal modular invariant Hilbert space and where S[r;s],[r′;s′] is the modular S-matrix

of primary representations in Mk+3,k+2.
20 This description is useful for closed topological

defect on a plane or a topological defect which wraps around a nontrivial cycle of a cylinder

or a torus. In the former case, we get a map between operators of the (diagonal modular

invariant) CFT Mk+3,k+2 which maps the spinless primary operator O(r′,s′) to itself with

a factor
S[r;s],[r′;s′]
S[1;1],[r′;s′]

multiplied. In the later case, it provides a specific cutting and gluing

prescription along the cycle in the computation of the partition function.

The most useful property to us is that topological defects can end on certain fields called

disorder fields [14] or twist fields [1]. These fields are representations of the symmetry algebra

of the CFT and can in general have nonzero spin [14]. The rule is that the topological defect

D(k+2)
r,s can end on such an operator O(p,q),(m,n) if hr,s(k + 2) appears in the fusion between

hp,q(k+2) and hm,n(k+2). For example, D(k+2)
r,s can end on a chiral disorder operator ϕ

(k+2)
r,s .

Moreover, this tells us that we can move a topological defect D(k+2)
r,s across a spinless primary

field O(r′,s′) and end up with a spinless disorder operator ϕ
(k+2)
r′,s′ connected to the topological

defect D(k+2)
r,s by a tail D(k+2)

p,q such that hp,q(k+ 2) appears in the fusion between hr,s(k+ 2)

and itself and also in the fusion between hr′,s′(k + 2) and itself (see. Fig.6).

As we will see this last property is useful for extracting important nonperturbative results

from perturbative calculations and constraining the RG follow.

B.2 RG Flow of the Topological Defect D(k+2)
r,1

The RG flow we are interested in is triggered by the spinless primary operator ϕ
(k+2)
1,3 . The

transformation of the topological defect D(k+2)
r,1 under this RG flow can be first understood by

the fact that moving D(k+2)
r,1 across the spinless primary operator ϕ

(k+2)
1,3 is a trivial operation

as the only representation which appears in both the fusion between hr,1(k+2) with itself and

20It is easy to see that Equ. (B.2) satisfies Equ. (B.1) as for example Jn = J †
−n.
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Dr,s

Or′,s′ ϕr′,s′
Dp,q

Dr,s

Figure 6. The demonstration of crossing the topological defect Dr,s through a spinless primary operator

Or′,s′ . This operation transforms Or′,s′ to a twist field ϕr′,s′ with a topological defect Dp,q connecting

it to Dr,s.

the fusion of h1,3(k+2) with itself is the trivial representation h1,1(k+2). Hence moving the

the topological defect D(k+2)
r,1 across the spinless primary operator ϕ

(k+2)
1,3 is almost a trivial

operation with at most a scalar factor multiplied. Since moving D(k+2)
r,1 across ϕ

(k+2)
1,3 and back

is equivalent to doing nothing, the scalar factor can only be 1 or −1. The precise value of this

scalar factor can be determined by comparing a small D
(k+2)
r,1 loop surrounding ϕ

(k+2)
1,3 and a

small D
(k+2)
r,1 loop surrounding nothing. From Equ. (B.2), we are just taking the following

ratio
S[r;1],[1;3]

S[1;1],[1;3]
/
S[r;1],[1;1]

S[1;1],[1;1]
= 1 . (B.3)

As a result, D
(k+2)
r,1 is invisible to the spinless primary operator ϕ

(k+2)
1,3 and it should be

mapped to another topological defect under the RG flow. The result can be extracted from

a perturbative RG flow calculation with large k [16] and it is that D(k+2)
r,1 will flow to D(k+1)

1,r

if we assume that Mk+2,k+3 flows to Mk+1,k+2.
21

B.3 Extended Symmetry Algebra on RG Domain Wall from Topological Defect

When we have the RG domain wall between Mk+3,k+2 on the left and Mk+2,k+1 on the right,

we can consider a topological defect D(k+2)
r,1 on the left and deforming half of it through the

RG domain wall to the right (see Fig.7). The RG domain wall will transform the acrossed half

to D(k+1)
1,r as a result of the RG transform and we end up with a topological defect straddling

between the two CFTs on the two sides of the RG brane. Now applying the folding trick, we

end up with a topological defect which we denote as D(k+2)
r,1 D(k+1)

1,r which end on the Cardy

brane (see Fig.8). We can put a chiral disorder field ϕ
(k+2)
r,1 ϕ

(k+1)
1,r at the end of D(k+2)

r,1 D(k+1)
1,r

and push it all the way to the Cardy brane which gives us a boundary operator that doesn’t

change the boundary condition and have integral (for r odd) or half-integeral (for r even)

21This is also consistent with the large k RG calculation [16].
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conformal weight. We can do similar things for antichiral disorder fields so from the results

in Sec. A.2.1 and Sec. A.2.2 we get two copies of the algebra B̃ on the Cardy brane.

Gaiotto’s suggestion [1] is that the Cardy brane should glue these two copies of B̃ and

the two copies of Tk+1 × Tk+2 inisde them are mapped to each other by the Z2 twisting

described in Sec. A.2.2. In other words, the two copies of B̃’s are glued to each other by the

Z2 automorphism. As a result, the boundary operators should be the boundary extrapolation

of Z2 invariant operators ϕ
(k+1)
r,s ϕ

(k+2)
s,t with r + t even.22 This is consistent with the results

from the perturbative RG calculation [15].

Dk+2
r,1

D(k+2)
r,1 D(k+1)

1,r

Figure 7. Moving half of the topological defect D(k+2)
r,1 on the right through the RG brane is equivalent

to performing an RG transform of of it. This gives another half of the resulting topological defect on

the left as D(k+1)
1,r .

B.4 Explicit Construction of the RG Domain Wall

With the boundary operator spectrum known, a general boundary state can be written down

as a linear combination of the Ishibashi states corresponding to the boundary operator spec-

trum under the constrains that the Verlinde formula should be satisfied by those coefficients.

There are in general many such states but Gaiotto proposed the following one to be the

correct one ∣∣∣B̃〉 =
r+t∈2Z∑
r,t

√
S
(k−1)
0,r−1S

(k+1)
0,t−1 |r, t; B̃⟩⟩ , (B.4)

where |r, t; B̃⟩⟩ is the Ishibashi state for the algebra B̃ corresponding to the representation

[r; t]. This state is simple as it satisfies the Verlinde formula such that all the multiplicities in

22This can be seen by remember the Z2 exchanges the two su(2)1 algebras and so it exchanges d and d̃ on

the LHS of Equ. (A.13). As a result Z2 invariant operators should have d = d̃ and so we get r + t even from

the RHS.
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D(k+2)
r,1 D(k+1)

1,r D(k+1)
1,r D(k+2)

r,1

Figure 8. From the unfolded picture (left) to the folded picture (right). The red wall denotes a Cardy

brane in the folded picture. In the folded picture we have a topological defect D(k+1)
1,r D(k+2)

r,1 ending on

the Cardy brane.

the modular dual channel is uniformly one. Moreover, we can use the TB language to rewrite

the Ishibashi states as

|r, t; B̃⟩⟩ =
√
S
(1)
0,0 |r, 1, 1, t; TB⟩⟩+

√
S
(1)
1,1 |r, 2, 2, t; TB⟩⟩ , (B.5)

where |r, d, d̃, t; TB⟩⟩ is the Ishibashi state for the algebra TB associated to the representation

[r, d, d̃; t] and we have used the fact that we could assemble the TB representations [r, d, d̃; t]

for given r and t into the B̃ representation [r; t]. Furthermore, using the decomposition

Equ. (A.17) we can write the Ishibashi state |r, d, d̃, t; TB⟩⟩ as a superposition of tensor prod-

ucts of Ishibashi states in the supersymmetric minimal model and the Ising model. This is

associated with the following decompositions of representations

[r, 1, 1; t] = [r, 1; t]⊗ [1, 1; 1] + [r, 3; t]⊗ [1, 1; 3] ,

[r, 2, 2; t] = [r, 1; t]⊗ [2, 2; 1] + [r, 3; t]⊗ [2, 2; 3] .
(B.6)

However, when we translate them into the relationships between Ishibashi states we have

to know the linear superposition coefficients. This can be fixed by observing that the Z2

automorphism we are using is localized purely in the Ising model sector. As a result, the Cardy

state
∣∣∣B̃〉 we get should be a tensor product of the identity Cardy state of the supersymmetric

minimal model SMk+3,k+1 and a nontrivial Cardy state of the Ising model whose Ishibashi

components are |1, 1; 1⟩⟩, |1, 1; 3⟩⟩, |2, 2; 1⟩⟩ and |2, 2; 3⟩⟩ (i.e. |ϵ⟩⟩ and |1⟩⟩ by the branching

rule Equ. (A.8)). This Cardy state is |σ⟩ = 1√
2
(|1⟩⟩ − |ϵ⟩⟩) which indeed implements the Z2
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transformation ψ → −ψ.23 Hence, the Cardy state Equ. (B.4) can be written as∣∣∣B̃〉 = |1⟩NS ⊗ |σ⟩Ising =
1√
2
|1⟩NS ⊗ (|1⟩⟩ − |ϵ⟩⟩) , (B.7)

where the Cardy state |1⟩NS can be written in the Ishibashi states as

|1⟩NS =
r+t∈2Z∑
r,t

√
S[r;t],[0,0]|r; t⟩⟩

=
r+t∈2Z∑
r,t

√
S
(k−1)
0,r−1S

(k+2)
0,t−1 S

(2)
0,0 |r, 1; t⟩⟩+

r+t∈2Z∑
r,t

√
S
(k−1)
0,r−1S

(k+2)
0,t−1 S

(2)
0,2 |r, 3; t⟩⟩

=
1√
2

r+t∈2Z∑
r,t

√
S
(k−1)
0,r−1S

(k+2)
0,t−1

(
|r, 1; t⟩⟩+ |r, 3; t⟩⟩

)
.

(B.8)

Here we notice that |r, 1; t⟩⟩ and |r, 3; t⟩⟩ (for r + t ∈ 2Z) form an NS sector supermultiplet.

B.5 Computation of One-Point Functions

So far we have constructed the RG brane between two consecutive minimal models Mk+2,k+1

and Mk+3,k+2 as a rational brane by embedding the diagonal modular invariant representa-

tions hr,s(k+1)⊗hs,t(k+2) = [r, d; s]⊗[s, d̃; t] of the algebraMk+2,k+1×Mk+3,k+2 into the di-

agonal modular invariant representations [r, d, d̃; t] of an equivalent algebra
su(2)k−1×su(2)1×su(2)1

su(2)k+1
.

For simplicity we will called the former theory TA (i.e. Tk+1 × Tk+2) and the latter theory

TB. The precise value of the one-point functions of the operators ϕ
(k+1)
r,s ϕ

(k+2)
s,t in TA is of

important physical relevance as they tell us how the operators ϕ
(k+2)
r,s and ϕ

(k+1)
s,t are mixed

under the RG flow. To find the precise value of these one-point functions we have to map

the rational brane Equ. (B.7) we have constructed in TB back to TA and then the one-point

functions can be easily computed.

However, the map of the rational brane Equ. (B.7) to TA is not trivial. This can be

achieved by firstly constructing a proper TA topological interface (i.e. totally transmissive for

symmetry currents in TA) I1 separating TA and TB and then fusing it with the TB rational

brane Equ. (B.7) (see Fig.9). A proper I1 should allow the TA topological defects

DA
[r,d;s]⊗[s,d̃;t]

=
∑

r′,d′,s′,d̃′,t′

S
[r,d;s]⊗[s,d̃;t],[r′,d′;s′]⊗[s′,d̃′,t′]

S
[1,1;1]⊗[1,1;1],[r′,d′;s′]⊗[s′,d̃′,t′]

∑
n

∣∣∣r′, d′, s′, d̃′, t′;n〉〈r′, d′, s′, d̃′, t′;n∣∣∣ ,
(B.9)

23This can be seen by using the doubling trick, identifying the Cardy boundary |σ⟩ as a topological defect

Dσ in the resulting chiral theory and using the fact that Dσ is a group like defect.
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to end on it.24 This would be ensured if DA
[r,d;s]⊗[s,d̃;t]

appears in the fusion of I1 and I1 or in

other words if I1I1 is a direct sum of the topological defects DA
[r,d;s]⊗[s,d̃;t]

(see Fig.10). This

is satisfied by the following construction of I1

I1 =
∑

r,t,s,d,d̃

√
S[1;1],[r;t]

S
[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,d̃,t]

∑
n

∣∣∣r, d, s, d̃, t;n〉〈r, d, s, d̃, t;n∣∣∣ , (B.11)

where the operator
〈
r, d, s, d̃, t;n

∣∣∣ are orthonormal TA descendents of the primary states〈
r, d, s, d̃, t

∣∣∣. The operator
∑

n

∣∣∣r, d, s, d̃, t;n〉〈r, d, s, d̃, t;n∣∣∣ acts nontrivially only on the

Ishibashi state |r, t; B̃⟩⟩ and maps it to the Ishibashi state |r, d, s, d̃, t;A⟩⟩.25

Moreover, it is easy to check that we have

I1I1 =
∑

r,t,s,d,d̃

S[1;1],[r;t]

S
[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,d̃,t]

∑
n

∣∣∣r, d, s, d̃, t;n〉〈r, d, s, d̃, t;n∣∣∣ ,
=
∑
s′,d′,d̃′

DA
[1,d′;s′]⊗[s′,d̃′;1]

,

(B.12)

where the last step comes from the fact that∑
s′,d′,d̃′

S
[1,d′;s′]⊗[s′,d̃′;1],[r,d;s]⊗[s,d̃;t]

= S[1;1],[r;t] . (B.13)

This relation can be obtained from the following considerations. Let’s consider the modular

character χ[r;t](τ) of the B̃ representation [r; t]. Since we know that [r; t] can be split into A
representations [r, d; s]⊗ [s; d̃; t] with multiplicities as one (see Sec.A.2.1) so we have

χ[r;t](τ) =
∑
s,d,d̃

χ
[r,d;s]⊗[s,d̃;t]

(τ) . (B.14)

Now we consider r = 1, t = 1, do a modular transform

S : τ− → −1

τ
, (B.15)

24We of course have the following constraints

r + d+ s =1 mod2 , s+ d̃+ t = 1 mod2 ,

r′ + d′ + s′ =1 mod2 , s′ + d̃′ + t′ = 1 mod2 .

(B.10)

25This is because [r; t] can be split into A representations [r, d; s] ⊗ [s; d̃; t] with multiplicities as one (see

Sec.A.2.1).
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and we will have

χ[1;1](τ) =
∑
r,t

S[1;1],[r;t]χ[r;t](−
1

τ
) =

∑
r,t,s,d,d̃

S[1;1],[r;t]χ[r,d;s]⊗[s,d̃;t]
(−1

τ
)

=
∑
s′,d′,d̃′

χ
[1,d′;s′]⊗[s′,d̃′;1]

(τ) =
∑
s′,d′,d̃′

∑
r,t,s,d,d̃

S
[1,d′;s′]⊗[s′,d̃′;1],[r,d;s]⊗[s,d̃;t]

χ
[r,d;s]⊗[s,d̃;t]

(−1

τ
) ,

(B.16)

which gives us Equ. (B.13) if we compare the end of the first line and the end of the second

line. Furthermore, Equ. (B.12) tells us that the TA defects DA
[1,d,r]⊗[r,d̃,1]

= D(k+2)
r,1 D(k+1)

1,r can

end on the defect I1 and hence could end on the Cardy boundary I1|B̃⟩⟩ after we fuse I1
with |B̃⟩⟩ getting a Cardy state for TA. This is precisely what we used in the construction of

the RG domain wall as we discussed in Sec.B.3 (see Fig.11).

Now we can use the map Equ. (B.11) to map the boundary state Equ. (B.4) to a boundary

state in the TA theory (see Fig.9)

|A⟩⟩ = I1|B̃⟩⟩ =
r+t∈2Z∑
r,t,s,d,d̃,d′

α
r,d,s,d̃,t,d′

√
S
(k−1)
0,r−1S

(k+1)
0,t−1 S

(1)
0,d−1S

(1)

0,d̃−1

√
S[1;1],[r;t]

S
[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,d̃,t]

|r, d, s, d̃, t⟩⟩ ,

(B.17)

where |r, d, s, d̃, t⟩⟩ is the TA Ishibashi state associated with the representation [r, d; s]⊗[s, d̃; t]

and here we emphasize that the constrains r + d + s = 1 mod2, s + d̃ + t = 1 mod2 and

d + d̃ + d′ = 1 mod2 should be satisfied. The coefficient α
r,d,s,d̃,t,d′

can be figured out by

normalization of the state and the decomposition Equ. (A.18). For the (r, s, t, d, d̃) such that

d′ can be uniquely determined this factor is just one. This tells us that in these cases the

one-point function of the operator ϕ
(k+1)
r,s ϕ

(k+2)
s,t is given by

√
S
(k−1)
0,r−1S

(k+1)
0,t−1 S

(1)
0,d−1S

(1)

0,d̃−1

√
S[1;1],[r;t]

S
[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,d̃,t]

=

√
S
(k−1)
0,r−1S

(k+1)
0,t−1

S
(k)
0,s−1

δ
d,d̃
. (B.18)

Examples of more general cases that d′ is not uniquely fixed can be found in Equ. (3.21) and

Equ. (4.10).

C Topological Superconductors and Majorana Fermions

In this appendix we will illustrate the gist of topological superconductors for readers with

high-energy physics background. We will consider a toy Hamiltonian for the Type IIID

topological superconductor which we will use to illustrate the relevant physical background

of Sec. 5.1.
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B A

I1|B̃⟩⟩

Figure 9. The picture in the folded description of mapping the TB Cardy state to a A ⊂ B theory

Cardy state by fusing it with a TA topological defect I1 that separate the A theory and the B theory.

The fusion is topologically achieved by pushing I1 all the way to |B̃⟩⟩.

B A

I1I1

A

Figure 10. The picture in of fusing I1 with I1. The fusion is achieved topologically by pushing I1 all

the way to be coincident with I1. The result is a TA topological defect.

C.1 A Toy Hamiltonian and Its Topological Properties

Let’s consider a two-dimensional electronic system which hosts electrons and holes. A typical

such system is described by a lattice Hamiltonian where we have a fermionic degree of freedom

on each lattice site. The feromions can be of spin-up and spin-down. We consider such a
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D(k+1)
1,r D(k+2)

r,1

I1|B̃⟩⟩

B A

Figure 11. The demonstration in the folded picture that how we could have TA topological defects

D(k+1)
1,r D(k+2)

r,1 ending on the RG brane which is the fusion of I1 with |B̃⟩⟩. The fusion is achieved

topological by pushing I1 all the way to the TB Cardy boundary |B̃⟩⟩.

system in momentum space with a p-wave superconducting pairing

H =
1

2

∑
p⃗∈BZ

Hp⃗

=
1

2

∑
p⃗∈BZ

[
ψ†
p⃗,↑(

p2

2m
− µ)ψp⃗,↑ +∆ψ−p⃗,↑(px + ipy)ψp⃗,↑ + ψ†

p⃗,↓(
p2

2m
− µ)ψp⃗,↓ +∆ψ−p⃗,↓(px − ipy)ψp⃗,↓ +H.C.

]
,

(C.1)

where ψ†
p⃗,s is a creation operator for electron with momentum p⃗ and spin s (s =↑, ↓), ψp⃗,s

is the corresponding creation operator for a hole, µ is the chemical potential, ∆ is the p-

wave pairing parameter and the momentum p⃗ lives in the Brillouin zone. This is called the

Bogolubov-de Genes Hamiltonian in condensed matter literature and the way the property of

an electronic material is analyzed is to firstly write down the Bogolubov-de Genes Hamiltonian

for that material and then solve for the eigenenergy and eigenmodes. These eigenmodes are

called quasi-particles. We don’t intend to solve for the eigenmodes and eigenenergy of the

Hamiltonian Equ. (C.1) but we will analyze some important properties of it that tells us

nontrivial information of the spectrum and phases for the electronic system that is described

by this Hamiltonian.

Firstly, this Hamiltonian transforms under the particle-hole symmetry

P : ψp⃗,s → ψ†
−p⃗,−s , ψ†

p⃗,s → ψ−p⃗,−s (C.2)

as

PHp⃗P = −H−p⃗ . PHP = −H . (C.3)
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Hence, the spectrum of this Hamiltonian is paired into pairs of opposite values

H =
∑
E≥0

[
Eγ†EγE − Eγ†−Eγ−E

]
, (C.4)

where γ†E and γE are the creation and annihilation operators for the quasi-particles. Moreover,

the spin-up and spin down degress of freedom don’t mixed in the Hamiltonian. We can analyze

spectrum of Hp⃗. This can be down by defining

Ψ†
p⃗,↑ = (ψ†

p⃗,↑, ψ−p⃗,↑) , Ψ†
p⃗,↓ = (ψ†

p⃗,↓, ψ−p⃗,↓) . (C.5)

We can see that in both the spin-up and spin-down sector we have eigenvalues E±(p⃗) =

±
√

( p
2

2m − µ)2 +∆2p2. Hence, there is a degeneracy of each eigenvalue E and this degeneracy

is due to the spin quantum number. As a result, we can see that when µ = 0 there is a gapless

zero mode sector for p⃗ = 0 and close to this zero mode sector there is an emergent time-reversal

symmetry:

T : ψp⃗,s → ψ−p⃗,−s , ψ†
p⃗,s → ψ†

−p⃗,−s , p⃗→ −p⃗ , i→ −i , (C.6)

which can be seen from Equ. (C.1) by taking µ = 0 and ignoring p2 terms and this symmetry

protects the gap.

Secondly, when µ ̸= 0, there is no zero modes and there is always a gap in the spectrum.

We want to understand the difference between µ > 0 and µ < 0 cases. Since the two

spin sectors don’t couple, we can focus on the spin-up sector for which we can write the

Hamiltonian as (for simplicity we will take ∆ = 1 hereafter)

Hp⃗,↑ +H−p⃗,↑ = Ψ†
p⃗,↑

(
p2

2m − µ px + ipy

px − ipy −( p
2

2m − µ)

)
Ψp⃗,↑ = Ψ†

p⃗,↑h⃗(p⃗) · σ⃗Ψp⃗,↑ , (C.7)

where we have h⃗(p⃗) = (px,−py, p
2

2m − µ). As long as µ ̸= 0, the vector h⃗(p⃗) is never zero, so

we can normalize it and define

ĥ(p⃗) =
h⃗(p⃗)

|⃗h(p⃗)|
, (C.8)

and consider the Chern-number of the map ĥ(p⃗) (notice that ĥ(p⃗) → (0, 0, 1) as p⃗→ ∞)

C =

∫
d2p⃗

4π

[
ĥ(p⃗) ·

(
∂px ĥ(p⃗)× ∂py ĥ(p⃗)

)]
, (C.9)

which determines the winding number of the map ĥ(p⃗). We can see that hz(p⃗) behaves rather

differently when µ > 0 and µ < 0. As a result, in the former case as p⃗ goes from 0 to ∞ ĥ(p⃗)

starts with pointing to the South pole and ends up with pointing to the North pole and in the

later case ĥz(p⃗) never takes a negative value so it always points to a point on the Northern

hemisphere. That is that in the µ > 0 case the winding number C = 1 and in the µ < 0 case

C = 0.
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In summary, the two gapped phases µ > 0 and µ < 0 are different topologically and

their boundary µ = 0 has gapless zero modes degenerate in spin and enjoy an emergent time-

reversal symmetry in the low energy regime. Moreover, we can see that the µ < 0 phase is a

trivially gapped phase (this can be seen by taking µ → −∞) and µ > 0 is a weakly gapped

phase which is topological as it has a nontrivial topological number C = 1.

C.2 Localized Majorana Modes on the Boundary– The Ising Model

Now we want to consider, the system described by the Hamiltonian Equ. (C.1) on a manifold

with boundary. For example a finite piece of the electronic material whose physics is described

by Equ. (C.1). We are interested in the physics of its boundary when we tune its bulk to the

topologically nontrivial phase µ > 0. This can be done in experiment by electron doping.

At a fine-grained level we have to specify the precise boundary conditions and solve for

the energy spectrum of the Hamiltonian under this boundary conditions. Nevertheless, we

can grasp the gist using a slightly coarse-grained model for the boundary. We can think of

the environment as in the trivial phase µ < 0 of the Hamiltonian Equ. (C.1). Since the bulk

of the system has been tuned to the topologically nontrivial phase µ > 0, the boundary can

be thought of as a thin buffer zone between these two phases where µ = 0. For simplicity

we will take the y−direction to be the direction normal to the boundary of the material i.e.

the buffer zone is thin in the y−direction. We are interested in the low energy physics in the

buffer zone. In the low energy regime where the spin-up sector Hamiltonian can be written

as

Hp⃗,↑ +H−p⃗,↑ = Ψ†
p⃗,↑

(
0 px + ipy

px − ipy 0

)
Ψp⃗,↑. (C.10)

The buffer zoom is extremely thin in the y−direction so we can set py to zero in the low

energy regime. Expanding the matrix representation, this gives us the Hamiltonian

H↑ =
∑
px≥0

px(ψ
†
px,↑ψ

†
−px,↑ + ψ−px,↑ψpx,↑) . (C.11)

Let’s do the following redefinition

ψpx,↑ =
1√
2
(χ†

px,↑ + χ−px,↑) , (C.12)

where χpx,↑ is a fermionic annihilation operator satisfies the standard algebra with the creation

operator. This gives us

H↑ =
∑
px≥0

px(χpx,↑χ−px,↑ + χpx,↑χ
†
px,↑ + χ†

−px,↑χ−px,↑ + χ†
−px,↑χ

†
px,↑)

=
1

2

∑
px

px(−χ−px,↑χpx,↑ + χpx,↑χ
†
px,↑ − χ†

px,↑χpx,↑ + χ†
−px,↑χ

†
px,↑) + const.

=
1

2

∫
dxχ↑(x, t)i∂xχ↑(x, t) ,

(C.13)
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where we have a Majorana field

χ↑(x, t) =
∑
px

(χpx,↑e
ipx(x+t) + χ†

px,↑e
−ipx(x+t)) . (C.14)

The Majorana field satisfies χ↑(x, t) = χ†
↑(x, t). So we have the Lagrangian

L↑ =
i

2

∫
dxχ↑(x, t)(∂t − ∂x)χ↑(x, t) , (C.15)

which is chiral. Similarly, in the spin-down sector we have the Lagrangian

L↓ =
i

2

∫
dxχ↓(x, t)(∂t + ∂x)χ↓(x, t) , (C.16)

where

ψpx,↓ =
i√
2
(χ†

px,↓ + χ−px,↓) . (C.17)

In total we have the Lagrangian

L =
i

2

∫
dx
[
χ↓(x, t)(∂t + ∂x)χ↓(x, t) + χ↑(x, t)(∂t − ∂x)χ↑(x, t)

]
, (C.18)

which describes two chiral Majorona fermions and the time-reversal symmetry Equ. (C.19)

translates to

T : χ↑(x, t) → −iχ↓(x,−t) , χ↓(x, t) → iχ↑(x,−t) , i→ −i . (C.19)

Hence we have

T 2 = −1 . (C.20)

This time reversal symmetry prevents the Majorana ferimons to have Majorana mass term

imχ↓(x, t)χ↑(x, t). As a result, we have a gapless Majorana fermion whose mass is protected

by the time-reversal symmetry Equ. (C.19) and this theory is localized in the thin buffer zone

or equivalent on the boundary of the bulk topological material. This theory is nothing but the

1+1-dimensional Ising Model. We emphasized that Equ. (C.20) is an important character

of the Type IIID topological superconductor which ensure the boundary of the nontrivial

topological phase to host two anti-propagating Majorana fermions and hence gives us the

Ising Model.
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