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Ultracold Fermi gases of spin-3/2 atoms provide a clean platform to realise SO(5) models of 4-Fermi interac-
tions in the laboratory. By confining the atoms in a two-dimensional Raman lattice, we show how this system
can be used as a flexible quantum simulator of Dirac quantum field theories (QFTs) that combine Gross-Neveu
and Thirring interactions with a higher-order topological twist. We show that the lattice model corresponds to
a regularization of this QFT with an anisotropic twisted Wilson mass. This allows us to access higher-order
topological states protected by a discrete SO(5) group, a remnant of the continuous rotational symmetry of the
4-Fermi interactions that is not explicitly broken by the lattice discretization. Using large-N methods, we show
that the 4-Fermi interactions lead to a rich phase diagram with various competing fermion condensates. Our
work opens a route for the implementation of correlated higher-order topological states with tunable interac-
tions that has interesting connections to non-trivial relativistic QFTs of Dirac fermions in D = 2+1 dimensions.
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I. INTRODUCTION

Symmetry plays a primary role in our most fundamental
theories of Nature. So far, all forms of matter observed in
the laboratory can be ultimately described by the standard
model [1], a relativistic quantum field theory (QFT) that con-
tains Dirac fermions locally coupled to both scalar and gauge
bosons, and is invariant under Lorentz transformations. The
role of symmetry goes beyond this relativistic invariance, as
the specific form of the local fermion-boson couplings is dic-
tated by the invariance of the QFT under various groups of
local, so-called gauge, symmetries [2]. Additionally, there are
also global symmetries that leave the standard model invari-
ant. These symmetries can be spontaneously broken at a cer-
tain energy scale, such that the vacuum of this QFT displays
a certain order parameter that is no longer invariant under the
action of the symmetry. An example of great relevance in
high-energy physics is that of chiral symmetry breaking [3],
which leads to a so-called chiral condensate, and accounts
for most of the mass of the matter in our universe. In the
early days of quantum chromodynamics (QCD) [1], various
effective QFTs leading to mass generation by chiral symme-
try breaking were explored, including 4-Fermi QFTs such as
the Nambu-Jona-Lasinio [3–6] and Gross-Neveu [7–11] mod-
els. These QFTs describe self-interacting Dirac fermions with
different quartic interactions and, moreover, can be defined in
various spacetime dimensions, while showing analogies with
their higher-dimensional non-Abelian counterparts [12, 13].

Besides serving as effective models that can capture some
of the phenomenology observed at particle colliders qualita-
tively, Dirac QFTs also appear in condensed matter and in
atomic molecular and optical (AMO) physics, where one can
indeed test their predictions quantitatively. Systems such as
graphene [14, 15], topological insulators [16, 17], and ul-
tracold atoms in optical lattices [18, 19], are clear examples
that provide a neat playground for low-dimensional QFTs of
fermionic Dirac matter [20, 21]. In addition, Weyl semi-
metals provide instances where the low-energy physics is cap-
tured by Dirac-type QFTs in D = 3+1 dimensions [22], and
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can also be implemented with ultracold atoms [23]. We note
that, away from D = 1 + 1 dimensions, it is not straight-
forward to find experimental setups which, in spite of be-
ing highly non-relativistic, can be accurately described by
Lorentz-invariant effective QFTs. Moreover, low-dimensional
Dirac QFTs can present a number of non-trivial properties for
D < 4 [24–26], and are still the subject of active research on
their own. A particular example is that of Dirac QFTs in D =
2+ 1 dimensions which, in the presence of self-interactions
such as the above Gross-Neveu 4-Fermi term [27, 28] or vari-
ants thereof [29], can give rise to strong correlations and
novel critical phenomena. This type of 4-Fermi model leads
to different phase transitions that are no longer characterised
by the above chiral condensate but, instead, require finding
other symmetry-breaking processes with their associated or-
der parameters. These generalised 4-Fermi models have been
the subject of renewed interest in recent years (see the re-
views [30, 31] and references therein).

In this work, we are interested in a novel type of mod-
els of synthetic Dirac QFTs that can be implemented with
ultracold atoms [32]. A rather unique possibility of these
systems is that, in addition to the emerging Lorentz invari-
ance, one can actually design other symmetries experimen-
tally, both local and global ones. These platforms can thus
be used as analogue quantum simulators [33–37] for a spe-
cific QFT of interest, allowing us to test theoretical predictions
in a controllable experimental environment, entering regimes
that cannot be simulated using current analytical or numerical
methods, such as real-time dynamics or finite fermion den-
sities [38, 39]. In particular, we focus on spin-3/2 neutral
atoms at ultra-cold temperatures, as their s-wave scattering
leads to 4-Fermi terms that naturally yield a large symmetry
group of SO(5) transformations [40, 41]. When these cold
atoms are loaded on standard optical lattices, one obtains a
non-relativistic SO(5) Hubbard model [42] that is interesting
in its own right [40, 43, 44], and leads to various interesting
phases even for D= 1+1 dimensions [45–48]. In fact, the role
of SO(5) symmetry in condensed-matter systems is broader,
as it also plays a role in theories of competing magnetism and
superconductivity [49, 50].

We show in our work that, by including additional Raman
beams that interfere with the standing wave underlying the
above optical lattice, we can enter a new regime in which
the SO(5) 4-Fermi model corresponds to a specific discretiza-
tion of a relativistic QFT of self-interacting Dirac fermions.
More specifically, we demonstrate how this lattice regulariza-
tion, which in general breaks explicitly the continuous rota-
tional symmetry, can actually preserve a discrete SO(5) rota-
tion, and provide a neat route to explore correlation effects in
high-order topological insulators (HOTIs) [51–53]. In partic-
ular, this lattice discretization corresponds to an anisotropic
version of twisted-mass Wilson fermions which, as we show,
leads to flat bands and strictly-localised zero-energy corner
modes protected by the action of a subgroup SO(5), which
we henceforth refer to as a ‘discrete SO(5) rotation’. These
anomalous corner modes are a boundary manifestation of a
non-trivial topological invariant in the bulk [54], which con-
nects to the phenomenology explored for other lattice mod-

els of higher-order topological states. In these models, study-
ing the effects brought up by fermion-fermion interactions has
seen an increase of activity recently [55–72], but still remains
largely unexplored in comparison to their first-order counter-
parts (see e.g. [73–76]).

We contribute to this line of research by exploring the ef-
fect that the SO(5) 4-Fermi interactions have on the aforemen-
tioned Wilson-fermion HOTI. In connection to the fermion
condensate associated to chiral symmetry breaking in high-
energy physics, we show that our model accounts for a com-
petition between various possible condensation channels and
that, at sufficiently strong interactions, the HOTI phase gives
way to a pseudo-scalar fermion condensate where the discrete
SO(5) rotational symmetry that protects the HOTI gets sponta-
neously broken. We present a non-perturbative account of this
phenomenon based on the large-N limit of this 4-Fermi QFT,
where one considers N flavours of the Dirac fermions coupled
by the quartic SO(5) interactions. By resuming the leading-
order Feynman diagrams for N → ∞, we calculate the effec-
tive potential, and perform a minimization that allows us to
infer the values of various condensates. Moreover, this large-
N techniques can be readily used to obtain an estimate for the
many-body topological invariant, allowing us to chart the en-
tire phase diagram of the model. We show that, in addition to
the aforementioned condensates, correlated HOTIs and trivial
band insulators appear, which can be connected by topologi-
cal and more standard second-order phase transitions. Since
the model studied can be realised in with spin-3/2 neutral
atoms in Raman optical lattices, possible future experiments
could test these predictions and their connection to non-trivial
strongly-coupled QFTs.

II. EUCLIDEAN 4-FERMI FIELD THEORIES WITH A
TWIST

In this section, we introduce our model of interacting Dirac
fields in D = 2+ 1 dimensions, which is motivated by a spe-
cific Kaluza-Klein-like dimensional reduction. We also dis-
cuss a non-standard lattice regularization that will allow us to
study the non-perturbative phenomena induced by fermion-
fermion interactions on higher-order topological groundstates.

A. Dimensional reduction and SO(5) 7→ SO(3)

Our model of self-interacting Dirac matter is built from
a relativistic QFT of fermions with rotationally-invariant 4-
Fermi interactions. As discussed in Appendix A, the partition
function of this QFT can be written as a path integral [77] over
two independent Grassmann spinors ψ(x),ψ(x) [78], which
represent the Dirac fermions in a 3-dimensional Euclidean
spacetime with imaginary time x = (τ,xxx), where xxx = (x1,x2).
The path integral is expressed in terms of an Euclidean action
that contains two terms S = S0 + Sint. The first one describes
free Dirac fermions with two possible mass terms

S0 =
∫

d3xψ(x)
(

γ
µ

∂µ + im1γ
3 + im2γ

5
)

ψ(x), (1)
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where µ ∈ {0,1,2} labels the spacetime coordinates, ∂µ =
∂/∂xµ . Here, m1,m2 are the corresponding bare masses,
which will be latter connected to a mass twisting, and we
note that Einstein’s convention of repeated index summation
and natural units h̄ = c = 1 are used in the following. The
set of gamma matrices {γ0,γ1,γ2,γ3,γ5} fulfill {γa,γb} =
γaγb + γbγa = 2δ a,b1ds , which can only be satisfied by con-
sidering Grassmann fields with ds = 4 spinor components. We
recall that, in an Euclidean metric, these gamma matrices are
all Hermitian, and can be defined via tensor products of oper-
ators within the Pauli basis {1,σ x,σ y,σ z} [79, 80]. Although
the specific choice of gamma matrices is arbitrary at the level
of the QFT (1), the implementation based on spin-3/2 cold-
atom gases discussed in Sec. III B fixes

γ
0 = σ

y ⊗12, γ
1 = σ

x ⊗σ
x, γ

2 = σ
x ⊗σ

y. (2)

In addition, the remaining gamma matrices are also fixed as

γ
3 = σ

x ⊗σ
z, γ

5 =−σ
z ⊗12. (3)

As discussed in Appendix A, this set of matrices actually
forms a reducible representation of the Clifford algebra for
the underlying 3-dimensional spacetime. These gamma ma-
trices can be used to define the generators of Lorentz transfor-
mations, which correspond to a spinor representation of the
SO(3) rotations in the Euclidean metric. We remark that such
Lorentz transformations could also be generated using an ir-
reducible representation of the Clifford algebra, which would
only require using two-component spinors [79, 80]. However,
this choice would not permit introducing the two independent
mass terms in Eq. (1), as the spacetime gamma matrices would
already exhaust all the possible mutually anti-commuting Her-
mitian matrices, e.g. γ0 = σ z,γ1 = σ x,γ2 = σ y. In this
case, there can only be a single mass term m0ψψ that breaks
parity [28]. As we will see, having two anti-commuting
masses (1) plays a key role in our work.

As discussed in detail in Appendix B, a different perspec-
tive motivating the choice of the action (1) is that the reducible
representation (2)-(3) is the result of a Kaluza-Klein-type
compactification. In the original Kaluza-Klein context [81],
gravity and electrodynamics in D = 3+ 1 dimensions were
shown to result from the compactification of an extra dimen-
sion in a 5-dimensional theory of pure gravity. In the current
context (1), the situation is much simpler, as one only needs to
consider a QFT of Dirac fermions in a higher 5-dimensional
spacetime coupled to background fields [80, 82], which will
be responsible for the two mass terms. In the larger space-
time, SO(5) symmetry is manifest in the action, and can also
be used to understand the structure of the Lorentz-invariant 4-
Fermi self-interactions, as we now discuss. Considering the
reducible representation of the Clifford algebra, we can define
SO(5)-invariant 4-Fermi interactions as follows

Sint=
∫

d3x
g2

2

(
−Jµ Jµ +(ψγ

3
ψ)2 +(ψγ

5
ψ)2 − (ψψ)2

)
,

(4)
where we have introduced the Euclidean fermion current as
Jµ = iψγµ ψ . This action can again be interpreted from
the perspective of dimensional reduction, where the first

five terms can be written as the squared norm of a higher-
dimensional vector whose components are fermion bilinears.
Therefore, the norm of the vector is conserved under the
SO(5) Lorentz transformations (see Appendix B). In addition,
the last term in Eq. (4) is a scalar under these SO(5) spatial ro-
tations, and thus also remains invariant. From the perspective
of the higher-dimensional parent theory, these quartic terms
correspond to a linear combination of the standard Gross-
Neveu and Thirring [83, 84] interactions. This is very differ-
ent from the interactions allowed by an irreducible representa-
tion, which can all be reduced to a single Gross-Neveu quar-
tic term. On the other hand, for a reducible representation,
the physics of Gross-Neveu and Thirring QFTs in D = 2+ 1
turns out to be very different [85]. Therefore, working with
reducible gamma matrices leads to a richer dimensionally-
reduced QFT with more interaction channels than those al-
lowed by an irreducible representation. The structure of
Eq. (4) will yield a competition of various fermion conden-
sates with the aforementioned topological groundstates.

B. Twisted Wilson fermions and SO(3) breakdown

After setting up the continuum QFT in Eqs. (1)-(4), we can
now discuss how higher-order topological [51–53] and trivial
groundstates may arise as the result of a non-standard lattice
regularization. We introduce this regularization by starting
from the connection of Wilson fermions [86] with first-order
topological insulators [87, 88], and then highlight the “twist”
that is required to move to higher-order topology.

Let us start by noting that all of these regularizations are re-
lated to the problem of fermion doubling [89, 90] in lattice
field theories [91]. In particular, we shall consider a non-
zero lattice spacing a along the spatial directions, such that
xxx =∑ j a(n j −N j/2)e j = a(nnn−NNN/2) with nnn∈Λs =ZN1 ×ZN2
and NNN = (N1,N2) contains an even number of lattice sites per
axis, leading to Ns = N1N2 as the total number of lattice sites
(see Fig. 1(a)). The spatial derivatives in Eq. (1) are substi-
tuted by finite differences, while the Euclidean time remains
continuous τ ∈R. This asymmetric treatment of the spacetime
will allow us to make a direct connection with the Hamiltonian
approach to field theories in section III. The fermion doubling
can be understood by writing the free action (1) after this reg-
ularization which, in momentum space, reads

S0 =
∫

k
ψ(k)

(
γ

µ k̂µ + im1γ
3 + im2γ

5)
ψ(k), (5)

where k = (k0,kkk) is the three-momentum, an we have intro-
duced the short-hand notation

∫
k := 1

(Nsa)2∑kkk∈BZ
∫ dk0

2π
. In the

expression above, we have defined k̂0 = k0 ∈R using the zero-
temperature limit of the Matsubara frequencies [77]. Addi-
tionally, the spatial components of the momentum k̂kk are re-
lated to the corresponding crystal momenta kkk via

k̂1 =
1
a

sin(k1a), k̂2 =
1
a

sin(k2a). (6)

We recall that, as a consequence of the lattice regularization,
the crystal momenta are quantised within the first Brillouin
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FIG. 1. Multi-layer scheme for the lattice regularization of the SO(5) 4-Fermi QFT: (a) In the Hamiltonian formulation, the spatial
directions are discretized on a square lattice, and the spinor components can be represented as four-layer model. The yellow region in the
inset (b) describes the discretization of the kinetic and twisted Wilson mass along the x axis. The layers only get coupled in pairs, and can
be interpreted as a distribution of rhomboid plaquettes pierced by π-fluxes corresponding to a pair of decoupled Creutz ladders. The blue
region in the inset (b) describes the discretization of the kinetic and twisted Wilson mass along the y axis. This tunnelling couples all four
layers, and also has underlying π-fluxes which, together with those of bf (b) lead to flat bands. The purple region in the inset (d) represents
the SO(5) 4-Fermi interactions, which include Hubbard density-density interactions among all possible inter-layer pairings (upper panel), and
also spin-changing collisions that can be interpreted as inter-layer pair tunnelling processes.

zone kkk ∈ BZ, namely k j = −π/a+2πn j/aN j with n j ∈ ZN j .
By a Taylor expansion kkk 7→ kkkD,ℓℓℓ + kkk for |kkk| ≪ Λc = π/a,
around any of the four Dirac points

kkkD,ℓℓℓ =
π

a
(ℓ1, ℓ2), ℓℓℓ ∈ Z2 ×Z2, (7)

one finds that the long-wavelength action stemming from
Eq. (5) coincides with that of a massless Dirac fermion (1).
Altogether, the long-wavelength infra-red (IR) features are
governed by ND = 4 Dirac fermions instead of one. Typically,
one refers to ℓℓℓ ∈ {(0,1),(1,0),(1,1)} as the spurious fermion
doublers, each of which has a different emergent chirality
γ5
ℓℓℓ = (−1)ℓ1+ℓ2γ5. The presence of these spurious doublers

can change the physics considerably, specially when adding
further interactions such as those in Eq. (4).

The idea of K. Wilson to cope with fermion doubling [86]
was to add a momentum-dependent Wilson mass, which sends
these doublers to the ultra-violet (UV) cutoff scale of the QFT.
Hence, they become very massive and are not expected to in-
terfere with the low-energy physics of the remaining Dirac
fermion at ℓℓℓ = (0,0). In Appendix C, we show that the stan-
dard Wilson regularization amounts to setting m2 7→ m2 = 0
and m1 7→ m1(kkk) in Eq. (C1), which leads to two copies of a
Chern insulator [92–96]. In this sense, the use of a reducible
representation of the gamma matrices is rather trivial, and we
could have obtained the same topological features using an
irreducible representation and two-component spinors.

Note, however, that this regularization only exploited one

of the mass terms in Eq. (5), and followed the Wilson pre-
scription verbatim. In this work, we explore a different non-
standard regularization which, although having a similar ef-
fect on the doublers, leads to very different manifestations of
topology. We consider an anisotropic twisted Wilson mass
regularization S = STM

0 + Sint, in which the free part is ex-
pressed in momentum space as

STM
0 =

∫
k

ψ(k)
(

γ
µ k̂µ + im1(kkk)γ3 + im2(kkk)γ5

)
ψ(k). (8)

This contains the anisotropic twisted Wilson mass

m1(kkk) = m1 +
r
a

(
1− cos(k1a)

)
,

m2(kkk) = m2 +
r
a

(
1− cos(k2a)

)
,

(9)

where r ∈ [0,1] is the analogue of the Wilson parameter in
the standard regularization of App. C. The interacting part of
the action Sint is defined by considering the 4-Fermi terms in
Eq. (4), but discretizing the spatial coordinates such that the
integral becomes a shorthand for

∫
d3x := a2

∑nnn∈Λs

∫
dτ .

Twisted-mass Wilson fermions have been previously con-
sidered in lattice gauge theories [97–105] (see [106] for a de-
tailed account), although the twisting procedure is very dif-
ferent from the one considered in our work. In order to un-
derstand the differences, let us describe mass twisting in a
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broader context. We start by focusing on the standard situ-
ation, which involves even-dimensional spacetimes such as
D = 3 + 1. As discussed in Appendix A, the usual mass
twisting follows from an axial rotation of angle θ on the
standard Dirac mass term mψψ , leading to a pair of anti-
commuting mass matrices proportional to m1 = mcosθ ,m2 =
msinθ (A7). The new mass term for θ ̸= 0 breaks parity (B6)
explicitly, unless the rotation/twisting angle is promoted to
a pseudo-scalar axion field θ 7→ θ(τ,xxx) [107–109]. Let us
now consider this mass twisting for a Wilson-fermion lattice
regularization, which upgrades the parity-invariant mass to a
momentum-dependent one m1 7→ m1(kkk) similar to Eq. (C1),
but accounting for the larger spatial dimensions. This Wilson
term yields again different masses for each of the Dirac points,
and can lead to a non-zero topological invariant. From the
perspective of first-order topological insulators [94], a non-
zero twisted mass m2 > 0 breaks both parity and time-reversal,
making the topological invariant no longer quantised [110]
which to connects to axion electrodynamics [111].

All of these effects require having an odd number of Dirac
points with negative Wilson masses which, in the context of
gauge theories such as QCD, would shift the value of the vac-
uum theta angle. When the goal is to recover the continuum
limit of QCD, it is sensible to avoid this possibility unless
one is using a discretization based on domain-wall fermions
with an extra spatial dimension [112–114]. Accordingly, the
works on lattice QCD with Wilson fermions typically work in
regions of parameter space that are close to a critical line in
order to recover a continuum limit, but making sure that these
topological contributions to the theta angle are zero. The mo-
tivation to include a mass twisting is then completely different
from the above discussion. When trying to improve the lat-
tice regularization to achieve a faster convergence to the con-
tinuum [115–117], the approaches based on Wilson fermions
[118, 119] can take advantage of the mass twisting [98, 99]. In
fact, as first shown in [100], by working with a maximal twist
angle θ = π/2, one can find an automatic O(a) improvement
that only requires controlling a single parameter of the model.

If we now move back to our D = 2 + 1 dimensions, as
noted above, an irreducible representation of the gamma ma-
trices would forbid a mass twisting. On the other hand,
our reducible representation (2)-(3) permits additional mass
terms (1), yielding a a 3-dimensional version of the mass
twisting. Still, we remark that this twisted Wilson mass would
still differ from our anisotropic mass twisting in Eq. (9).
As discussed in [106], the usual mass twisting for Wilson
fermions can be transformed to a physical basis where, rather
than the bare masses, one rotates the Wilson term responsi-
ble for the momentum dependence of the mass. Exploring
angles different from the full twist, e.g. θ = π/4, would
bring us closer to the type of Wilson mass twisting of Eq. (9).
Yet, there is a fundamental difference, the Wilson mass twist-
ing considered in lattice gauge theories is always isotropic.
We are instead considering that the dependence on momen-
tum of the twisted Wilson masses (9) is highly anisotropic:
m1(kkk) only depends on k1, and m2(kkk) on k2. In turn, as will
become clear below, this means that the real-space Wilson
term is anisotropic; it is different when the fermions tunnel

to neighbouring sites along each of the two spatial directions.
The other important difference is that, instead of considering a
mass twisting that combines ψψ and ψiγ5ψ , we are admixing
ψiγ3ψ and ψiγ5ψ terms, both of which are parity invariant in
D = 2+ 1 dimensions. This will be very important to get a
model invariant under a discrete SO(5) rotation, which will
protect the higher-order topological state.

In the following section, we will show in detail how the
groundstate of the free lattice action can be characterised
by a topological invariant which is, however, distinct from
that (C6) of the Chern insulators discussed above. Indeed,
as shown in Sec. III, the groundstate in this case corresponds
to a higher-order topological insulator (HOTI). The bulk-
boundary correspondence [120] leads to a boundary manifes-
tation that differs from the edge states of Chern insulator, as
we find zero-energy states that are only localised in the cor-
ners of the spatial lattice. To make this connection clearer, we
start by introducing a Hamiltonian version of this QFT.

III. COLD-ATOM HAMILTONIAN FIELD THEORY

In this section, we present the Hamiltonian of the above Eu-
clidean field theory (8), which will be useful when discussing
the HOTI, and a possible cold-atom implementation.

A. The Creutz-Hubbard multi-layer

Since our discretization keeps the imaginary time continu-
ous, one can also describe the system through a Hamiltonian
lattice field theory by rotating back to real time τ 7→ −ix0. In
the Hamiltonian formulation [1, 121], one works with field op-
erators instead of Grassmann variables. We thus define Ψnnn =
(Ψnnn,0,Ψnnn,1,Ψnnn,2,Ψnnn,3)

t and Ψ
†
nnn = (Ψ†

nnn,0,Ψ
†
nnn,1,Ψ

†
nnn,2,Ψ

†
nnn,3) in

terms of fermionic creation-annihilation operators defined on
the lattice sites (see Fig. 1 (a)), which are supplemented with
the following equal-time anti-commutation relations

{
Ψnnn111,σ1

,Ψ†
nnn2,σ2

}
=

1
a2 δnnn1,nnn2δσ1,σ2 . (10)

In a Minkowski spacetime, the adjoint is no longer indepen-
dent but, instead, related to the creation operators Ψnnn = Ψ

†
nnnγ0.

The Hamiltonian operator H governing the dynamics of these
fields can be found from the partition function discussed in
Appendix A, recalling that the basis of fermionic coherent
states Ψnnn |ψnnn⟩ = ψnnn |ψnnn⟩, ⟨ψnnn|Ψnnn = ⟨ψnnn|ψnnn is used to write
the partition function Z = Tr{e−βH} as a path integral over
the Grassmann fields ψnnn,ψnnn [77]. The identified operator
can be written as the sum of two terms H = HTM

0 + Hint.
The free term HTM

0 is obtained by the discretization of the
spatial derivatives of Eq. (1) in terms of finite differences,
which leads to tunnelling terms between nearest neighbours.
Additionally, the anisotropic twisted Wilson mass is also re-
alized by including tunnelling terms that give momentum-
dependence to the local masses in (1) according to Eq. (9).
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Altogether, this leads to the quadratic lattice Hamiltonian

HTM
0 = a2

∑
nnn∈Λs

∑
j=1,2

((
Ψ

†
nnnT jΨnnn+e j +H.c.

)
+Ψ

†
nnnM jΨnnn

)
, (11)

where we have introduced the tunnelling matrices

T1 =−itα1 − t̃α3, T2 =−itα2 − t̃α5. (12)

These depend on the following tunnelling strengths

t =
1
2a

, t̃ =
r

2a
, (13)

which should not be confused with real time. In the following,
we shall work with Euclidean time τ , such that there is no
potential confusion. We also use the Dirac α-matrices

α
1 = iγ0

γ
1 = σ

z ⊗σ
x, α

2 = iγ0
γ

2 = σ
z ⊗σ

y,

α
3 = iγ0

γ
3 = σ

z ⊗σ
z, α

5 = iγ0
γ

5 = σ
x ⊗12.

(14)

Note that the above matrices are still expressed in terms of
products of the Euclidean gamma matrices in Eqs. (2)-(3). In
Minkowski spacetime, it is customary to work with {γ̂a, γ̂b}=
2ηa,b1ds , where η = diag{1,−1, · · · ,−1} is the metric. Using
the prescription γ̂0 = γ0, γ̂1 = iγ1, γ̂2 = iγ2, γ̂3 = iγ3, γ̂5 = γ5,
one recovers the standard conventions for the Hamiltonian lat-
tice field theory of Dirac fermions [1]. Using the standard
definitions of the Dirac α and β matrices, we also find

β = γ
0 = σ

y ⊗12, α
j = β γ̂

j, (15)

where the later coincide with the expressions in Eq. (14).
In the above lattice Hamiltonian (11), we have also intro-

duced the mass matrices

M1 = m̃1α
3, M2 = m̃2α

5, (16)

which are expressed in terms of the following parameters

m̃1 = m1 +2t̃, m̃2 = m2 +2t̃. (17)

In addition to this quadratic Hamiltonian (11), the 4-Fermi
terms in Eq. (4) lead directly to the quartic interactions

Hint = a2
∑

nnn∈Λs

g2

2

(
(Ψ†

nnnΨnnn)
2 − ((Ψ†

nnnαααΨnnn)
2 − (Ψ†

nnnβΨnnn)
2

)
.

(18)
In the next section, we will see how this specific interaction
emerges naturally when considering spin-3/2 Fermi gases
tightly-confined by optical potentials [40, 41]. We will argue
that this connection fixes the choice of the α and β matrices to
those in Eqs. (14)- (15), and thus forces the choice of gamma
matrices (2)-(3) in our 4-Fermi QFT in Eqs. (1) and (4).

In the Hamiltonian formulation, the discussion of the SO(5)
invariance must be revisited in light of the definition of the
adjoint operator below Eq. (19). In fact, the Euclidean SO(5)
Lorentz invariance must now be described in terms of SO(1,4)
Lorentz transformations, where the boosts do not admit a uni-
tary spinor representation [1]. One could define a completely

analogous Kaluza-Klein compactification, where the above
Hamiltonians arise from a 5-dimensional parent model reg-
ularised on a lattice. In analogy to the Euclidean action, the
continuum limit of the dimensionally-reduced model is ex-
pected to recover the lower-dimensional SO(1,2) invariance.
On the other hand, we are not only interested in the contin-
uum limit, but also in the HOTI phases of the theory where
one can go beyond this continuum emergent symmetry. From
this perspective, we should look for other transformations, in-
cluding discrete spatial transformations, which correspond to
exact symmetries of the full lattice model in (11) and (18).

As depicted in Fig. 1 (a), the non-interacting Hamilto-
nian (11) can be interpreted as a multi-layer fermionic model
with both intra- and inter-layer tunnellings. An aspect that
will be important in our analysis below is that there are certain
background π-fluxes that dress the tunnelling along certain
plaquettes involving the inter-layer synthetic dimensions (see
Fig. 1 (b)-(c)). These fluxes lead to flat-band regimes, and a
generalization of the so-called Aharonov-Bohm cages [122],
which become very useful to understand the bulk-boundary
correspondence. In this regard, our model can be considered
as a higher-dimensional multi-layer version of the Creutz lad-
der [123–129]. Moreover, the quartic interactions (18) are
purely local, and can thus be interpreted as a Hubbard-like
interaction. For D = 1+ 1 dimensions, the Hubbard interac-
tion maps exactly onto a Gross-Neveu quartic term [130–133],
although one could also use a bosonic species to mimic an
auxiliary field that carries the Gross-Neveu interactions [134].
For D = 2+1 dimensions, when working with an irreducible
representation and two-component spinors, the Hubbard inter-
action maps again into a Gross-Neveu quartic term [95, 96].
In the current reducible case, where we have four-component
spinors, the Hubbard-type interaction is richer and contains
both inter-layer density-density interactions among all pairs
of spinor states, as well as spin-changing collisions that in-
volve effective inter-layer pair tunnellings (see Fig. 1 (d)).

B. Spin-3/2 atoms and 4-Fermi interactions

In this section, we present the details of how spin-3/2
fermionic atoms can naturally lead to the 4-Fermi interactions
in Eq. (18). This is an example of the unique opportunity
emphasised in the introduction: the possibility of tailoring lo-
cal and global symmetries that connect to interesting mod-
els of high-energy physics. This brings us closer to the field
of quantum simulators [34–37]; controllable quantum many-
body systems that behave according to a specific model of
interest [33]. In the context of quantum simulators for high-
energy physics (see the reviews [135–143]), there have been
several proof-of-principle experiments showing the quantum
simulation of relativistic QFTs [18, 19, 144–177], including
lattice gauge theories [121, 178]. The case of gauge theories
is particularly demanding in terms of the required resources,
as the tailored symmetries must be local and, ultimately, non-
Abelian, requiring the introduction of additional gauge de-
grees to allow for this local symmetries. On the other hand, for
synthetic Dirac matter with quartic interactions, the require-
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ments are in principle milder, as one restricts to global and
spacetime symmetries, including non-Abelian ones, but one
can dispense with the extra gauge degrees of freedom.

Let us consider a gas of fermionic neutral atoms that can
be tightly confined by optical potentials in a square lattice
xxx = ∑ j

λL
2 (n j −N j/2)e j with nnn ∈ Λs = ZN1 ×ZN2 . We em-

phasise that the physical lattice spacing is set by half the wave-
length λL/2 of the laser that leads to the optical-lattice poten-
tial, which is kept fixed in the experiment. This physical lat-
tice spacing will not be mapped onto the lattice-field-theory
spacing a, which must be sent to a → 0 to recover the con-
tinuum limit. Another difference is that, in second quanti-
zation [179–181], the atoms are described by dimensionless
operators f †

nnn,σ ( fnnn,σ ) that create (annihilate) an atom in the
position specified by nnn, and in the internal electronic internal
state given by σ ∈ Sσ . The set Sσ generally depends on
the particular type of atom, and its specific isotope, which can
also control the bosonic/fermionic nature of the operators. We
will be interested in the fermionic case, where{

fnnn111,σ1
, f †

nnn2,σ2

}
= δnnn1,nnn2δσ1,σ2 . (19)

In the tight-binding regime, the system is thus described by a
spin-conserving Hamiltonian, and its non-interacting part can
be written [179–181] in second quantization as

Hsc = ∑
nnn

∑
σ , j

(
−t̃ j f †

nnn,σ fnnn+e j ,σ
+H.c.

)
, (20)

where t̃ j is the standard nearest-neighbour tunnelling coupling
along the j ∈ {1,2} axis, and we set t̃1 = t̃2 =: t̃.

In order to find the set of internal states Sσ , we need to con-
sider the atomic energy level structure, focusing in particular
in the groundstate manifold. For instance, in the case of 6Li
Alkali atoms, we have principal quantum number n = 2, total
orbital angular momentum L = 0 and spin S = 1/2 which, in
spectroscopic notation leads to the 22S1/2 groundstate mani-
fold. The total nuclear spin is I = 1, which leads to a cou-
ple of hyperfine levels with total angular momentum F ∈
{1/2,3/2}. If we focus on the lower-energy state F = 1/2, the
set of internal states is given by the two possible Zeeman sub-
levels MF = ± 1

2 , namely Sσ = {− 1
2 ,+

1
2} =: {0,1}. At suf-

ficiently cold temperatures, the scattering of the dilute Fermi
gas is dominated by s-wave collisions between pairs of 6Li
atoms, which mostly contribute [179] to a Hubbard density-
density interactions that can be written as

Hint = ∑
nnn

∑
σ1 ̸=σ2

1
2Uσ1σ2nnnn,σ1nnnn,σ2 , (21)

where nnnn,σ = f †
nnn,σ fnnn,σ is the number operator, and Uσ1σ2 =

U0 =
√

8/πkLa0ER
(
V0,xV0,yV0,z/E3

R
)1/4 is the Hubbard cou-

pling strength [32]. Here, kL = 2π/λL is the laser wavevec-
tor, and ER = k2

L/2ma is the recoil energy of the 6Li atoms of
mass ma. In this expression, we have introduced the optical-
potential depths along the different axes, which will be con-
strained to V0,z ≫V0,x,V0,y such that the dynamics takes place
within the xy plane. Finally, a key quantity in the Hubbard

coupling is the s-wave scattering length a0, which only de-
pends on singlet scattering channel [32]. At cold temperatures
and within the lowest hyperfine multiplet, the inter-atomic po-
tential is rotationally invariant within the total angular mo-
mentum of the colliding pair FFF t = FFF1+FFF2, which in this case
leads to a couple of channels with Ft ∈ {0,1}. Due to Pauli ex-
clusion principle and the effective contact interactions for the
s-wave channel, only the singlet case Ft = 0 is allowed, which
is described by the above s-wave scattering length a0. We note
that the Hubbard interaction in Eq. (21) has a global SU(2)
symmetry and, moreover, its strength can be controlled via
Feshbach resonances by e.g. applying a magnetic field [182].

This type of interaction (21) would suffice to make con-
nections to Gross-Neveu interactions for an irreducible rep-
resentation of the gamma matrices [95, 96, 131], since the
spinor components are only two. In this work, however, we
are interested in reducible representations with a larger num-
ber spinor components Sσ = {0,1,2,3}, where a larger non-
Abelian symmetry appears in the interactions. A well-known
example of large non-Abelian global symmetries in the scat-
tering appears for other atomic species, such as 87Sr Alkaline-
earth atoms. In this case, there are two valence electrons, and
the groundstate manifold has principal number n= 5, and van-
ishing total spin and orbital angular momentum S = L = 0,
leading to the manifold 51S0. For vanishing J = 0, there
is no hyperfine splitting due to the nuclear spin, such that
F = I = 9/2, and we get a single multiplet with N = 10 Zee-
man sub-levels MF ∈ {−9/2,−7/2, · · · ,9/2}. Since there is
no hyperfine coupling, the atoms all interact with an s-wave
scattering length that is independent of the nuclear features
and, thus, equal for all of the N = 10 sub-levels Uσ1σ2 = U0
∀σ1 ̸= σ2. Hence, Eq. (21) has an exact SU(N) symmetry
[183, 184]. When considering also the long-lived 53P0 level,
one gets more flexibility, leading to the so-called two-orbital
SU(N) Hubbard models [185]. When considering a mixed-
species Fermi gas with a couple of alkaline-earth atoms, the
inter- and intra-orbital scattering preserve the SU(N) symme-
try. Provided that one can control their corresponding scatter-
ing lengths via Feshbach resonances, there are specific condi-
tions where the two-orbital SU(N) interactions would connect
to the Gross-Neveu term between N fermion flavours.

In this article, however, we are interested in a specific
type of 4-Fermi term that goes beyond the Gross-Neveu cou-
plings (18). These interactions, even for a single fermion
flavor, have a non-Abelian SO(5) symmetry. As realised
in [40, 41], it turns out that there is an exact SO(5) symmetry
in the theory of s-wave scattering when working with spin-
3/2 alkali gases, similar to the case of 6Li for the F = 3/2
hyperfine multiplet. The only caveat is that we should con-
sider other atomic species in which the F = 3/2 multiplet
Sσ ∈ {−3/2,−1/2,1/2,3/2} =: {0,1,2,3} corresponds to
the lowest-energy level, as the scattering of the higher-energy
hyperfine levels can otherwise lead to processes that bring the
atoms into the lower hyperfine multiplet [186]. There are var-
ious possible Alkaline-earth atoms, such as the fermionic iso-
tope 132Cs, which fulfill this condition and have an F = 3/2
low-energy multiplet. To the best of our knowledge, experi-
ments with Cesium have been reported only for the bosonic
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133Cs isotope, e.g. [187, 188]. Other possibilities would be to
work with the atomic species 9Be, 135Ba, 137Ba, and 201Hg.

Following our discussion above, the total angular mo-
mentum of a colliding pair could be Ft ∈ {0,1,2,3} in
this case, where Pauli exclusion principle forbids the odd-
momentum channels. We thus have a pair of scattering
lengths for the singlet a0 and quintet a2 channels. The
contact interactions can be written in terms of projection
operators on these two total angular momenta PFt(nnn) =
∑MF ∑σ1,σ2

⟨σ1σ2|Ft,MFt⟩ fnnn,σ1 fnnn,σ2 [186], namely

Hint = ∑
nnn

∑
Ft=0,2

UFtP
†
Ft
(nnn)PFt

(nnn) (22)

which can be controlled by the individual coupling strengths
UFt =

√
8/πkLaFtER

(
V0,xV0,yV0,z/E3

R
)1/4. As shown in [40],

these interactions can be rewritten as a linear combination of
4-Fermi terms with a certain definition of gamma matrices. In
order to connect to our previous discussion, we first need to
define field operators with the right units, such that the spinor
operator is Ψnnn = ( fnnn,0, fnnn,1, fnnn,2, fnnn,3)

t/a, where a is an ef-
fective lattice spacing that still needs to be connected to the
microscopic cold-atom parameters. Using the corresponding
Clebsch-Gordan coefficients ⟨σ1σ2|Ft,MFt⟩, and the specific
α-β Dirac matrices (14)-(15), we find

Hint = a2
∑

nnn∈Λs

1
2

(
g̃2(Ψ†

nnnΨnnn)
2 −g2

(
(Ψ†

nnnαααΨnnn)
2 +(Ψ†

nnnβΨnnn)
2
))
,

(23)

where we have introduced the vector ααα = (α1,α2,α3,α5),
and the individual coupling constants

g2

a2 =
U2 −U0

2
,

g̃2

a2 =
3U0 +5U2

8
. (24)

This brings us already really close to the desired 4-Fermi term
in Eq. (18), which would require tuning g2 = g̃2, which would
require setting a0 = −13a2/11, we would recover exactly
the interaction term that combines Thirring, Gross-Neveu and
squared mass terms. Let us emphasise, however, that the cou-
pling proportional to g̃2, which is proportional to the temporal
component of the fermion current J2

0 , shall not play any role
in the phase diagram of the fermionic QFT. Therefore, even
if one cannot adjust the scattering lengths of the singlet and
quintet channels, the physics will be completely equivalent, at
least under the half-filling conditions explored in our work. In
fact, as will also be clearer in our discussion below after dis-
cussing the cold-atom implementation of the quadratic part,
there is a discrete SO(5) rotation corresponding to a 90o ro-
tation, regardless of the relative value of these two couplings.
This symmetry is responsible for protecting the higher-order
topological state discussed in Sec. IV A.

C. Raman lattices and twisted Wilson fermions

Let us now discuss how to realise the twisted Wilson mass
regularization in the cold-atom system. In order to obtain the

tunnelling structure required by Eq. (11), we need to extend
Eq. (20) by considering additional Raman beams that also
assist spin-changing tunnelling processes against certain en-
ergy offsets provided by the Zeeman effect of an external
magnetic field. This experimental scheme falls within the
so-called Raman optical lattices [159, 189–193], which have
been exploited as quantum simulators of synthetic spin-orbit
coupling [194–196]. In previous works [95, 96, 133, 197],
we highlighted the potential of Raman optical lattices for the
quantum simulation of Gross-Neveu-type QFTs with a stan-
dard Wilson discretization . For square lattices, these pro-
posals connect to the recent realization of Chern insulators
in [159]. The goal of this section is to present a Raman-lattice
scheme for four spinor components that could serve as a quan-
tum simulator of our SO(5) Dirac field theory regularised with
the anisotropic twisted Wilson mass.

Let us first focus on tunnellings that change the atomic
states corresponding to the spinor components Sσ ∈
{0,1,2,3} by one unit, i.e. σ 7→ σ ′ = σ + 1, where we fol-
low the conventions of Ref. [96]. Along the x (y) axis, these
tunnellings can be assisted by adding Raman beams along the
y (x) axis polarized in the x (z) direction [Fig. 2(a)]. Due to
the difference in polarization, the latter, together with the z
(x)-polarized standing wave responsible for the standard opti-
cal lattice along the x (y) axis, give rise to two-photon spin-
changing Raman processes. The key observation is that, due
to the different spatial periodicity of the standard lattice and
these Raman process, this spin-changing terms cannot con-
tribute with on-site terms, but drive instead an assisted tun-
nelling. It can be shown that, in the tight-binding limit, this
configuration gives rise to spin-changing tunnellings [189–
192] that read

Hσ
sf, j =−∑

nnn

[
itσσ+1

j ei(δ σσ+1
j x0−φ

σσ+1
j,nnn ) f †

nnn,σ fnnn+e j ,σ+1

−itσσ+1
j ei(δ σσ+1

j x0−φ
σσ+1
j,nnn ) f †

nnn,σ fnnn−e j ,σ+1 +H.c.
]
,

(25)
where tσσ+1

j is the corresponding strength of the Raman-
assisted tunnelling along the j-th axis, which must not be
confused with the real time x0 = −iτ . Here, we have intro-
duced φ

σσ+1
j,nnn = φ

σσ+1
j −π(n1 +n2), where φ

σσ+1
j is the rel-

ative phase between the standing wave and the Raman beam.
We have also introduced δ

σσ+1
j =ωS−ω

σσ+1
j −(εσ −εσ+1),

which is the corresponding detuning for the two-photon Ra-
man transition, with ωS and ω

σσ+1
j the frequencies of the

standing wave and the Raman beam, respectively, and εσ is
the electronic energy for the level σ , which are controlled by
the external magnetic field [see the two-photon transitions in
Fig. 2(b) and (c)].

In order to realize the lattice field theory described by
Eq. (11), we need to combine these spin-changing processes.
In particular, we need to connect the states (0,1) and (2,3)
both in the x and y directions, and choose the proper phases
φ σσ ′

j , which can be checked by inspecting the structure of
the T1 and T2 matrices in Eq. (12). Additionally, we need
processes that flip the spinor twice in the y direction, con-
necting the states (0,2) and (1,3). These can be obtained in
a similar fashion by using instead y-polarized Raman beams
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FIG. 2. Raman optical lattice: (a) The atom cloud (light red sphere) is subjected to a 3D optical lattice, created using three pairs of
counter-propagating laser beams (blue arrows) with mutually orthogonal polarizations (green arrows) and frequencies ωS. The atoms can
be then confined into a 2D plane by increasing the potential depth in the z direction. Additionally, travelling Raman beams (orange arrows)
with frequencies ωσσ ′

j and appropriate polarizations (red arrows) generate spin-changing processes, as discussed in the main text. Finally,
a magnetic field Bext is applied in the z direction to split the hyperfine atomic energy levels, and a gradient obtained by lattice acceleration
creates and energy difference ∆ between nearest-neighbour sites in the y direction. The panels (b), (c) and (d) depict the two-photon Raman
transitions giving rise to spin-changing processes, where εσ is the electronic energy of |σ⟩, and δ σσ ′

j the corresponding detunings.

in the x direction [Fig. 2(a)], leading to the same expression
as in Eq. (25) for the case σ 7→ σ ′ = σ + 2, where φ

σσ+2
2

is now the relative phase between two Raman beams and
δ

σσ+2
2 =ω

σ+1σ+2
2 −ω

σσ+1
2 −(εσ −εσ+2), with ω

σ+1σ+2
2 the

frequency of the y-polarized Raman beam in the x direction
[Fig. 2(d)]. Let us now detail how the relative phases need to
be tuned for each different tunnelling process.

We first focus on T1 (12), this is, the tunnelling processes
along the x axis. The corresponding spin-changing terms can
be obtained by using two Raman beams with the same po-
larization, as explained above, connecting the pairs (0,1) and
(2,3). The latter can be produced from the same laser source
using acusto-optical modulators to generate beams with dif-
ferent detunings δ σσ ′

j and phases φ σσ ′
j . Here, we choose in

particular δ 01
x = −δ 23

x =: δx and φ 01
x = φ 23

x = π . After per-
forming the following gauge transformation and rescaling

Ψnnn,0 = ei δx
2 x0 fnnn,0

a
, Ψnnn,2 = e−i δx

2 x0
eiπ(n1+n2)

fnnn,2

a
,

Ψnnn,1 = e−i δx
2 x0

eiπ(n1+n2)
fnnn,1

a
, Ψnnn,3 = ei δx

2 x0 fnnn,3

a
,

(26)
it can be easily checked that the above configuration gives
rise to the terms a2

∑nnn

[(
Ψ

†
nT1Ψn+e1 +H.c.

)
+Ψ

†
nM1Ψn

]
in

Eq. (11), with the following parameters, m̃1 = δx/2, t =
1/2a,r = t/t̃, where we take t := t01

x = t23
x . We remark that

the required M1 mass matrix (16) is generated by the Raman-
assisted tunnelling once we move to the above rotating frame.

Let us now consider the spin-changing processes associated
to T2 (12), for which we also add a spin-independent gradient
along the y axis,

Hgrad = ∆ ∑
nx,ny

ny ∑
σ

f †
nnn,σ fnnn,σ , (27)

which can be implemented e.g. by accelerating the optical
lattice in that direction [198]. This gradient serves a two-fold
purpose. First, for ∆ ≫ t̃, it suppresses the spin-conserving
tunnelling in the y direction, which is absent in Eq. (11). Ad-
ditionally, it allows us to tune the relative phase between the

two terms in Eq. (25), as required by T2. Specifically, for each
of the four spin-changing pairs of terms involved in T2, we
employ two Raman beams, and choose the values of the de-
tunings as follows: δ 01

y −δx = δ 23
y +δx =−δ̃ 01

y +δx =−δ̃ 23
y −

δx = ∆, where δ̃ σσ ′
y denotes the second Raman beam, as well

as δ 01
y = δ 02

y , δ 23
y = δ 13

y , δ̃ 01
y = δ̃ 02

y and δ̃ 23
y = δ̃ 13

y . For every
pair of levels, this allows each Raman beam to independently
assists one single spin-changing process in Eq. (25). The
phases of these processes can now be chosen freely, which can
be seen by transforming first to the interaction picture with
respect to the gradient term in Eq. (27), and then applying
the rotating-wave approximation in the limit of large detun-
ings. In particular, if we take φ 01

y = φ̃ 01
y = φ 23

y = φ̃ 23
y =−π/2

and φ 02
y = −φ̃ 02

y = −φ 13
y = φ̃ 13

y = −π/2, this configuration

generates the terms a2
∑nnn

(
Ψ

†
nT2Ψn+e2 +H.c.

)
in Eq. (11)

after applying again the transformations in Eq. (26), where
we take t01

y = t23
y = t and t02

y = t13
y = t̃. Finally, the mass term

a2
∑nnn Ψ

†
nM2Ψn can be obtained by driving transitions between

the (0,1) and (2,3) spinor pairs using microwave drivings
with a Rabi frequency that gives the remaining microscopic
parameter m̃2 = Ωy/2.

Let us finally note that the relevant dimensionless parameter
that appear in the phase diagrams to be discussed in the rest
of the article correspond to

m1a =
δx

4t
− r, m2a =

Ωy

4t
− r,

g2

a
=

U2 −U0

4t
, (28)

where we recall that the Wilson parameter is controlled by
the ratio of the tunnellings r = t/t̃, and the fact that we have
neglect the g̃2 interaction as it will play no role (see the dis-
cussion below Eq. (24)). The important feature of this map-
ping is that all of the relevant parameters can be tuned inde-
pendently in the experiments. As noted previously, the con-
tinuum limit does not require sending λL → 0, but actually
working in the vicinity of possible critical lines in parameter
space (m1a,m2a,g2/a), which we start to explore below.
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IV. HIGHER-ORDER TOPOLOGICAL INSULATORS
(HOTIS) UNDER A DISCRETE SO(5) ROTATION

In this section, we discuss the regions of parameter space
where the free twisted-mass Wilson regularization can lead
to HOTIs. In addition of presenting exact expressions for
the zero-energy corner modes and the associated topologi-
cal invariants, we will also discuss the symmetry responsible
for protecting these topological states. Although the origi-
nal SO(5) invariance of the 4-Fermi interactions is explicitly
broken by the lattice discretization, we find a discrete SO(5)

rotation that protects the groundstate topology. We finish this
section with a discussion on how to detect these non-trivial
topological properties in cold-atom experiments.

A. Flat bands and zero-energy corner modes

We now discuss the topological features of the half-filled
groundstate in the absence of interactions g2 = 0. By per-
forming a Fourier transform Ψnnn = 1

a
√

Ns
∑kkk∈BZ eikkk·nnnaΨkkk, the

lattice model (11) becomes HTM
0 = ∑kkk∈BZ Ψ

†
kkkH0(kkk)Ψkkk, where

the single-particle Hamiltonian can be written as

H0(kkk) =
(
−2t sin(k1a)σ x −2t sin(k2a)σ y +(m̃1 −2t̃ cos(k1a))σ z (m̃2 −2t̃ cos(k2a))12

(m̃2 −2t̃ cos(k2a))12 2t sin(k1a)σ x +2t sin(k2a)σ y − (m̃1 −2t̃ cos(k1a))σ z

)
.

(29)

Matrix diagonalization H0(kkk)
∣∣εq,±(kkk)

〉
= εq,±(kkk)

∣∣εq,±(kkk)
〉

with q∈ {1,2}, yields a band structure with four energy bands
εq,±(kkk) =±ε(kkk) that display a two-fold degeneracy

ε(kkk) =
√

∑
j=1,2

(
4t2 sin2(k ja)+

(
m̃ j −2t̃ cos(k ja)

)2)
. (30)

This expression allows one to realise that, by setting m̃1 =
m̃2 = 0 and t = t̃ (i.e. fixing r = 1 and m1a = m2a = −1),
the energy bands become totally flat εq,±(kkk) = ±2t. This is
the consequence of the Aharonov-Bohm phases depicted in
Fig. 1, which lead to a destructive interference forbidding the
tunnelling of bulk fermions more than two sites apart along
any of the spatial directions (see, for instance, the vanish-
ing amplitude of the two black-grey paths in Figs. 1 (b) and
(c)). This can be understood as the phenomenon of Aharonov-
Bohm caging [122], and finds its minimal manifestation at the
corners of the multi-layer, where a single fermion with certain
amplitudes over the various spinor components must remain
localised. Considering that we have a total of Ns = N1N2 lat-
tice sites, with N j sites per spatial direction, we find that the
states corresponding to such localised solutions on the corners
dddL =(1,1), dddR =(N1,1), uuuL =(1,N2), and uuuR =(N1,N2) have
zero energy (see Fig. 3). These zero modes can be expressed
as follows∣∣0dddL

〉
= 1

2

(
Ψ

†
dddL,0

− iΨ†
dddL,1

− iΨ†
dddL,2

−Ψ
†
dddL,3

)
|vac⟩ ,∣∣0dddR

〉
= 1

2

(
Ψ

†
dddR,0

+ iΨ†
dddR,1

+ iΨ†
dddR,2

−Ψ
†
dddR,3

)
|vac⟩ ,

|0uuuL⟩= 1
2

(
Ψ

†
uuuL,0

− iΨ†
uuuL,1

+ iΨ†
uuuL,2

+Ψ
†
uuuL,3

)
|vac⟩ ,

|0uuuR⟩= 1
2

(
Ψ

†
uuuR,0

+ iΨ†
uuuR,1

− iΨ†
uuuR,2

+Ψ
†
uuuR,3

)
|vac⟩ .

(31)

As argued in the following section, these corner states
are the boundary manifestation of certain topological invari-
ants [199, 200] in the bulk bands of the system, which can

—

—

—

—

1/2
−i/2
−i/2
−1/2

|0dL
⟩ |0dR

⟩

|0uL
⟩ |0uR

⟩

1/2
−i/2

−i/2
−1/2

e2

e1

FIG. 3. Anomalous corner states in the flat-band regime: For
a finite multi-layer with parameters m1 = m2 = r/a and r = 1, the
Hamiltonian displays two-fold degenerate flat bands εq,±(kkk) = ±2t
and four zero-energy modes (31) that are strictly localised to the cor-
ners of the lattice. The colouring of the sites at the corners corre-
sponds to the complex phases of Eq. (31).

lead to a topological quadrupole in analogy to the Bernevig-
Benalcazar-Hughes (BBH) model [52, 53] of HOTIs, in par-
ticular to second-order topological insulators. When mov-
ing away from the flat-band limit, e.g. by increasing the
masses m̃1 = m̃2 > 0 or by switching on the quartic inter-
actions g2 > 0, the perfect Aharonov-Bohm interference will
disappear, and these zero modes will no longer be perfectly
localised at the corners but, instead, start to spread within
the bulk of the system. In particular, a certain localization
length will emerge, which characterises the exponential decay
of the corner-state amplitude as one moves towards the bulk.
These corner states, which remain pinned to zero energy until
the bulk energy gap is closed, are an example of anomalous
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boundary states, which only exist in the presence of the bulk.
Moreover, they are protected by a certain discrete SO(5) rota-
tion.

We previously argued that, in the long-wavelength limit
around one of the Dirac points (7), the Euclidean action (8) re-
covers the SO(3) rotational symmetry of the Lorentz group. In
the Hamiltonian formulation, this corresponds to the SO(1,2)
group of boosts, and two-dimensional spatial rotations of an-
gle θ within the xy plane. Let us emphasise that this is a
property of the long-wavelength limit, since the lattice reg-
ularised action (8) is not invariant under arbitrary rotations
k1 7→ k1 cosθ − k2 sinθ ,k2 7→ k2 cosθ + k1 sinθ . On the other
hand, there may exist other spatial symmetries that are ex-
act for the full lattice model, including the 4-Fermi interac-
tions (4). For instance, as discussed in more detail in Ap-
pendix B, there are two parity symmetries which, at the level
of the fermionic field operators, act as follows

Ψnnn 7→ P1Ψnnn = γ
1
Ψ(−n1,n2),

Ψnnn 7→ P2Ψnnn = γ
2
Ψ(n1,−n2).

(32)

These transformations correspond to mirror symmetries that
take either (k1,k2) 7→ (−k1,k2) or (k1,k2) 7→ (k1,−k2), and
clearly commute with the single-particle Hamiltonian in
Eq. (29): γ1H0(−k1,k2)γ

1 = γ2H0(k1,−k2)γ
2 = H0(k1,k2).

The composition of the two parities corresponds to the lattice
inversion, which is a symmetry of the full Hamiltonian corre-
sponding to a specific SO(1,2) rotation with angle π .

We remark that the above symmetries need not exhaust all
possibilities, as there may be additional spatial symmetries
that are not connected to the SO(1,2) group. The possibility of
finding such discrete symmetries becomes clear when inspect-
ing the form of the interacting term (18) which, in fact, allows
for generic SO(5) rotations. In the Hamiltonian formulation,
these admit a unitary representation, and do not include boosts
but only spatial rotations. By simple inspection, it is clear that
the first quartic-term ∑nnn(Ψ

†
nnnΨnnn)

2 that appears in Eq. (18) will
be a scalar under any such unitary transformation. In contrast,
the remaining terms can be rewritten as ∑nnn NNN2

nnn, which involves
the norm of a 5-component vector of fermion bilinears

NNNnnn = Ψ
†
nnn
(
β ,α1,α2,α3,α5)

Ψnnn. (33)

Accordingly, this part of the 4-Fermi interaction is also invari-
ant under SO(5) rotations NNNnnn 7→ RNNNnnn′ , where R is an orthogo-
nal matrix RtR = 1 with detR = 1, and nnn′ is the corresponding
two-dimensional rotation of the lattice.

Although the twisted-mass Wilson regularization (11)
breaks explicitly this arbitrary SO(5) symmetry, there can ex-
ist specific rotation angles θ and matrices R that correspond
to an exact invariance of the model under a discrete SO(5) ro-
tation. In particular, let us focus on a discrete π/2-rotation
that transforms the spatial coordinates as nnn = (n1,n2) 7→ nnn′ =
(−n2,n1). It is important to emphasise that the action of
this rotation on the Dirac spinor Ψnnn 7→ SRΨnnn′ will not be the
same as that of the corresponding SO(1,2) Lorentz rotation
Λ, namely Ψnnn 7→ SΛΨnnn′ . As discussed in Appendix B, such
a Lorentz rotation is SΛ = exp{ 1

2 θγ1γ2} = 12 ⊗ exp{ i
4 πσ z},

and one can then check that invariance of the lattice model

HTM
0 7→ HTM

0 would require a momentum-independent mass,
which is no longer the case with the Wilson-mass regular-
isation (9). In order to find a π/2-rotation that leaves the
model invariant we can, instead, look for a different rotation
SR within the above SO(5) group of rotations. This SO(5) in-
variance requires that the Dirac α and β matrices in Eqs. (14)-
(15) transform as

S†
Rα

1SR =+α
2, S†

Rα
2SR =−α

1,

S†
Rα

3SR =+α
5, S†

Rα
5SR =+α

3, S†
Rβ SR =−β .

(34)

We note that the first row of Eq. (34) coincides with the trans-
formations that would be obtained from the π/2-rotation of
the SO(1,2) Lorentz group. On the other hand, the second
row describes different transformation laws that are crucial to
attain invariance of the twisted Wilson mass (11). One can
check that Eq. (34) has the following solution

Ψnnn 7→ SRΨnnn′ , SR =
1√
2

(
S† S
S −S†

)
, (35)

where S = exp{i π

4 (1 − σ z)} is known as the phase-gate in
quantum computing [201], which maps the eigenvectors of
σ x onto those of σ y, namely S |±x⟩=

∣∣±y
〉
. Combining these

transformations with the action of the rotation on the crystal
momenta, we find that the Bloch Hamiltonian (29) is indeed
invariant when m1 = m2: SRH0(k2,−k1)S

†
R = H0(k1,k2). At

the level of the zero modes (31), the spatial part of this discrete
SO(5) transformation respects the set of corners, and one says
that these anomalous boundary states are protected by this dis-
crete spatial symmetry. Since they only have support on a re-
gion of codimension 2, they are the boundary manifestation
of symmetry-protected HOTI groundstates. We note that this
symmetry can be interpreted as the multi-layer counterpart of
the C4 symmetry of the BBH model [52, 53].

Before closing this subsection, we remark that the unitary
transformation on the spinors Ψnnn 7→ SRΨnnn′ , together with the
transformation of the Dirac α and β matrix (34), can be used
to show that the vector of bilinears simply transforms as

NNNnnn 7→ NNNnnn′′′ = Ψ
†
nnn′
(
−β ,α2,−α

1,α5,α3)
Ψnnn′′′ . (36)

It is then clear that its norm is conserved and, thus, the quar-
tic interactions (18) are also left invariant under this discrete
SO(5) rotation Hint 7→ Hint. Altogether, this proves that the
full lattice model is invariant H = HTM

0 +Hint 7→ H. Since the
set of all four corners is also invariant under a π/2 rotation,
we expect that the anomalous corner states will be protected
by this symmetry and, thus, robust when varying the micro-
scopic parameters of the model and switching on interactions.
The only possibility to get rid of them is by closing the bulk
energy gap, which would signal a quantum phase transition
to a trivial band insulator or to a groundstate with symmetry-
broken long-range order. We will explore these possibilities in
the sections below but, first, let us provide a bulk perspective
of the higher-order topology associated to these corner modes.
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B. Higher-order topological invariants

According to our current understanding of the bulk-
boundary correspondence of symmetry-protected topological
phases [120], the anomalous zero modes are a boundary man-
ifestation of a topological band structure in the bulk. For the
present model, this phase should be a HOTI of second order
with a certain non-vanishing topological invariant. As shown
in [199, 200], this invariant can be expressed as the product of
two winding numbers, which will allow us to find the phase
transitions between the HOTI and a trivial insulator for g2 = 0.

At the level of the twisted-mass free Hamiltonian (11), one
sees that βH0(kkk)β = −H0(kkk), which corresponds to the sub-
lattice symmetry in the classification of topological insula-
tors under non-spatial symmetries, and shows that the band
structure (30) always comes in pairs of positive-negative en-
ergies. We note that single-particle Hamiltonian also has time-
reversal and particle-hole non-spatial symmetries, such that it
would belong to the BDI class. Rather than pursuing the stan-
dard manifestation of such a topological-insulator class, the
idea now is to find an alternative unitarily-equivalent repre-
sentation of the Dirac matrices that intertwines the effect of
the sublattice symmetry with the dimensionality of the prob-
lem in a specific manner, which we now discuss. This is, once
more, only allowed by the fact that we are working with a re-
ducible representation of the Clifford algebra. By applying
the following unitary transformation U , built again from the
S-gate, one finds that the β -matrix transforms as

U =
1√
2

(
iS† S
−iS S†

)
, U†

βU = σ
y ⊗σ

z =: β2 ⊗β1, (37)

where β1 = σ z and β2 = σ y. On the other hand, the Dirac α

matrices transform according to the following expressions

U†
α

1U =+12 ⊗σ
x, U†

α
2U =+σ

x ⊗σ
z,

U†
α

3U =−12 ⊗σ
y, U†

α
5U =−σ

z ⊗σ
z,

(38)

which can be used to show that the transformed Bloch Hamil-
tonian (29) has the following tensor-product structure

U†H0(kkk)U = 12 ⊗h1(k1)+h2(k2)⊗β1. (39)

Here, we have defined the following single-particle Hamilto-
nians that only depend on the kinetic energy and Wilson mass
along a specific direction in momentum space

h1(k1) = t sin(k1a)σ x − (m̃1 −2t̃ cos(k1a))σ y,

h2(k2) = t sin(k2a)σ x − (m̃2 −2t̃ cos(k2a))σ z.
(40)

One can check that each of these Hamiltonians has an in-
dividual sublattice symmetry β1h1(k1)β1 = −h1(k1), and
β2h2(k2)β2 =−h2(k2), which guarantees that the full Hamil-
tonian fulfills the desired transformation βH0(kkk)β =−H0(kkk).
Each of these terms (40) can be understood as a two-band
model corresponding to an un-twisted Wilson regularization
of a (1 + 1)-dimensional Dirac-fermion QFT [131]. This
tensor-product construction also highlights that the corner

−m1a/r

−m
2a

/r

0 2

0

2

eiπ𝖶
1𝖶

2

0

−1

SOTI
hidd

en SO
(5)

sym
metry

TBI

FIG. 4. Non-interacting higher-order topological phase diagram:
We represent the topological invariant in Eq. (45) as a function of
the bare twisted masses m1 and m2. In the green inner square m ja ∈
(−2r,0), the topological invariant is non-trivial eiπW1W2 = −1, and
the groundstate of the twisted-Wilson lattice model corresponds to
a higher-order topological insulator (HOTI). The shaded line with
m1 = m2 represents the regime where the model has a discrete SO(5)
symmetry that protects the corner modes. The white region where
m ja /∈ (−2r,0) for one or both masses corresponds to a trivial band
insulator (TBI) with trivial topological invariant eiπW1W2 =+1.

states are not equivalent to the edge states of topological insu-
lators for one-dimensional chains, arranged along the bound-
aries of a square lattice. It is really the two-dimensional bulk
that is required to host and protect these corner modes.

The lower-dimensional band structures of h j(k j) have a
pair of Dirac points corresponding to the projection of the pre-
vious Dirac points (7) onto the respective axis kD,ℓ j = kkkD,ℓℓℓ ·e j,
each of which presents a different mass

kD, j =
π

a
ℓ j, ℓ j ∈ {0,1}, m j(kkkD,ℓℓℓ) = m̃ j −2t̃(−1)ℓ j . (41)

In analogy to our discussion of the Chern insulator (C6) an the
mass matrix (C4), we can now define two mass matrices

MW,1 = ∑
l1=0,1

m1(kkkD,ℓℓℓ) |ℓ1⟩⟨ℓ1| , MW,2 = ∑
l2=0,1

m2(kkkD,ℓℓℓ) |ℓ2⟩⟨ℓ2|,

(42)
each of which contains the information about each of the
twisted Wilson masses at the corresponding projection of the
Dirac point. The Berry connection for each of these projec-
tions is Ai(ki) = −i⟨ε−(ki)|∂ki |ε−(ki)⟩, where |ε−(ki)⟩ are
the negative-energy modes that would be filled in the corre-
sponding lower-dimensional groundstate. One can define a
Chern-Simons form [82] associated to this Berry connection
or, equivalently, a so-called Zak’s phase [202], which plays
the role of the above Chern number (C6) in this reduced di-
mensionality. We find that each of these invariants

CS j =
1

2π

∫
dk jA j(k j) =

1
2π

arg
{

Det
(
MW, j

)}
. (43)
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is again non-trivial when an odd number of the projected Dirac
points have a negative twisted Wilson mass

CS j =
1
4 ∑
ℓ j=0,1

(−1)ℓ j sgn{m j(kkkD,ℓℓℓ)}. (44)

As is well-known for standard first-order topological insula-
tors [203], these topological invariants CS j = W j/2 are pro-
portional to the winding number W j of the mappings d̂dd j(k j) =
ddd j(k j)/||ddd j(k j)|| : BZ 7→ U(1), where ddd j(k j) is the vector of
coefficients of the individual Hamiltonians (40) in the Pauli
basis h j(k j) = ddd(k j) ·σσσ . As discussed in Reference [82], one
can define a topological invariant that is also gauge invari-
ant by considering the Wilson loop associated to such wind-
ing number. In this way, by simply multiplying the winding
numbers together and exponentiating them, we obtain a topo-
logical invariant for HOTIs with sublattice symmetry symme-
try (39), which reads

eiπW1W2 =

{
−1 if −2r < m ja < 0, ∀ j ∈ {1,2},
+1 else (45)

A non-vanishing invariant eiπW1W2 = −1 signals the non-
trivial topology of the bulk, and must have a boundary man-
ifestation in the form of corner states. Indeed, for m1a =
m2a = r, which corresponds to the previous flat-band limit
m̃1 = m̃2 = 0 when r = 1, we find that eiπW1W2 = −1 in the
bulk, while the zero-energy corner states are those of Eq. (31).
Away from this flat-band limit, and while m ja ∈ (−2r,0) in
both directions, the groundstate is still a HOTI with eiπW1W2 =
−1, and the anomalous boundary states remain exponentially
localised to the corners. The non-interacting HOTI in param-
eter space corresponds to the square displayed in Fig. 4. For
mass parameters in the inner square, the groundstate is a HOTI
whereas, outside this region, it is trivial.

In the next section, we will explore the fate of this HOTI
as the fermion self-interactions g2 are increased. Let us note
that, in our D = 3-dimensional spacetime, considering the
role of the quartic interactions by simple power counting can
be misleading. Indeed, the dimensions of the Dirac field is
[Ψnnn] = L−1, such that [t j] = [t̃ j] = [m1] = [m2] = L−1, whereas
the coupling strength has units of length [g2] = L and, thus, a
negative energy dimension. Naive power-counting arguments
would then suggest the 4-Fermi interaction is perturbatively
irrelevant, such that the QFT in D = 2 + 1 would be non-
renormalizable. On the other hand, it is well-known that the
relevant/irrelevant nature of the couplings can be modified af-
ter resummation in the large-N limit [204], whereupon the
Thirring-like interaction (Ψ†

nnnΨnnn)
2 + ∑ j=1,2(Ψ

†
nnnα jΨnnn)

2 be-
comes marginal, whereas the Gross-Neveu-like interactions
(Ψ†

nnnβΨnnn)
2 become relevant. Even if the corresponding 4-

Fermi field theories are not perturbatively renormalizable,
they become 1/N renormalizable [8, 25–28]. The goal of the
following section is to analyse the effect of the 4-Fermi inter-
actions on the HOTI, including also the mass-squared interac-
tions ∑ j=3,5(Ψ

†
nnnα jΨnnn)

2, using the large-N expansion.

C. Experimental detection

We finish this section by commenting different strategies to
detect the non-trivial topological properties described above
in ultracold atom experiments. First, localized boundary
modes, such as corner modes, can be directly detected in
real space by locally resolving the atomic density for different
spin components using a quantum gas microscope [205, 206].
This can be achieved thanks to the possibility to modify
the optical potentials and to create sharp boundaries that lo-
calize the modes, resulting in an excess of atomic density
at the boundaries for the topological phase as compared to
the trivial phase, as recently demonstrated in 1D for non-
interacting [207] as well as for an interacting Fermi-Hubbard
cold-atom system [208]. These techniques can be applied also
in 2D [62], where the excess density at the boundaries can be
fitted to an exponential function, extracting the localization
length that remains finite within the topological phase and di-
verges at the phase transition. We note that the presence of
corner states can additionally be detected by measuring the
quantized charge transport that follows an adiabatic Thouless
pump [70]. Regarding the non-trivial bulk topology, this can
be detected by inspecting the structure of the entanglement
spectrum associated to certain bipartitions of the sytem [209],
which can be extracted experimentally in atomic systems by
measuring local densities and currents [210].

V. CORRELATED HOTIs, FERMION CONDENSATES
AND QUANTUM PHASE TRANSITIONS

In this subsection, we discuss the effect of the 4-Fermi
interactions in detail. We argued previously that the HOTI
groundstate is protected by a discrete SO(5) rotation and, thus,
should be robust under symmetric perturbations unless those
are sufficiently strong such that the bulk energy gap closes
allowing for a change of the topological invariant, or if a
certain symmetry-breaking phase transition takes place. We
also showed in Eq. (36) that the 4-Fermi interactions pre-
serve this discrete SO(5) rotational symmetry, such that one
expects the HOTI phase to become a correlated HOTI as one
increases the coupling strength g2 > 0. Eventually, when the
interactions are sufficiently strong, there may be a symmetry-
breaking phase transition at some g2

c , which paves the way
for the appearance of new phases of matter typically referred
to as fermion condensates in the QFT literature. The goal of
this section is to explore the possible condensates allowed by
the rich SO(5) structure of the self-interactions, and provide
a quantitative account about which of the fermion conden-
sates is expected to form at which point in parameter space
(m1a,m2a,g2/a).

A. Auxiliary fields and the discrete SO(5) rotation

To accomplish this goal, we shall return to the Euclidean
formulation of our SO(5) Dirac matter in Eqs. (1) and (4),
where we can make use of controlled approximations such as
the large-N expansion [204]. To present a non-perturbative,
yet tractable, account of the 4-Fermi interactions, one can gen-
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eralise the Euclidean action in Eqs. (1) and (4) to N flavours

ψ(x) 7→ ψ(x) = (ψ1(x),ψ2(x), · · · ,ψN(x))t

ψ(x) 7→ ψ(x) = (ψ1(x),ψ2(x), · · · ,ψN(x)).
(46)

The free part of the regularised Wilson twisted-mass action
STM

0 (8) simply becomes a sum of the corresponding actions
for each of the fermion flavours. In contrast, the 4-Fermi term
does couple the different flavours where, to have a consistent
N → ∞ limit, one must rescale the coupling strength as

Sint=
∫

d3x
g2

2N

(
−Jµ Jµ +(ψγ

3
ψ)2 +(ψγ

5
ψ)2 − (ψψ)2

)
,

(47)
where the gamma matrices for N flavours appearing the in the
above bilinears should be understood as γa 7→ 1N ⊗ γa. We
will assume this in all the expressions below, which leads to
an additional U(N) symmetry in flavour space.

The first step of the large-N approximation is to intro-
duce auxiliary fields via a Hubbard-Stratonovich transfor-
mation [211, 212], such that the partition function becomes
quadratic in the Grassmann spinors. We need to introduce six
real bosonic fields aµ(x),σ1(x),σ2(x), and π(x), such that the
partition function can be exactly rewritten as

Z =
∫
[DψDψDaµ Dσ jDπ]e

−STM
0 −S′int−

∫
d3x N

2g2 (aµ aµ+σ jσ
j+π2)

.

(48)
As a consequence of this transformation, we get the following
action coupling between the fermionic and bosonic fields

S′int =
∫

d3xψ(x)
(
iγµaµ(x)+ iγ3

σ1(x)+ iγ5
σ2(x)+π(x)

)
ψ(x).

(49)
Except for the π-field, the rest can be incorporated in the free
action STM

0 by the following substitution

∂µ 7→ ∂µ + iaµ(x), m j 7→ m j + iσ j(x), (50)

which shows that the auxiliary fields aµ(x) act as an effec-
tive gauge-like potential, the components of which admix by
the Lorentz transformations, and couple to the fermions min-
imally. We stress, however, that the free action (48) of these
auxiliary fields is not gauge invariant, but simply a mass-
like term that becomes very heavy in the large-N limit. On
the other hand, the σ j(x) are scalar fields that couple to the
fermions via a pair of twisted Yukawa-type couplings. To be
more accurate, we should consider the Euclidean formulation
of the two parity transformations (32), which amount to

P1ψ(x) = γ
1
ψ(τ,−x1,x2), P1ψ(x) =−ψ(τ,−x1,x2)γ

1,

P2ψ(x) = γ
2
ψ(τ,x1,−x2), P2ψ(x) =−ψ(τ,x1,−x2)γ

2.

(51)

Since the 4-Fermi interactions are invariant under these parity
transformations, we know that S′int 7→ S′int, which require the
auxiliary gauge-like fields to transform as

P1aµ(x) =−(1−2δµ,0)aµ(τ,−x1,x2),

P2aµ(x) =−(1−2δµ,0)aµ(τ,x1,−x2),
(52)

whereas the auxiliary σ fields transform as

P1σ j(x) = σ j(τ,−x1,x2),

P2σ j(x) = σ j(τ,x1,−x2).
(53)

Therefore, we see that the σ fields are all parity even, the a0(x)
component of the gauge-like field is parity even, while the
spatial components aaa(x) are parity odd.

We have so far left out the discussion of the π(x) field, as it
gives rise to a new term that was not present in STM

0 . Consider-
ing the parity transformations in Eq. (51), we see that in order
to recover parity invariance, the π(x) field should transform as

P1π(x) 7→ −π(τ,−x1,x2),

P2π(x) 7→ −π(τ,x1,−x2),
(54)

and, thus, corresponds to a pseudo-scalar field that is parity
odd. According to Eq. (49), this pseudo-scalar auxiliary field
couples to the fermions via the standard Yukawa coupling.

Let us finally discuss the discrete SO(5) rotational sym-
metry (35) which, for the Euclidean Grassmann fields, cor-
responds to

ψ(τ,xxx) 7→ SRψ(τ,x2,−x1), ψ(τ,xxx) 7→ −ψ(τ,x2,−x1)S
†
R,

(55)
where we recall that SR is the unitary matrix given by Eq. (35).
Considering that the Euclidean gamma matrices transform as

S†
Rγ

1SR =−γ
2, S†

Rγ
2SR =+γ

1,

S†
Rγ

3SR =−γ
5, S†

Rγ
5SR =−γ

3, S†
Rγ

0SR =−γ
0,

(56)

one can readily see that the original Euclidean action Eqs. (1)
and (4) is also invariant under this discrete SO(5) rotation (55)
when m1 = m2. Once the auxiliary fields are introduced, this
rotational symmetry implies that the vector field should trans-
form as

a0(x) 7→+a0(τ,x2,−x1),

a1(x) 7→+a2(τ,x2,−x1),

a2(x) 7→ −a1(τ,x2,−x1),

(57)

whereas the scalar and pseudo-scalar fields must fulfill

σ1(x) 7→+σ2(τ,x2,−x1),

σ2(x) 7→+σ1(τ,x2,−x1),

π(x) 7→ −π(τ,x2,−x1).

(58)

One can check that these pair of equations (57) and (58)
define a transformation on a vector of auxiliary fields φφφ(x) :=
(a0(x),a1(x),a2(x),σ1(x),σ2(x),π(x)) 7→ Oφφφ(τ,x2,−x1),
with OtO = 1 and detO =+1. We could then say that, within
the Euclidean formulation where the field and the adjoint are
independent Grassmann fields, the rotational symmetry (55)
can be interpret as a specific SO(6) rotation of the auxiliary
fields and fermion bilinears. We note that the interacting part
of the Euclidean action has indeed a larger symmetry under
arbitrary SO(6) rotations when expressed in term of auxiliary
fields, which gets broken down by the lattice regularization
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of the free fermions. It is only for the specific π/2 rotation
above that one recovers invariance of the full Euclidean
action. However, it must be noted that this transformation is a
rotation of the auxiliary fields about the axis a0(x) 7→ a0(x′).
If one considers the adjoint definition in the Hamiltonian
approach, a0(x) should always remain invariant, such that the
discrete symmetry reduces to the previous SO(5) rotation.

The idea of the large-N method in the present context is
to assume that these scalar fields will be homogeneous in the
groundstate of the interacting theory φφφ(x) = ΦΦΦ, ∀x, and try
to determine the regime in parameter space (m1a,m2a,g2/a)
where some of them achieve a non-zero vacuum expectation
value. This is the region of parameter space where the ground-
state supports a specific combination of fermion condensates

Aµ = ⟨aµ(x)⟩, Σ j = ⟨σ j(x)⟩, Π = ⟨π(x)⟩. (59)

Each of these fermion condensates is responsible for breaking
a particular symmetry, and may even change completely the
QFT that governs the continuum limit in the vicinity of such
a symmetry-breaking phase transition. This is the case of the
vector condensate, which is proportional to a fermion current
Aµ ∝ ⟨Jµ⟩, and would thus forbid recovering Lorentz invari-
ance even in the continuum limit. Such condensates have been
identified in related two-band models [95, 213].

The vacuum expectation values of the scalar and pseudo-
scalar condensates play a different role. In fact, the scalar
condensates Σ1 ∝ ⟨ψiγ3ψ⟩ and Σ2 ∝ ⟨ψiγ5ψ⟩ are gener-
ally non-zero except for a particular line in parameter space
m1a = m2a =−r, which is a consequence of the twisted Wil-
son mass regularization. These scalar condensates do not
break any of the parity symmetries (32), but contribute with
a renormalization of the bare twisted masses m j 7→ m j +Σ j
which, as will be discussed below, can change abruptly the
value of the topological invariant (45). When the bare masses
m1 = m2 =: m, the two scalar condensates take equal val-
ues Σ1 = Σ2 =: Σ, such that the discrete SO(5) protecting
symmetry (58) is not broken, and one can still talk about the
symmetry-protected HOTI. By increasing the interaction g2,
as discussed below, one of the possibilities is that the values
of Σ will change and lead to an interaction-induced quantum
phase transitions between the correlated HOTI, and a trivial
band insulator with no corner states and a vanishing many-
body topological invariant.

Before closing this section, we comment on the remaining
fermion condensate Π ∝ ⟨ψψ⟩. Although in even spacetime
dimensions, this condensate is parity even and associated to
the breakdown of chiral symmetry, in our even-dimensional
QFT it plays a different role. As discussed above, this conden-
sate is odd under any of the parities (32), and a finite vacuum
expectation value would imply the spontaneous breakdown of
parity. The possibility of finding such condensates in the stan-
dard Wilsonian lattice regularization of Dirac QFTs was ini-
tially considered by S. Aoki [214], and it is typically referred
to as an Aoki condensate in lattice gauge theories. In our cur-
rent model of HOTIs, rather than parity breaking, it is more
important to consider the discrete SO(5) symmetry, which is
spontaneously broken by a non-zero value of this π conden-
sate (58). We note that the formation of vector condensates

AAA ̸= 000 would also break spontaneously the protecting symme-
try in light of Eq. (58). As shown below, understanding the
competition of the different condensation channels is the key
to understand the phase diagram of our HOTI.

B. Large-N condensates and the effective potential

In this subsection, we describe the results of the afore-
mentioned large-N technique to chart the phase diagram of
the interacting HOTI. As advanced previously, there are var-
ious possible fermion condensates characterised by different
vacuum expectation values, which could be obtained in the
N → ∞ limit by solving a set of gap equations. As discussed
in the context of lattice gauge theories [215], these gap equa-
tions are, however, only valid for non-vanishing values of the
vacuum expectation values Φa ̸= 0. On the other hand, we
are also interested in the competition of the HOTI with a triv-
ial band insulator, where the symmetry-breaking fermion con-
densates vanish and there is no spontaneous symmetry break-
ing. In order to explore the whole phase diagram, we need
to go beyond the gap equations and obtain the large-N effec-
tive potential Veff(ΦΦΦ), the minimum of which will provide the
values of the auxiliary fields in ΦΦΦ for any specific point in pa-
rameter space determining, in particular, which of the possible
symmetry-breaking condensates prevail.

The large-N effective potential can be obtained diagram-
matically by considering the Feynman diagrams with a sin-
gle fermion loop and an increasing number of external lines
describing the auxiliary fields. Any other one-particle irre-
ducible diagram with more fermion loops and internal aux-
iliary lines contributes with a higher order in 1/N, and can
thus be neglected when N → ∞. In the standard calculation
of the chiral-invariant Gross-Neveu QFT, one can show that
only diagrams with an even number of external auxiliary legs
can give a non-zero contribution [204]. On the other hand,
for our twisted Wilson mass regularization, one cannot apply
the same arguments, and must also take into account the dia-
grams with an odd number of external legs. A similar situation
can also be found in Chern-insulator models with a standard
Wilson discretization although, there, one finds that these odd
terms are zero due to the vanishing of the corresponding inte-
grals [95, 96]. For the present model, this is not the case, and
both the even and odd Feynman diagrams have a non-zero
contribution that must be accounted for (see Appendix D).

The resummation of these Feynman diagrams yields the
leading-order quantum radiative corrections δVeff(ΦΦΦ) to the
classical potential of the auxiliary fields

Veff(ΦΦΦ) =
N

2g2 ΦΦΦ
2 +δVeff(ΦΦΦ). (60)

As we have assumed that these auxiliary fields are homoge-
neous, all the relevant information is included in this effective
potential, which plays a crucial role in determining the param-
eter regimes where the groundstate displays non-zero vacuum
expectation values ΦΦΦ ̸= 0. In fact, the classical part of the po-
tential predicts a zero vacuum expectation value ΦΦΦ = 0, and it
is the contribution of radiative corrections δVeff(ΦΦΦ) for g2 > 0
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that can change the minimum of Eq. (60) allowing for conden-
sation. As discussed in Appendix D, this resummation can be
accomplished to all orders of g2, which allows us to address
non-perturbative effects in the phase diagram of the model.
We find that the quantum correction can be expressed as

δVeff

2N
=−

∫
k

log

(
k2

0 +(k̂kk+AAA)2 +mmm2(kkk,ΣΣΣ)+Π2

k2
0 + k̂kk2 +mmm2(kkk,000)

)
, (61)

where we recall that k̂kk is the regularised spatial momentum in
Eq. (6), and we have introduced the shifts in the twisted Wil-
son masses (9) stemming from the additive renormalisations
that one finds for a non-zero values by the scalar condensates

mmm(kkk,ΣΣΣ) =
(
m1(kkk)+Σ1,m2(kkk)+Σ2

)
. (62)

We also recall that the integral symbol is a short-hand nota-
tion (5) for the spatial mode sum and the zero-temperature
limit of the Matsubara sum. As discussed in Appendix D,
the temporal component of the pseudo-vector field A0 does
not contribute to the effective potential and, thus, cannot con-
dense. The occurrence of other condensation channels will
depend on the minimum of Veff(AAA,ΣΣΣ,Π). For m1 = m2, this
effective potential can be easily seen to be invariant under the
discrete SO(5) rotation that takes k1 7→ k2, k2 7→−k1, together
with A1 7→ A2, A2 7→ −A1, Σ1 7→ Σ2, Σ2 7→ Σ1, and Π 7→ −Π.

Let us note that the above expressions with the specific lat-
tice regularization are in fact more general, and would also
apply to continuum QFTs with the same 4-Fermi interactions.
This would simply require substituting k̂kk 7→ kkk and m j(kkk) 7→
m j, recovering in this way the underlying Lorentz invariance.
On the other hand, the expressions could also be used with
a discretized Euclidean time by substituting k0 7→ sin(k0a)/a
with k0 = −π/a+ 2π(n0 +1/2)/aN0 with n0 ∈ ZN0 . From
the perspective of the cold-atom quantum simulator, one is in-
terested in the continuum-time limit and the Hamiltonian field
theory. In this case, one can actually perform the integral over
k0 ∈ R, and express the radiative corrections as follows

δVeff(ΦΦΦ) = 2N

∫
kkk

(
ε(k̂kk+AAA,mmm(kkk,ΣΣΣ),Π)− ε(k̂kk,mmm(kkk,000),0)

)
,

(63)
where we have introduced a short-hand for the spatial-
momenta sum within the Brillouin zone

∫
kkk =

1
(Nsa)2∑kkk∈BZ. In

addition, we have generalised the energy dispersion relation
in Eq. (30) to account for the possible non-zero vacuum ex-
pectation values of the fermion condensates

ε
(
k̂kk+AAA,mmm(kkk,ΣΣΣ),Π

)
=

√
(k̂kk+AAA)2 +mmm2(kkk,ΣΣΣ)+Π2. (64)

Expression (63) has a very simple interpretation, the large-
N radiative corrections are given by the total shift of single-
particle energy levels in the filled bands, i.e. those with nega-
tive energies forming the Dirac sea, once some of the conden-
sates form ΦΦΦ ̸= 000. For the scalar condensates Σ j, such correc-
tions appear as soon as the interactions are switched on g2 > 0.
The only exception is the straight line at m1a = m2a = −r,

in which the scalar condensates vanish by symmetry argu-
ments. For the vector AAA and pseudo-scalar Π condensates,
the situation is completely different. A non-zero value of
these condensates would break the discrete SO(5) symmetry
in Eqs. (57)-(58), which can only happen spontaneously for a
sufficiently-strong coupling g2 > g2

c(m1,m2). In order to find
out which of the condensates prevails, we need to minimize
the full effective potential

ΦΦΦ
⋆ = argmin

{
N

2g2 ΦΦΦ
2 +δVeff(ΦΦΦ)

}
, (65)

which is an unconstrained multi-parameter non-linear mini-
mization problem that must be addressed numerically, as we
detail in the following subsection.

C. Self-energy and correlated HOTIs

In the previous subsection, we have discussed the proce-
dure to find the values of ΦΦΦ

⋆, which will allow us to detect the
symmetry-breaking condensates and localise the critical lines
that separate them from the HOTI and the trivial band insula-
tor. On the other hand, we would also like to predict the flow
of the critical lines separating the HOTI from the trivial band
insulator as the coupling increases g2 > 0. Since topologi-
cal phases cannot be distinguished by a local order parameter,
we also need to calculate the topological invariant (45) away
from the non-interacting free theory. An approximation that
has already been used for the many-body topological invari-
ants of standard topological insulators [216–220], deals with
the so-called topological Hamiltonian.

Many-body topological invariants can be defined
via the two-point Green’s functions G(x1 − x2) =
⟨T {Ψ†(x1)Ψ(x2)}⟩ [221, 222], where the expectation
value is calculated over the groundstate with non-zero inter-
actions. Following the prescriptions of quantum-many body
physics within condensed matter [77], by going to momentum
space, the inverse of the Green’s function can be expressed as

G−1(ik0,kkk) = ik0 −H0(kkk)+Σs(ik0,kkk), (66)

where H0(kkk) is the single-particle Hamiltonian, the N-flavour
version of Eq. (29) in our case, and Σs(ik0,kkk) is the so-
called self-energy. This self-energy contains all the one-
particle irreducible “tadpole” contributions to the fermion
propagator arising from intermediate scattering processes in
which particle-antiparticle pairs are virtually created from the
groundstate. Within our large-N theory, we have precisely cal-
culated those at leading order in N by introducing the auxiliary
fields. In fact, the above condensates can be readily used to
approximate this self-energy as

Σs(ik0,kkk) = 1N ⊗
(

γ
0
γ

µ Aµ + iγ0
γ

3
Σ1 + iγ0

γ
5
Σ2 + γ

0
Π

)
,

(67)
which has no momentum dependence Σs(ik0,kkk) = Σs(0,000)
since we have assumed the condensates to be homogeneous.

As discussed in [216–220], the static contributions to the
self-energy Σs(0,kkk) can be used to define the so-called topo-
logical Hamiltonian. To consider the same symmetry class as
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the non-interacting one, we set AAA = 000 and Π = 0, such that the
discrete SO(5) rotation is preserved. In this case, the only con-
tribution to the topological Hamiltonian stems from the scalar
condensates

Ht(kkk)=H0(kkk)+Σs(0,kkk)=H0(kkk)+ iγ0
γ

3
Σ1+ iγ0

γ
5
Σ2. (68)

Within this large-N approximation, the many-body topolog-
ical invariant can be expressed in terms of the two Chern-
Simons forms (69) with the twisted Wilson masses renor-
malised by the two scalar condensates (62), namely

W j(ΣΣΣ) =
N
2 ∑

ℓ j=0,1
(−1)ℓ j sgn{m j(kkkD,ΣΣΣ)}, (69)

The full topological invariant of the correlated HOTI can be
approximated, within the large-N limit, as follows

eiπW1(ΣΣΣ)W2(ΣΣΣ) =

{
(−1)N if − 2r

a < m j +Σ j < 0 ∀ j.
(+1)N else

(70)
Accordingly, the large-N solution obtained by minimizing the
effective potential (65) can be readily used to extract Σ1,Σ2 in
the parameter regime where the discrete SO(5) symmetry is
still preserved, and localise the critical surface that separates
the correlated HOTI from the trivial band insulator. We recall
again that, in order to have the symmetry protection, we need
to consider the regime where m1 = m2 and Σ1 = Σ2, which
will cut this critical surface determining a critical line.

D. Large-N results and phase diagram

We start by making the assumption that only the pseudo-
scalar auxiliary field condenses Π = ⟨π⟩ ̸= 0, which we ex-
pect describes the leading symmetry-breaking channel among
all other condensates, and should set in at a certain value of
the interaction strength g2 > 0. This assumption will allow
us to derive a set of simple gap equations that can be later
used as a reference in the minimization of the full effective
potential (65) that contains all possible condensation chan-
nels (63). As with gap equations in other models [95, 96, 133],
this formalism is applicable whenever the order parameter
is non-zero Π > 0 [215]. As advanced in the previous sec-
tions, the σ condensates typically attain non-zero values for
any point in parameter space (m1a,m2a,g2/a), except for the
line at fixed twisted mass m1a = m2a = r. We hence con-
sider that ΣΣΣ = ⟨σσσ⟩ ̸= 000. Therefore, the main assumption in
the following gap equations is that the vector condensate van-
ishes AAA = ⟨aaa⟩ = 000 (this will be justified in Fig. 7 below).
The gap equations are derived by solving the set of non-
linear equations given by the stationary point ∂ΠVeff|Aµ=0 =
∂Σ1Veff|Aµ=0 = ∂Σ2Veff|Aµ=0 = 0. Setting the Wilson parame-
ter to r = 1 henceforth, we find

1
g2 = 4

∫
dk0

2π

∫
kkk

1

k2
0 + k̂kk2 +mmm2(kkk,ΣΣΣ)+Π2

, (71)

where we have assumed that Π > 0 to simplify the equa-
tion. In addition, we get the following two equations from

FIG. 5. Interacting higher-order topological phase diagram I: We
consider parameter space (m1a,m2a,g2/a), and represent the differ-
ent phases in the twisted-Wilson lattice model with 4-Fermi inter-
actions. The blue and magenta curves (74) delimit the inner green
area (73) at fixed-g2 slices that has a non-trivial many-body topo-
logical invariant eiπW1(ΣΣΣ)W2(ΣΣΣ) = −1 for an odd number of fermion
flavours. The red lines are obtained by solving the gap equations to
localise the boundary of the parity-breaking Π condensate (71)-(72).
The black lines demonstrate that this pseudo-scalar condensate actu-
ally grows from the four corners of the non-interacting HOTI phase
at g2 = 0 (see Fig. 4), forming the shape of an Eiffel tower that rests
on the correlated HOTI. All numerical evaluations employed a spa-
tial lattice with Ns = 322 sites.

the derivatives with respect to the scalar condensates

m ja
g2 =−4

∫
dk0

2π

∫
kkk

1− cosk ja

k2
0 + k̂kk2 +mmm2(kkk,ΣΣΣ)+Π2

, (72)

where we have used Eq. (71) to simplify them, getting an ex-
pression that relates to the twisted masses m1,m2.

Equations (71)-(72) can be solved with Π = 0+ to map
out the boundary of the phase hosting a pseudo-scalar con-
densate. This critical region is a surface in parameter space
(m1a,m2a,g2/a), and is shown in red in Fig. 5. This surface
is spanned by a number of trajectories that represent solutions
to the gap equations for Π = 0+, for which we fix a different
value of the twisted masses renormalised by the scalar con-
densates (m j + Σ j). These trajectories are plotted in Fig. 5
as a collection of red dashed curves; the resulting network
visualises a closed surface which descends from strong cou-
pling down to g2/a ≈ 0.7. There are a couple of interesting
comments: (i) The volume inside the red surface describes
the spontaneous symmetry-broken phase with a pseudo-scalar
condensate. This condensate breaks any of the parities, and
corresponds to the so-called Aoki phase found in other lat-
tice field theories [214]. As emphasised above, the more im-
portant thing is that this pseudo-scalar condensate also breaks
spontaneously the discrete SO(5) symmetry responsible for
the protection of the HOTI. Hence the higher-order topolog-
ical invariant and the corner modes cannot coexist with this
pseudo-scalar condensate. (ii) The volume that contains this
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FIG. 6. Interacting higher-order topological phase diagram II:
Here the lines where the gap functions f1 = 0 (blue) and f2 = 0
(magenta) are plotted for increasing values of the coupling strength
g2/a ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7}, which grow as one moves to-
wards the center of the square. The HOTI phase is contained within
a star-shaped region that is delimited by groups of four of these lines,
corresponding to the same value of the coupling strength g2/a.

SO(5) breaking condensate is centered around the symmetry
line m1a = m2a =−1 in which the scalar condensates vanish
ΣΣΣ = 000, and gets more and more compressed as the interaction
strength becomes large g2/a ≫ 1. On the other hand, for for
g2 = 0, the gap equation (71) becomes singular at the four cor-
ners (m1,m2) ∈ {(0,0),(0,−2),(−2,0),(−2,−2)}, and we
have found that this phase extends all the way down to weak
coupling in four very sharp spikes. Let us note that this is a
large-N prediction, and a different method should be used to
determine the extent of this phase for finite N.

As already remarked above, the gap equations (71)-(72) are
only valid for Π > 0. On the other hand, the original question
that motivated the study was to see the extent of the HOTI
as one increases interactions, which would require explor-
ing the region with g2 > 0 for which Π = 0, more particu-
larly, the weaker-coupling regime beneath the Aoki phase. To
explore it, we will directly minimize the effective potential
Veff(000,ΣΣΣ,0) at a specific (m1a,m2a,g2/a). As discussed in
Eq. (70), the many-body topological invariant for the HOTI in
the large-N limit is non-trivial eiπW1(ΣΣΣ)W2(ΣΣΣ) =−1 when

−2 < m1a+Σ1a < 0, −2 < m2a+Σ2a < 0, (73)

and we have an odd number of flavours. The correlated HOTI
phase will then be contained in a region bounded by con-
tours along which a gap function f j(k ja,Σ ja) = m ja+(1−
cosk ja) + Σ ja (with j = 1,2) vanishes at either the origin
k j = 0, or at the zone edge k j = π/a. The procedure is then to
search for solutions of the non-linear equations

m j +Σ j = n j, n j ∈ {0,−2}, (74)

using the value of the scalar condensates Σ1,Σ2 obtained by
numerically minimisation of Veff(000,ΣΣΣ,0). In practice, we de-
fine a circle centered at the line of symmetry where ΣΣΣ = 000

by defining the twisted masses as (m1,m2) = (−1/a,−1/a)+
m(cosθ ,sinθ), for m > 0 and θ ∈ [0,2π). We then search
for the roots of Eq. (74) by scanning first in θ and, sub-
sequently, in m. The resulting contours along which a gap
function vanishes f j(k j,Σ j) = 0 are plotted as blue (magenta)
lines in Figs. 5,6 for various values of the coupling strength
g2. Each pair of blue (magenta) lines for a fixed coupling
strength corresponds to the renormalised twisted mass propor-
tional to iγ3 (iγ5) satisfying f1(0,Σ1) = 0 or f1(π/a,Σ1) = 0
( f2(0,Σ2) = 0 or f2(π/a,Σ2) = 0). The region of the corre-
lated HOTI phase is enclosed within the areas inside the four
intersecting lines, and is depicted in Fig. 5 by a shaded green
area that connects to the green square in the non-interacting
limit (Cf. Fig. 4), and projected onto the (m1,m2)-plane in
Fig. 6. As g2 increases, the borders of this region curve in-
wards, and the HOTI shrinks until it roughly coincides with
the lateral extent of the Aoki phase at the critical coupling
g2/a ≃ 0.7 (note the lower surface of the Aoki phase has con-
vex curvature, confirmed in Fig. 7). On the other hand, all the
empty region surrounding both the green and red volumes cor-
responds to a trivial band insulator, in which the topological
invariant is trivial and the pseudo-scalar condensate vanishes.
All the critical surfaces predicted within our large-N methods
correspond to higher-order quantum phase transitions, either
topological or symmetry-breaking ones.

Once we have discussed the phase diagram of Fig. 5 in de-
tail, we should check for the consistency of the assumptions
we made about the competing condensates by minimising the
full effective potential Veff(AAA,ΣΣΣ,Π). We recall again that one
can set A0 = 0 as discussed in Appendix D, but must con-
sider the other competing condensation channels along lines
of fixed (m1,m2). Fig. 7 shows the resulting condensates for
two choices of (m1,m2) at different distances from the line
of symmetry m1 = m2 = −1/a. The Π condensate signalling
the SO(5)-breaking Aoki phase rises from zero at a critical
coupling g2

c/a ≈ 0.7, and the opposite signs of the scalar
condensates Σ1 = −Σ2 correspond to (m1,m2) lying on op-
posite sides of the symmetric line (−1/a,−1/a). Crucially,
the current condensate A1 remains zero throughout, justify-
ing our previous assumption where we set AAA = 000. Solutions
with AAA ̸= 000, as found for an interacting Chern-insulator two-
band model in [95, 96], could only be found in our lattice
model by artificially constraining Π = 0. Otherwise, we find
that the SO(5)-breaking Aoki condensate always describes the
leading condensation channel Π > 0 as one increases the cou-
pling strength. Further from the line of symmetry, as shown by
the dashed lines in Fig. 7 the picture remains qualitatively the
same, but with values of the scalar condensates Σi that become
larger in magnitude; this time at strong-enough coupling the
trajectory actually re-enters the SO(5)-symmetric phase, re-
flected by the renewed vanishing of Π and the kinks in Σi(g2).
however, rather than re-entering into the HOTI phase, one
goes into a trivial band insulator where, even if the SO(5) sym-
metry is preserved, the topological invariant is trivial and the
zero states are no longer localised at the corners of the system.



19

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
g2/a

2

1

0

1

2

3 a
1a
2a

Axa

FIG. 7. Competing condensation channels: Condensates as a
function of g2 for (m1a,m2a) = (−0.95,−1.05) (full lines) and
(−0.85,−1.15) (dot-dashed lines). The opposite signs of Σ1,Σ2 mir-
ror the signs of −1−m1,2a. Note that AAA = 000 throughout.

VI. CONCLUSION AND OUTLOOK

In this work, we have presented a non-standard lattice
regularization of Dirac QFTs based on a new type of Wil-
son fermions that have an anisotropic twisted Wilson mass.
We have shown that the anisotropic twisted Wilson mass is
responsible for the occurrence of HOTIs that display zero-
energy corner modes, and a non-vanishing topological invari-
ant in the bulk. We have discuss a cold-atom implementation
of this lattice field theory that exploits Raman optical lattices,
and spin-3/2 Fermi gases of alkaline-earth atoms. Interest-
ingly, the s-wave scattering of this atoms leads to a SO(5) in-
variant 4-Fermi interaction, which leads to an interesting com-
petition of HOTI phases and various fermion condensates. We
explored the full phase diagram of the model using large-N
techniques, and argued that the correlated HOTI phase even-
tually gives way to a parity-breaking fermion condensate.

Since the microscopic parameters of the model can be in-
dependently tuned in the proposed cold-atom experiment, it
would be very interesting that the predictions presented in
this work could be tested in future experiments. We note
that the recent experimental work on the quantum simula-
tor of Chern insulators using 87Sr Fermi gases in Raman
optical lattices [159] is very promising in this direction.
If one can use these methods for a different alkaline-earth
atoms such as 132Cs, controlling the four spin states as dis-
cussed in our work, the experiment would directly probe the
SO(5) self-interacting Dirac QFT that has been the subject
of our work. This experiment, together with related theory
works [223, 224], have also shown that it is possible to per-
form certain measurements to infer the value of a topological
invariant similar to the Chern number. It would be interesting
to explore if such methods can also be adapted to the spin-
3/2 Fermi gas, and used to infer the value of our higher-order
topological invariant. Other than that, further studies are re-
quired in order to propose other measurement schemes. For
instance, in order to retrieve the order parameter associated to

the fermion condensates discussed in this work, some sort of
spin-resolved imaging by either illuminating the gas and pro-
cessing its shadow, or using quantum gas microscopes, should
be required. These methods should be combined with mi-
crowave transition and spin-selective techniques to infer the
atomic densities corresponding to the order parameters.

From a more theoretical perspective, it would be very inter-
esting to explore finite-temperature and finite-density phases
in this model of SO(5) interacting Dirac matter. In particular,
by moving away from half filling, one should consider other
possible condensation channels that likely include supercon-
ducting and inhomogeneous orders, or even new exotic or-
ders that go beyond the Landau symmetry breaking paradigm.
The study of those drawing further connections between high-
energy physics, condensed matter, and AMO physics, will
contribute to the growing interest in this interdisciplinary line
of research [225–233].
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Appendix A: Clifford algebra and SO(D) Dirac fermions

In this appendix, we review several aspects that appear in
the description of relativistic QFTs of Dirac fermions in ar-
bitrary spatial dimensions and Euclidean imaginary time. We
discuss the role of the special orthogonal group of transforma-
tions in the description of both spacetime and internal sym-
metries. We start from the partition function of a Dirac field
of mass m which, in natural units h̄ = c = 1, can be written
as a functional integral Z =

∫
[Dψ Dψ]e−S0 , provided that the

fermionic field ψ(x) and the adjoint ψ(x) are described by
mutually anti-commuting Grassmann fields with anti-periodic
boundary conditions in the imaginary-time direction [77, 78].
The partition function thus depends on the Euclidean action

S0 =
∫

dDxψ(x)
(
γ

µ
∂µ +m

)
ψ(x), (A1)

where we have introduced µ ∈ {0, · · · ,D − 1} to label the
Euclidean spacetime coordinates x = (τ,xxx) and derivatives
∂µ = ∂/∂xµ , using Einstein’s criterion of repeated index sum-
mation. We have also introduced the gamma matrices {γµ},
which are the generators of the Clifford algebra with Eu-
clidean metric Cl(0,D)x [79, 80], and must thus fulfill{

γ
µ ,γν

}
= γ

µ
γ

ν + γ
ν
γ

µ = 2gµν1ds , (A2)
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where the Euclidean metric gµν = δ µ,ν = δ
µ

ν = δµ,ν is de-
fined through the Kronecker delta, and 1ds is the identity ma-
trix. The Euclidean gamma matrices are thus mutually anti-
commuting, all square to the identity, and do not have any
distinction between upper and lower indexes γµ = γµ .

In an irreducible representation, these generators can be ex-
pressed by square Hermitian matrices γµ ∈ Herm(Cds) act-
ing on a vector space of dimension ds = 2⌊D/2⌋, where ⌊x⌋
stands for the greatest integer less than or equal to x. Ac-
cordingly, for spacetime dimensions D = 2n or D = 2n+ 1
with n ∈ Z+, they are 2n × 2n Hermitian matrices that can
be built from specific tensor products within the orthogonal
Pauli basis γµ ∈ Bn = {12,σ

x,σ y,σ z}⊗n
. As discussed for

instance in reference [79], there are simple recipes to con-
struct these gamma matrices, and the only difference between
odd D= 2n+1, and even D= 2n spacetime dimensions is that
the latter has an additional γ2n = γ⋆, obtained by multiplying
all the matrices of D = 2n together γ⋆ = (−i)nγ0γ1 · · ·γ2n−1.

Once the gamma matrices are known, we can obtain the 2D

elements of the Clifford algebra using products. In particular,
the anti-symmetric products leads to elements of the Clifford
algebra being ordered according their rank as

Cl(0,2n) =
{

1ds ,γ
µ1 ,γµ1µ2 ,γµ1µ2µ3 , · · · ,γµ1µ2···µ2n

}2n−1
µ j=0,

Cl(0,2n+1) =
{

1ds ,γ
µ1 ,γµ1µ2 ,γµ1µ2µ3 , · · · ,γµ1µ2···µ2n

}2n
µ j=0,

(A3)

where γµ1µ2 = 1
2 [γ

µ1 ,γµ2 ], and the remaining are defined re-
cursively γµ1µ2···µ j = 1

2 [γ
µ1 ,γµ2···µ j ], for j ∈ {3, · · · ,D}.

In the context of the Dirac QFT, the elements of the Clif-
ford group with rank 1, 2 play a key role. The rank-1 elements,
namely the aforementioned gamma matrices, enter in the defi-
nition of the action (A1). The rank-2 elements {γµ1µ2}, which
correspond to the D(D−1)/2 anti-symmetric products of the
gamma matrices, serve as the generators of the spacetime ro-
tations xµ 7→ Λ

µ

ν xν with Λ ∈ SO(D), which would correspond
to Lorentz transformations SO(1,D − 1) if we rotated back
to real time τ → it [1]. Indeed, any such transformation Λ

has a representation in terms of a rotation of angle θµν within
the (µν)-plane and the infinitesimal generator γµν . This so-
called spinor representation reads SΛ = exp{ 1

4 ωabγab} where
ωab = θab(δ

a
µ δ b

ν −δ a
ν δ b

µ), which can be easily checked to yield
a unitary representation of the SO(D) group S−1

Λ
=(SΛ)

†. This
leads to a crucial difference with respect to Minkowski space-
time, and forbids defining the adjoint as ψ(x) = ψ†(x)γ0. The
field and its adjoint are mutually anti-commuting Grassmann
spinors with an even number of components ds, and one pos-
tulates that they transform under spacetime rotations as

ψ(x) 7→ SΛψ
(
Λ
−1x
)
,ψ(x) 7→ ψ

(
Λ
−1x
)

S−1
Λ

. (A4)

One then finds that the Euclidean action (A1) is invariant un-
der SO(D), which also requires using the transformations of
the rank j < D Clifford elements as tensors under SO(D)

S−1
Λ

γ
µ1µ2···µ j SΛ = Λ

µ1
ν1 Λ

µ2
ν2 · · ·Λ

µ j
ν j γ

ν1ν2···ν j . (A5)

This shows that the gamma matrices transform as a vector un-
der SO(D), such that ψψ and ψγa∂aψ are scalars, and the
Euclidean action is invariant under SO(D).

For even spacetime dimensions D = 2n, the highest-rank
element of the Clifford algebra (A3) also plays an important
role. It can be used to define an additional Hermitian matrix
that anti-commutes with all the spacetime gamma matrices,
and is thus left invariant under any SO(2n) rotation

γ⋆ = (−i)n
γ

0
γ

1 · · ·γ2n−1 7→ S−1(Λ)γ⋆S(Λ) = γ⋆. (A6)

In D = 4, this is typically called the chiral gamma matrix
γ5 = −γ0γ1γ2γ3, which can be used to decompose the Dirac
spinor into left- and right-handed two-component spinors, the
so-called chiral Weyl fermions [1]. Alternatively, in any even
spacetime dimension, this gamma matrix can serve to propose
a twisting of the scalar mass

S0 =
∫

dDxψ(x)
(
γ

µ
∂µ +m1 + im2γ⋆

)
ψ(x), (A7)

where m1 = mcosθ , and m2 = msinθ . The anti-commuting
mass terms can be expressed as

meiθγ⋆ψψ = mcosθψψ + imsinθψγ⋆ψ, (A8)

which respects Lorentz SO(2n) invariance according to
Eqs. (A4) and (A6), and can be seen as the result of an axial
rotation ψ 7→ exp{i θ

2 γ⋆}ψ , ψ 7→ ψexp{i θ

2 γ⋆}. On the other
hand, the second one breaks explicitly the parity symmetry
since

Pψ(τ,xxx) = γ0ψ(τ,−xxx)
Pψ(τ,xxx) = ψ(τ,−xxx)γ0

}
=⇒ ψψ 7→ ψψ

ψγ⋆ψ 7→ −ψγ⋆ψ

}
(A9)

For odd spacetime dimensions D = 2n+ 1, this γ⋆ matrix
plays the role of the gamma matrix for the new spatial direc-
tion γ2n = γ⋆. Therefore, the product of all spacetime gamma
matrices is trivial γ0γ1 · · ·γ2n ∝ 1ds , and the SO(2n + 1)-
invariant Dirac action for free Dirac fields can only take the
form of Eq. (A1). Therefore, only the standard mass term
mψ̄ψ can be considered which, as discussed in the following
section would break the invariance under the corresponding
parity transformation. In the following subsection, we will
explain how to go beyond these limitations when considering
a reducible representation of the Clifford algebra.

Appendix B: Dimensional reduction and 4-Fermi interactions

Motivated by the experimental situations discussed in the
main text, we can also consider reducible representations of
the Clifford algebra for a specific spacetime dimension. In
this appendix, we will consider odd dimension D = 2n+ 1,
and understand a reducible representation of the Clifford al-
gebra as a consequence of an effective dimensional reduc-
tion. We consider 2n+3 dimensions initially, where the spinor
dimension is doubled with respect to the irreducible one of
D = 2n+1, and we get two additional gamma matrices γ2n+1,
and γ⋆ = γ2n+2. We will label the higher-dimensional space-
time coordinates with latin indexes a∈ {0,1, · · · ,2n+2}. The
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SO(2n+3)-invariant action is that of Eq. (A1), and we will fo-
cus in the massless case m = 0, namely

S0 =
∫

dDxψ(x)γa
∂aψ(x). (B1)

We can rewrite this action by separating the contribution of
the two extra spatial dimensions

S0 =
∫

d2n+3xψ(x)
(
γ

µ
∂µ + γ

2n+1
∂2n+1 + γ⋆∂2n+2

)
ψ(x),

(B2)
where the index µ ∈{0, · · · ,2n} is restricted to the lower num-
ber of dimensions D = 2n+1 in the reduced spacetime.

As discussed in [82], the dimensional reduction is inspired
by the Kaluza-Klein compactification [81], and proceeds in
two steps. In the first one, the x2n+2 spatial direction is com-
pactified to a circle x2n+2 + r = x2n+2 with a very small radius
r → 0. Considering that the Grassmann fields are periodic in
the spatial direction, the corresponding momentum p2n+2 =
−i∂2n+2 ∝ ℓ2n+2/r gets quantised in terms of the integers
ℓ2n+2 ∈ ZN2n+2 , one readily sees that only the quantum num-
ber ℓ2n+2 = 0 plays a role in the low-energy physics as r → 0.
From the perspective of the non-compact dimensions, one gets
a tower of very heavy Dirac fields, and focusing on low ener-
gies amounts to a truncation of such high-energy modes [80].
In the presence of an additional scalar field σ⋆(x) that is min-
imally coupled to the fermions ∂2n+2 → ∂2n+2 + iσ⋆(x), and
assuming that this scalar field is homogeneous σ⋆(x) = m⋆,
the dimensional reduction leads to an effective low-energy ac-
tion action that reads

S0 =
∫

d2n+2xψ(x)
(
γ

µ
∂µ + γ

2n+1
∂2n+1 + im⋆γ⋆

)
ψ(x). (B3)

which is now invariant under Lorentz transformations in the
reduced spacetime, such that SO(2n+3) 7→ SO(2n+2).

In a second step, we compactify the x2n+1 direction, intro-
ducing also a minimally-coupled scalar field σ2n+1(x). Pro-
jecting again onto the low-energy physics when r → 0, and
thus considering only the ℓ2n+1 = 0 quantised momentum for
a homogeneous field σ2n+1(x) = m2n+1, we are led to

S0 =
∫

dDxψ(x)
(
γ

µ
∂µ + im2n+1γ

2n+1 + im⋆γ⋆

)
ψ(x), (B4)

where SO(2n + 2) 7→ SO(2n + 1). By comparing this
dimensionally-reduced action to that of Eq. (A1), we see that
the sigma fields play a similar role to the mass terms when
they are homogeneous. The main difference is that we have
more freedom in the definition of parity, and these two mass
terms can open a gap in the parity-symmetric case. For odd
spacetime dimensions, parity must be understood as a trans-
formation that reverses only an odd number of the spatial di-
rections, for example

Pψ(τ,xxx) = γ
2n

ψ(τ,x1, · · ·x2n−1,−x2n),

Pψ(τ,xxx) =−ψ(τ,x1, · · ·x2n−1,−x2n)γ
2n,

(B5)

such that both mass terms (B4) are invariant under parity

ψγ
2n+1

ψ 7→ ψγ
2n+1

ψ,

ψγ⋆ψ 7→ ψγ⋆ψ.
(B6)

Such a transformation can be defined for any other spatial
axis, or a combination of an odd number of them.

We note again that this effective action (B4) is SO(2n+ 1)
invariant in the reduced spacetime, but there is a higher
SO(2n + 3) invariance if one considers rotations in the full
spacetime with the two additional compactified dimensions.
The important point is that, as a remnant of the compacti-
fied dimensions, the spinors inherit the dimensionality given
by the corresponding representation of the higher-dimensional
Clifford algebra (see Appendix A). This enlarged number of
spinor components and bigger symmetry group can play an
important role once we introduce interactions. Indeed, we can
also consider introducing SO(2n+ 3) invariant quartic inter-
actions, which can be obtain by considering the transforma-
tions of fermionic bilinears built from the Clifford algebra ele-
ments (A5). In particular, we can add an SO(2n+3)-invariant
4-Fermi term to the action

Sint =
∫

dDx
g2

2
(
−(ψψ)2 − (ψiγa

ψ)(ψiγaψ)
)
. (B7)

The first term corresponds to the so-called Gross-Neveu in-
teraction [7], and is a scalar under the SO(2n + 3) Lorentz
transformations. The other 2n + 3 terms are quartic inter-
actions corresponding to the so-called Thirring term [83],
which is a vector-vector interaction that is also invariant
under SO(2n + 3) Lorentz transformations. On the other
hand, if one rewrites these terms as (ψiγaψ)2 = (ψiγµ ψ)2 −
(ψγ2n+1ψ)2 − (ψγ⋆ψ)2, and reinterprets them from the per-
spective of the dimensionally-reduced spacetime, only the
(ψγµ ψ)2 terms correspond to the squared magnitude of a
vector under SO(2n + 1), whereas the two additional terms
(ψiγ2n+1ψ)2 and (ψiγ⋆ψ)2 are scalars. We emphasise that
these additional terms are only allowed by the fact that we are
working with a reducible representation of the gamma matri-
ces, which are allowed by the larger number of spinor degrees
of freedom in the enlarged spacetime. In the main text, we
have referred to the action S0 +Sint in Eqs. (B3) and (B7) for
n = 1 as our model of Dirac matter with SO(2n+ 3)=SO(5)
4-Fermi interactions. We discuss possible lattice regulariza-
tions that allow us to discuss higher-order topological phases
and competing symmetry-breaking condensates as one in-
creases the strength of the quartic interactions. This regular-
ization requires rewriting the dimensionally-reduced masses
in Eq. (B4) in terms of twisted Wilson masses, as discussed in
the main text.

Appendix C: Standard Wilson fermions and Chern insulators

In this Appendix, we present the details for a standard Wil-
son discretization of the reducible Dirac QFT in Eq. (1). As
noted in the main text, this regularization amounts to the in-
troduction of a momentum-dependent shift m1 7→m1(kkk) of one
of the masses in Eq. (5), whereas the other mass is set to zero
m2 7→ m2 = 0. The Wilson mass depends on a real parameter
r as follows

m1(kkk) = m1 +
r
a

(
2− cos(k1a)− cos(k2a)

)
, (C1)
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which can be understood as the consequence of a finite-
difference discretizations of terms involving higher-order spa-
tial derivatives [86]. We note that we have used an overline
in the function in order to differentiate this standard Wilson
mass from the twisted Wilson mass in Eq. (9)

For this regularised model in D = 2+ 1 dimensions, one
actually finds that it corresponds to two copies of the square-
lattice version [93–96] of Haldane’s quantum anomalous Hall
effect [92], leading to a Chern insulator. The full band struc-
ture consists of four energy bands with a two-fold degeneracy
εq,±(kkk) =±ε(kkk) for q ∈ {1,2}, where

ε(kkk) =
√

k̂kk2 +m2
1(kkk), (C2)

The groundstate is then obtained by filling all the negative
energy states |gs⟩ = ∏kkk∈BZ ∏q=1,2

∣∣εq,−(kkk)
〉
, and one clearly

sees from the above dispersion that the Wilson term leads to a
different mass for each Dirac point (7), namely

m1(kkkD,ℓℓℓ) = m1 +
r
a

(
2− (−1)ℓ1 − (−1)ℓ2

)
. (C3)

For notational convenience, we can define a mass matrix that
contains the four Wilson masses

MW,1 = ∑
ℓℓℓ∈Z2×Z2

m1(kkkD,ℓℓℓ) |ℓℓℓ⟩⟨ℓℓℓ| : ⟨ℓℓℓ|ℓℓℓ′⟩= δℓℓℓ,ℓℓℓ′ . (C4)

As outlined above, by setting m1 = 0, one sees that the spu-
rious doublers become very heavy with a mass of the order
of the lattice cutoff m1(kkkD,ℓℓℓ) ∝ r/a,∀ℓℓℓ ̸= 000. On the con-
trary, the fermion at the origin of the BZ remains massless;
m1(kkkD,000) = 0. Making a long-wavelength expansion around
this point kkk 7→ kkkD,000 + kkk for |kkk| ≪ Λc now yields a long-
wavelength action that coincides with Eq. (1) for m2 = 0. We
remark that, although the lattice discretization breaks explic-
itly the invariance under SO(3) Lorentz transformations, one
recovers it in the continuum limit around kkkD,000.

Let us finally discuss the connection of the groundstate
of this lattice QFT to standard first-order topological insu-
lators, in particular, to the so-called Chern insulators. For
the explicit choice of the gamma matrices (2)-(3), there is
a block structure that can be exploited to find a basis in
which the problem reduces to a pair of decoupled Chern in-
sulators. Indeed, one can prove that the groundstate cor-
responding to the above Dirac sea can be characterised by
a non-vanishing Chern number for the principal U(1) bun-
dle associated to the filled bands [234]. This topological in-
variant can be expressed as the integral of the Berry curva-
ture F i j

b,q(kkk) = ∂k jA
i

q(kkk)−∂kiA
j

q (kkk), where the connection is
A i

q(kkk) = −i
〈
εq,−(kkk)

∣∣∂ki

∣∣εq,−(kkk)
〉

[235]. One can then show
that, for our Wilson-fermion QFT, the Chern number is

Ch=
1

4π
∑
q

∫
dki ∧dk jF

i j
b,q(kkk) =

1
π

∑
q

arg
{

Det
(
MW,1

)}
,

(C5)
which thus attains a non-zero value when we have an odd
number of Dirac points that carry a negative Wilson mass

Ch= ∑
ℓℓℓ

(−1)ℓ1+ℓ2sgn
(
m̃1(kkkD,ℓℓℓ)

)
. (C6)

In light of Eq. (C3), we thus see that, whenever m1a ∈
(−4r,−2r)∪ (−2r,0), there is a non-vanishing Chern number
Ch = ±2, signalling that we have two copies of the standard
Chern insulator Ch = ±1, each corresponding to the square-
lattice version [93–96] of Haldane’s quantum anomalous Hall
effect [92]. Even if there is no net external magnetic field
piercing the spatial lattice, the system displays a quantised
Hall conductance that is related to the Chern number as in the
standard quantum Hall effect [236]. The bulk-boundary cor-
respondence links these topological invariants to the appear-
ance of circulating edge states localised at the spatial bound-
aries, which are in fact low-dimensional versions of Kaplan’s
domain-wall fermions in lattice field theories [112–114].

Appendix D: Calculation of the effective SO(5) potential

Remarkably, all resummations required for the calculation
of the effective potential Veff(ΦΦΦ) are already encountered in
the “vanilla” Gross-Neveu model in 2+1 dimensions. We can
rewrite this QFT in terms of an Euclidean Lagrangian contain-
ing just a single bosonic auxiliary field

L = ψ
(
iγµ pµ +m+φ

)
ψ +

N
2g2 φ

2, (D1)

where φ(x) will be latter identified with the various compo-
nents of the completing condensates ΦΦΦ in our problem. In the
large-N limit for a condensate Φ = ⟨φ⟩, Veff then contains the
sum of all diagrams with a single fermion loop and n external
φ legs [204] (see Fig. 8) which contribute with

Veff(Φ)

N
=

Σ2

2g2 +
∞

∑
n=1

1
n

∫
p

tr
(

−Φ

ipµ γµ +m

)n

=
Φ2

2g2 +∑
n

1
n

∫
p

(
−Φ

p2 +m2

)n

trIn (D2)

with In = (−ipµ γµ +m)n obeying the recurrence

In = 2mIn−1 − (p2 +m2)In−2. (D3)

We now use trI0 = 4 and trI1 = 4M to deduce the general result

trIn = 4
n

∑
k=0

Ankmk(p2 +m2)
n−k

2 , (D4)

where for n even, k is an even integer and the introduced ma-
trix elements are

An0 = (−1)
n
2 ; (D5)

Ank = Ak(−1)
n
2 ( n

2 )
2(( n

2 )
2 −12) . . .(( n

2 )
2 − ( k

2 −1)2);

while for n odd, k is odd and

Ank =
1
2
(
An+1,k+1 +An−1,k+1

)
. (D6)

The constant Ak in these expressions is defined such a way
that one recovers Ann = 2n−1.
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FIG. 8. Large-N Effective Potential: Example of a Feynman dia-
gram with n external zero-momentum auxiliary legs (dashed lines),
and a single fermion loop (solid circle), yielding the main contribu-
tion to the effective potential Veff in the large-N limit.

Calculation of the sum in (D2) proceeds by considering a
resummation of three different cases.

(a) n even, and k = 0: In this case, we find

∑
n=2,4,...

4(−1)
n
2

n

∫
p

(
−Φ√

p2 +m2

)n

= ∑
q

2
q

∫
p

(
−Φ2

p2 +q2

)q

= −2
∫

p
log
(

1+
Φ2

p2 +m2

)
, (D7)

where we have made use of the index q = n/2.
(b) n even and k even: When the integer k is allowed to be

even, we reindex using n = 2q and k = 2ℓ to find

∑
qℓ

2A2q,2ℓ

m

∫
p

(
Φ2

p2 +m2

)q( m2

p2 +m2

)ℓ

. (D8)

We now use the identity

∑
q

A2q,2ℓ
zq

q
=

22ℓ−1

ℓ

zℓ

(1+ z)2ℓ (D9)

to perform the following resummation

∑
ℓ

1
ℓ

∫
p

(2Φm)2ℓ

(p2 +m2 +Φ2)2ℓ =−
∫

p
log
(

1− 4Φ2m2

(p2 +m2 +Φ2)2

)
.

(D10)
(c) n odd and k odd: When both integers are odd, we use

Eq. (D6) to write the contribution as

∑
n,k=1,3,...

4
n

∫
p

(
−Φ√

p2 +m2

)n(
m√

p2 +m2

)k

Ank (D11)

where the matrix elements fulfill the following identity

∑
nodd

(An+1,k+1 +An−1,k+1)
zn

n
=

2k

k
zk

(1+ z2)k . (D12)

Using these expressions, we can again resum on n to find

− ∑
kodd

∫
p

−2
k

(
2Φm

p2 +m2 +Φ2

)k

=−
∫

p
log
(

p2 +(m+Φ)2

p2 +(m−Φ)2

)
.

(D13)
Finally, after adding all the contributions in Eqs. (D7), (D10)
and (D13) together, we find considerable simplifications such
that the final result gets the following simple form

Veff(Φ)

N
=

Φ2

2g2 −2
∫

p
log
(

p2 +(m+Φ)2

p2 +m2

)
. (D14)

Once we have this generic result, we need to consider the
case with several competing condensation channels Φ 7→ ΦΦΦ =
(AAA,ΣΣΣ,Π), and a specific twisted Wilson mass regularization.
If we still consider a continuum QFT, but include the interac-
tion term having full SO(5) symmetry, the expression for the
effective potential generalises to

Veff(AAA,ΣΣΣ,Π)

N
=

1
2g2 (AAA

2 +ΣΣΣ
2 +Π

2) (D15)

+∑
n

1
n

∫
p

tr
(
−iγγγ ·AAA− iγ3Σ1 − iγ5Σ2 −Π

ipµ γµ + im1γ3 + im2γ5

)n

.

Equations (D2) and (D3) are replaced by

1
2g2 (AAA

2 +ΣΣΣ
2 +Π

2)+∑
n

1
n

∫
p

(
1

p2 +m2
1 +m2

2

)n

trIn (D16)

where we have introduced

In = − 2(ppp ·AAA+m1Σ1 +m2Σ2)In−1 (D17)

− (AAA2 +ΣΣΣ
2 +Π

2)(p2 +m2
1 +m2

2)In−2.

It is now straightforward to repeat steps (D7-D13). After
adding all the contributions, instead of Eq. (D14), we find

Veff

N
=

1
2g2 ΦΦΦ

2 −2
∫

p
log
(

p2
0 +(ppp+AAA)2 +mmm2(ΣΣΣ)+Π2

p2
0 + ppp2 +mmm2(000)

)
.

(D18)
where we have introduced mmm(ΣΣΣ) = (m1 + Σ1,m2 + Σ2). At
this point, in order to take into account the twisted-mass Wil-
son regularization, where we need to substitute p = (p0, ppp) 7→
(k0, k̂kk), mmm(ΣΣΣ) 7→ mmm(kkk,ΣΣΣ), and substitute the momentum inte-
grals by the corresponding mode sums. In this way, we arrive
at Eq. (61) of the main text.

Finally we discuss incorporation of a further interaction be-
tween fermion charge densities mediated by an auxiliary A0,
whereupon Eqn. (D15) is supplemented by terms

A2
0

2g′2
+∑

n

1
n

∫
p
tr
(

−iγ0A0

ipµ γµ + im1γ3 + im2γ5

)n

. (D19)

The choice g′2 = g2 yields full SO(6) symmetry. The algebra
involving γ0 is identical to that for γγγ , and the one-loop contri-
butions yield

−2
∫

p
log

[(p2
0 +A0)

2 +P2][(p2
0 −A0)

2 +P2]

(p2 +Q2)2 , (D20)
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where Q2 = ppp2 +mmm2(000), and P2 = (ppp+AAA)2 +mmm2(ΣΣΣ)+Π2.
Careful integration over p0 with a UV cutoff Λ show that all
dependence on A0 is O(Λ−1) and hence vanishes as Λ → ∞.

As a consequence, the minimum of Veff always lies at A0 = 0
and it is therefore safe to ignore condensation in this channel
at half-filling.
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