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Recently it has been observed that branes in geometric engineering and holography have a
striking connection with generalized global symmetries. In this paper we argue that branes,
in a certain topological limit, not only furnish the symmetry generators, but also encode the
so-called Symmetry Topological Field Theory (or SymTFT). For a d-dimensional QFT, this is
a (d + 1)-dimensional topological field theory, whose topological defects encode both the sym-
metry generators (invertible or non-invertible) and the generalized charges. Mathematically,
the topological defects form the Drinfeld center of the symmetry category of the QFT. In this
paper we derive the SymTFT and the Drinfeld center topological defects directly from branes.
Central to the identification of these are Hanany-Witten brane configurations, which encode
both topological couplings in the SymTFT and the generalized charges under the symmetries.
We exemplify the general analysis with examples of QFTs realized in geometric engineering
or holography.
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1 Introduction

Branes play a central role in string/M-theory: as carriers of gauge degrees of freedom, non-
perturbative defects, and as the origin of holographic dualities when back-reacted. Recently
it has been observed that in a particular, non-dynamical, limit they give rise to generators
of generalized global symmetries (topological defects) in holography [1, 2] and in geometric
engineering of QFTs [3, 4].

Much is known about higher-form and higher-group symmetries in the context of geomet-
ric/brane engineering and holography [5–36]. However, most of this work focuses on the (not
necessarily topological) extended defect operators, i.e. the generalized (or higher-) charges,
which are constructed by wrapping branes on non-compact cycles. These extended objects
then mimic infinitely heavy probes in space-time. In turn, relatively little had been known
about the symmetry generators in the context of geometric constructions – see however [7,8] for
some discussion in terms of flux operators. The recent identification of symmetry generators
with branes [1–4] in a topological limit1 provides a systematic way to study the symmetries
of a given theory.

SymTFTs and Generalized Charges. Recent developments in the realm of generalized
symmetries have lead to the idea that separating symmetries from physical theories can be
insightful. The structure that allows for this is the Symmetry Topological Field Theory
(SymTFT) [38–40]. This has several applications, see [1,39,41–44]. The SymTFT is invariant
under gauging of global symmetries (i.e. symmetries that are related by gauging have the same
SymTFT), and perhaps physically most relevant, its topological defects encode the generalized
charges [45, 46]. The separation that seems to have emerged in string theory constructions,
into symmetry generators and generalized charges is therefore somewhat artificial. There
should be a unified prescription that derives from the string theory construction (geometric
engineering or holography) of the SymTFT directly.

SymTFT and Supergravity. In string/M-theory the initial constructions of the SymTFT
were closely related to various topological sectors of dimensionally reduced supergravity the-
ories: the initial analysis of the SymTFT in [39] derived it in the context of geometric engi-
neering on a non-compact space X in M-theory. The SymTFT in that context was derived
by dimensional reduction on ∂X. Likewise in holography it is connected to the topological

1We will equivalently use both “topological limit” or “topological truncation”. The procedure we adopt is a
truncation to the topological sector [37], which will be explained in more details in section 3.
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sector of the bulk supergravity [37, 47]. It emerges naturally via anomaly inflow methods for
QFTs realized with branes [48–50].

Given the recent proposal [1–4] relating symmetry generators and branes in string theoretic
settings, it is natural to ask whether branes also provide a realization of the SymTFT, in
particular the topological defects of the SymTFT, as well as the generalized charges. In this
paper we propose a general framework for this, and substantiate it in various setups in both
geometric engineering and holography. This connects also to the general philosophy, that
the symmetry and generalized charges should all have a unified construction in terms of the
SymTFT topological defects.

SymTFT and Drinfeld Center. Mathematically the topological defects of the SymTFT
correspond to the Drinfeld center of the symmetry category S of the physical theory T . The
symmetry categories in QFT are generically fusion higher-categories, for which it is indeed
known that the Drinfeld center is invariant under gauging (Morita equivalence) [51]. The
SymTFT for a d-dimensional theory T is a (d + 1)-dimensional theory. It has two boundaries:
the symmetry boundary Bsym, which is gapped, and the physical boundary Bphys. Compacti-
fication of this ‘sandwich’ results back in the theory T , see figure 1. The topological defects
that project parallel onto the symmetry boundary (Neumann boundary conditions)2 result in
topological defects in the boundary. In turn extended operators that can end or form junc-
tions with topological defects on the boundary result in non-topological defect operators in the
interval compactification. This is relatively well-understood for theories with abelian symme-
tries (i.e. finite abelian higher-form or higher-group symmetries), but is true more generally
for any type of generalized symmetry [45,46], and in 2d in [52,53].

In particular it becomes a key tool to study gauging and generalized charges for non-
invertible symmetries in higher dimensions, whose constructions have been abundant in the
past 2 years [1–4,36,41,43,44,46,53–105]. For reviews on this topic see [106,107].

Summary of Results. In this work we will argue that branes (in a certain topological
limit) encode the SymTFT of QFTs that are realized in terms of geometric engineering or
in holographic dualities. As most geometric engineering and holographic theories mostly
admit abelian generalized symmetries, we will focus on these symmetries. Restricting to these
symmetries, this amounts to showing that branes give rise to BF-terms and (mixed) ’t Hooft
anomalies at the level of SymTFT topological couplings. At the level of defects of the SymTFT,

2Note that in a topological field theory, such as the SymTFT, Neumann corresponds to freely varying and
Dirichlet to fixed boundary conditions.
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we use brane effects to determine generalized charges of higher-form symmetries (which are
the topological defects of the SymTFT). In the process we also identify condensation defects
in terms of branes.

BF-terms for abelian finite higher-form symmetries will be shown to be encoded in the
topological sector of 10/11d supergravity once we also include source terms for wrapped
branes. These have the interpretation of generating the associated symmetries. Terms of
this type derive from two origins: either from Chern-Simons terms or kinetic terms in the
supergravity action. By including sources, these terms describe how the geometric linking of
wrapped branes in the bulk corresponds to the action of symmetry generators, i.e. topological
defects, on (extended) charged operators of the QFT.

Including brane sources induces further topological couplings in the SymTFT, which in
some global forms can have the interpretation of (mixed) ’t Hooft anomalies. We will refer
to these topological couplings in the SymTFT as anomaly couplings. They are encoded
in various linking configurations of branes in the bulk. We first give a general procedure
for deriving anomaly couplings from the 10/11d supergravity topological sector and Bianchi
identities in terms of background fields. Re-phrasing these relations in terms of brane sources
allows us to re-write anomaly couplings as linking configurations of the branes which generate
the associated symmetries.

An important aspect of the categorical description of symmetries is the notion of con-
densation completion [108]: i.e. all symmetries can be condensed on topological defects that
are generically defined on submanifolds of spacetime (as opposed to the whole spacetime).
So far the conjectured identification of branes with symmetry generators [1, 2] does not in-
corporate condensation defects. In this paper we argue that condensation defects can be
constructed from a “condensation completed” SymTFT, where in addition to the BF-couplings
in the (d+1)-dimensional spacetime of the SymTFT, we also include couplings to either lower
dimensional discrete gauge theories (possibly with theta angles), which realize standard con-
densation defects, or more generally lower-dimensional TQFTs which give rise to so-called
(twisted) theta defects [46].

In the string theoretic setting we will obtain such couplings by considering brane-anti-
brane pairs (in a topological limit), where the standard Dp-brane charge cancels out, but
topological couplings on the world-volumes survive, which live in lower than p + 1 dimensions.

The topological defects of the SymTFT encode the generalized charges of a categorical
symmetry [46]. In particular the linking in the SymTFT (for abelian symmetries) provides a
way to compute the charges. It was already shown in [1] that in a specific 4d N = 1 Super-
Yang-Mills theory setting, the action of generalized symmetries on branes can be realized in
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terms of Hanany-Witten moves on brane-configurations. This realizes the action of the non-
invertible symmetries on ’t Hooft lines in the PSU(N) SYM theory. In this paper we show
that more generally, the action of generalized symmetries on generalized charges has as its
origin the Hanany-Witten configuration and moves for branes.

The general considerations of this paper will be illustrated with numerous examples, both
in geometric engineering and holography, including:

1. Holographic and geometric engineering constructions of 4d N = 1 Super-Yang-Mills
theory (SYM) with gauge algebra su(N), considering various global forms of the gauge
group.

2. 4d N = 4 SYM with gauge algebra so(4N).

3. 4d N = 4 SYM with gauge algebra su(N) with duality/ triality defects.

4. 4d N = 2 Argyres-Douglas theories with duality defects.

In the setups 1. and 2. we explain how known SymTFT couplings (BF and anomaly couplings)
can be derived from the linking of branes in the bulk, giving a new perspective on these
theories. Furthermore we explain how Hanany-Witten configurations signal the presence of
mixed ’t Hooft anomalies in each theory, and furthermore, how they describe the generalized
charges. In particular for the various global forms of the gauge groups for so(4n) algebras
we identify 2d generalized charges for non-invertible 1-form symmetries using this method.
For the gauge group G = Spin(4N) global variant we also show how brane effects model the
2-group global symmetry.

In the setup 3. we show how Hanany-Witten configurations can be used to diagnose the
intrinsic/ non-intrinsic nature of non-invertible symmetries. The brane mechanism imposes a
simple constraint which allows a classification of the type of these non-invertible symmetries
for arbitrary gauge group rank, extending previous results [72]. In the setup 4. we propose new
brane origins for the topological defects generating (non-invertible) higher-form symmetries
and derive the SymTFT for these theories using brane sources. In particular, the construction
relies on world-volume flux on branes which induces lower-dimensional brane charges.

Notational conventions. Spacetime dimension for the QFT is d, the spacetime for the
supergravity theory (string or M-theory) that we start with is D+1 = 10, 11. The dimensional
reduction is either on the link Ln ≡ Ln(Xn+1) = ∂Xn+1 of dimension n or the cone over the
link Xn+1 which is n + 1 dimensional. Gauge groups will be denoted by G. p-dimensional
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Bsym Bphys

SymTFT(S) T
S

Figure 1: The SymTFT sandwich and interval compactification to a d-dimensional physical
theory T with symmetry S. The SymTFT is a (d+1)-dimensional theory, SymTFT(S), which
is shown on the left: it has two boundaries, the gapped, symmetry boundary Bsym, and the
physical boundary Bphys, which is not gapped (unless the theory T was topological as well).

topological defects are Dp and q-charges (not necessarily topological q-dimensional charged
defects) are Oq.

2 Symmetry TFTs: Symmetries and Generalized Charges

2.1 Symmetry TFT

The general idea behind the SymTFT is to separate the symmetry aspects from the non-
topological degrees of freedom of a QFT [38–40]. Throughout this paper, we consider general-
ized symmetries that are abelian, i.e. they have a formulation in terms of abelian background
fields, and their SymTFT has an action formulation in terms of these backgrounds. Most
known symmetries that arise in the holographic or geometric engineering context seem to
be of this type (or gauge-related to such symmetries), rather than more general categorical
symmetries (e.g. non-abelian group or higher-representations for non-abelian groups). For a
discussion of the SymTFT in this more general setting in particular in view of the generalized
charges see [46,82].

Consider a d-dimensional theory T with symmetry

S =
∏
p

G(p) , (2.1)

which in the present case is a product of higher-form symmetry groups. Here we assume that
T is an absolute theory (so we have chosen a specific polarization in the defect group). Denote
the background fields for individual components of the p-form symmetry group G(p) by

Bi
p+1 ∈ Hp

(
Md,Znp

i

)
, (2.2)
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where G(p) = ∏
i Znp

i
for some np

i ∈ Z+. Furthermore, these higher-form symmetries can have
non-trivial (mixed) ’t Hooft anomalies which we summarize as A({Bp+1}).

The SymTFT will be a (d + 1)-dimensional theory, which can be thought of as a gauging
of the p-form symmetries in (d+1)-dimensions, i.e. coupling the theory to a Dijkgraaf-Witten
type dynamical discrete gauge theory. This contains then BF-couplings for the now dynamical
fields bi

p+1 and the dual fields b̂i
d−p−1, as well as the anomaly term

SSymTFT =
∫

Md+1

∑
p

∑
i,j

np
ij bi

p+1 ∧ db̂ j
d−p−1 +A

(
{bi

p+1}
)

. (2.3)

Here we use a continuum field formulation. The fields b are U(1)-valued, with equation of
motion ndb = 0. These are related to the finite group cocycles by bcontinuum = 2π

N bdiscrete . We
will later on consider generalization to twisted cocycles in specific examples.

2.2 Topological Defects of the SymTFT

The SymTFT has two d-dimensional boundaries: one is the physical boundary Bphys which is
generically not gapped, and the second is the symmetry boundary Bsym which is gapped. See
figure 1. Upon interval compactification back to d-dimensions, we obtain the theory T with
symmetry S.

The topological defects of the SymTFT will be denoted by Q, and in this setup are given
in terms of the generalized Wilson lines for the gauge fields.

In general we can determine the charges from a SymTFT of type (2.3) by determining
the Gauss law constraints and then exponentiating (see e.g. [1, 109]). To illustrate the setup
lets start in the absence of any anomaly couplings A = 0, then the topological defects are
generated by

Q
(bi)
p+1(Mp+1) = exp

(
2πi

∫
Md+1

bi
p+1

)

Q
(̂bi)
d−p−1(Md−p−1) = exp

(
2πi

∫
Md−p−1

b̂i
d−p−1

)
.

(2.4)

Mathematically, these are the elements of the Drinfeld center of the SymTFT. These have a
non-trivial commutation relation

Q
(bi)
p+1(M)Q(̂bi)

d−p−1(M ′) = exp
(

2πi
L(Mp+1, M ′

d−p−1)
np

i

)
Q

(̂bi)
d−p−1(M ′)Q(bi)

p+1(M) . (2.5)

Here L(M, M ′) is the linking of the two manifolds in the (d + 1)-dimensional spacetime.
However in the presence of non-trivial couplings between the fields bi

p+1 in A({bi
p+1}), there

will be additional terms in the above expressions for the topological defects. We will study
those in detail in subsequent sections, rather than present a general analysis here.
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SymTFT from Theta-Defects. A useful perspective is to think of the SymTFT in this
case as a theta-defect construction [46, 67]: we consider the trivial SymTFT and gauge the
G(p)-symmetry in (d + 1)-dimensions. Such a gauging always allows for the inclusion of a
class of (q + 1)-dimensional topological defects, the theta defects, that correspond to (q + 1)-
representations of the higher-form symmetry group G(p) (these are the (q + 1)-dimensional
TQFTs that are G(p)-symmetric). In particular, these TQFTS give rise to the the condensation
defects for the dual symmetry. When constructing the SymTFT we should also include these
additional defects. We will refer to this as “condensation completion” of the SymTFT3, in
analogy to the condensation completion of higher fusion categories in [108].

Condensation Completion of SymTFTs. In addition to the defects in (2.4) there will
be also condensation- or theta-like defects that need to be included into the construction of
the SymTFT. The condensation defects arise by condensing the defects of the dual symmetry,
generated by Q

(b)
p+1 on the defect Q

(b̂)
d−p−1 that generates the symmetry G(p):

C

(
Q

(̂b)
d−p−1 (Md−p−1) ,Q

(b)
p+1

)
= 1

|Hp+1 (Md−p−1,Zn)|
∑

Mp+1∈Hp+1(Md−p−1,Zn)
Q

(b)
p+1 (Mp+1)Q(̂b)

d−p−1 (Md−p−1) .

(2.6)
We can also condense these on other higher-form symmetry generators, as long as this is
dimensionally consistent. Including this into the symTFT guarantees that all the topological
defects (symmetry generators) and generalized charges will be realized.

These additional defects can be realized also by introducing localized couplings in the
SymTFT, which correspond to coupling lower-dimensional DW type theories to the SymTFT.
Taking into account all possible condensations this is

SSymTFT ⊃np

∫
Md+1

bp+1 ∧ d b̂d−p−1

+
∑
k≥1

∫
Md−k

(bp+1 ∧ ad−k−p−1 + npad−k−p−1 ∧ dâ p) .
(2.7)

3Mathematically we would always consider the SymTFT including all such condensations, however in the
physics-literature, often, only the standard topological defects that are associated with the p-form symmetry
and its dual are manifestly included.
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Example. Consider an example of a QFT in d = 4 with p = 0 and p′ = 1, corresponding to
ZN 0-form symmetry and a ZM 1-form symmetries, respectively. The couplings are then

SSymTFT =
∫

M5
Nb1 ∧ b̂3 + Mb2 ∧ db̂2

+
∫

M3
b1 ∧ a2 + Na2 ∧ dâ0 +

∫
M2

b1 ∧ a1 + Na1 ∧ dâ0 +
∫

M1
b1 ∧ a0 + Na1 ∧ dâ0

+
∫

M3
b2 ∧ a1 + Ma1 ∧ dâ1 +

∫
M2

b2 ∧ a0 + Ma0 ∧ dâ1

+
∫

M3
b̂2 ∧ a′

1 + Ma′
1 ∧ dâ′

1 +
∫

M2
b̂2 ∧ a′

0 + Ma′
0 ∧ dâ′

1 .

(2.8)
The topological defects are the standard ones for the 0-form and 1-form symmetries and their
Pontryagin dual symmetries Ĝ(2) (generated by topological lines Q(b̂1)

1 ) and Ĝ(1) (generated by
topological surfaces Q(b̂2)

2 ) as in (2.4) but in addition we also have condensation/theta-defects:

• Q
(b1)
1 on the defects Q

(b̂3)
3 and Q

(b2)
2 , as well as the trivial 1d defect.

• Q
(b2)
2 on the defects Q

(b̂3)
3 and Q

(b2)
2 .

Generalizations. The above corresponds to stacking with TQFTs without any cocycles.
More generally we can of course include these. For example, for surface defects with G(0)

symmetry we would construct 2d TQFTs with additional ω ∈ H2(G(0), U(1)). We can have
additional discrete theta angles, for instance in the case of a 2d theory

b1 ∧ a1 + na1 ∧ dâ0 → b1 ∧ a1 + na1 ∧ dâ0 + a1 ∧ θ(a1) , (2.9)

where θ is a group homomorphism from Ĝ(0) → G(0). For an in depth discussion of these,
see [67]; similar modifications also occur in appendix B of [61]. Similarly, for 3d TQFTs
we can stack with theories that have non-trivial topological order, and more specific theory-
dependent TQFTs. If there is an anomaly coupling, we can stack with TQFTs that have that
same anomaly; we will encounter an example of this type in the form of the U(1)K CS-theory.
These correspond more generally to twisted theta defects (which are not simply condensation
defects).

2.3 Symmetries

The SymTFT for the theory T is constructed in such a way that the symmetry boundary
Bsym has symmetry category given by S of the theory T . Given a SymTFT we can recover
the symmetry by projecting the bulk topological operators to the symmetry boundary (note:
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Bsym

Qp+1

Bsym

Proj(Qp+1) ∈ S

Figure 2: Symmetries from the SymTFT: the parallel projection of topological defects Qp+1
gives rise to topological defects on the symmetry boundary Bsym. Put differently, the as-
sociated background fields, have Neumann boundary conditions. In general this is not the
complete set of symmetry operators, but for abelian higher-form fields, for which we consider
the SymTFT, this is the case.

this is not true in general, e.g. for non-abelian group-symmetries, but in the present instance
of abelian symmetries it is).

In the present instance we can simplify the analysis further, by stating that the bound-
ary conditions are specified by a subset L of topological defects Q of the SymTFT, which
have Dirichlet boundary conditions on Bsym. This means the topological defects can end.
Furthermore, requiring that this subset is mutually local and maximal defines a polarization.

All the defects in L end on the boundary and will define generalized charges – which
we will discuss in the next subsection. The symmetry generators are the projections of the
bulk topological operators onto the symmetry boundary. An in-depth analysis of all consis-
tency conditions and possibilities in general was undertaken in [46]. The projection of a bulk
topological defect onto the symmetry boundary is generically not a simple topological defect

Proj(Qp+1) =
⊕

i

niS
(i)
p+1 , (2.10)

where S
(i)
p+1 are the simple defects.

Example. Consider a 0-form symmetry S = Z(0)
N . The topological operators that generate

this symmetry project simply to the generators on Bsym

Proj(Q(b̂d−1)
d−1 ) = S

(1)
d−1 , (2.11)

of the 0-form symmetry, i.e. the objects in the higher-fusion category

S : {S(i)
d−1, i = 0, · · · , N − 1} . (2.12)
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Bsym Bphys

E(Qq+1)
q

SymTFT(S)

Qq+1

T

Oq

Figure 3: Generalized charges from bulk topological defects that end on the symmetry and
physical boundaries: genuine q-charge Oq. The left hand side shows the SymTFT sandwich,
with the bulk topological operator Oq+1 ending on both physical and symmetry boundaries.
After interval compactification it gives rise to a q-charge in the theory T .

In addition we also have condensation defects for the dual symmetry

C

(
Q

( ˆbd−1)
d−1 ,Q(b1)

)
. (2.13)

These have fusion

C

(
Q

(b̂d−1)
d−1 ,Q(b1)

)
⊗C

(
Q

(b̂d−1)
d−1 ,Q(b1)

)
= NC

(
Q

(b̂d−1)
d−1 ,Q(b1)

)
. (2.14)

Projecting these to the simple objects in S, i.e. S
(0)
d−1 and S

(1)
d−1, shows that the only projection

that is consistent with the fusion is

Proj
(
C

(
Q

(b̂d−1)
d−1 ,Q

(b1)
1

))
= NS

(1)
d−1 . (2.15)

2.4 Generalized Charges

The charges under generalized symmetries were recently identified as being simply the topolog-
ical defects of the associated SymTFT [46]. This applies to several invertible and non-invertible
symmetries and has been shown to hold in many such instances [45, 101, 110]. Particularly
interesting is the observation that there are generalized charges even for invertible higher-form
symmetries. Again the SymTFT plays the central tool to succinctly characterize the charges.

As proposed in [45], we refer to a q-dimensional, not necessarily topological, defect operator
Oq that is charged under a generalized symmetry as a q-charge. The statement of [45,110] is
that for an invertible higher-form symmetry G(p)

Genuine q-charges Oq ←→ (q + 1)−Rep
(
G(p)

)
, (2.16)
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Bsym Bphys

E(Qq+1)
q

Dq+1

SymTFT(S)

Qq+1 ∈ L

T

Oq

Dq+1

Figure 4: Twisted sector operators: L-shape projection of a bulk topological defect Qq+1 onto
the symmetry boundary, creates a junction Ep which is attached to a topological defect Dq+1.

where the right hand side is the fusion higher-category of higher-representations of G(p) (see
e.g. [45, 67, 106] for physics-motivated discussions of these categories). Here q = 0, · · · , d− 2.
The genuine q-charges are not attached to (q +1)-dimensional defects (topological or not), see
figure 3, and arise after interval compactification as endpoints of bulk topological operators
Qq+1 that end on both physical and topological boundaries in q-dimensional operators.

In addition to genuine charges, there can be non-genuine (attached at the end of Oq+1) and
twisted sector (attached to the end of topological Sq+1 defects) q-charges. In the SymTFT
picture, the twisted sector charges arise from projecting L-shaped bulk topological defects,
see figure 4: we project a bulk topological defect onto the symmetry boundary in an L-shape,
which results in a junction operator E(Qq+1)

p attached to a topological defect Dq+1 ∈ S. After
interval compactification this is a q-charge Oq, attached to a topological (q + 1)-dimensional
defect Dq+1, which is thus a twisted sector operator.

2.5 Charges from Linking

Finally let’s consider the action of symmetry defects on charges. This arises by computing
the linking of bulk topological defects projected onto the symmetry boundary. There is the
standard linking action of higher-form symmetry generators on defects, which follows from
the linking in (2.4), where the mutually non-local defects are either Neumann or Dirichlet:

Proj(Qb̂
d−p−1)(∂Qp+1|Bsym) −→ Dd−p−1(Op) = qOpOp , (2.17)

where the arrow denotes the interval compactification, and q is the charge under the higher-
form symmetry. This is shown in figure 5. The configuration shown here has various general-
izations which were discussed in [46]. For the constructions in string theory, this is the most
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Bsym Bphys

Proj(Qd−q−1)

SymTFT(S)

Qq+1

T

Oq

Dd−q−1

Figure 5: Generalized symmetry acting on generalized charge via linking. The topological
operator Qp+1 in the bulk SymTFT ends and gives rise to the (genuine) q-charge Oq in T . In
turn, the topoglogical operator Qd−q−1 projects onto the symmetry boundary and gives rise
to a symmetry generator after the interval compactification. The non-trivial linking of these
topological defects in the SymTFT results in the generalized charge.

Dd−q

Qq+1 Oq

Dd−q

Dd−q Qq+1
Oq

Dd−q

Figure 6: Action of non-invertible symmetries: mapping genuine to non-genuine operators.
The genuine defect Oq is acted upon by the topological defect Dd−q, which maps it to a non-
genuine operator, with an attachment of a (q + 1)-dimensional operator.
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general setup we will require.
Non-invertible defects can also act by taking an operator in between genuine and twisted

sectors. For example, passing the topological defect for a non-invertible symmetry through
the end of the bulk topological defect, results in a twisted sector defect, as shown in figure
6. This action is well-known in various contexts of non-invertible symmetries in a variety of
dimensions [56, 111] and was realized in terms of branes as Hanany-Witten moves in [1]. We
will provide various generalizations in this paper.

3 SymTFT and its Topological Defects from Branes

3.1 Geometric Engineering, Holography, and the SymTFT

Let us first describe how a holographic or geometric engineering construction in string theory
leads to a bulk topological description of the abelian and finite symmetry sector of a relative
QFT living at the boundary. In most cases4 this bulk topological description will play the role
of the SymTFT, once suitable boundary conditions are imposed to make the theory absolute.
One of the main tasks of this paper is to incorporate branes that realize symmetry defects
and generalized charges into this framework in a very general fashion.

Flux Sector of Supergravity. First of all we focus on the flux sector of 10/11-dimensional
supergravity (depending on a string or M-theory starting point, respectively), and in particular
in the Bianchi identities and equations of motion that the fluxes will satisfy. We will also
include brane sources, which magnetically charge branes. This is because the bulk gauge
potentials will provide background fields for the finite, abelian generalized symmetries. Their
holonomies will also give rise to the topological operators defining the generalized symmetries.
This information is equivalently encoded in the brane actions [1]. We will not consider the
rest of the supergravity action which includes scalar fields, the metric and other modes. This
is justified by the fact that we will be interested in the physics of flat discrete gauge fields
(vanishing fluxes on-shell), which give non-trivial holonomies. The dilaton and the metric
equations of motion will depend only on modes for which the fluxes are non-vanishing. The
flux action of 10/11-dimensional supergravity has two pieces, a kinetic term and cubic Chern-
Simons topological coupling, which can depend on one or more fluxes. It will be useful to
adopt a formulation in which we include both the supergravity fluxes and their Hodge duals
in 10/11 dimensions in a democratic way, as detailed below. However before presenting the

4In some cases from string theory we obtain a theory that is not a SymTFT, because generically there are
no topological boundary conditions. In these instances one cannot generically have an absolute theory at the
boundary. For instance, this is indeed the case for 6d (2, 0) theories, which are generically relative theories.
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democratic formulation let us describe the precise relation between the SymTFT and the bulk
theory in holographic and geometric/brane engineering setups.

Dimensional Reduction of Flux Sector. The second step consists of dimensionally reduc-
ing the flux action with brane sources on the geometry dictated by the holographic description
or the boundary at infinity of the geometric engineering setup. Concretely let

∂Xn+1 = Ln , (3.1)

where either the holographic solution is Md+1×Ln or the geometric engineering corresponds to
a compactification on Xn+1. This is given by specifying the following geometric background,
which is a solution of the supergravity equations of motion

Mn+d+1 = Md+1 × Ln , (3.2)

where

n + d + 1 =

10

11

 = D + 1 , (3.3)

depending on string or M-theory. The QFT is d-dimensional, and we start with a D + 1
dimensional supergravity theory. In the resulting lower-dimensional theory we generically
obtain an action that consists of kinetic terms as well as cubic Chern-Simons couplings. This
theory is defined on Md+1, which has a d-dimensional boundary. It can be AdSd+1 or more
general spaces with a boundary which sits at infinity.

Topological Limit. In this dimensionally reduced theory, we are interested in very long-
distance regimes, which are realized very close to the boundary at infinity [37]. In this sense,
we can implement a derivative expansion of the kinetic and topological couplings of the flux
action. The lowest derivatives dominate, which usually consists of topological couplings when
they are non-trivial. This is also valid for the dimensionally reduced brane action at very
large-distances, where the kinetic terms obtained from expanding the DBI part of the action
are subleading with respect to the topological couplings. In addition, the Wess-Zumino part
will always provide topological couplings when non-trivial.

The main reason why we can truncate the dimensionally reduced bulk and brane action
is that we really want to focus on finite, abelian, global symmetries. The gauge fields of
these symmetries in the bulk, which are flat, have vanishing flux on-shell. The modes which
we remove in the truncation do not couple to the symmetry sector described by flat fields,
and therefore can be ignored. For instance, the kinetic term for the dimensionally reduced
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fluxes will be non-trivial only for the non-vanishing part of the fluxes and therefore can be
ignored [37]. To reconcile the large-distance limit and the truncation to the flat finite abelian
gauge fields, we can say that from the point of view of large-distances, i.e. the close to the
boundary limit, the modes with non-vanishing flux are massive, and they can be integrated
out, effectively leaving only the topological couplings describing the non-trivial fluctuation of
flat fields and their non-trivial holonomies.

Finally, having truncated the dimensionally-reduced bulk and brane action to their topo-
logical sector, which describes the physics of finite abelian flat gauge fields, we can deform the
space without changing its topology such as

Md+1 →Md × R . (3.4)

SymTFT, Boundaries and Holography/String Theory. We can then connect this to
the standard notion of SymTFT: The choice of absolute theory, i.e. a choice of polarization,
will be implemented by partially compactifying the R direction, i.e the semi-infinite [0,∞)
interval [39]

Stop|polarization = SSymTFT . (3.5)

We can then think of the physical boundary (not necessarily gapped boundary) Bphys as placed
at r = 0. Likewise, the symmetry boundary, i.e. topological boundary condition, Bsym, is at
r =∞.

The position of the two boundaries reflects what appears to be the position of the phys-
ical theory and the topological boundary, respectively, both in holography and string theory
geometric engineering. The interpretation of the coordinate r and therefore of these precise
positions, depends on the metric. For simplicity, for AdS we work in hyper-polar coordinates

ds2(AdSd+1) ∼ r2ds2(R1,d) + r−2dr2 , (3.6)

(the conformal boundary is located at r = ∞), while for geometric engineering setups we
identify r with the real cone direction in the space Xn+1

ds2
Xn+1 = dr2 + r2ds2

Ln(Xn+1) , (3.7)

with the link Ln (r = 0 is the singularity at the tip of the cone).
In particular, in holographic setups we associate Bphys with the origin of AdS space (r = 0),

and not with the conformal boundary (r =∞). This might seem counter-intuitive, since the
CFT lives on a spacetime isomorphic to the conformal boundary. Our perspective stems
from the fact that the CFT is dual to the dynamics of the gravity theory in the bulk of AdS
spacetime.
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The presence of the conformal boundary on the gravity side teaches us that we need to
supplement the bulk action with boundary conditions for the supergravity fields, in order to
obtain a gravitational system that is holographically dual to a QFT. This is quantified in the
following key relation of the AdS/CFT correspondence [112]

Zsugra[(b.c. for φ) = Jφ] =
〈
e
∫

OφJφ

〉
CFT

, (3.8)

where Oφ is the gauge-invariant operator dual to the supergravity field φ. In the string theory
origin of holography, where we look at the near-horizon limit of some back-reacted brane
system, the theory that we are describing is the one living on the stack of branes in some
low-energy decoupling limit. Therefore we can practically consider the physical theory to live
at r = 0 (radial position of the stack of branes) and the boundary of AdS to be at r = ∞.
Once we truncate to the topological sector the latter becomes Bsym. In geometric engineering,
where the compactification space Xn+1 is a real cone over a link Ln(Xn+1), this works in a
very similar way: Bphys is placed at r = 0 and Bsym at r =∞.

The real difference between the SymTFT and holography/string theory is that in the latter
we cannot really perform the partial compactification of the semi-interval direction between
[0,∞). The main reason is that before truncating to the topological sector, we have gravity
and other fields related to the full string theory construction in the bulk, as well as non-local
excitations. All these are not necessarily related to the symmetry sector. In particular we
cannot deform or compactify the space as we like. Indeed, in holography the geometry of the
radial direction provides the non-trivial correspondence between the gravitational theory in
the bulk and the QFT.

Rather, we have two different procedures to specify an absolute theory in string the-
ory/holography, and in the SymTFT: in the former, we choose boundary conditions at r =
∞; in the latter, we perform the interval compactification. Heuristically, in string the-
ory/holography (quantum) gravity mediates between the topological boundary and the choices
of the boundary conditions at infinity with the theory living at r = 0 without the need of an
actual interval compactification. Let us emphasize, however, that these two procedures can
be connected to each other on the string/holography side, if we perform a truncation to the
topological sector. Once the truncation is performed, we are indeed free to specify Md+1 as
in (3.4) and establish a direct link with the SymTFT interval picture.

Singleton Theory. In many string-theory/holographic setup we have to deal with the center
of mass degree of freedom. For instance we could consider the stack of branes before taking
the near-horizon limit. In this case the theory that is realized on the brane-stack is an absolute
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theory (with U(N) gauge group for N D-branes). On the gravity side, the u(1) in u(N) ∼=
su(N) ⊕ u(1) is described by what is called the singleton mode [109]. This mode has been
analyzed in detail in the case of the N = 4 su(N) SYM and its holographic construction.
In particular, as it was shown by [113], this is a mode in the KK supergravity spectrum
(entire supersymmetric multiplet, which contains the two forms B2, C2), which comes from an
expansion in spherical harmonics of S5 and satisfies specific conditions, that are different from
the other bulk fields. This bulk multiplet is dual to a U(1) gauge field in 4d (the center of mass
of the stack of brane). The extra conditions on this bulk multiplet, which we do no repeat
here, make the U(1) gauge field pure gauge that is eaten by the combination of B2, C2 that has
Dirichlet boundary conditions at r =∞. In terms of bulk fields, the BF topological coupling
between (B2, C2) can be seen as Stückelberg mechanism for the combination of (B2, C2) that
becomes Dirichlet, in the spirit of [114]. Therefore the singleton mode is pure gauge in the
bulk and at the topological boundary, and it is not dual to any propagating physical mode of
the N = 4 su(N) SYM. The near-horizon limit decouples the center of mass mode of a stack
of branes by making it pure gauge and hence non-propagating in the bulk. The mode then
localizes on the boundary at r =∞. We expect this to generalize in the context discussed in
this paper, and it would be insightful to repeat this analysis in other contexts or to generalize it.

3.2 A Democratic Formulation for Fluxes and Brane Sources

It is convenient to work in a democratic formulation, including both the fluxes and their
Hodge duals. Let us describe our notation in a general setting, for a theory defined in D + 1
dimensions. Here D + 1 = 10, 11 depending on string or M-theory.

Magnetic Sources. Let F (i) denote the entire collection of fluxes in D + 1 dimensions,
labeled by (i) (unrelated to the form degree). In order to avoid redundancies, we consider
only magnetic sources. (An electric source for a given flux F (i) is a magnetic source for the
Hodge dual of F (i).) We denote the magnetic source for F (i) by J (i). If the source is localized,
J (i) is delta-function supported on a submanifold W(i). The magnetic source modifies the
Bianchi identity for F (i),

dF (i) = J (i) = δ(W(i)) , D + 1− dimW(i) = deg J (i) = deg F (i) + 1 . (3.9)

At the moment, we are neglecting the effect of possible Chern-Simons terms. Those will be
considered below.
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Linking. The (D + 1)-dimensional linking number between two magnetic sources J (i) =
δ(W(i)) and J (j) = δ(W(j)) is defined as

LD+1(W(i),W(j)) =
∫

MD+1
J (i) ∧ d−1J (j) =

∫
MD+1

dF (i) ∧ F (j) , (3.10)

where the dimensions of W(i), W(j) inside the total (D + 1)-dimensional space satisfy

dimW(i) + dimW(j) = D . (3.11)

The linking number has the symmetry property

LD+1(W(i),W(j)) = (−1)1+dim W(i) dim W(j) LD+1(W(j),W(i)) , (3.12)

which follows from integration by parts in the last integral in (3.10), together with (3.11).
The compact notation with the symbol d−1 introduced in (3.10), and used below, is un-

derstood as follows. We assume that W(i), W(j) are homologically trivial, W(i) = ∂S(i),
W(j) = ∂S(j). The chains S(i), S(j) are usually called Seifert (hyper)surfaces [115]. We can
then write δ(W(i)) = dδ(S(i)), δ(W(j)) = dδ(S(j)) and interpret (3.10) as

LD+1(W(i),W(j)) =
∫

MD+1
dδ(S(i)) ∧ δ(S(j)) =

∫
MD+1

δ(W(i)) ∧ δ(S(j)) =W(i) ·MD+1 S
(j) ,

(3.13)
where W(i) ·MD+1 S(j) is the number of intersection points of W(i) and S(j) inside MD+1,
counted with signs depending on orientation.

It is also useful to consider a slight generalization of the notion of linking discussed above,
along the following lines. Let’s suppose that the supports W(i), W(j) span some common
directions along some space V, while extending in distinct directions in the rest of spacetime,
i.e. W(i,j) = V ×U (i,j). We can define the linking of W(i) and W(j) using the same formula as
above, but focusing on the U (i) and U (j) parts, whose dimensions are such that

dim(W(i) ∪W(j)) = D . (3.14)

This notion of linking is naturally associated to Hanany-Witten moves in string/M-theory, as
we discuss in greater detail in section 4.

Topological Action in D + 2 dimensions. The Bianchi identities (3.9) can be derived
from a topological action in D + 2 dimensions,

SD+2 =
∑
i,j

∫
MD+2

[ 1
2κijF (i) ∧ dF (j) − κijF (i) ∧ J (j)

]
. (3.15)
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This is regarded as a functional of the fluxes F (i) (as opposed to the associated gauge po-
tentials). Extending from D + 1 to D + 2 dimensions allows us to deal efficiently with gauge
invariance. The quantity κij is a constant non-degenerate matrix, satisfying

κij = 0 if deg F (i) + deg F (j) ̸= D + 1

κij = (−1)[deg F (i)+1][deg F (i)+1]κji .
(3.16)

The symmetry property in the second equality reflects the freedom to integrate by parts in
the F (i)∧dF (j) term. It also ensures that, upon variation of F (i), the topological action yields∑

j

κij
(
dF (j) − J (j)) = 0 , (3.17)

which, by non-degeneracy of κij , is equivalent to dF (j) = J (j), in agreement with our parametriza-
tion of magnetic sources.

Let us stress that the relations obtained upon variation of the (D + 2)-dimensional topo-
logical action are still to be supplemented by Hodge duality relations in D + 1 dimensions.
This is illustrated in the following example.

Example: Generalized Maxwell in D + 1 dimensions. Let us consider a generalized
Maxwell theory in D+1 dimensions, with a single p-form gauge potential a, with field strength
f . In the absence of sources, the action reads

SD+1 =
∫

MD+1

1
2e2 f ∧ ∗f , deg f = p + 1 . (3.18)

The Bianchi identity and equation of motion read

df = ∗J (m) , e−2d ∗ f = ∗J (e) , (3.19)

where e is the gauge coupling, ∗ is the Hodge star in D + 1 dimensions, J (e) is the electric
source for a, and J (m) is the magnetic source for a. In the democratic formulation we introduce
two field strengths and two magnetic currents,5

F (1) = f , F (2) = e−2 ∗ f , J (1) = ∗J (m) , J (2) = ∗J (e) . (3.20)

The topological action in d+2 dimensions is of the form quoted above, with labels i, j ranging
from 1 to 2, and with κij matrix

κij =
(

0 1
(−)(p+2)(D+1−p) 0

)
. (3.21)

5Notice in particular that in our notation the currents J(i) are closed forms, as opposed to co-closed forms,
which is perhaps a more common convention for conserved currents in the literature.
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More explicitly,

SD+2 =
∫

MD+2

[
F (1) ∧ dF (2) − F (1) ∧ J (2) − (−)(p+2)(D+1−p)F (2) ∧ J (1)

]
, (3.22)

which, upon variation with respect to F (1), F (2) reproduces dF (1) = J (1), dF (2) = J (2). The
(D + 1)-dimensional Hodge duality relation that has to be supplemented is

∗F (1) = e2F (2) . (3.23)

Inclusion of Chern-Simons terms. We can include non-trivial Chern-Simons terms by
modifying the (D + 2)-dimensional topological action. The required modification is a polyno-
mial in the F (i) fluxes, denoted CS({F (i)}),

SD+2 =
∫

MD+2

[ 1
2
∑
i,j

κijF (i) ∧ dF (j) + CS({F (i)})−
∑
i,j

κijF (i) ∧ J (j)
]

. (3.24)

Our notation stems from the fact that CS({F (i)}) is a closed (D + 2)-form which is related to
the physical Chern-Simons couplings in D + 1 dimensions by descent,

Stop
D+1 =

∫
MD+1

I
(0)
D+1 , dI

(0)
D+1 = CS({F (i)}) . (3.25)

Varying (3.24) with respect to F (i) we get

∑
j

κij(dF (j) − J (j)) + ∂CS({F (k)})
∂F (i) = 0 . (3.26)

The notation introduced in this section is summarized in table 1.

Actions for Type II and M-theory. To make the above discussion more concrete, let us
describe the (D + 2)-dimensional topological actions for type II (D + 1 = 10) and M-theory
(D + 1 = 11). They are of the form (3.24) with

IIA:


F (i) = (F0, F2, F4, F6, F8, F10, H3, H7) ,

S11 =
∫

M11

[
F0dF10 − F2dF8 + F4dF6 + H3dH7 −H3

(
F0F8 − F2F6 + 1

2F 2
4 + X8

)]
,

IIB:


F (i) = (F1, F3, F5, F7, F9, H3, H7) ,

S11 =
∫

M11

[
F1dF9 − F3dF7 + 1

2F5dF5 + H3dH7 + H3(F1F7 − F3F5)
]

,
(3.27)

M:


F (i) = (G4, G7) ,

S12 =
∫

M12

[
G4dG7 −

1
6G3

4 −G4X8

]
.
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Dimensions QFT dim = d; SymTFT dim = d + 1; sugra dim = D + 1 = 10, 11
internal space dim = n; D + 1 = n + d + 1

Top Action S =
∫

MD+2

[ 1
2
∑
i,j

κijF (i) ∧ dF (j) + CS({F (i)})−
∑
i,j

κijF (i) ∧ J (j)
]

Magnetic Sources
dF (i) −

∑
j

(κ−1)ij CS({F (k)})
∂F (j) = J (i) , J (i) supported on W(i)

D + 1− dimW(i) = deg J (i) = deg F (i) + 1

Linking
LD+1(W(i),W(j)) =

∫
MD+1

J (i) ∧ d−1J (j) =
∫

MD+1
dF (i) ∧ F (j)

dimW(i) + dimW(j) = D,
(
dim(W(i) ∪W(j)) = D for HW linking

)
Table 1: Summary of Notation: we consider a supergravity theory in D+1 = 10, 11, dimensions
with fluxes F (i). The auxiliary topological action is formulated in D + 2 dimensions. The
magnetic source for F (i) is denoted by J (i).

For simplicity, we have recorded the actions without the source terms. We refer the reader
to appendix A for further details and for a discussion of the sources J (i). The 8-form X8 is
a higher-derivative correction constructed with the curvature form [116,117], see appendix A.
The topological actions (3.27), in D + 2 dimensions are supplemented by Hodge duality rela-
tions in D + 1 dimensions:

Type II: H7 = e−2ϕ ∗10 H3 , Fp = (−1)⌊ p
2 ⌋ ∗10 F10−p

M-theory: G7 = − ∗11 G4 ,
(3.28)

where in Type II, ϕ is the dilaton and we work in string frame in natural units. A democratic
formulation for type II based on 11d Chern-Simons theories is presented in [47]; a democratic
formulation based on a non-topological 10d (pseudo)action is presented in [118].

(D + 2)-dimensional Topological Action and Dimensional Reduction. Recall that
we are interested in studying setups in which the physical spacetime in 10/11 dimensions is
of the form (3.2). This corresponds to D = d + n. The auxiliary topological action in D + 2
dimensions is formulated on a spacetime of the form

MD+2 = Md+2 × Ln , (3.29)

where the external spacetime Md+1 has been extended to an auxiliary Md+2, while the internal
geometry remains Ln. Our task is to integrate SD+2 on Ln to obtain a topological action Sd+2.
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Next, we reconstruct the physical SymTFT action Sd+1 from Sd+2,

auxiliary top. action Sd+2 =
∫

Ln

SD+2 −−−→ SymTFT action Sd+1 . (3.30)

These steps are exemplified below in a variety of setups.

3.3 BF-Terms from Branes

The first aspect to address is how to generate the BF terms of the SymTFT.6 We adopt the
strategy described at the end of the previous section: we work on a (D+2)-dimensional space-
time of the form (3.29). The fluxes can have background values on topologically non-trivial
cohomologies of the internal manifold Ln, and in the reduction ansatz they are generically
expanded along representatives of these cohomologies.

Generically we face two possibilities that generate BF-terms:

1. BF-terms from the term CS({F (i)}) in (3.24)

2. BF-terms from the term κijF (i) ∧ dF (j) in (3.24).

Let us analyze each possibility in turn.

BF-terms from CS({F (i)}). The first possibility is when the Chern-Simons functional de-
scend to a non-trivial quadratic wedge product of two fluxes upon compactification on Ln.
For instance this is the case when there are non-trivial background fluxes on Ln or F (i) are
expanded on non-trivial cohomologies representatives.

Let us describe schematically the general mechanism for generating BF-terms in this case.
The relevant ansatz for the higher-dimensional fluxes and sources reads

F (i) = F
(i)
bkrg +

∑
a

f (ia) ∧ ω(a) , J (i) =
∑

a

j(ia) ∧ ω(a) . (3.31)

Here ω(a) are closed internal forms, with integral periods, representing cohomology classes on
Ln, enumerated by the label a. The quantities f (ia) are external fluxes, while F

(i)
bkrg denotes

a possible non-zero background value for the F (i) flux. The latter is also proportional to the
volume form of cycles of Ln and always integrates to an integer on these cycles because of
flux quantization. Finally, we use j(ia) to denote the external parts of the higher-dimensional
sources J (i).

6In some cases these can be pure Chern-Simons term like c3dc3 in 7d. When this happens the theory is not
properly defined as a SymTFT, because of the absence of gapped boundary conditions. An example of this is
provided by 6d (2, 0) theories.

24



If we start from the topological action (3.24) in D + 2 dimensions and integrate over Ln,
we obtain a topological action in d + 2 dimensions with couplings of the form (we suppress
wedge products for brevity)

Sd+2 =
∫

Md+2

∑
i,j,a,b

[1
2κ(ia)(jb)f

(ia)df (jb) − κ(ia)(jb)f
(ia)j(jb) + α(ia)(jb)f

(ia)f (jb)
]

+ · · · . (3.32)

On the one hand, the constants κ(ia)(ib) are determined from the original constants κij in
(3.24) and the intersection pairing of the ω(a) forms on Ln. On the other hand, the terms
α(ia)(jb)f

(ia)f (jb) originate from cubic terms in CS({F (i)}) in (3.24), with the constants α(ia)(jb)

determined as integrals over Ln of internal top forms constructed with the background fluxes
F

(i)
bkgr and with the forms ω(a). Integrality of F

(i)
bkgr, ω(a) implies integrality of α(ia)(jb).

The first two terms in the auxiliary (d+2)-dimensional action (3.32) correspond to kinetic
terms in the physical action on Md+1. As we describe at the beginning of this section, the
kinetic terms of the gauge potential do not capture the fluctuations of finite discrete Abelian
gauge field, and therefore can be ignored in the truncation to the topological sector. We are
left with

SBF+sources
d+2 =

∫
Md+2

∑
i,j,a,b

[
α(ia)(jb)f

(ia)f (jb) − κ(ia)(jb)f
(ia)j(jb)

]
. (3.33)

This action furnishes a (d + 2)-dimensional description of a BF theory in d + 1 dimensions.

Example. For illustration purposes, let us consider the simple case in which we only have
two relevant external fluxes, denoted f (1), f (2), and one α constant,

SBF+sources
d+2 =

∫
Md+2

[
αf (1)f (2) − f (1)j(1) − f (2)j(2)

]
, (3.34)

where we have performed a linear redefinition of the external currents to reabsorb the κ

constants. An action of this form appears for example in many holographic setups like AdS5×
S5 or AdS7 × S4 in IIB or M-theory respectively, where the we have background fluxes such
that α =

∫
S5 F5 = N and α =

∫
S4 G4 = N . The Bianchi identities read

αf (2) = j(1) , (−1)deg f (1) deg f (2)
αf (1) = j(2) . (3.35)

Plugging this back into the action and evaluating the exponential of the action with brane
sources we get

⟨e2πi
∫

M(1) f (1)
e2πi

∫
M(2) f (2)

⟩ = exp
(

2πi

α

∫
Md+1

j(1)(Σ(1)) ∧ d−1j(2)(Σ(2))
)

= exp
(2πi

α
Ld+1(Σ(1), Σ(2))

)
,

(3.36)

where Σ(1) = ∂M(1), Σ(2) = ∂M(2) are (homologically trivial) cycles in Md+1 and we have
used (3.10) with D replaced by d.
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Flux Non-Commutativity. We can now relate the above to flux non-commutativity. By
inserting the above operators on alternative Σ̃(1) = ∂M̃(1), Σ̃(2) = ∂M̃(2):〈

e
2πi
∫

M̃(1) f (2)
e

2πi
∫

M̃(2) f (1)
〉

= exp
(

2πi

α

∫
Md+1

j(2)(Σ̃(1)) ∧ d−1j(1)(Σ̃2)
)

= exp
(2πi

α
Ld+1(Σ̃(2), Σ̃(1))

)
.

(3.37)

This implies that 〈
e

2πi
∮

Σ1
f (1)

e

∮
Σ2

f (2)
〉

=
〈

e

∮
Σ̃1

f (2)
e

∮
Σ̃2

f (1)〉
e2πi L−L̃

α , (3.38)

where L, L̃ are short-hand for the linking numbers Ld+1 for Σ(i) and Σ̃(i) respectively.
If the two branes unlink in the second configuration, i.e. L̃ = 0, we exactly get flux

non-commutativity as a consequence of the two branes linking in d + 1 dimensions.

Example: 4d N = 1 SYM with g = su(M). To exemplify this, consider the holographic
realization of pure super-Yang-Mills (SYM). We first consider the Klebanov-Strassler solution
[119] dual to 4d g = su(M) N = 1 SYM. This is the back-reacted configuration of N D3-
branes probing the resolved conifold, i.e. the cone of the T 1,1 Sasaki-Einstein space, C(T 1,1)
and M D5-branes wrapping S2 ⊂ T 1,1. The relevant flux quantization is∫

S3
F3 = M . (3.39)

The ansatz for the higher-dimensional fluxes is

F (1) = F3 = MvolS3 + f (1,1)volS2+f (1,2) ,

F (2) = H3 = f (2) ,

F (3) = F5 = F
(3)
bkrg + f (3,1) ∧ volS2 + f (3,2) ∧ volS3 .

(3.40)

From the IIB topological action, we derive the term

Sd+2 =
∫

Md+2
Mf (2) ∧ f (3,1) . (3.41)

where d = 4. We must also include sources for the external fluxes
dH7 = J (2) : J (2) = j(2,1) ∧ volT 1,1 . . .

dF5 = J (3) : J (3) = j(3,1) ∧ volS3 + . . . ,
(3.42)

where we recall that the labels on top of the F (i), f and j do not reflect the form degrees,
which can instead be read off from the identification with the IIB fluxes F3, H3, F5 in (3.40)
and from their derivatives in (3.42). We then obtain

SBF+sources
d+2 =

∫
Md+2

Mf (2) ∧ f (3,1) − j(2,1) ∧ f (2) − j(3,1) ∧ f (3,1) . (3.43)

This is the IR BF term which describes flux non-commutativity [120].
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BF-terms from κijF (i) ∧ dF (j). The second case is when the BF-terms or quadratic terms
in the topological action, after compactification on Lint, are generated by one of the F (i)∧dF (j)

terms in (3.24). For ease of exposition, instead of considering the general action (3.24) we
can consider a simpler action in D + 2 dimensions, with only two fluxes and no Chern-Simons
interactions,

SD+2 =
∫

MD+2

[
F (1)dF (2) + (sources)

]
. (3.44)

For simplicity we also assume that there is only one pair of relevant cycles onto which F (1),
F (2) are expanded, so that the relevant terms in the reduction ansatz are

F (1) = f ∧ ϕ , F (2) = f̃ ∧ ϕ̃ . (3.45)

In the previous expressions the internal forms ϕ, ϕ̃ are not closed. Rather, they represent
torsional cohomology elements in H•(Lint,Z) [121, 122], as explained in greater detail below.
The degrees of the forms f , f̃ , ϕ, ϕ̃ must satisfy

deg f + deg f̃ = d + 2 , deg ϕ + deg ϕ̃ = n− 1 . (3.46)

The reduction of (3.44) yields a (d + 2)-dimensional action of the form

SBF+sources
d+2 =

∫
Md+2

[
αf ∧ f̃ − f ∧ j − f̃ ∧ j̃

]
. (3.47)

Here the coefficient α is given by

α = (−1)(1+deg f̃)(1+deg ϕ)
∫

Ln

dϕ ∧ ϕ̃ . (3.48)

The external source terms j, j̃ originate from the source terms in (3.44). From dF (2) we also
get a term in which the derivative acts on f̃ . This term, however, yields f ∧ df̃ in d + 2
dimensions. Such terms will lead to kinetic terms in the (d + 1)-dimensional action that we
ignore once we consider the theory of flat gauge potentials only, as it was for the first case.

The integral in the α coefficient can be interpreted as linking in the internal space: this
is illustrated below. We then see how the BF-terms as well as flux non-commutativity are
directly equivalent to the brane and its magnetic dual brane linking also in external space as
it was for the first case. Notice here the branes link doubly, i.e. both internally and externally.
The internal linking of the branes leads to the coefficient of the BF-term. On top of this the
external linking leads to flux non-commutativity.

As anticipated above, the non-closed forms ϕ, ϕ̃ encode torsional cohomology classes. More
precisely, let us consider the pairs (ϕ, Φ), (ϕ̃, Φ̃) with [121,122]

ℓΦ = dϕ , ℓ̃Φ̃ = dϕ̃ , (3.49)
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where ℓ, ℓ̃ are positive integers. The pair (ϕ, Φ) models an element of Hdeg ϕ+1(Ln,Z) of
torsional degree ℓ, while the pair (ϕ̃, Φ̃) models an element of Hdeg ϕ̃+1(Ln,Z) of torsional
degree ℓ̃. The relation ℓΦ = dϕ corresponds to a statement of the form ℓΣ = ∂M, where Σ
is the cycle dual to the closed form Φ, hence of dimension n − deg ϕ − 1, and M is a chain
of dimension n − deg ϕ. Similarly, ℓ̃Φ̃ = dϕ̃ translates to ℓ̃Σ̃ = ∂M̃, where Σ̃ is a cycle of
dimension n− deg ϕ̃− 1. The torsional pairing of the cycles Σ, Σ̃ can be computed by taking
the intersection number between Σ and M̃ and dividing by ℓ̃, the torsional order of Σ̃,

TLn(Σ, Σ̃) = 1
ℓ̃

Σ ·Ln M̃ mod Z . (3.50)

Using Σ ·Ln M̃ =
∫

Ln
Φ ∧ ϕ̃ and (3.48), (3.49), we can write

(−1)(1+deg f̃)(1+deg ϕ)α =
∫

Lint
dϕ ∧ ϕ̃ = ℓ Σ ·Ln M̃ = ℓℓ̃ TLn(Σ, Σ̃) . (3.51)

We have thus established a general relation between the BF coefficient α, the torsional pairing
TLint(Σ(1), Σ̃(1)), and the torsional orders ℓ, ℓ̃. We also confirm the integrality of the BF
coefficient α.

BF-terms from both Mechanisms. Finally, we can consider cases where both situations
show up, namely where we have non-zero background fluxes as well as non-trivial torsional
pairings. Examples are furnished by AdS5 × RP5 in type IIB [88] or AdS7 × RP4 in M-
theory [123] (the fluxes are F5 and G4, respectively). In the standard setting (case 2 above),
torsional flux non-commutativity applies to branes that are electro-magnetic duals in the
original D + 1 dimensional theory. In the hybrid case, the non-zero background flux induces
torsional flux non-commutativity for branes that are not duals in D + 1 dimensions. As a
result, some technical aspects of the computation of BF couplings in this class of scenarios
require a more refined analysis; we refer the reader to the references above.

3.4 Topological Couplings in the SymTFT from Branes

So far we have been focusing on how to get the BF-terms of the SymTFT from the branes in the
holographic or geometric constructions. Dimensional reduction of the 10/11-dimensional flux
sector with brane sources can lead to additional topological couplings, which, upon choosing
suitable gapped boundary conditions, provides an invertible topological theory. This cor-
responds to the anomalies involving finite, abelian symmetries of an absolute QFT at the
boundary. We refer to such couplings in the SymTFT as anomaly couplings (with the under-
standing that these couplings result in ’t Hooft anomalies after certain choices of boundary
conditions).
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The strategy to obtain these extra topological (non BF-type) couplings is similar to the one
implemented for identifying the BF-terms as linking of branes. It consists of dimensionally
reducing the action (3.24) on Ln and then applying the (dimensionally reduced) Bianchi
identities, with sources, (3.26)7. By substituting the fluxes in terms of brane sources, we can
directly connect the extra topological couplings to brane linking. We now describe how this
works in general, where we limit though to quadratic or cubic couplings, which are the cases of
interest for us. On the other hand, extending to higher topological coupling is straightforward.

The extra topological (non BF-type) couplings of interest are couplings in the SymTFT in
d + 1 dimensions. As in the previous section, however, we find it convenient to describe these
couplings using an action in d + 2 dimensions, since this is what we naturally get from (3.24).
We use j(i) to denote external currents. Their form degrees are left unspecified. In each case,
it is assumed that they are such that the integrals we write can be non-zero.

3.4.1 Quadratic Couplings

For the quadratic couplings there are two types of extra topological couplings, depending on
their expression in terms of the brane sources.

Quadratic Couplings 1. The first case is

Sextra = a

∫
Md+2

j(1) ∧ d−1j(2) . (3.52)

These sorts of terms in d+2 dimensions are expected to combine into a total derivative, which
we can rewrite as an integral in Md+1, of the form

Sextra = a

∫
Md+1

d−1j(1) ∧ d−1j(2) . (3.53)

In this case the branes can link in Md, where the QFT lives.

Example. A Pontryagin square P(b2) coupling in the 4d SymTFT for a QFT in 3d is an
example of such a coupling. The finite 2-form gauge field b2 is BF-dual to b̂1 in 3d. The
topological operators realized by the dimensionally reduced branes, are identified with the
holonomies of b̂1. They are lines that can link in the 3d spacetime, where the QFT lives. For
example, this coupling can be found in setups where a stack of M5-branes is wrapped on a
compact 3-manifold Σ3 with an appropriate topological twist to preserve 3d N = 2 or N = 1
supersymmetry. In this case, the link geometry L7 is an S4 fibration over Σ3. Depending

7Alternatively one can reduce the Bianchi identities with brane sources directly and construct the lower-
dimensional action from this. The two procedures are equivalent.
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on the geometry of Σ3, L7 can admit non-trivial torsional cohomology classes of degree 2.
Expansion of G4 onto such classes yields both discrete gauge fields 2-forms as b2, and P(b2)
couplings in the SymTFT, by applying the techniques of [39], see [124] where this will be
utilized. Couplings of the form P(b2) are also found in the SymTFTs of supersymmetric 3d
QFTs realized in M-theory using geometric engineering or M2-branes [42].

Quadratic couplings 2. The second case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) = (−)deg j(1)
a

∫
Mdext

j(1) ∧ d−1j(2) . (3.54)

This is instead a case where the two branes link in Md+1, where the SymTFT lives.

Example. A coupling
b2 ∪ Bock(b′

2) , (3.55)

in a 5d SymTFT for a 4d QFT is of this type. Here b2, b′
2 are ZN 2-form fields, and Bock is

the Bockstein homomorphism associated to the short exact sequence

0→ ZN
×N−−→ ZN2 → ZN → 0 . (3.56)

The dimensionally reduced branes are identified with the holonomies of b̂2, b̂′
2, the 5d BF-duals

of b2, b′
2. Thus the brane sources are 2d surfaces, and indeed can link in the 5d spacetime

where the SymTFT lives.

In both these quadratic couplings, a is an integer constant coupling coefficient which is
determined by an integral over Ln of non-trivial fluxes components over the internal space. It
depends on the representatives of non-trivial cohomology or non-trivial geometric linking of
cycles in the internal space, wherever we face the first or the second situation described in the
previous section, respectively. In addition a is an integer because of flux quantization.

3.4.2 Cubic Couplings

For cubic couplings we face three distinct possibilities.

Cubic Couplings 1. The first case is

Sextra = a

∫
Md+2

j(1) ∧ d−1j(2) ∧ d−1j(3) . (3.57)

Terms of this form correspond to an integral in Md+1 of the form

Sextra = a

∫
Md+1

d−1j(1) ∧ d−1j(2) ∧ d−1j(3) . (3.58)
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This is a triple linking configuration (cf. Milnor’s triple intersection number [125]). We can
formally recast it as a standard linking in Md+1, namely a quantity of the form

∫
Md+1

j(12) ∧
d−1j(3), with the identification

j(12) = d−1j(1) ∧ d−1j(2) . (3.59)

Recall that j(i) is supported on a cycle Σ(i) that is the boundary of a chain M(i), which is
usually referred to as Seifert (hyper)surface [115]. Then the RHS of (3.59) represents the
intersection inside Md+1 of the Seifert surfaces M(1), M(2) associated to j(1), j(2).

Example: B3 Anomaly in 5d. A cubic coupling b2b2b2 in the 6d SymTFT of a QFT in
d = 5 dimensions, such as have appeared in [39, 126]. Here b2 is a ZN discrete 2-form. The
dimensionally reduced branes are again identified with the holonomies of the BF-dual field b̂3

in six dimensions, which arise from M5-branes wrapping torsional 3-cycles of Ln. They are
therefore 3d surfaces, which in six dimensions can form a non-trivial triple linking configuration
as in (3.58).

Example: 4d N = 1 SYM with G = SU(M). This theory has mixed ’t Hooft anomaly

A = −2π
1

M

∫
A1 ∪

P(B2)
2 , (3.60)

where B2 is the background for a Z(1)
M 1-form symmetry and A1 is the background for a Z(0)

2M

0-form symmetry. Using the Klebanov-Strassler solution, a detailed supergravity origin of this
anomaly is given in [1, 120].

We continue with the field notation introduced around (3.43). The generator of the 0-form
symmetry was identified with a D5-brane wrapped on S3 ⊂ T 1,1 in [1]. We introduce a source
for the external field corresponding to background for this symmetry via

dF3 = J (1) , J (1) = j(1,1) ∧ volS2 + . . . , (3.61)

where we use the expansion in (3.40), and with (3.42) we can rewrite the anomaly as follows

1
2M

∫
Md+2

j(1,1) ∧ d−1j(3,1) ∧ d−1j(3,1) , (3.62)

where d = 4 and the form degrees of j(3,1) and j(1,1) are 3 and 2 respectively, and they can be
read off from (3.40), (3.42) and (3.61).
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Cubic Couplings 2. The second case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) ∧ d−1j(3) , (3.63)

with corresponding term in Md+1 of the form

Sextra = a

∫
Md+1

j(1) ∧ d−1j(2) ∧ d−1j(3) . (3.64)

Again this is interpreted as suitable triple linking configuration. We can formally recast it
as a standard linking in Md+1, namely a quantity of the form

∫
Md+1

j(12) ∧ d−1j(3), with the
identification

j(12) = j(1) ∧ d−1j(2) . (3.65)

The RHS represent the intersection inside Md+1 of the cycle associated to j(1) with the Seifert
surface associated to j(2).

Example. The coupling b2b2Bock(a1) in the 6d SymTFT of a QFT in d = 5 dimensions.
Here b2 is a ZN 2-form field, a1 a ZM 1-form field, and the Bockstein homomorphism is
analogous to the one introduced above in the b2Bock(b′

2) example.8 The dimensionally reduced
branes provide the holonomies of the BF-dual fields in six dimensions, b̂3 and â4, and are
therefore 3d and 4d surfaces, respectively. Such 3d-3d-4d system in 6d can exhibit the triple
linking described in (3.64).

Cubic Couplings 3. The third case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) ∧ j(3) , (3.66)

corresponding to the following in Md+1,

Sextra = a

∫
Md+1

j(1) ∧ j(2) ∧ d−1j(3) , (3.67)

This is again a suitable triple linking configuration. We can formally recast it as a standard
linking in Md+1, namely a quantity of the form

∫
Md+1

j(12) ∧ d−1j(3), with the identification

j(12) = j(1) ∧ j(2) . (3.68)

The RHS represent the intersection inside Md+1 of the cycles associated to j(1), j(2).
8This example may be realized using 5d gauge theories. More precisely, we may start with a 5d gauge theory

in which the U(1) instanton 0-form symmetry and the center 1-form symmetry have a mixed anomaly, encoded
in a coupling b2b2f2 in the 6d SymTFT, where f2 is the field strength of a continuous 1-form gauge field. If we
restrict to a ZM subgroup, this coupling becomes b2b2Bock(a1).
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Example. An example is the coupling a1Bock(a1)Bock(a1) in the 5d SymTFT of a 4d QFT.
Here a1 is a ZN 1-form gauge field, and Bock is the same Bockstein homomorphism as in the
previous examples of this section. The dimensionally reduced branes give the holonomies of
â3, the BF-dual of a1 in 5d, and are therefore 3d surfaces. Three such branes can link as in
(3.67).

Example: G(0) Anomaly of 4d N = 1 SYM with G = SU(M). There is a pure 0-form
symmetry anomaly [1]

Stop ⊃
∫
−κ2M2

4 F3
2 , (3.69)

where F2 = dA1 is the field strength of a background gauge field for the 0-form symmetry
and N = κM is the number of D3-branes. In terms of brane sources, this is a pure 0-form
symmetry anomaly of the third type

κ2

32M
j(1,1) ∧ j(1,1) ∧ j(1,1) , (3.70)

where using (3.40) and with df (1,1) = 2MF2 (see Appendix A of [1]), we find

F2 = j(1,1)

2M
. (3.71)

It would be interesting to compare this with a direct field theory analysis, in the large rank
limit.

For the cubic coupling the coefficient, a, is integer and constant because of flux quantization
and depends on the internal sources and how they integrate on Ln non-trivially. In particular,
a can originate from either situation listed in the previous section depending on how the
fluxes and their Bianchi identities get compactified. We notice that the three cases 1, 2, 3
listed above correspond to triple linkings of type 0, 1, 2, respectively, in the notation of [43],
see also [115].

3.5 Anomaly Couplings as Charges of Defect Junctions from Branes

These extra topological couplings in the SymTFT can lead to anomalies of an absolute QFT
once suitable boundary conditions are chosen. This is also true for the BF-couplings, there
are some choice of boundary condition for which some left over BF-couplings can lead to a
quadratic anomaly. The choice of boundary condition depends on the specific theory itself.
In terms of branes these corresponds to picking a radial direction of the SymTFT and un-
derstanding how the branes providing topological and charged defects can extend in Md+1.
For instance charged defects come from branes extended in the radial direction (the direction

33



perpendicular to the boundary where the relative QFT lives), i.e. the field electrically charging
the branes has Dirichlet boundary condition.

Whereas topological operators comes from branes parallel to the boundary, i.e. the field
which electrically charge the brane is freely varying. From this point of view it is easy to
interpret the quadratic anomaly as the charge of a brane, corresponding to a topological
defect, with respect to the same or a different brane, corresponding to the same or a different
topological defect. These correspond to a pure or a mixed ’t Hooft anomaly, respectively.
A cubic anomaly can be interpreted as charges of a brane intersection, corresponding to
a junction of topological defects (equal or different, for pure or mixed ’t Hooft anomalies
respectively), with respect to the same or another brane, corresponding to the same or another
topological defect (for pure or mixed ’t Hooft anomalies respectively). The charges computed
here correspond to the number a which is an integral over the internal manifold times the
linking of the branes in the external space as specified for the different cases of quadratic and
cubic extra topological couplings above. The anomalies can be interpreted as an ambiguity of
the topological defects whenever they link or unlink in the radial direction.

Example 1. We now illustrate the above ideas for two concrete classes of mixed anomalies
for discrete p-form symmetries. Firstly, let us consider an anomaly action of the schematic
form

A = α

∫
Md+1

A(1)
p1 . . . A(n)

pn
,

n∑
j=1

pj = d + 1 . (3.72)

Each A
(j)
pj is a discrete background field for a global symmetry, a cohomology class of degree

pj . The constant α is the anomaly coefficient. We denote the topological defect implementing
the global symmetry associated to A

(j)
pj as D

(j)
d−pj

. (Notice that these topological defects live
in d dimensions.) Let us consider topological defects D

(2)
p2 , . . . , D

(n)
pn in generic positions

in d-dimensional spacetime. They intersect along a locus of dimension p1 − 1. The mixed
anomaly (3.72) means that this intersection has non-zero charge (proportional to α) under
the topological operator D

(1)
d−p1

. For ease of discussion, we have singled out the symmetry
associated to A

(1)
p1 , but clearly analogous statements can be made by singling out any other

A
(j)
pj .

Example 2. Next, let us consider a mixed anomaly for two finite global symmetries, of the
form

A = α

∫
Wd+1

Ad−pBock(Bp) . (3.73)
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We denote the topological defects operator generating the global symmetries associated to the
background fields Ad−p, Bp as D

(A)
p , D

(B)
d−p, respectively. For simplicity, we assume that Bp is

associated to a Zk (p− 1)-form symmetry. Then Bock denotes the Bockstein homomorphism
associated to the short exact sequence 0 → Z k−→ Z → Zk → 0. This anomaly can only
be detected on spacetimes with torsion, because Bock(Bp) lies in the torsion subgroup of
Hp+1(Wd+1,Z). An interpretation in terms of junctions of topological defects can be given
along the lines of appendix F of [127] (and many subsequent works). The relevant torsion in
d dimensions is in Hp+1(Wd,Z), or Hd−p−1(Wd,Z) by Poincaré duality. We thus consider a
torsional (d− p− 1)-dimensional cycle Md−p−1 in d dimensions, satisfying rMd−p−1 = ∂Nd−p.
We may insert a topological defect D

(B)
d−p supported on Nd−p, with Md−p−1 regarded as a

codimension one junction inside D
(B)
d−p. The anomaly (3.73) means that this junction on

Md−p−1 has non-zero charge (proportional to α) under the topological defects D
(A)
p (indeed,

they link in d dimensions). In the action (3.73) of the anomaly theory, the Bockstein map can
be “integrated by parts” and the roles of A and B in the previous discussion can be exchanged.
This sort of anomaly can be found, for example, in 4d gauge theory with gauge algebra su(N),
with N = ℓℓ′ for integers ℓ > 1, ℓ′ > 1. We can specify a global form of the theory with both
non-trivial electric and magnetic 1-form symmetries. The mixed anomaly between the latter
is of the form (3.73) with d = 4, p = 2.

3.6 Condensation Defects from Branes

From a symmetry categorical point of view the condensation completion (or Karoubi com-
pletion) corresponds to adding all possible condensation defects. We have seen how this is
realized in terms of the SymTFT by including the couplings to lower-dimensional DW-theories
in (2.7).

We now turn to the string theory interpretation. For definiteness we work in type II, but
similar remarks apply to M-theory. Let us consider a Dp-brane on Mp+1. We are interested in
writing down a topological action, formulated on an auxiliary manifold Mp+2 in one dimension
higher, that captures the topological couplings on the Dp-brane. Moreover, we also want to
capture the kinetic term f2 ∧ ∗f2 from the DBI action using the auxiliary topological action.
We propose the following,

SDp
p+2 =

∫
Mp+2

[
f̂p−1 ∧ df2 +

(
ef2
∑

q

Fq

√√√√ Â(T )
Â(N)

)
p+2

]
. (3.74)

Here f2 is the field strength of the gauge field on the Dp-brane and f̂p−1 is its Hodge dual
in Mp+1. The quantities Fq are the RR fluxes, pulled back from the bulk, and we have also
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included the standard A-roof terms from the Wess-Zumino couplings, for the tangent and
normal bundles, respectively. If we consider an anti Dp-brane, we flip the sign of action
(3.74)9.

We want to argue that considering a combined Dp/Dp system provides a possible stringy
origin for the condensation-completed SymTFT action (2.7). We proceed by considering a
couple of illustrative examples.

Example: 4d N = 1 Holographic dual. We continue with the Klebanov-Strassler exam-
ple 3.3. For this we need to consider the action of D5-branes. Their action is given by

SD5
7 =

∫
M7

[
f̂4 ∧ df2 + F7 + f2F5 +

(1
2f2

2 + p1(N)− p1(T )
48

)
F3

+
( 1

3!f
3
2 + f2

p1(N)− p1(T )
48

)
F1

]
. (3.75)

As a result, the combined action for a D5-brane/anti-D5-brane reads

S
D5/D5
7 =

∫
M7

[
f̂4 ∧ df2 − f̂ ′

4 ∧ df ′
2 + (f2 − f ′

2)F5 + 1
2(f2 − f ′

2)(f2 + f ′
2)F3

+ (f2 − f ′
2)
(

f2
2 + f2f ′

2 + f ′2
2

6 + p1(N)− p1(T )
48

)
F1

]
. (3.76)

We have used a prime to denote the gauge field f ′
2 on the anti-D5-brane and its partner f̂ ′

4.
In the Klebanov-Strassler holographic setup, the D5/D5 system is wrapped on M7 =

M4×S3 with M units of F3 through the S3. Our task is to integrate the 7d topological action
on S3. The discussion parallels exactly the two cases discussed in section 3.3. The terms
f̂4 ∧ df2 would correspond to kinetic terms in the lower-dimensional theory on M4, which we
neglect because we are studying the topological sector. Next, the terms quadratic in f2, f ′

2

yield a 4d description of a set of abelian CS-terms in 3d. Moreover, F5 admits a non-trivial
component along S3: from (f2 − f ′

2)F5 on S3 we get a coupling of (f2 − f ′
2) to a 2-form bulk

field, denoted g2. In summary, the relevant terms are

SD5/D5 =
∫

M4

[
M

2 (f2 − f ′
2)(f2 + f ′

2) + (f2 − f ′
2)g2

]
. (3.77)

We suggest the following interpretation, making contact with the general expression (2.7) for
the condensation-completed SymTFT. The combination f2−f ′

2 is identified with the localized
field a1 in the lower-dimensional DW type theory in the SymTFT that accounts for a class

9The sign of the DBI term for a brane and an antibrane is the same. The flip in sign in the BF term
reformulation of the DBI kinetic term is compensated by a flip in sign in the Hodge duality relation between
f2 and f̂p−1.
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of condensation defects. The combination f2 + f ′
2 corresponds instead to â1, the BF-dual to

a1 in the lower-dimensional DW type theory, Finally, g2 corresponds to one of the bulk fields
bp+1 (here p = 1). This can be seen more explicitly in the case of M odd. We perform a field
redefinition implemented by an integral, unimodular matrix, and we rename g2,(

f2
f ′

2

)
=
(

1 1
0 1

)(
da1
dâ1

)
, g2 = b2 . (3.78)

We get the action ∫
M3

[
Mâ1 ∧ da1 + a1 ∧ b2 + K

2 a1 ∧ da1

]
, K = M . (3.79)

The Lagrangian in bracket describes the (ZM )K discrete gauge theory [128], coupled to the
bulk field b2. On a spin manifold, K can be any integer and the periodicity is K ∼ K + 2M if
M is even and K ∼ K + M if M is odd. We then see that, for M odd, the Lagrangian (3.79)
on a spin manifold is equivalent to∫

M3

[
Mâ1 ∧ da1 + a1 ∧ b2

]
, (3.80)

which matches (2.7). For M even, (3.79) still describes a condensation defect, but with non-
trivial discrete torsion K = M , see e.g. appendix B of [61].

Example: 4d N = 4 so(4n) SYM. Let us now discuss an example that illustrates the
importance of the terms f̂p−1df2 in (3.74) in the presence of torsion. The action (3.74) for a
D3-brane reads

SD3
5 =

∫
M5

[
f̂2 ∧ df2 + F5 + f2F3 +

(1
2f2

2 + p1(N)− p1(T )
48

)
F1

]
, (3.81)

and therefore a D3/D3 system is described by

S
D3/D3
5 =

∫
M5

[
f̂2 ∧ df2 − f̂ ′

2 ∧ df ′
2 + (f2 − f ′

2)F3 + 1
2(f2 − f ′

2)(f2 + f ′
2)F1

]
. (3.82)

We consider the holographic dual setup to 4d N = 4 SYM with gauge algebra so(4N). In this
case M5 = M4 × RP1, with RP1 regarded as an element of H1(RP5,Z) ∼= Z2. From the point
of view of M5, the RP1 factor provides a torsional class of degree one t1, of torsional order 2.
Following the approach of [121, 122], we can model this by introducing a pair of differential
forms on RP1,

2Φ1 = dϕ0 , (3.83)

see (3.49). We expand f2 and f̂2 onto ϕ0,

f2 = F2ϕ0 + . . . , f̂2 = F̂2ϕ0 + . . . (3.84)
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and similarly for the primed fields, and we have∫
M4×RP1

[
f̂2df2 − f̂ ′

2df ′
2

]
=
[ ∫

RP1
dϕ0ϕ0

] ∫
M4

[
F̂2F2 − F̂ ′

2F ′
2 + . . .

]
. (3.85)

As in section 3.3, the terms where the derivative acts on the F ’s can be neglected, because
they describe kinetic terms after integrating over RP1. The integral of dϕ0ϕ0 encodes the
torsional self-pairing of t1, ∫

RP1
dϕ0ϕ0 = 2 . (3.86)

Finally, we also expand the bulk field F3 onto (Φ1, ϕ0): the relevant term is F3 = g2 ∧ Φ1.
As a result, the term (f2 − f ′

2)F3, after integration on RP1, yields a term (F2 − F ′
2)g2. In

conclusion, we arrive at the following set of couplings,

SD3/D3 =
∫

M4

[
2F̂2 ∧ F2 − 2F̂ ′

2 ∧ F ′
2 + (F2 −F ′

2) ∧ g2

]
. (3.87)

Because of S-duality, however, we know that the presence of a coupling of f2 to C2 implies
the presence of a f̂2 (which is the electromagnetic dual of f2) to B2. We then expect the full
set of relevant couplings to be

SD3/D3 =
∫

M4

[
2F̂2 ∧ F2 − 2F̂ ′

2 ∧ F ′
2 + (F2 −F ′

2) ∧ g2 + (F̂2 − F̂ ′
2) ∧ h2

]
. (3.88)

Here we have expanded H3 onto Φ1 as H3 = h2 ∧ Φ1. The full action might be derived using
the SL(2,Z)-covariant formulation of [129].

To make contact with (2.7) we perform a redefinition implemented a matrix in GL(4,Z),
and we rename g2 and h2,

F2
F ′

2
F̂2
F̂ ′

2

 =


1 0 1 1
0 0 1 1
1 1 0 0
1 1 −1 0




da1
dâ1
da′

1
dâ′

1

 , g2 = b2 , h2 = b̂2 . (3.89)

We obtain the action∫
M3

[(
2â1da1 + a1b2 + K

2 a1da1

)
+
(

2â′
1da′

1 + a′
1b̂2 + K ′

2 a1da′
1

)]
,

K = 4 ,
K ′ = 4 .

(3.90)

We recognize two copies of a (ZM )K discrete gauge theory [128] with M = 2, K = 4. On a
spin manifold with M even, K ∼ K + 2M and hence the above action is equivalent to∫

M3

[(
2â1da1 + a1b2

)
+
(

2â′
1da′

1 + a′
1b̂2

)]
, (3.91)

matching with (2.7).
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3.7 Non-Genuine and Twisted Sector Operators

Non-genuine or twisted sector operators arise from branes that couple to backgrounds which
cannot necessarily end on the boundary, i.e. do not have Dirichlet boundary conditions.

Lets see how this is encoded in terms of the branes. If we were to end a brane that is
electrically charged under a (p + q + 1)-form field Cp+q+1 on the boundary, then imposing
Neumann boundary conditions on Bsym reads

Neumann: ∂[rCij...]

∣∣∣
Bsym

∧ ω(Σq) = 0 , (3.92)

where r is the direction transverse to the boundary (i.e. the radial direction), i, j = 1 . . . p + 1
denote the direction parallel to Bsym, the brane can also wrap internal submanifold of Σq ⊂
L(X), and ω(Σq) is transverse to the SymTFT. The internal manifold Σq is important to
determine properties of the (p + 1)-dimensional defect of the SymTFT, but it is a spectator
with respect to the boundary conditions, hence we can put ω(Σq) aside for the moment.

Expanding out the Neumann boundary conditions along the direction of the SymTFT and
restricting to the symmetry boundary we obtain

(∂rCij... − ∂iCrj...)|Bsym = 0 . (3.93)

There are various configurations we can consider:

• Symmetry generators: for a brane without a radial component, this means we simply
have

∂rCij... = 0 , (3.94)

which corresponds to the projection in figure 2 of the brane parallel to the boundary.
This gives rise to (p + 1)-dimensional (topological) symmetry defects.

• Twisted Sector: if the second term in (3.93) is present, it electrically charges a (p + q)-
brane ((p+1)-dimensional operator when integrated on ω(Σq)) extended along the radial
direction ending at the boundary in a p-dimensional operator, which forms a junction
with a (p + q)-brane ((p + 1)-dimensional operator when integrated on ω(Σq)) extending
along Bsym. When we consider the first term as well, this correspond exactly to the
L-shaped configuration, where the gauge transformation of the first term is cancelled by
the gauge transformation of the second, in figure 4.

Example: BF-couplings in AdS5. The simplest example to consider is the BF-theory for
ZN 2-form fields in 5d, which is the SymTFT for the 4d SU(N) maximal SYM theory

SSymTFT = N

∫
M5

b2 ∧ dc2 . (3.95)
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For example, imposing the boundary conditions

b2 Dirichlet , c2 Neumann , (3.96)

the topological defects Q(b)
2 , which are realized in terms of F1-strings, can end on the physical

boundary and give rise to line operators in the gauge theory. On the other hand the D1-strings,
which give rise to the bulk topological defects Q(c)

2 , cannot end. There are two configurations:

• Q
(c)
2 project parallel to the boundary as in figure 2 and give rise to the topological defects

D2 that generate the Z(1)
N 1-form symmetry.

• Q
(c)
2 project in an L-shape as in figure 4, and give rise (after interval compactification) to

twisted sector ’t Hooft lines, i.e. non-genuine, in this case, twisted sector, line operators
that are attached to a topological surface.

This is of course well-known in the context of this standard holographic setup [37, 127] and
was recently expanded upon in [130].

3.8 Example: 4d N = 4 so(4n) SYM

It is known that theories with an array of global structures based on the algebra so(4n) contain
non-invertible topological operators [58]. In this section we will use the holographic dual of
these theories to study the SymTFT, in particular the BF terms.

Holographic Dual. The holographic solution relevant for these theories is IIB on AdS5×
RP5 [131]. The various global forms of the gauge group correspond to different choices of
boundary conditions for various bulk gauge fields [130].

We refer the reader to [88] for more details on this setup. For convenience we collect the
co/homology groups of the internal space RP5 with un/twisted coefficients below

H•(RP5,Z) = {Z, 0,Z2, 0,Z2,Z} , H•(RP5, Z̃) = {0,Z2, 0,Z2, 0,Z2}

H•(RP5,Z) = {Z,Z2, 0,Z2, 0,Z} , H•(RP5, Z̃) = {Z2, 0,Z2, 0,Z2, 0} .
(3.97)

For so(4n) the dual supergravity solution contains 5-form flux∫
RP5

F5 = 2n . (3.98)

BF Terms. Before we begin, we introduce notation for the forms on which we will be
expanding fluxes and sources

Hi(RP5, Z̃) : (ϕ̃i, Φ̃i), dϕ̃i = 2Φ̃i , i ∈ {0, 2, 4}

Hi(RP5,Z) : (ϕi, Φi), dϕi = 2Φi , i ∈ {1, 3}
(3.99)
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The BF terms come from more than one source in this case since we have both flux and torsion
in the internal space.

First, we consider terms coming from the IIB Chern-Simons term. For this we require the
fluxes:

F (1) = F3 = f (1) ∧ ϕ̃4 + . . . ,

F (2) = H3 = f (2) ∧ ϕ̃4 + . . . .
(3.100)

Due to (3.98), we obtain a term

SBF
d+2 ⊃

∫
Md+2

2nf (1) ∧ f (2) . (3.101)

Including sources
dF7 = J (1) : J (1) = j(1) ∧ Φ̃0 + . . . ,

dH7 = J (2) : J (2) = j(2) ∧ Φ̃0 + . . . .
(3.102)

We recall that the form degrees of F (i), f and j are not specified by their labels on top, but
they can be read off from (3.100) and (3.102), as well as from (3.104), (3.106) and (3.110) for
what follows, once identified with the IIB fluxes H3, F3, F5, F7, H7 and derivatives thereof. We
then have

SBF+sources
d+2 ⊃

∫
Md+2

2nf (1) ∧ f (2) − f (1) ∧ j(1) − f (2) ∧ j(2) , (3.103)

where d = 4. Now we look to BF terms coming from κijF (i)dF (j) terms. There are three such
terms. We reduce the IIB kinetic terms H3 ∧ dH7, F3 ∧ dF7 and F5 ∧ dF5 in turn.

Beginning with the first,

F (3) = H7 = f̃ (3,ϕ̃0) ∧ ϕ̃0 + . . . , (3.104)

The new BF term coefficient comes from the integral identity∫
RP5

dϕ̃0 ∧ ϕ̃4 = 2 . (3.105)

Including the F1 string source for H7

dH3 = J (3) : J (3) = j(3) ∧ Φ̃4 . (3.106)

Finally, we obtain the new contributions:

SBF+sources
d+2 ⊃

∫
Md+2

2f (2) ∧ f̃ (3,ϕ̃) + f̃ (3,ϕ̃) ∧ j(3) . (3.107)

For F3 there is also the Bianchi identity

dF3 = J (4) : J (4) = j(4) ∧ Φ̃4 . (3.108)
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There is an identical contribution from the F3∧F7 term which we denote with (4) superscripts

SBF+sources
d+2 ⊃ −

∫
Md+2

2f (1) ∧ f̃ (4,ϕ̃) + f̃ (4,ϕ̃) ∧ j(4) . (3.109)

Lastly we also consider the dF5 ∧ F D
5 term:

F (5) = F5 = f (5,1) ∧ ϕ1 + f (5,3) ∧ ϕ3 ,

dF5 = J (5) : J (5) = j(5,1) ∧ Φ3 + j(5,3) ∧ Φ1 ,
(3.110)

such that we obtain

SBF+sources
d+2 ⊃

∫
Md+2

2f (5,1) ∧ f (5,3) − f (5,3) ∧ j(5,3) − f (5,1) ∧ j(5,1) . (3.111)

Putting all of these pieces together, we match the BF terms of [88,130].
The so(4n) theory also has an additional topological coupling, which depending on bound-

ary conditions lead to a mixed anomaly,

A = 1
2

∫
Md+1

A1C ′
2B2 , (3.112)

where A1 is a background for Z(0)
2 and C ′

2, B2 are both Z(1)
2 backgrounds. We can re-write this

coupling in terms of sources using the identifications (e.g. using table 3)

f (2) ↔ dB2 , f (1) ↔ dC ′
2 , f (5,1) ↔ dA1 . (3.113)

The anomaly term comes from the IIB cubic Chern-Simons coupling which by using the
Bianchi identities (3.106), (3.108) and (3.110) can be re-written in terms of brane sources as

A = 1
2

∫
Md+1

d−1j(3) ∧ d−1j(4) ∧ d−1j(5,3) , (3.114)

where the coefficient is given by the following integration on RP5, 10

1
8

∫
RP5

dϕ̃4 ∧ dϕ̃4 ∧ ϕ1 =
∫
RP5

Φ̃4 ∧ Φ̃4 ∧ d−1Φ1 = 1
2 (3.115)

This is cubic coupling of type 1 (3.58) coming from three type of brane sources: NS5 on RP4,
D5 on RP4 and D3 on RP1, which model the topological defects once properly compactified
on the torsional cycles.

10Where
∫
RP5 Φ̃4 ∧ Φ̃4 ∧ d−1Φ1 is identified with the differential cohomology integral of [88], i.e.

∫
RP5 ŭ4 ⋆

t̆RR
1 ⋆ t̆NSNS

1 . This identification similarly holds for the coefficients of the BF couplings,
∫
RP5 dϕ̃0 ∧ ϕ̃4 = 2 means

that
∫
RP5 Φ̃0 ∧ d−1Φ̃4 = 1

2 , the latter is identified in differential cohomology
∫
RP5 ŭ4 ⋆ ŭ2 = 1

2 .
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3.9 Example: Duality and Triality Defects for N = 2 [A2, D4] Theory

In this section we use our general setup to construct symmetry defects as branes in the iso-
lated hypersurface singularity (IHS) (Calabi-Yau threefold) describing the 4d N = 2 [A2, D4]
SCFT in IIB string theory. This theory admits generalized symmetries [11, 14, 22, 91, 132].
In particular, we will propose a new construction of symmetry defects as lower-dimensional
branes induced by world-volume flux for a higher-dimensional brane. The singularity X is
described by the following hypersurface equation [11],

x2
1 + x3

2 + x3
3 + x3

4 = 0 ⊂ C4 . (3.116)

We construct now the symmetry defects wrapping topological cycles of the link geometry,
∂X = L(X). There is no flux in the background, but L(X) has non-trivial torsional cycles [11]

H2(L(X),Z) = f⊕ f′ = Z2 ⊕ Z′
2 . (3.117)

In the last equality we specialize to [A2, D4]. Wrapping D3-branes on these torsion cycles
results in the topological defects of the SymTFT.

There is a non-trivial linking of the generators obtained by wrapping D3s on the two Z2

factors
LinkL(X)(γ, γ′) = 1

2 , γ ∈ Z2 , γ′ ∈ Z′
2 . (3.118)

Depending on the symmetry boundary conditions on Bsym, these branes become symmetry
generators or generalized charges.

We now apply the general procedure described in section 3.3 for the case of torsional cycles.
For instance we have that

JD3 = dF5 = g3 ∧ dϕf − g′
3 ∧ dϕf′ + . . . , (3.119)

where g3, g′
3 are flat in the space where the SymTFT lives, M4+1, and we describe the torsional

cohomology in the continuum as

2Φf = dϕf, 2Φf′ = dϕf′ (3.120)

and from (3.46) and (3.47) we get the following BF action

SBF = α

∫
M4+2

g3 ∧ g′
3 , (3.121)

where
α = −

∫
L(X)

ϕf ∧ dϕf′= 2 , (3.122)
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which is exactly analogous to the BF-action for the bulk theory of N = 4 su(2) theory.
Let us now go back to the IHS equation (3.116) and look at the complex structure defor-

mation that corresponds to the marginal coupling of the theory [91]. The deformed equation
reads

x2
1 + x3

2 + x3
3 + x3

4 + τx2x3x4 = 0 ⊂ C4 , (3.123)

where τ corresponds to the marginal coupling of the SCFT and therefore does not desingu-
larize the geometry, as expected when activating the deformation corresponding to marginal
couplings of the theory. This τ also corresponds to the complexified gauge coupling of the su(2)
when we think of this AD theory as a gauging of three AD[A1, A3] theories, and it is identified
with the complex structure of the torus when the theory is constructed via compactification
of the E6 minimal 6d N = (1, 0) SCFT on T 2 [91]. We now exploit the identification of the
complex structure deformation parameter with τ in (3.123) and use how S-duality, S, and the
ST transformations act on it, to argue that S and ST are symmetries of the IHS equation,
hence of the geometry, when τ = eiπ/2, eiπ/3, respectively. For instance, the S-duality action
by definition exchanges the magnetic 1-form symmetry with the electric one at an 5d effective
topological field theory (BF-theory) level. This is indeed achieved when S and ST act on the
torsional two cycles as follows

(Φf, Φf′) 7→MS(Φf, Φf′), (Φf, Φf′) 7→MST (Φf, Φf′) (3.124)

where MS and MST are the monodromies defined by

MS =
(

0 1
−1 0

)
, MST =

(
0 1
−1 −1

)
. (3.125)

At this level the symmetry acts geometrically, and the topological defect generating self-
duality and -triality in this frame are hard to engineer as branes 11. However, we can activate
world-volume fluxes on torsional cycles that induces (p, q)-string on the D3-brane.

Induced (p, q)-String Charges on D3-branes and Symmetry Generators. Instead
of expanding the 5-form fluxes on torsional cycles we consider (p, q)-string charges on the
D3-branes. As we explained in general in appendix A.1, in terms of magnetic souces we have

JD1 = fD3δ(D3), JF 1 = (f ′)D3δ(D3) , (3.126)

and we choose
fD3 = dϕf, (f ′)D3 = dϕf′ . (3.127)

11See [4], for a geometric construction of these defects as degeneration of the link geometry at the boundary.
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Topological surface defects Topological duality/triality defects

D3 on H2(L(X),Z) Isometry acting on
f⊕ f′ ∈ H2(L(X),Z)

(p, q)-strings induced by 7-branes with monodromies
fD3 = dϕf, (f ′)D3 = dϕf′ on D3 MS , MST ∈ SL(2,Z)

Table 2: Summary of topological defects construction in [A2, D4] via IIB branes on L(X) where
X is the IHS defined in (3.116). D3-branes with and without world-volume flux provide two
alternative but equivalent description of topological defects.

where the torsional pairs (ϕf, Φf) and (ϕf′ , Φf′) have been introduced in (3.120). This induces
the backgrounds for the 3-forms H3, F3,

H3 = h3 + dϕf, F3 = f3 + dϕf′ , (3.128)

where the second identity follows from the SL(2,Z) covariant formalism [129], and we also
turned on flat f3, h3 in M4+1. Now the magnetically sourced Bianchi identity (3.119) gets
modified,

JD3 = dF5 = g3 ∧ dϕf − g′
3 ∧ dϕf′ = f3 ∧ dϕf − h3 ∧ dϕf′ . (3.129)

This implies that we can identify

g3 ↔ f3, g′
3 ↔ h3 . (3.130)

It is now easy to verify that in this frame the action of S and ST on the torsional cycles (3.124)
is equivalent to the action of the monodromy matrices MS and MST on the (f3, h3) pair and
hence on the electrically charged (p, q)-strings. As we know from N = 4 and its holographic
construction, the self-duality and self-triality defects are engineered by 7-branes where the
corresponding monodromy matrices act on the (p, q)-strings that generate the 1-form symme-
tries. In the next section, we will study properties of the SymTFT, the topological defects
that generate the 1-form symmetries of the theory at the boundary from (p, q)-strings, and
the self-dualities and -trialities topological defects from 7-branes. To summarize and conclude,
mapping a discrete isometry of the geometry, which generates duality and triality defects for
the engineered QFT, to the standard action of SL(2,Z) on (p, q)-strings via monodromy ma-
trices generated by 7-branes wrapping L(X) is possible only when a world-volume flux on the
D3-brane along torsional cycles is turned on, see table 2.

Example: 4d N = 4 from Type IIB. In addition, as a cross check of our proposal, we
can also apply this construction directly to the 4d N = 4 SYM theories engineered in IIB on
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X = T 2 ×C2/ΓADE , with link L = T 2 × S3/Γ. Consider the A-type theories, then L(X) has
non-trivial torsion link homology

Tor(H2(L(X),Z)) = f⊕ f′ = ZN ⊕ Z′
N , (3.131)

where
f = Σ1 ⊗ γ1, f′ = Σ′

1 ⊗ γ1 , (3.132)

with torsional γ1 ∈ H1(S3/ZN ,Z) and Σ′
1 ⊕ Σ′

2 = H1(T 2,Z). We can wrap D3-branes to
generate topological surface defects of the SymTFT. The action of duality and triality defects
corresponds to a finite subset of large diffeomorphisms of the T 2 acting on its complex struc-
ture. For fixed values of the complex structure τ = eiπ/2, eiπ/3 they provide symmetries of the
4d QFT, where the action on the 1-cycles of the torus induces an action on the torsional part
of H2(L(X),Z) via (3.132). We can then turn on fluxes on the D3-brane world-volume to
map the topological defect to induced (p, q)-strings and to 7-branes with monodromies acting
on the strings like for the [A2, D4] theory case.

We can extend this also to more complicated examples, straightforwardly when the di-
mension of the conformal manifold is 1, or when we are able to identify the action of S and
ST on a 1-dimensional subspace of the conformal manifold, [91]. It would be also interesting
to generalize these to theories with a more complicated conformal manifold. We leave this to
future work.

4 Hanany-Witten Effect: Generalized Charges and Anomalies

We have so far introduced the notion of charges of topological defects in terms of brane
linking. In all of the above, we explained the brane origin of the action of codimension-(q + 1)
topological defects on charged q-dimensional extended operators, i.e. q-charges.

Generalized Charges. It is however also known field theoretically that codimension-(p+1)
topological defects can act on extended operators of dimension q ̸= p as higher-representations
[45,110]. In this section we demonstrate how branes know about this generalized concept of q-
charges through the so-called Hanany-Witten effect [133]. We will furthermore show that this
effect is intimately related to additional couplings in the topological bulk theory, corresponding
to ’t Hooft anomalies of the symmetries generated by these same branes, depending on the
boundary conditions, or leading to a twisted DW theory.

Our earlier notion of charge had two origins: either via the d-dimensional flux sector
dimensionally reduced on Lint or the Bianchi identities, where we truncate everything to the
topological sector that describes the behaviour of finite flat abelian fields.
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j(2)

j(3)

=
j(1)

Figure 7: Passing two branes corresponding to magnetic sources j(2) and j(3) through each
other can result in the creation of a new brane, stretching between them, corresponding to
magnetic source j(1), if the currents are linked by relation (4.2).

The starting point of our present discussion is one particular case of interest when the
dimensionally reduced Bianchi identities feature three external fluxes satisfying

df (1) = f (2) ∧ f (3) + j(1) , df (2) = j(2) , df (3) = j(3) , (4.1)

with the f (2) ∧ f (3) term in the first relation originates from a non-trivial Chern-Simons term
in the original (D + 1)-dimensional action (3.24). These are exactly the type of Bianchi
identities that lead to Hanany-Witten transitions [133]. One can quickly notice the potential
for non-trivial physics in this situation by differentiating the above equation

0 = j(2) ∧ d−1j(3) + (−1)(deg f (2)+1)(deg f (3)+1)j(3) ∧ d−1j(2) + dj(1) . (4.2)

The first consequence of this relation is that the two branes corresponding to magnetic sources
j(2) and j(3) link in the (d + 1)-dimensional space-time. Exchanging the position of the two
branes in the linking direction generates a difference in the total linking number. This number
must be fixed, due to the Bianchi identity realizing charge conservation, by the creation of
branes corresponding to the j(1) magnetic source extending along the linking direction12 (see
figure 7), see [134]. The crucial insight we provide in this work is how to interpret this bulk
property of branes in terms of the symmetry generators which they correspond to in the field
theory. The Hanany-Witten (HW) effect can be interpreted in two ways depending on the
allowed topological boundary conditions, which concretely means how we place the branes in
MdQFT+1: this encodes

1. the q-charges (or generalized charges) of a symmetry. This occurs, when the branes in
the HW-configuration are such that one wraps the radial direction, and the other does
not.

12See [133] for the electric point of view on how the change of linking leads to the creation of a brane.
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2. the (mixed) ’t Hooft anomalies or the topological coupling leading to a twisted DW
theory: this occurs when none of the branes extend along the radial direction.

These implications will be discussed in subsequent sections.

4.1 The Hanany-Witten Effect

We will now discuss the relevant Hanany-Witten (HW) transitions, following the original effect
discussed in [133]. For our symmetry considerations we will require various HW-setups, in
type II and M-theory.

Before exploring generalizations, we first illustrate the effect in a simple example.

Motivating Example. Consider the following configuration of branes in type IIA on a
generic 10d spacetime parameterized by coordinates {xi : i = 0, . . . , 9}.

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D8 X X X X X X X X X

(4.3)

The NS5-brane is a magnetic source for the NS-NS gauge field B2 with field strength H3.
Using this fact, one can consider the concept of linking between the two branes by computing
the flux ∫

x6,x7,x8
H3 . (4.4)

This computes the total linking number of D8-branes with all NS5-branes, in a way we will
shortly explain.

The key observation is that the NS-NS 3-form flux H3, pulled back to the world-volume
of the D8-brane, is trivial in cohomology. Indeed, let a1 denote the U(1) gauge field localized
on the D8-brane, and let f2 denote its field strength. The pullback of the NS-NS 2-form B2

to the D8-brane world-volume combines with f2 in the gauge-invariant and globally defined
combination F2 = f2−B2. Making use of the Bianchi identity df2 = 0, we see that H3 = −dF2.
Naïvely, we may conclude that the linking number defined above is therefore always necessarily
zero, if the space spanned by x6, x7, x8 is a closed, compact, oriented 3-manifold. If this were
the case, it would not be possible to move the NS5-brane across the D8-brane. Such a move
is allowed, however at the cost of creating a D6-brane in the process (see figure 8).

Recall that a D6-brane ending on a D8-brane acts as a magnetic source for the a1 gauge
field on the D8-brane, modifying the Bianchi identity for f2 to df2 = ±δ3, where δ3 represents
the locus inside the D8-brane where the D6-brane ends, and the sign keeps track of orientation.
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x8

x9

x7

D8

D6NS5 NS5

Figure 8: The D8/ NS5 Hanany-Witten configuration projected onto {x7, x8, x9} directions.
The NS5 brane is a point and the D8 is a plane in the {x7, x8} directions. Passing the NS5
brane through the D8 brane generates a D6 brane attachment (a line along the x9 direction).

We will utilize tables of the following type as a compact way of summarizing Hanany-
Witten configurations:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D8 X X X X X X X X X
NS5 X X X X X X
D6 X X X X X X X

(4.5)

We now look to find general classes of brane configurations which undergo HW transitions.

Using Brane Linking. A natural language to discuss these transitions in generality is the
notion of string theoretic linking of two magnetic sources introduced in section 3.2

Ld(W(i),W(j)) =
∫

Md

J (i) ∧ d−1J (i) =
∫

Md

dF (i) ∧ F (j) . (4.6)

Recall that this is a topological property associated to two branes, whose magnetic sources
are localized on sub-manifolds W(i),W(j). Notice that since dF (i) = δ(W(i)), this integral is
readily re-written in terms of a lower-dimensional integral as in (4.4)

Let us consider two branes in string/M-theory. We look for configurations in which a
subset of the directions in the world-volumes of the branes link (in the above sense) inside
a subset of the total directions of spacetime. The general situation we face in this section is
indeed such that the dimension formula reads (3.14). We have several cases.

Direct Linking in Spacetime. In the simplest case, all world-volume directions of both
branes link inside the entire spacetime. An example is furnished by an NS5-brane and a
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D2-brane in Type IIA string theory:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D2 X X X

(4.7)

The integer linking number for this configuration is

LinkX10(MNS5
6 , MD2

3 ) , X10 = {x0, . . . , x9}, MNS5
6 = {x0, . . . , x5} , MD2

3 = {x6, . . . , x8} .

(4.8)
This case is however not relevant for the applications in this paper.

HW-Configurations for Symmetries. Next, we have the case in which the two branes
are simultaneously extending along a subset of the directions of spacetime. The problem is
effectively reduced from D = 10 or 11 to a smaller dimensionality D′, in which the remaining
world-volume directions of the branes link. This type of configuration corresponds to setups of
HW type, which we classify below. An example is furnished by the original HW configuration
of an NS5-brane and a D5-brane:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D5 X X X X X X

(4.9)

The common directions are x0,1,2 and the relevant linking number is

LinkX7(MNS5
3 , MD5

3 ) , X7 = {x3, . . . , x9}, MNS5
3 = {x3, . . . , x5} , MD5

3 = {x6, . . . , x8} .

(4.10)

HW-Configurations for Generalized Charges. Finally, for completeness we tabulate
all possible Hanany-Witten setups in type II and M-theory, which are relevant for computing
generalized charges. An example appeared already in [1]. These configurations can be grouped
together as follows:

I) The first class is realized in IIB or IIA and is given by the following brane system:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Dp X X X X X X X X
Dp′ X X
F1 X X

(4.11)

where 8 = p + p′, and we can apply T-duality in the x1,2,3,4,5,6,7,8 directions. In addition
when p = 7 and p′ = 1, the role of F1 and the D1 can be exchanged, and in generalised
to (p, q)-strings and 7-branes.
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II) The second class is a special case in IIB given by the following system:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

[p, q]7-brane X X X X X X X X
(p′, q′)5-brane X X X X X p′x8 = q′x9

(r, s)5-brane X X X X X rx8 = sx9

(p, q)5-brane X X X X X px8 = qx9

(4.12)

where px8 = qx9 means that the 5-brane extend along this locus. The last 5-brane is
the one created once the 7-brane crosses the junction between the (p′, q′) 5-brane and
the (r, s) 5-brane. Finally the total 5-brane charge must be conserved, i.e. p + p′ + r = 0
and q + q′ + s = 0.

III) The third class is related to the original Hanany-Witten setup by T-dualities:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Dp X X X X X X
NS5 X X X X X X
Dp′ X X X X

(4.13)

where p′ = p − 2 and we can apply T-duality13 in the x1,2,6,7,8 directions. In the case
p = 5, p′ = 3 we also have a generalization, with a (p, q) 5-brane in the first row, a (p′, q′)
5-brane in the second row, and pq′ − p′q D3-branes in the third row [136].

IV) The fourth class is a single brane system in M-theory:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 X X X X X X
M5’ X X X X X X
M2 X X X

(4.14)

Details of HW-configurations. We have already discussed class (III) above. We note
that similar remarks apply in general to D(p− 2) branes ending on Dp-branes, and refer the
reader to [136] for a generalization of the setup of class (III), involving the creation of pq′−p′q

D3-branes when a (p, q) 5-brane and a (p′, q′) 5-brane are passed across each other.
Let us now turn to setups of class (IV) in M-theory. This Hanany-Witten setup is discussed

in [137] and can be derived in a way analogous to the argument for class (III). In this case,
we use the fact that the world-volume of an M5-brane supports a localized 2-form field b2,
with self-dual field strength h3. The latter combines with the pullback of the M-theory 3-form
C3 into the gauge-invariant and globally defined combination H3 = h3 − C3. As a result,
on the world-volume of the M5-brane we have G4 = −dH3, where we have made use of the
Bianchi identity dh3 = 0. Once again, this would naïvely suggest the vanishing of the linking

13Note that T-duality along the NS5-brane world-volume results in another NS5-brane, whereas transverse
to it, results in a KK-monopole [135].
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number
∫

M4
G4 computed on the orthogonal directions of the second M5-brane M4. The

correct conclusion is that, when the two M5-branes are passed across each other, an M2-brane
is generated. In fact, this is the correct object to modify the Bianchi identity for h3 from
dh3 = 0 to dh3 = ±δ4, where δ4 represent the locus inside the M5-brane where the M2-brane
ends, and the sign keeps track of orientation.

The brane setups of classes (I) may be derived from those of class (III) with the help of
S- and T-dualities. Let us start from the class (III) setup with p = 3, p′ = 1, describing a
Hanany-Witten move in which a D1-brane is generated when an NS5-brane and a D3-brane
are passed across each other. By S-duality, this is mapped to a setup of class (I) with p = 3,
p′ = 5: an F1-string is generated when a D5-brane and a D3-brane are passed across each
other [137]. This can also be seen as follows. The D5-brane is a magnetic source for the
RR 3-form field strength F3. The relevant linking is then measured by integrating F3 on the
world-volume of the D3-brane. Invariance of the D3-brane under S-duality, however, implies
that the electromagnetic dual ã1 of the gauge field a1 on the brane combines with the pullback
of the RR 2-form into the gauge-invariant combination F̃2 = f̃2 − C2, where f̃2 is the field
strength of ã1. Setting C0 = 0 for simplicity, on the world-volume of the D3-brane we have
F3 = −dF̃2. The argument then proceeds as for class (III). Once the setup of class (I) is
established for p = 3, other values for p are derived by T-duality.

4.2 Generalized Charges

Let us denote the HW brane pair (brane1, brane2). Passing one through the other generates
the third brane brane3. Suppose that we pick brane1 to be parallel to the boundary, and
brane2 to wrap the radial direction. Field theoretically, brane1 corresponds to a topological
symmetry generator Dp, whilst brane2 is a non-topological (extended) defect Oq.

The HW transition implies that passing Oq defect through Dp creates a third topological
operator Dl (brane3 necessarily does not wrap the radial direction) which is attached to Oq.
Generically this process maps a genuine operator to non-genuine one (see figure 9 for an
example of this effect). This is precisely the charge of a non-invertible abelian categorical
symmetry on charged defects, which does not preserve the dimensionality of the defects [1,56,
61].

Example: Klebanov-Strassler. From the Bianchi identity dF5 + H3F3 = J (D3) we learn
that there is a Hanany-Witten effect between a D3 brane and a D5 on S3 which generates an
F1 string stretched between the two.

It is known that the G = PSU(M) theory has a non-invertible 0-form symmetry. In [1]
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Figure 9: In this figure dots and lines are defects in the boundary QFT of interest (this could
be thought of as a (1+1)d system or a 2d projection of a higher-dimensional analogue). In the
higher-dimensional configuration, dragging the point-like operator through the extended line
operator generates a non-genuine operator (or twisted sector, if the line defect is topological).

the non-invertible 0-form topological operator was given a string theory origin as a D5-brane
wrapped on S3 ⊂ T 1,1. Furthermore, its non-invertible action on ’t Hooft lines was explained
using the Hanany-Witten effect. Now the wrapped D3 is perpendicular to the boundary (the
1-form symmetry is gauged), and the brane creation turns a genuine line operator into a non-
genuine one. We refer the reader to appendix B for a field theory analysis of non-invertible
actions on line operators.

Example: Maldacena-Nunez. A second description (MN) of 4d N = 1 SYM is given
in [138]. We begin with the 6d N = (1, 1) LST living on M NS5 branes in IIB. The four-
dimensional theory is obtained via a topologically twisted S2 reduction.

For the sake of brevity, we use the fact that the for the purposes of our computations the
above background is S-dual to that of Klebanov Strassler, in the sense that we replace∫

S3
F3 = M ↔

∫
S3

H3 = M . (4.15)

The derivations of the BF terms and anomalies proceed identically. We therefore identify the
brane responsible for the non-invertible 0-form symmetry as

D3(MNS5
3 )↔ NS5(MNS5

3 × S3) . (4.16)

On the LHS we use the notation for topological defects Dq(Mq), i.e. a q-dimensional topo-
logical defect on the spacetime manifold Mq, whereas on the RHS we use the notation of a
brane (NS5 or Dp or Mp wrapped on an internal cycle an Mq). Following an analogous pro-
cedure as appendix B of [1] it is easy to see that this brane’s topological world-volume terms
correctly reproduce the expected TQFT stacking and therefore fusion rules known from field
theory [55].

Once again we consider the three brane origins of 2-surfaces in the 5d bulk: F1-, D1- and
wrapped D3-branes. However, since in this setup there is only H3 flux over the S3, the linking
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configurations are simpler. Only the D1 and D3 wrapped on S2 link in the 5d bulk. We can
therefore identify

D2(MD3
2 )↔ D3(MD3

2 × S2) ,

D̂2(MD1
2 )↔ D1(MD1

2 ) ,
(4.17)

as the generators of the electric (magnetic) 1-form symmetries in the SU(N)(PSU(N)) the-
ories respectively.

The D3/ D5 Hanany-Witten effect responsible for generalized charges in the Klebanov-
Strassler solution has an S-dual partner involving a D3/ NS5 transition.

Consider a boundary condition such that the NS5 and stretched D1-brane are topological,
and the D3 is not (G = PSU(N)). The HW transition describes the non-invertible action of
D3 on the charged ’t Hooft line (the wrapped D3-brane) by attaching a topological 2-surface
(the D1-brane).

Example: M-theory on G2. M-theory on the singular G2 holonomy manifold C2/ZN →
S3 models the UV of 4d N = 1 pure SYM [139–142]. The boundary geometry is S3/ZN → S3.
The link L6 therefore has homology groups

H•(L6,Z) = {Z,ZN , 0,Z⊕ Z,ZN , 0,Z} . (4.18)

We propose that the branes generating the 1- and 0-form symmetries respectively are 14

M5(Σ2 × γ1 × S3)↔ D2(Σ2) ,

M5(M3 × S3/ZN)↔ D3(M3) .
(4.19)

From the Bianchi identity
dG7 −

1
2G2

4 = JG7 , (4.20)

one can see there is a Hanany-Witten transition involving two M5 branes, generating an M2
brane, as demonstrated in (4.14).

The global variant G = PSU(N) corresponds to picking the M5-brane wrapping the tor-
sional 4-cycle to be perpendicular to the boundary, whilst the other is parallel. In this case,
the Hanany-Witten effect produces a topological attachment to the non-topological string
charged under the 1-form symmetry: turning it from a genuine to non-genuine line operator.

14Identifying geometrically U(1)R symmetry and its breaking to Z2N is still a challenge in the geometric
engineering in M-theory [143].
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4.3 Hanany-Witten and ’t Hooft Anomalies

Now suppose that both (brane1, brane2) are parallel to the boundary. They therefore both
correspond to topological defects Dp, Dp′ whose non-trivial linking forces the creation of a
brane in the radial direction, corresponding to a non-topoloical (extended) defect Oq.

We will now argue that such a configuration indicates the existence of certain ’t Hooft
anomalies using two complimentary approaches.

1. The first is that the created brane wrapped along the radial direction creates a non-
topological ambiguity in terms of how the topological defects are separated in the bulk.
When we push these to infinity we argue that this signals the presence of an anomaly.

2. The second involves directly projecting the bulk Hanany-Witten configuration to the
boundary. The bulk picture becomes a junction in the boundary, which the Hanany-
Witten computation tells us must be charged under certain symmetries. This is another
hallmark of a ’t Hooft anomaly.

The anomalies are computed using suitable intersections of branes which depend on the space-
time dimension. In particular, we look for intersections such that one of the participating
branes links with the intersection of the other two, as discussed in section 3.5.

Anomalies from Topological Defects. Coupling a theory to a background for a higher-
form symmetry amounts to inserting a mesh of the corresponding topological defects. This
mesh contains junctions, inconsistencies of which can signal the presence of anomalies [127].

For example, consider a theory with both a p and (d − p − 1)-form symmetry. If the
codimension-p topological operators generating the former symmetry are charged under the
codimension-(d− p− 1) topological operators generating the latter, the two symmetries par-
ticipate in a mixed ’t Hooft anomaly [127]. This is because it is not possible to insert a mesh
of both defects (i.e. couple to both backgrounds simultaneously) in a consistent manner, due
to their action on one another.

The above is a special case where the two participating symmetries have appropriate
dimension such that their operators link in spacetime. However, it is generically possible that
a codimension−(p + 1) operator can also act on an extended operator of dimension q ̸= p.
In this way, we are able to explore ’t Hooft anomalies involving higher-form symmetries of
different degrees from the perspective of their topological operators and their junctions.

In general, a mixed ’t Hooft anomaly between two (or more) higher-form symmetries is
encoded in the junctions of their corresponding defects. We argue that this information is
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naturally encoded in our understanding of branes. For example, two branes may intersect
and generate a third (by Hanany-Witten). If this third brane is charged under one of the
symmetries generated by one of the intersecting branes - this junction signals a mixed ’t Hooft
anomaly.

Example: N = 1 SYM. In the three presentations of 4d N = 1 su(M) SYM presented
earlier, in each case there was a Hanany-Witten configuration of branes which in the G =
PSU(M) variant described a generalized charge. By the above argument, in the frame where
we pick boundary conditions such that G = SU(M), these configurations also signal the mixed
’t Hooft anomaly in these models.

4.4 Example: 4d N = 4 so(4n) SYM

In this section we demonstrate that the HW effect is responsible for generalized charges in
several global variants of the so(4n) theory, and the mixed anomaly

A = 1
2

∫
A1C ′

2B2 , (4.21)

in the G = SO(4n) theory, where A1 is a background for Z(0)
2 and C ′

2, B2 are both Z(1)
2

backgrounds. From the SymTFT/ Gauss law perspective we can read off the brane origins
of the topological symmetry generators [88]. For convenience we summarize these findings in
table 3.

G =SO(4n). For G =SO(4n), the brane identification is [88]

D2(M2)↔ D5(M2 × RP4) ,

D3(M3)↔ D3(M3 × RP1) ,
(4.22)

where D2, D3 are the generators of Z(1,C′)
2 ⊂ Z(1,C′)

2 ×Z(1,B)
2 = Γ(1) and Z(0)

2 respectively. The
charged lines under the Z(1,B)

2 1-form symmetry factor are

O1(Σ1)↔ F1(Σ1 × R>0) . (4.23)

These three wrapped branes form a HW configuration, from which we observe that the Z(1,C′)
2

and Z(0)
2 symmetry defects intersect in 4d in a line which is charged under Z(1,B)

2 factor: this
signals the presence of the mixed ’t Hooft anomaly between all three symmetries. One can
derive a similar result using the S-dual branes: pulling the NS5-brane, which generates Z(1,B)

2 ,
across D3 generates a D1-brane which is charged under Z(1,C′)

2 .
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Symmetry Background Field Brane Origin of Sym Generator
Z(0)

2 A1 D3 on RP1

SO(4n) Z(1)
2 C ′

2 D5 on RP4

Z(1)
2 B2 NS5 on RP4

Z(0)
2 A1 D3 on RP1

Spin(4n) Z(1,s)
2 C2 D1 on pt ∈ RP5

Z(1,c)
2 B2 NS5 on RP4⊕ D1 on pt ∈ RP5

Z(1,v)
2 NS5 on RP4

Z(2)
2 A3 D3 on RP3

PO(4n) Z(1)
2 C ′

2 D5 on RP4⊕F1 on pt ∈ RP5 +
∫

A1B2

Z(1)
2 B′

2 F1 on pt ∈ RP5

Z(2)
2 A3 D3 on RP3

Pin+(4n) Z(1)
2 C2 D1 on pt ∈ RP5

Z(1)
2 B2 NS5 on RP4⊕D1 on pt ∈ RP5 +

∫
A1C ′

2
Z(0)

2 A1 D3 on RP1 +
∫

B2C ′
2

Sc(4n) Z(1)
2 C2 D1 on pt ∈ RP5

Z(1)
2 B′

2 F1 on pt ∈ RP5

Table 3: SymTFT and brane origins of symmetry generators in various global forms of so(4n)
4d SYM theories.

The theory with gauge group G = Spin(4n) is related to G =SO(4n) via gauging of the 1-
form symmetry (for more details also the categorical structure, see [58]). This maps the mixed
anomly to a split 2-group symmetry. In this way the HW brane configuration explained above
also encodes this split 2-group global symmetry.

G =Sc(4n). We now consider how the non-invertible 0-form symmetry in the G =Sc(4n)
variant acts on the charged lines of the theory. The 0-form symmetry is generated by

D3(M3)↔ D3(M3 × RP1) . (4.24)

Meanwhile the invertible 1-form symmetries have non-topological charged lines

O1(Σ1)↔ D5(Σ1 × R>0 × RP4) ,

O′
1(Σ′

1)↔ NS5(Σ′
1 × R>0 × RP4) .

(4.25)

If we pass O1 or O1′ through D3(M3), there is a non-trivial Hanany-Witten move which
generates an F1 or D1 brane respectively. These are topological operators which respectively
generate the invertible 1-form symmetry which acts on the other charged line. These results
agree with the complementary field theory analysis, reported in appendix B.
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G =PO(4n). Now we look at how the non-invertible 1-form symmetry in the G =PO(4n)
variant acts on the 2-surfaces charged under the invertible 2-form symmetry.

In this case there are a number of non-invertible actions we should consider. The non-
invertible 1-form symmetry is generated by

D2(M2)↔ D5(M2 × RP4) . (4.26)

On the other hand, the charged 2-surfaces are given by

O2(Σ2)↔ D3(R>0 × Σ2 × RP1) ,

O2′(Σ2)↔ NS5(R>0 × Σ′
2 × RP3) .

(4.27)

There is a non-trivial Hanany-Witten move for both of these. First, passing O2 through D2

generates an F1-string stretched between the two: this is the generator of the invertible 2-form
symmetry under which O′

2 is charged. On the other hand, passing O′
2 through D2 generates

a D3-brane: this is the generator of the other invertible 2-form symmetry which acts on O2.

G =Pin+(4n). The non-invertible 1-form symmetry in this case is generated by

D2(M2)↔ NS5(M2 × RP4) . (4.28)

On the other hand, the charged 2-surfaces are given by

O2(Σ2)↔ D3(R>0 × Σ2 × RP1) ,

O′
2(Σ2)↔ D5(R>0 × Σ′

2 × RP3) ,
(4.29)

There is also a non-trivial Hanany-Witten move for both of these. First, passing O2 through
D2 generates an D1-string stretched between the two: this is the generator of the invertible
2-form symmetry under which O′

2 is charged. On the other hand, passing O′
2 through D2

generates a D3-brane: this is the generator of the other invertible 2-form symmetry which
acts on O2.

Outer-Automorphism Action on G = Spin(4n). There is also a brane origin to the Z(0)
2

outer-automorphism in the G = Spin(4n) theory which exchanges

O(s)
1 ↔ O(c)

1 , (4.30)

where O(s,c)
1 are the spinor/co-spinor Wilson lines. An equivalent way of describing this action

is shown in figure 10. In terms of branes, these lines are [2]

O(s)
1 ↔ D5(M1 × R>0 × RP4) ,

O(c)
1 ↔ D5(M1 × R>0 × RP4)⊕ F1(M1 × R>0) .

(4.31)
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S S

V

Z(0)
2

Figure 10: Z(0)
2 outer-automorphism action, depicted in terms of defects: the outer automor-

phism acts as S maps to C. It is useful in the following to write C = V ⊗ S, as this is how
the branes will realize the action.

Furthermore, it is known that the brane generating the outer-automorphism symmetry is

D3(M3)↔ D3(M3 × RP1) . (4.32)

We now discuss the action of this operator at the level of the branes. In the arrangement shown
in figure 11, we consider what happens when the wrapped D5 pierces through the wrapped
D3 representing the outer-automorphism generator. Since the D3-brane is a source for the
RR C4 field, as we pass from left to right there is a flux jump which induces a non-trivial F1
charge via the 6d 5-brane world-volume coupling∫

B2C4 , (4.33)

such that an F1 string (which couples to B2) emanates from the defect. This is exactly the
outer-automorphism action we expect from field theory.

Now consider the arrangement in figure 12. In this case the F1 string passes through
the brane un-changed, there are not enough dimensions to run the same argument as above.
This is exactly the invariance of the operator O(v)

1 (the vector Wilson line) under the outer-
automorphism.

4.5 Example: Generalized Charges for Duality/Triality Defects in 4d

In this section we study duality and triality defects which generate non-invertible symmetries
that arise from subgroups of SL(2,Z). They provide 0-form symmetries at certain fixed loci
under these groups on the conformal manifold of 4d SCFTs. Field theoretically these defects
have been studied in [55, 59, 62, 72, 105, 144]. For the bulk theory we refer to [41, 44], and the
realization of the topological defects in term of branes to [4].
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D5(M1 × R>0 × RP4) D5(M1 × R>0 × RP4)

F1(M1 × R>0)

D3(M3 × RP1)

Figure 11: The same Z(0)
2 outer-autmorphism action as in figure 10, now in terms of branes.

The wrapped D3 brane induces a jump in F1 flux which is absorbed by emitting an F1 string.

F1(M1 × R>0) F1(M1 × R>0)

D3(M3 × RP1)

Figure 12: The F1-brane, that realizes the vector Wilson line is invariant under the outer-
automorphism.
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In string theory the self-duality or triality symmetries are generated by [p, q]-7-branes as
first observed in [1] and subsequently studied in detail in [4]. We will exemplify this brane-
approach for N = 4 su(N) SYM. Moreover, since we have analogously constructed topological
defects for the N = 2 Argyres Douglas theory of type [A2, D4] via geometric engineering in
IIB, the properties highlighted in this section will be valid also for that case.

In this section we will put these defects into the context of the SymTFT and derive the
generalized charges (in terms of the topological defects of the SymTFT) realized again in
terms of “branes” and Hanany-Witten transitions among them.

The (p, q)-strings give rise to topological defects in the SymTFT, which depending on
the Bsym boundary conditions give rise to either topological defects that generate the 1-form
symmetry or to the line operators, i.e. generalized charges.

The Hanany-Witten effect between (p, q)-strings and [p, q]-7-branes encodes whether the
resulting non-invertible symmetry is gauge equivalent to an invertible symmetry or not. In
terms of the SymTFT couplings this was analyzed in [41, 44]. This allows the distinction
between intrinsic and non-intrinsic non-invertible symmetries – if one wishes to use this for-
mulation. More categorically, the SymTFT is either the same as for an invertible (i.e. higher
group) symmetry or not.

We will focus on generalized charges via the Hanany-Witten effect between (p, q)-strings
and [p, q]-7-branes. In particular, from the brane realization and the Hanany-Witten phe-
nomenon we will be able to provide a diagnostic for intrinsic versus non-intrinsic non-invertible
symmetries, even beyond su(p) with p prime.

Duality and triality defects for N = 4 SYM arise for fixed values of τ = eiπ/2, eiπ/3,
respectively, i.e. the values that are invariant under Z4 or Z6 subgroups of SL(2,Z) [4,44,59,
62,72]. Our convention for the monodromy matrices labelled by (p, q) charges are

Mp,q =
(

pq + 1 p2

−q2 1− pq

)
(4.34)

and we take the basis

a = M1,0 =
(

1 1
0 1

)
, b = M1,1 =

(
2 1
−1 0

)
, c = M1,−1 =

(
0 1
−1 2

)
. (4.35)

We summarize the fixed values of τ and associated monodromy matrices in table 4 15.
15We use the conventions of [145], but act on tau from the right as to give rise to the canonical choice of

fixed values of τ as e.g. in [146].
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Kodaira Type τ G Monodromy Matrix M

II eπi/3 Z6 ab =
(

1 1
−1 0

)

II∗ eπi/3 Z6 a6bcba =
(

0 −1
1 1

)

III eπi/2 Z4 a2b =
(

0 1
−1 0

)

III∗ eπi/2 Z4 a6bcb =
(

0 −1
1 0

)

IV eπi/3 Z3 a2ba =
(

0 1
−1 −1

)

IV ∗ eπi/3 Z3 a5bcb =
(
−1 −1
1 0

)

I∗
0 τ Z2 a4bc =

(
−1 0
0 −1

)

Table 4: The Kodaira singularities, associated constant values of τ , the monodromy group
and the monodromy matrix M .

4.5.1 Hanany-Witten Setups with [p, q]-7-branes and (r, s)-strings

We now describe in more detail the specific Hanany-Witten configuration already introduced
in (4.11) that is relevant for this example. Let us consider the original Hanany-Witten brane
configuration, consisting of an NS5-brane extended along x0,1,2,3,4,5 and a D5-brane extended
along x0,1,2,6,7,8; when these are moved past each other, a D3-brane extended along x0,1,2,9

is created. By applying T-duality in the x1,2 directions, followed by an S-duality S transfor-
mation, followed by T-duality in the x6,7 directions, we reach a Hanany-Witten setup with a
D7-brane extended along x0,...,7 and a D1-brane extended along x0,8. When these are moved
past each other, an F1-string extended along x0,9 is created. This configuration conserves
both the linking number between the D7-brane and the D1-brane, and the (r, s)-string charge
of the system. The latter observation stems from the relation

(1 0)M1,0 = (1 0) + (0 1) . (4.36)

In our conventions the charges of an (r, s)-string are collected in the row vector (s r). Thus,
in the above relation, (1 0) represents the D1-brane, (0 1) the F1-string, while M1,0 is the
monodromy matrix of the D7-brane (see figure 13).

The generalization of (4.36) is the identity

(s r)Mp,q = (s r) + n(q p) , n := ps− qr . (4.37)
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M1,0

(1 0) (1 1)
(0 1)

(1 0) (1 1)

Figure 13: Conservation of charge during a Hanany-Witten move involving a D1 and D7 brane.
On the left hand side; passing the D1 through the monodromy cut for the D7 brane modifies
the charge from (1, 0) → (1, 1). On the right hand side; sliding the configuration off the cut
must preserve charge, meaning an F1 string is created.

We interpret this relation as follows. Start with a configuration with a [p, q]-7-brane extended
along x0,...,7, and an (r, s)-string extended along x0,8. If we move the (r, s)-string across the
[p, q]-7-brane, n copies of a (p, q)-string are generated, extended along x0,9. If n is negative,
this is understood as |n| copies of a (−p,−q)-string. In the special case n = 0, the (r, s)-string
and the [p, q]-7-brane are mutually local and the (r, s)-string can end on the [p, q]-7-brane;
there is no Hanany-Witten brane creation effect if these two objects are passed across each
other.

It is important to study the generalized charges, i.e. SymTFT topological defects, com-
ing from (r, s)-strings and the 7-branes with monodromy M , which we take parallel to the
boundary. In the spirit of section 4.3, instead of being directly related to a mixed ’t Hooft
anomaly, it has a SymTFT that is a DW theory with twisted cocyles. Let us now consider
a 7-brane with monodromy matrix M , written as a product M = Mp1,q1Mp2q2Mp3q3 . . . . A
repeated application of the basic Hanany-Witten move encoded in (4.37) yields the configura-
tion depicted in the figure, where the multiplicities n1, n2, n3, . . . , of the created strings are
determined by the charges of the (r, s)-string and by the [pk, qk]-7-brane labels,

n1 = p1s− q1r , (4.38)

n2 = p2(s + n1q1)− q2(r + n1p1) , (4.39)

n3 = p3(s + n1q1 + n2q2)− q3(r + n1p1 + n2p1) , (4.40)

and so on. In general due to M = Mp1,q1Mp2q2Mp3q3 . . . , we will not have a single string
creation event. If we have multiple string creation events, even modulo N , it signals that
something more general than a mixed ’t Hooft anomaly is at play. This indeed generically
corresponds to a twisted cocycle in the SymTFT.
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Mp1,q1 Mp2,q2 Mp3,q3

(r, s) n1(p1, q1) n2(p2, q2) n3(p3, q3)

=

(r, s)

Figure 14: Hanany-Witten transitions for a general 7-brane configuration with no fixed [p, q]
charge as usually appear in F-theory and (r, s)-strings.

Examples. Let us consider the Kodaira type IV ∗ monodromy matrix M =
(−1 −1

1 0
)
. We

use the decomposition M = a5bcb, a = M1,0, b = M1,1, c = M1,−1. The multiplicities n1, . . . ,
n8 of the created strings are

(n1, . . . , n8) = (s, s, s, s, s,−r − 4s,−r − 2s, r) . (4.41)

Alternatively we can use the decomposition M = A5BC2, A = M1,0, B = M3,1, C = M1,1. In
this case the multiplicities are

(n1, . . . , n8) = (s, s, s, s, s,−r − 2s, r, r) . (4.42)

Next, let us consider the Kodaira type IV with M =
( 0 1

−1 −1
)
. We can write M = a2ba. The

four multiplicities are
(n1, . . . , n4) = (s, s,−r − s,−r) . (4.43)

In passing we note that it is not possible to write M = AxByCz with non-negative x, y, z.
If we consider again Kodaira Type IV , but we work modulo N = 3, we can write M =

M1,2 = M1,1 = c mod 3. In this case there is a single event of string creation, with multiplicity

n1 = r + s mod 3 . (4.44)

In this case the HW transition is related to a mixed ’t Hooft anomaly between self-triality and
the 1-form symmetry.

4.5.2 Intrinsic vs. Non-Intrinsic

Let us recall the notion of intrinsic non-invertible symmetry [62]. Suppose T is a QFT that
admits a non-invertible symmetry. We say that the non-invertible symmetry is of non-intrinsic
type if T can be connected by gauging of a global symmetry to a QFT T ′ that only admits
invertible symmetries (i.e. higher-form or higher-group symmetries). We say that the non-
invertible symmetry of T is of intrinsic type if such T ′ does not exist.
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Global Forms of SYM. The global variants of 4d N = 4 su(N) SYM are SU(N) and
(SU(N)/Zk)n, where k ̸= 1 is a divisor of N and n = 0, 1, . . . , k − 1 [147]. Global variants
can be acted upon by topological manipulations (gauging 1-form symmetry, stacking with
SPT). They all form a unique orbit under topological manipulations. Indeed, we can start
from SU(N) and reach (SU(N)/Zk)n by selecting a Zk subgroup of the ZN center 1-form
symmetry of SU(N), and gauging it with a discrete torsion given by n.16 Let LT denote the
set of line operators of the global variant T . Explicitly [147]

T = SU(N) , LT = {a(1, 0) mod N, a ∈ Z} ,

T = (SU(N)/Zk)n , LT = {a(n, N/k) + b(k, 0) mod N, a, b ∈ Z} .
(4.45)

In terms of topological defects of the symmetry TFT and their brane realization, these are
provided by the full set of (p, q)-strings that can end on the boundary depending on the choice
of the Bsym boundary conditions.

We want to study when a duality/triality symmetry associated to one of the monodromy
matrices of table 4 is of intrinsic/non-intrinsic type, depending on N . This is equivalent to
asking: for a given N and a given monodromy matrix, is there a global variant in which the
associated duality/triality defect acts invertibly on all line operators?

Hanany-Witten Diagnostic of Intrinsicality. This question can be addressed in terms
of Hanany-Witten moves, as follows. The duality/triality defect specified by the monodromy
matrix M acts invertibly on all lines of the global variant T if the following condition
holds,17

(M − I2×2) · (r, s) ∈ LT , for all (r, s) ∈ LT . (4.46)

The quantity (M − I2×2) · (r, s) is the total (p, q)-string charge created, when a line operator
with charges (r, s) crosses the 7-brane implementing the duality/triality defect. We demand
that the total (p, q)-string charge that is created can be written as a combination of the same
charges as those of the lines in LT . This is because, in the global variant T , a string with
those charges, projected parallel to the boundary, yields the trivial surface defect. As a result,
we are guaranteed an invertible action on all line operators of T , as desired.

The condition (4.46) can be analyzed explicitly for each of the monodromy matrices in
table 4, for some small values of N . We report the results of our analysis in table 5. For
each monodromy matrix and N , we indicate the global variant(s) that satisfy (4.46); if none
is found, the duality/triality symmetry is intrinsically non-invertible. The fact that the global

16In contrast, the set of global forms can split into disjoint non-empty orbits under the action of the SL(2,Z)
duality group, depending on N [127,130,147].

17The notation (r′, s′) = M · (r, s) stands for the matrix equation (s′ r′) = (s r)M in our conventions.
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variants indicated in the table are invariant under S or ST can also be checked directly making
use of [147]

T : (SU(N)/Zk)n → (SU(N)/Zk)n+N/k

S : (SU(N)/Zk)0 → (SU(N)/ZN/k)0

(SU(N)/Zk)n → (SU(N)/Zk∗)n∗ (n ̸= 0) .

(4.47)

In the above relations we let k be any divisor of N , including k = 1 and k = N . The label n

is understood mod k (if k = 1, then n = 0; this is the SU(N) variant). The new labels k∗, n∗

are given by

k∗ = N

gcd(n, k) , αk + βn = gcd(n, k) , n∗ = −β
N

k
mod k∗ . (4.48)

The global forms under the second column in table 5 are invariant under the action of S,
followed by T , in our conventions.

For N a prime number, we reproduce the results of [72]. This can also be seen from table
5 and algebraically as follows. If N = p is prime, the global variants are SU(p), PSU(p)n,
n = 0, 1, . . . , p−1. For each of them, the corresponding set of lines LT consists of multiples of
a single line: (1, 0) for SU(p) and (n, 1) for PSU(p)n. As a result, the condition (4.46) boils
down to the eigenvalue problem

M · (r, s) = λ(r, s) mod p , (4.49)

where (r, s) = (1, 0) for T = SU(p) and (r, s) = (n, 1) for T = PSU(p)n. In fact, as soon as
(4.49) admits a non-trivial solution (r, s), the latter can be identified as the line generating LT

for one of the global variants T . Thus, for N = p prime, (4.49) is a necessary and sufficient
condition for finding a global variant T in which the duality/triality defects acts invertibly on
all lines.

5 Conclusions and Outlook

We constructed the SymTFT for QFTs realized either holographically or in geometric engi-
neering, in terms of branes. The main results are as follows: in section 3 we demonstrated
that branes encode the topological couplings of the SymTFT, and in section 4 we highlighted
that our proposal also incorporates a notion of generalized charges via the Hanany-Witten
effect.

Whilst presenting a general framework in both cases, we gave evidence for our proposal in
various geometric and holographic examples, including 4d SYM theories.
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N S = III ST = IV , (ST )2 = IV ∗, S2(ST ) = II∗, S2(ST )2 = II

2 PSU(2)1 intrinsic
3 intrinsic PSU(3)2
4 (SU(4)/Z2)0 (SU(4)/Z2)0
5 PSU(5)2 or 3 intrinsic
6 intrinsic intrinsic
7 intrinsic PSU(7)3 or 5
8 (SU(8)/Z4)2 intrinsic
9 (SU(9)/Z3)0 (SU(9)/Z3)0
10 PSU(10)3 or 7 intrinsic
11 intrinsic intrinsic
12 intrinsic (SU(12)/Z6)4
13 PSU(13)5 or 8 PSU(13)4 or 10
14 intrinsic intrinsic
15 intrinsic intrinsic
16 (SU(16)/Z4)0 (SU(16)/Z4)0
17 PSU(17)4 or 13 intrinsic
18 (SU(18)/Z6)3 intrinsic
19 intrinsic PSU(19)8 or 12
20 (SU(20)/Z10)4 or 6 intrinsic
21 intrinsic PSU(21)5 or 17
22 intrinsic intrinsic
23 intrinsic intrinsic
24 intrinsic intrinsic
25 (SU(25)/Z5)0, PSU(25)7 or 18 (SU(25)/Z5)0
26 PSU(26)5 or 21 intrinsic
27 intrinsic (SU(27)/Z9)6
28 intrinsic (SU(28)/Z14)6 or 10
29 PSU(29)12 or 17 intrinsic

Table 5: For each monodromy matrix and each N , we indicate the global variant(s) on which
the associated duality/triality defect acts invertibly on all line operators. If no such global
variant exists, the non-invertible symmetry is of intrinsic type. In labeling global variants,
we do not keep track of background fields and their counterterms. We do not include the
monodromy S2 = I∗

0 because every global variant is invariant under S2.
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In section 3.9 we use our general approach to give a brane origin to the symmetry generators
in the 4d N = 2 [A2, D4] SCFT and in section 4.5 we use the generalized charge/ Hanany-
Witten relationship to propose a sharp criterion to distinguish intrinsic and non-intrinsic
non-invertible symmetries, for rank beyond su(p = prime).

Studying properties of topological symmetry generators from the perspective of branes is
a new and exciting area of research. It would be interesting to apply our general approach
to more exotic non-Lagrangian QFTs where the use of standard field theory tools to study
generalized symmetries is either obstructed or non-existent.

The study of generalized charges is another interesting avenue to pursue. In this work
we demonstrated that the Hanany-Witten effect encodes the case where a non-invertible p

symmetry acts on extended operators of dimension q = p+1. It would be interesting to explore
the full suite of generalized charges for invertible symmetry and non-invertible symmetries,
e.g. understanding symmetry fractionalization from a brane perspective, as well as generalized
charges for genuine and non-genuine operators, see [46]. The brane-perspective will be key to
studying theories at strong coupling and in holographic settings.
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A Effective Actions with Fluxes and Branes

A.1 Type II effective actions

The bosonic terms in the type IIA and type IIB low-energy effective actions, written in string
frame, read (see e.g. [145])18

SIIA = SNSNS + 1
2κ2

10

∫
M10

[
− 1

2F2 ∗ F2 −
1
2F4 ∗ F4 −

1
2F0 ∗ F0

]
+ Stop

IIA , (A.1)

SIIB = SNSNS + 1
2κ2

10

∫
M10

[
− 1

2F1 ∗ F1 −
1
2F3 ∗ F3 −

1
4F5 ∗ F5

]
+ Stop

IIB , (A.2)

where the bosonic NSNS sector action is given as

SNSNS = 1
2κ2

10

∫
M10

e−2ϕ
[
R ∗ 1 + 4dϕ ∗ dϕ− 1

2H3 ∗H3

]
. (A.3)

The topological terms Stop
IIA, Stop

IIB are conveniently described in terms of 11-form monomials in
the field strengths,

Stop
IIA/B = 1

2κ2
10

∫
M10

I
(0)IIA/B
10 , dI

(0)IIA
10 = −1

2H3F4F4 , dI
(0)IIB
10 = −1

2F3F5H3 . (A.4)

For our purposes, it is convenient to rescale of the p-form potentials, such that their fluxes
have integral periods. To this end we use 1

2κ2
10

= 2πℓ−8
s and we perform the field redefinitions

Hold
3 = ℓ2

sHnew
3 , F old

p = ℓp−1
s F new

p , p = 0, 1, . . . , 5 . (A.5)

We henceforth drop the label “new”. The Bianchi identities read

dH3 = 0 , dFp = H3Fp−2 , p = 0, 1, . . . , 5 , (A.6)

and can be solved by writing (see e.g. [118])

H3 = dB2 , Fp = dCp−1 −H3Cp−3 + F0(eB2)p , p = 1, 2, . . . , 5 . (A.7)

The F0 term in the last relation is only present in type IIA. The IIB action is understood as
a pseudoaction: the self duality constraint on F5 has to be imposed by hand after varying the
pseudoaction.

The equations of motion for the p-form fields B2, Cp can be written compactly by in-
troducing Hodge dual field strengths H7, Fp, p = 6, 7, . . . , 10. The combined content of the
Bianchi identities and equations of motion is then encoded in the relations

dH3 = 0 , dFp = H3Fp−2 , dH7 =
{

F0F8 − F2F6 + 1
2F 2

4 + X8 type IIA
−F1F7 + F3F5 type IIB

, (A.8)

18We suppress wedge products of forms for brevity. The Hodge star of a p-form α in d dimensions is defined
as (∗α)µ1...µd−n = 1

n! α
ν1...νn ϵν1...νnµ1...µd−n with ϵ012... =

√
−g in mostly plus signature.
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where p = 0, . . . , 10, together with the following Hodge star relations,

H7 = ℓ−4
s e−2ϕ ∗H3 ,

F6 = −ℓ−2
s ∗ F4 , F8 = ℓ−6

s ∗ F2 , F10 = −ℓ−10
s ∗ F0 ,

F5 = ∗F5 , F7 = −ℓ−4
s ∗ F3 , F9 = ℓ−8

s ∗ F1 .
(A.9)

For now on, we set ℓs = 1 for brevity. Notice that in type IIA we have included the effect of
a topological higher-curvature correction,

X8 = 1
192

[
p1(TM10)2 − 4p2(TM10)

]
(A.10)

where pi(TM10) denote the Pontryagin forms of the tangent bundle to M10 [116].

Topological actions in 11 dimensions. The full set (A.8) of Bianchi identities can be
derived using 11d topological actions (cfr. [47])

SIIA
11 =

∫
M11

[
F0dF10 − F2dF8 + F4dF6 + H3dH7 −

1
2H3F 2

4 −H3X8 + H3F2F6 −H3F0F8

]
,

SIIB
11 =

∫
M11

[
F1dF9 − F3dF7 + 1

2F5dF5 + H3dH7 + H3F1F7 −H3F3F5

]
, (A.11)

which are regarded as functionals of H3, H7, Fp. The 10d Hodge star relations (A.9) do not
follow from the 11d topological actions and have to be imposed by hand after variation.

In terms of the general parametrization (3.24), we have

IIA: F (i) = (F0, F2, F4, F6, F8, F10, H3, H7) , κij =


0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0

−1 0 0 0 0 0
0 1
1 0

 ,

IIB: F (i) = (F1, F3, F5, F7, F9, H3, H7) , κij =


0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

0 1
1 0

 .

(A.12)

Compact notation using polyforms. We may repackage the above results in a compact
way by introducing a polyform F describing all RR field strengths, together with an involution
F 7→ F which flips some signs,

IIA: F = F0 + F2 + F4 + F6 + F8 + F10 , F = F0 − F2 + F4 − F6 + F8 − F10 ,

IIB: F = F1 + F3 + F5 + F7 + F9 , F = −F1 + F3 − F5 + F7 − F9 .
(A.13)

Our previous 11d topological actions can be written compactly as (cfr. [47])

S
IIA/B
11 =

∫
M11

[
− 1

2FdF + H3dH7 −
1
2FH3F− δIIAH3X8

]
, (A.14)

where δIIA means that the H3X8 term is only present in type IIA. The 10 Hodge duality
relations are

H7 = e−2ϕ ∗H3 , ∗F = −F . (A.15)
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Brane sources in type II. Recall that J (i) is the magnetic source for the flux F (i). The
identifications (A.12) imply

type IIA: J (i) = (JD8
1 , JD6

3 , JD4
5 , JD2

7 , JD0
9 , 0, JNS5

4 , JF1
8 ) ,

type IIB: J (i) = (JD7
2 , JD5

4 , JD3
6 , JD1

8 , J
D(−1)
10 , JNS5

4 , JF1
8 ) .

(A.16)

The Bianchi identities in the presence of sources read

dH3 = JNS5
4 ,

dFp = J
D(8−p)
p+1 + H3Fp−2 ,

dH7 = JF1
8 + F0F8 − F2F6 + 1

2F 2
4 + X8 , (IIA)

dH7 = JF1
8 − F1F7 + F3F5 . (IIB)

(A.17)

They imply the following non-closure relations for the magnetic sources,

dJNS5
4 = 0 ,

dJD(9−p)
p = H3J

D(11−p)
p−2 − JNS5

4 Fp−3 ,

dJF1
8 = −(JD8

1 F8 + JD0
9 F0) + (JD6

3 F6 + JD2
7 F2)− JD4

5 F4 , (IIA) ,

dJF1
8 = (JD7

2 F7 − F1JD1
8 )− (JD5

4 F5 − F3JD3
6 ) . (IIB)

(A.18)

These relations encode non-trivial aspects of brane physics. In particular, they furnish a
magnetic description of Hanany-Witten brane creation effects. The non-closure of the J

D(9−p)
p

current describes a process in which a D(9− p)-brane is created upon crossing of a D(11− p)-
brane and an NS5-brane: this is the Hanany-Witten effect of type (III) described in the main
text. By a similar token, the non-closure of JF1

8 captures Hanany-Witten moves in which an F1
is created if a Dp-brane and Dp′-brane cross each other (p+p′ = 8): this is the Hanany-Witten
move of type (I).

The relations (A.18) are also compatible with induced brane charges. For simplicity, let
us consider a setup without NS5-branes, so that H3 is closed. We use δp(D(8 − p)) for
the closed delta-function-supported form that describes the insertion of a D(8 − p)-brane.
The total charge J

D(8−p)
p is the sum of δp(D(8 − p)) and of terms constructed with lower-

dimensional delta-function forms. The latter are associated to higher-dimensional branes with
an induced D(8 − p)-charge. The induced charge originates from world-volume 2-form flux,
and tangent/normal bundle contributions, as follows from the Wess-Zumino couplings. For
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example, in type IIA we may write

JD4
5 = δ5(D4) + fD6

2 δ3(D6) +
[1

2(fD6
2 )2 + p1(ND8)− p1(TD8)

48

]
δ1(D8) ,

JD2
7 = δ7(D2) + fD4

2 δ5(D4) +
[1

2(fD6
2 )2 + p1(ND6)− p1(TD6)

48

]
δ3(D6)

+
[ 1

3!(f
D8
2 )3 + fD8

2
p1(ND8)− p1(TD8)

48

]
δ1(D8) ,

(A.19)

where fDp
2 denotes the world-volume flux on a Dp-brane, which satisfies dfDp

2 = H3|Dp, and
p1(TDp), p1(NDp) are the first Pontryagin classes of the tangent and normal bundle to a
Dp-brane. We see that (A.19) is compatible with dJD4

7 = H3JD4
5 .

A.2 M-theory Effective Action

The bosonic terms in the M-theory low-energy two-derivative effective action are (see e.g. [145])

1
2κ2

11

∫
M11

[
R ∗ 1− 1

2G4 ∗G4 −
1
6C3G4G4

]
, (A.20)

where G4 = dC3. We rescale the 3-form potential,

1
2κ2

11
= 2π(2πℓp)9 , (2πℓp)−3Cold

3 = Cnew
3 , (A.21)

and drop the label “new” from here on. The action reads

SM = 2π

∫
M11

[
(2πℓp)9R ∗ 1− 1

2(2πℓp)6G4 ∗G4 −
1
6C3G4G4 − C3X8

]
. (A.22)

We have included the topological higher-derivative correction C3X8, where X8 is as in (A.10)
with TM10 replaced by TM11 [117].

The Bianchi identity and equation of motion for C3 can be written compactly as

dG4 = 0 , dG7 = 1
2G4 + X8 , G7 = −(2πℓp)6 ∗G4 . (A.23)

From now on, we set 2πℓp = 1 for brevity.

Topological actions in 12 dimensions. The relations for dG4, dG7 given in (A.23) can
be derived from the following 12d topological action,

SM
12 =

∫
M12

[
G4dG7 −

1
6G3

4 −G4X8 −G4JM2
8 −G7JM5

5

]
, (A.24)

which is regarded as a functional of G4, G7. We have included magnetic sources JM2
8 , JM5

5

The 12 action is supplemented with the 11d Hodge duality relation in (A.23).
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Comments on brane sources. The Bianchi identities with magnetic sources read

dG7 = 1
2G2

4 + X8 + JM2
8 , dG4 = JM5

5 . (A.25)

They imply that the currents must satisfy

dJM5
5 = 0 , dJM2

8 = −G4JM5
5 . (A.26)

The second relation encodes a Hanany-Witten move in which an M2-brane is created when
two M5-branes cross each other: this is the effect of type (IV) in the main text. The above
relations are also compatible with the identifications [148–150]

JM5
5 = δ5(M5) , JM2

8 = δ8(M2)− hM5
3 δ5(M5) , (A.27)

where hM5
3 is the field strength of the chiral 2-form living on the M5-brane, which satisfies

hM5
3 = G4|M5.

B Non-invertible Symmetries Acting on Line Operators

To complement the analysis in the main text using branes, we provide a field theoretic alter-
native to the derivation of the action of non-invertible 0-form symmetries on line operators in
4d QFTs, using half-space gauging as in [55, 61]. We consider two examples: 4d N = 1 SYM
with gauge algebra su(M), and 4d pure YM with gauge algebra so(4n), which are discussed
in the main text in sections 4.2 and 4.4, respectively.

B.1 4d N = 1 SYM with Gauge Algebra su(M)

We want to study the non-invertible 0-form symmetry of the global variant PSU(M)0. To
this end, we use the SU(M) global variant as starting point. It has a Z2M 0-form symmetry
(background field: A1 ∈ H1(W4;Z2M )) and a ZM 1-form symmetry (background field: B2 ∈
H2(W4;ZM )) with mixed anomaly

A = exp
(

2πi
−1
M

∫
W5

A1 ∪
P(B2)

2

)
. (B.1)

We introduce the usual stacking operation τ and gauging operation σ

ZτT [B2] = ZT [B2]e2πi 1
M

∫
W4

P(B2)
2 ,

ZσT [B2] =
∑

b2∈H2(W4;ZM )
ZT [b2]e2πi 1

M

∫
W4

b2B2
, (B.2)

73



where T denotes a global variant of 4d N = 1 SYM with gauge algebra su(M). For simplicity,
throughout this appendix we omit normalization factors in partition functions and we work on
a Spin manifold up to gravitational counterterms. We also make use of the compact notation

SU(M)0 := SU(M) , SU(M)p := τpSU(M) ,

PSU(M)n,0 := PSU(M)n , PSU(M)n,p := τpPSU(M)n .
(B.3)

One verifies the following identities,

(σSU(M)p)[B2] = PSU(M)p,0[B2] ,

(σPSU(M)n,0)[B2] = SU(M)n[−B2] ,

(σPSU(M)n,p)[B2] = PSU(M)n−p−1,−p[−p−1B2] , if p ∈ Z×
M .

(B.4)

We notice that, for any integer M ≥ 2, ±1 ∈ Z×
M ; if p = ±1, p−1 = ±1. A special case of the

last relation is therefore

(σPSU(M)n,−1)[B2] = PSU(M)n+1,1[B2] . (B.5)

The anomaly (B.1) implies that (perform a 0-form gauge transformation)

ZSU(M)[B2] = ZSU(M)[B2]e2πi −1
M

∫
W4

P(B2)
2 , i.e. SU(M)0[B2] = SU(M)−1[B2] . (B.6)

By applying τ repeatedly on both sides, we get

SU(M)p[B2] = SU(M)p−1[B2] . (B.7)

We may now apply σ on both sides, followed by repeated applications of τ , and get

PSU(M)n,p[B2] = PSU(M)n−1,p[B2] . (B.8)

By combining (B.5) and (B.8), we conclude that

(σPSU(M)n,−1)[B2] = PSU(M)n,1[B2] . (B.9)

This can also be written as

(τ−1στ−1PSU(M)n,0)[B2] = PSU(M)n,0[B2] . (B.10)

We conclude that the PSU(M)n,0 theory is invariant under the combined operation τ−1στ−1.
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Half-space gauging and action on lines. As anticipated above, we want to study the
global variant PSU(M)0,0. This theory has ’t Hooft lines, charged under a magnetic 1-form
symmetry. Let us now use C2 for the associated background field, and D

(k)
2 (M2) for the

topological defects implementing the symmetry. We can describe D
(k)
2 (M2) explicitly if we

think of PSU(M)0,0 as originating from gauging of SU(M)0,

ZP SU(M)0,0 [C2] =
∑
b2

ZSU(M)0 [b2]e2πi 1
M

∫
W4

b2C2
, D

(k)
2 (M2) = e

2πi k
M

∫
M2

b2
. (B.11)

We observed above that PSU(M)0,0 is invariant under τ−1στ−1. We can therefore perform
this operation in the half-space region x > 0, sschematically

x < 0 : ZP SU(M)0,0 [C2] ,

x > 0 : e2πi −1
M

∫
P(C2)

2
∑
c2

ZP SU(M)0,0 [c2]e2πi −1
M

∫
P(c2)

2 e2πi 1
M

∫
c2C2 . (B.12)

We impose Dirichlet boundary conditions for c2 at x = 0. The locus x = 0 realizes the
topological operators implementing the non-invertible 0-form symmetry of the PSU(M)0,0

theory. Next, let H(γ) denote a ’t Hooft line of minimal charge, supported on a contractible
loop γ bounded by a disk D. In the region x < 0, H(γ) is a genuine line operator, but it is
not invariant under gauge transformations of the magnetic 1-form symmetry background C2.
The gauge invariant combination is

x < 0 : H(γ)e−2πi 1
M

∫
D

C2 . (B.13)

The analog of this quantity in the x > 0 region is written with c2, as opposed to C2,

x > 0 : H(γ)e−2πi 1
M

∫
D

c2 . (B.14)

Let us recast the theory in the region x > 0 in terms of SU(M)0,

x > 0 :
∑
b2,c2

ZSU(M)0 [b2]e2πi 1
M

∫ [
b2c2−P(c2)

2 +c2C2−P(C2)
2

]
. (B.15)

Upon varying c2 in the exponent, we get the following on-shell relation in the x > 0 region,

c2 = b2 + C2 . (B.16)

If we use this in (B.35), we obtain

x > 0 : H(γ)e−2πi 1
M

∫
D

b2e−2πi 1
M

∫
D

C2 = H(γ)D(−1)
2 (D)e−2πi 1

M

∫
D

C2 . (B.17)
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We conclude that the non-invertible defects of the PSU(M)0,0 theory act on the minimal-
charge ’t Hooft line by attaching a 1-form symmetry surface defect to the line. The additional
C2 contribution is a c-number that drops away if we turn off the C2 background field.

We can also rephrase the argument above in the continuum formulation. The continuum
counterpart of (B.15) contains the following topological action,∫
Db2Dβ1Dc2Dγ1 exp 2πi

∫
W4

[
Mb2dβ1 + Mc2dγ1 + Mb2c2 −

M

2 c2c2 + Mc2C2 −
M

2 C2C2

]
.

(B.18)
The quantities b2, β1, c2, γ1 are p-form gauge fields whose field strengths have integral periods,
while C2 is a closed 2-form with integral periods. In the simpler case in which C2 is turned
off, the gauge transformations are

b′
2 = b2 + dλ1 , β′

1 = β1 + dλ0 + µ1 , c′
2 = c2 + dµ1 , γ′

1 = γ1 + dµ0 − λ1 − µ1 . (B.19)

The BF pair b2, β1 couples to the SU(M)0 theory, while c2 and γ1 only enter via the topological
terms spelled out above. The equations of motion for γ1, c2 read

Mdc2 = 0 , Mc2 = M(dγ1 + b2 + C2) . (B.20)

In the normalization relevant for the continuum formulation, the gauge invariant combination
in the x > 0 region is

H(γ)e−2πi
∫

D
c2 , (B.21)

while the topological defect implementing the magnetic 1-form symmetry of PSU(M)0,0 is

D
(k)
2 (M2) = e

2πik
∫

M2
b2 = e

2πik
∫

M2
(b2+dγ1)

. (B.22)

In the second step we have observed that dγ1 is a globally defined 2-form with integral peri-
ods. We can thus add it in the exponent without affecting the result. We thus see that the
continuum formulation confirms (B.17).

B.2 4d pure YM with Gauge Algebra so(4n)

We are interested in studying the non-invertible 0-form symmetry of the global variant Sc(4n).
We find it convenient to adopt the SO(4n) variant as our starting point. It has a Z2 0-form
symmetry and a Z2 × Z2 1-form symmetry. We denote the corresponding background fields
as A1 ∈ H1(W4;Z2) and B2, C2 ∈ H2(W4;Z2). The theory has the mixed anomaly

A = exp 2πi
1
2

∫
W5

A1 ∪B2 ∪ C2 . (B.23)
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The anomaly implies the following relation,

ZSO(4n)[B2, C2] = ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

B2C2
. (B.24)

The theory Sc(4n) is obtained by gauging both B2 and C2.
Given any theory T coupled to two background fields B̂2, Ĉ2 ∈ H2(W4;Z2), we define the

following three operations:

ZτT [B̂2, Ĉ2] = ZT [B̂2, Ĉ2]e2πi 1
2

∫
W4

B̂2Ĉ2
,

ZσT [B̂2, Ĉ2] =
∑

B̃2,C̃2

ZT [B̃2, C̃2]e2πi 1
2

∫
W4

(B̃2B̂2+C̃2Ĉ2)
,

ZKT [B̂2, Ĉ2] = ZT [Ĉ2, B̂2] . (B.25)

Making use of the anomaly relation (B.24), one may then verify the identity

(KτστSc(4n))[B̂2, Ĉ2] = (Sc(4n))[B̂2, Ĉ2] . (B.26)

Indeed, we have (always up to prefactors and gravitational counterterms, working on a Spin
manifold)

ZKτστSc(4n)[B̂2, Ĉ2] = ZτστSc(4n)[Ĉ2, B̂2] = ZστSc(4n)[Ĉ2, B̂2]e2πi 1
2

∫
W4

B̂2Ĉ2

=
∑

B̃2,C̃2

ZτSc(4n)[B̃2, C̃2]e2πi 1
2

∫
W4

(B̃2Ĉ2+C̃2B̂2)
e

2πi 1
2

∫
W4

B̂2Ĉ2

=
∑

B̃2,C̃2

ZSc(4n)[B̃2, C̃2]e2πi 1
2

∫
W4

(B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2)

=
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2B̃2+C2C̃2+B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2)
.

(B.27)

To proceed we perform the redefinitions

B̃2 → B̃2 + B̂2 + C2 , C̃2 → C̃2 + Ĉ2 + B2 . (B.28)

We get

ZKτστSc(4n)[B̂2, Ĉ2] =
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2C2+B2B̂2+C2Ĉ2+B̃2C̃2)

=
∑

B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2C2+B2B̂2+C2Ĉ2)
. (B.29)
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Now we make use of the anomaly relation (B.24) inside the sum,

ZKτστSc(4n)[B̂2, Ĉ2] =
∑

B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2B̂2+C2Ĉ2)

= ZSc(4n)[B̂2, Ĉ2] , (B.30)

as claimed above.

Half-space gauging and action on lines. Let us regard the Sc(4n) theory as coming
from gauging the SO(4n) theory. This allows us to write the topological defects generating
the 1-form symmetries of the Sc(4n) in terms of discrete gauge fields. More precisely,

ZSc(4n)[B̂2, Ĉ2] =
∑

B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2B̂2+C2Ĉ2)
, (B.31)

where we identify
B̂2 ↔ D

(B̂)
2 (M2) = e

2πi 1
2

∫
M2

B2

Ĉ2 ↔ D
(Ĉ)
2 (M2) = e

2πi 1
2

∫
M2

C2
.

(B.32)

We consider a half-space gauging configuration, in which the region x < 0 has the Sc(4n)
theory, and the region x > 0 the KτστSc(4n) theory,

x < 0 : ZSc(4n)[B̂2, Ĉ2] ,

x > 0 :
∑

B̃2,C̃2

ZSc(4n)[B̃2, C̃2]e2πi 1
2

∫
W4

(B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2)
. (B.33)

We impose Dirichlet boundary conditions for B̃2, C̃2 at x = 0. The locus x = 0 realizes
the codimension-1 topological defects generating the non-invertible symmetry of the Sc(4n)
theory.

In the Sc(4n) theory we have line operators of charges (1, 0) and (0, 1) under the 1-form
symmetries generated by D

(B̂)
2 (M2) and D

(Ĉ)
2 (M2). In the region x > 0 we have the gauge

invariant combinations

x > 0 : L(1,0)(γ)e2πi 1
2

∫
D

B̂2 , L(0,1)(γ)e2πi 1
2

∫
D

Ĉ2 , (B.34)

where ∂D = γ. These combinations in the region x > 0 become

x > 0 : L(1,0)(γ)e2πi 1
2

∫
D

B̃2 , L(0,1)(γ)e2πi 1
2

∫
D

C̃2 . (B.35)

To proceed, we write the theory in the region x > 0 in terms of the SO(4n) theory,

x > 0 :
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e2πi 1
2

∫
W4

(B2B̃2+C2C̃2+B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2)
. (B.36)
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Varying the exponent with respect to B̃2, C̃2 yields

B̃2 = B̂2 + C2 , C̃2 = Ĉ2 + B2 . (B.37)

We can ignore signs because these are Z2 classes. Using these relations in (B.35) and recalling
(B.31), we find

x > 0 : L(1,0)(γ)D(Ĉ)
2 (D)e2πi 1

2

∫
D

B̂2 , L(0,1)(γ)D(B̂)
2 (D)e2πi 1

2

∫
D

Ĉ2 . (B.38)

We thus learn that, if the line L(1,0) passes through the non-invertible defect, it emerges
attached to a D

(Ĉ)
2 surface, and analogously for the other line.
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