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Abstract1

We propose a model of 1/ f noise in electrical conductors based on the drift of individual2

charge carriers and their interaction with the trapping centers. We assume that the3

trapping centers are distributed uniformly across the material. The trapping centers4

are assumed to be heterogeneous and have unique detrapping rates, which are sampled5

from a uniform distribution. We show that under these assumptions, and if the trapping6

rate is low in comparison to the maximum detrapping rate, 1/ f noise in the form of7

Hooge’s relation is recovered. Hooge’s parameter is shown to be a ratio between the8

characteristic trapping rate and the maximum detrapping rate.9
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1 Introduction20

The nature of the 1/ f noise (also referred to as flicker noise or pink noise), characterized21

by power spectral density of S ( f ) ∼ 1/ f form, remains open to discussion despite almost22

100 years since the first reports [1, 2]. While many materials, devices, and systems exhibit23

different kinds of fluctuations or noise [3–5], only the white noise and the Brownian noise are24

well understood starting from the first principles. White noise is characterized by absence of25

temporal correlations, and flat power spectral density of S ( f ) ∼ 1/ f 0 form. Examples of the26

white noise include thermal and shot noise. Thermal noise is known to arise from the random27
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motion of the charge carriers. It occurs at any finite temperature regardless of whether the28

current flows. Shot noise, on the other hand, is a result of the discrete nature of the charge29

carriers and the Poisson statistics of waiting times before each individual detection of the30

charge carrier. The Brownian noise is a temporal integral of the white noise, and thus exhibits31

no correlations between the increments of the signal, it is characterized by a power spectral32

density of S ( f )∼ 1/ f 2 form.33

Theory of 1/ f noise based on the first principles is still an open problem. 1/ f noise is34

of particular interest as it is observed across various physical [3, 4, 6–20], and non–physical35

[21–27] systems. As far as the 1/ f noise cannot be obtained by the simple procedure of36

integration, differentiation, or simple transformation of some common signals, and the general37

mechanism generating such signals has not yet been identified, there is not generally accepted38

solution to this 1/ f noise problem.39

The oldest explanation for 1/ f noise involves the superposition of Lorentzian spectra40

[28–33]. 1/ f noise as a sum of the Lorentzian spectral densities also arises from the ran-41

dom telegraph signals [3], and from the Brownian motion with wide–range distribution of42

relaxations [34]. These approaches are often limited to the specific systems being modeled, or43

require quite restrictive assumptions to be satisfied [12, 13]. In the recent decades, series of44

models for the 1/ f noise based on the specific, autoregressive AR(1), point process [34, 35],45

and the agent–based model [36, 37], yielding nonlinear stochastic differential equation [38]46

was proposed (see [39] for a recent review). Another more recent trend relies on scaling prop-47

erties and non–linear transformations of signals [40–43]. These models, on the other hand,48

prove to be rather more abstract, and therefore more similar to the long–range memory models49

found in the mathematical literature, such as fractional Brownian motion [44–46] or ARCH50

models [47–50]. These and other similar models of 1/ f noise are hardly applicable to the51

description and explanation of the mostly observable 1/ f noise in the conductor materials.52

On the other hand, for a homogeneous conductor material Hooge proposed an empirical53

relation for the 1/ f noise dependence on the parameters of the material [51,52],54

S ( f ) = Ī2 αH

N f
. (1)

Where Ī stands for the average current flowing through the cross–section of the conductor55

material, N is the number of charge carriers, and αH is the titular Hooge parameter. There56

were numerous attempts to derive or explain the structure of the Hooge’s relation [3, 9, 10,57

12, 33, 53–55]. In [35] Hooge’s parameter was derived from an autoregressive point process58

model. More recent derivations of the Hooge’s parameter based on the Poisson generation–59

recombination process modulated by the random telegraph noise were conducted in [56,57].60

These and similar models cannot be directly applied to describe and explain the widespread61

1/ f noise in the conductor materials.62

Here, we propose a model of 1/ f noise in electrical conductors containing heterogeneous63

trapping centers. As far as the square of the average current Ī2 is proportional to the squared64

number of charge carriers N2, Hooge’s relation implies that the intensity of 1/ f noise is pro-65

portional to the number of charge carriers N . Therefore, as the first approximation we can66

consider the noise originating from the flow of individual charge carriers. It is known that the67

drift, and the diffusion, of the charge carries does not yield 1/ f noise [3]. Therefore, we con-68

sider the drift of the charge carriers interrupted by their entrapment in the trapping centers.69

We show that, if the detrapping rates of individual trapping centers are heterogeneous and70

uniformly distributed, 1/ f noise arises. In this model, the signal generated by a single charge71

carrier is similar to the signal from non–overlapping rectangular pulses [58]. Using the results72

of Ref. [58] we derive Hooge’s relation, and show that Hooge’s parameter is a ratio between73

the characteristic trapping rate and the maximum detrapping rate.74
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Figure 1: Current generated by a single charge carrier (red curve). Relevant notation:
τi is the gap duration (detrapping time), θi is the pulse duration (trapping time), a
is the height of the pulses (current generated by a single drifting charge carrier).

This paper is organized as follows. In Section 2 we introduce a general physical model75

for 1/ f noise in the conductor materials based on the trapping–detrapping process of a single76

charge carrier. In Section 3 we discuss the implications of finite experiments and simulations.77

Namely, we show that the power spectral density produced by a single charge carrier may ex-78

hibit spurious low–frequency cutoff. This cutoff disappears, if the current generated by a large79

number of charge carriers is considered. Finally, Hooge’s empirical relation and Hooge’s pa-80

rameter value for the proposed model is derived in Section 4. The main results are summarized81

in Section 5.82

2 Model for 1/ f noise in a homogeneous electrical conductor83

Here we consider trapping–detrapping noise generated by a single charge carrier (e.g., elec-84

tron). We consider only transitions between the conduction band and the trapping centers85

as producing fluctuations in the electric current. Under these conditions, the electric current86

generated by a single charge carrier is a sequence of non–overlapping rectangular pulses. The87

pulses are observed when the charge carrier drifts through the conduction band, thus gen-88

erating the electric current. The pulses are separated by the gaps which correspond to the89

moments when the charge carrier remains trapped by any of the trapping centers. A sample90

signal generated by a single charge carrier is shown in Fig. 1.91

In Fig. 1 and further in the paper τi will stand for i-th gap duration (detrapping time), θi92

will stand for i-th pulse duration (trapping time), and a will stand for the height of the pulses.93

The height of the pulses a has a fixed predetermined value as it represents the electric current94

generated by a drift of a single charge carrier. Gap and pulse durations are stochastic variables95

sampled from the specified gap and pulse duration distributions.96

The power spectral density of a signal generated by a single charge carrier I1 (t) (subscript 197

is added to emphasize that a single charge carrier is considered) composed of non–overlapping98

pulses with profiles Ak (t) is given by99

S1 ( f ) = lim
T→∞

*

2
T

�

�

�

�

�

∫ T

0

I1 (t) e
−2πi f t d t

�

�

�

�

�

2+

=

= lim
T→∞

*

2
T

�

�

�

�

�

∑

k

e−2πi f tkF {Ak (t − tk)}

�

�

�

�

�

2+

, (2)

where T is the observation time, tk is the start time of k-the pulse (corresponds to the time of k-100

th detrapping from the trapping center), and F {Ak (t − tk)} stands for the Fourier transform of101
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the k-th pulse profile Ak (t − tk). In the specific case considered here the pulse profiles differ102

only in their duration θk. If the pulse and gap durations are independent, then the power103

spectral density of the signal is determined purely by the height of the pulses a and the pulse104

and gap duration distributions (let pθ (θ ) and pτ (τ) be their respective probability density105

functions). In this case, the general formula for the power spectral density is given by [58]106

S1 ( f ) =
a2ν̄

π2 f 2
Re
�

(1−χθ ( f )) (1−χτ ( f ))
1−χθ ( f )χτ ( f )

�

. (3)

In the above107

χτ ( f ) =



e2πi f τ
�

=

∫ ∞

0

e2πi f τpτ (τ)dτ, (4)

χθ ( f ) =



e2πi f θ
�

=

∫ ∞

0

e2πi f θ pθ (θ )dθ , (5)

are the characteristic functions of the gap and pulse duration distributions respectively, and ν̄108

is the mean number of pulses per unit time. For the ergodic processes, and given a long obser-109

vation time, the value of ν̄ is trivially derived from the mean gap and mean burst durations,110

i.e., ν̄ = 1
〈θ 〉+〈τ〉 . For the nonergodic processes, or if the observation time is comparatively111

short, the value of ν̄ can be approximated by calculating the means from the truncated dis-112

tributions, or it may be defined purely empirically, i.e., ν̄ = K/T (here K is the number of113

observed pulses, and T is the total observation time).114

Typically when trapping–detrapping processes are considered [3, 11] it is assumed that115

both τi and θi are sampled from the exponential distributions with rates γτ and γθ respectively.116

Characteristic function of the exponential distribution, probability density function of which117

is given by118

p (τ) = γexp (−γτ) , (6)

with event rate γ, is given by119

χ ( f ) =

∫ ∞

0

γe2πi f τ−γτ dτ=
γ

γ− 2πi f
. (7)

Inserting Eq. (7) as the characteristic function for pulse and gap duration distributions into120

Eq. (3) yields Lorentzian power spectral density [3]. Notably, there were prior works which121

have assumed that τi , θi , or both are sampled from the distributions with power–law tails122

[56–62]. Here, let us assume that the detrapping times in the individual trapping centers123

are sampled from an exponential distribution with a unique detrapping rate γ(i)τ . This would124

correspond to the individual trapping centers having different potential depths or trapping125

to different quantum states of same trapping center. As well as a result of the redistribution126

through the states with small bounding energy as an outcome of the interaction with phonons,127

electrons, radiation, etc. If γ(i)τ is uniformly distributed in the interval from γmin to γmax, then128

the probability density function of the detrapping time distribution is given by129

p (τ) =
1

γmax − γmin

∫ γmax

γmin

γτ exp (−γττ)dγτ =

=
(1+ γminτ)exp (−γminτ)− (1+ γmaxτ)exp (−γmaxτ)

(γmax − γmin)τ2
. (8)

This probability density function saturates for the short detrapping times, τ ≪ 1
γmax

. For the130

longer detrapping times, τ≫ 1
γmin

, it decays as an exponential function. In the intermediate131
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Figure 2: Probability density function of the detrapping time distribution under the
assumption that detrapping rates of individual trapping centers are uniformly dis-
tributed (red curve), Eq. (8). The probability density function was calculated for
γmin = 10−3, and γmax = 10 case. Black dashed curves correspond to the exponen-
tial probability density functions of the detrapping times from the individual trapping
centers with fixed rates: γτ = 10−3, 2.78×10−3, 7.74×10−3, 2.15×10−2, 5.99×10−2,
1.67×10−1, 4.64×10−1, 1.29, 3.59, and 10. Normalization of the exponential prob-
ability density functions was adjusted for the visualization purposes, but it remains
proportional to their respective contributions.

value range, 1
γmax
≪ τ ≪ 1

γmin
, this probability density function has the τ−2 asymptotic be-132

havior, which is already known to lead to 1/ f noise [58–61]. The benefit of this formulation133

is that it allows to see how the τ−2 asymptotic behavior can emerge in homogeneous con-134

ductors. Experimentally τ−2 asymptotic behavior is observable in quantum dots, nanocrystal,135

nanorod, and other semiconductor materials [63–66], while the detrapping times can range136

from picoseconds to several months. The asymptotic behavior of Eq. (8) can be examined in137

Fig. 2 where it is represented by a red curve. Fig. 2 also highlights contributions of some of138

the individual trapping centers, detrapping time distributions of which are plotted as dashed139

black curves.140

Unlike the simple power–law distribution, this gap duration distribution does not require141

the introduction of any arbitrary cutoffs. The parameters of this gap duration distribution142

have explicit physical meaning. Furthermore, the statistical moments are well–defined and143

have compact analytical forms. The mean of the distribution is given by144

〈τ〉=
1

γmax − γmin
ln
�

γmax

γmin

�

, (9)

while the higher order moments are given by145

〈τq〉=
q!

γmax − γmin
×
γ

1−q
min − γ

1−q
max

q− 1
. (10)

The characteristic function of the gap duration distribution can be obtained either by in-146

serting Eq. (8) into Eq. (4), or by averaging over the characteristic functions of the exponential147

distribution, Eq. (7). Latter approach yields the expression quicker148

χτ ( f ) =
1

γmax − γmin

∫ γmax

γmin

γτ
γτ − 2πi f

dγτ = 1+
2πi f

γmax − γmin
ln
�

γmax − 2πi f
γmin − 2πi f

�

. (11)

If the interval of the possible detrapping rates is broad γmin≪ γmax, then for γmin≪ 2π f ≪ γmax149

the characteristic function can be approximated by150

χτ ( f )≈ 1+
2πi f
γmax

ln
�

1+
iγmax

2π f

�

≈ 1−
2π f
γmax

�

π

2
− i ln
�

2π f
γmax

��

. (12)
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Figure 3: Power spectral density of the simulated signal (red curve) and its analytical
approximation by Eq. (14) (black dashed curve). Simulated power spectral density
was obtained by averaging over 102 realizations. Simulation parameters: T = 106,
γmin = 10−4, γmax = 104, a = 1, γθ = 1.

Inserting Eq. (12) into Eq. (3) we have151

S1 ( f ) =
2a2ν̄

πγmax f
Re





(1−χθ ( f ))
�

π
2 − i ln
�

2π f
γmax

��

1−χθ ( f )
¦

1− 2π f
γmax

�

π
2 − i ln
�

2π f
γmax

��©



 . (13)

Assuming that 2π f
γmax

�

π
2 − i ln
�

2π f
γmax

��

≪ 1, which is supported by an earlier assumption that152

2π f ≪ γmax, allows to simplify the above to153

S1 ( f )≈
a2ν̄

γmax f
. (14)

This approximation should hold well for γmin ≪ 2π f ≪ γmax, and should not depend on the154

explicit form of χθ ( f ) unless χθ ( f )≈ 1 for at least some of the frequencies in the range.155

Let us examine a specific case when the trapping centers are uniformly distributed within156

the material, and therefore the trapping process can be assumed to be a homogeneous Poisson157

process. Inserting the characteristic function of the exponential distribution, Eq. (7), as the158

characteristic function of the pulse duration distribution into Eq. (3) yields159

S1 ( f ) =
4a2ν̄

γ2
θ

Re





1

1−χτ ( f )−
2πi f
γθ



 . (15)

Then inserting the characteristic function of the proposed detrapping time distribution, Eq. (12),160

into Eq. (15) yields161

S1 ( f ) =
a2ν̄γmax

γ2
θ

f
×

1
�

π
2

�2
+
�

γmax
γθ
+ ln
�

2π f
γmax

��2 . (16)

If the maximum detrapping rate is large in comparison to the trapping rate, i.e. γmax
γθ
≫ π

2162

and γmax
γθ
≫ − ln
�

2π f
γmax

�

, then we recover Eq. (14). In Fig. 3 the power spectral density of a163

simulated signal with comparatively large detrapping rates is shown as a red curve.164

3 Low–frequency cutoff in finite experiments165

The obtained approximation, Eq. (14), holds in the infinite observation time limit (single in-166

finitely long signal) or the infinite number of experiments limit (infinitely many signals with167
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finitely long observation time). If either of the limits doesn’t hold, then the range of frequen-168

cies over which the pure 1/ f noise is observed becomes narrower. In the finite experiments169

the process will not reach a steady state, and therefore the cutoff frequencies will depend not170

on the model parameter values γmin and γmax, but on the smallest and the largest γ(i)τ values171

actually observed during the experiment. The difference between γmax and the largest γ(i)τ is172

negligible, because the pure 1/ f noise will be observed only if γmax is a relatively large num-173

ber. On the other hand the relative difference between γmin and smallest γ(i)τ might not be174

negligible. Let us estimate the expected value of the smallest γ(i)τ in a finite experiment.175

In the model introduced in the previous section γ(i)τ is sampled from the uniform distri-176

bution with [γmin,γmax] range of possible values. It is known that, for x i sampled from the177

uniform distribution with [0, 1] range of possible values, the smallest x i observed in the sam-178

ple of size K is distributed according to the Beta distribution with the shape parameters α= 1179

and β = K [67]. Thus the expected value of the smallest x i is given by180




min {x i}K
�

=
α

α+ β
=

1
K + 1

. (17)

Rescaling the range of possible values to [γmin,γmax] yields181

γ(eff)
min =



min
�

γ(i)τ
	

K

�

=
γmax − γmin

K + 1
+ γmin. (18)

As K corresponds to the number of pulses in the signal, we have that K = ν̄T = T
〈θ 〉+〈τ〉 and182

γ(eff)
min = (γmax − γmin)

〈θ 〉+ 〈τ〉
〈θ 〉+ 〈τ〉+ T

+ γmin. (19)

In the above 〈θ 〉 is effectively a model parameter as it is trivially given by 〈θ 〉= 1
γθ

, while 〈τ〉183

is a derived quantity which has a more complicated dependence on the model parameters γmin184

and γmax (see Eq. (9)). If the range of possible γ(i)τ values is broad, i.e., γmax≫ γmin, we have185

γ(eff)
min ≈ γmax

γmax 〈θ 〉+ ln γmax
γmin

γmax (〈θ 〉+ T ) + ln γmax
γmin

+ γmin. (20)

The above applies to the ergodic case with γmin≫ 1/T . In the nonergodic case, for γmin ≲ 1/T ,186

it would impossible to distinguish between the cases corresponding to the different γmin values.187

Therefore, for the nonergodic case, γmin can be replaced by 1/T yielding188

γ(eff)
min ≈ γmax

γmax 〈θ 〉+ ln (γmaxT )
γmax (〈θ 〉+ T ) + ln (γmaxT )

+
1
T
≈

1+ γmax 〈θ 〉+ ln (γmaxT )
T

. (21)

For relatively long pulse durations, 〈θ 〉 ≫ ln(γmaxT )
γmax

, we have that189

γ(eff)
min ≈

1+ γmax 〈θ 〉
T

≈
γmax

γθ T
. (22)

From the above, it follows that low–frequency cutoff is always present in singular experiments190

with one charge carrier, and with finite observation time T . The cutoff will be observed at a191

frequency close to γ(eff)
min . As can be seen in Fig. 4, the cutoff moves to the lower frequencies as192

T increases, the power spectral density is flat for the lowest observable natural frequencies,193
1
T < f ≲ γmax

γθ T .194
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Figure 4: The effect of increasing the observation time on the obtained power spectral
density. Dashed black curve corresponds to Eq. (14). Simulation parameters: a = 1,
γθ = 1, γmin = 0, γmax = 103, T = 104 (red curve), 106 (green curve), and 108 (blue
curve).

Figure 5: The effect of averaging over repeated experiments on the obtained power
spectral density: R= 1 (green curve), R= 103 (magenta curve). Dashed black curve
corresponds to Eq. (14). Simulation parameters, with exception to R, are the same
as for the green curve from Fig. 4.

If multiple independent experiments (let R be the number of experiments) with finite ob-195

servation time T are performed and the obtained spectral densities are averaged, then the196

total number of observed pulses increases by a factor of R yielding197

γ(eff)
min = (γmax − γmin)

〈θ 〉+ 〈τ〉
〈θ 〉+ 〈τ〉+ RT

+ γmin ≈
γmax 〈θ 〉

RT
+

1
T
=

R+ γmax 〈θ 〉
RT

. (23)

For R ≫ γmax 〈θ 〉, no low–frequency cutoff will be noticeable. As shown in Fig. 5, low–198

frequency cutoff disappears as the experiments are repeated and the obtained power spectral199

densities are averaged.200

We have derived Eq. (14) considering the current generated by a single charge carrier.201

In many experiments the number of charge carriers N will be large, N ≫ 1. Consequently,202

from the Wiener–Khinchin theorem [3] it follows that performing independent experiments203

is equivalent to observing independent charge carriers. Therefore for N ≫ γmax 〈θ 〉 no low–204

frequency cutoff will be noticeable. Though in this case, the power spectral densities of the205

signals generated by single charge carriers add up instead of averaging out, yielding a minor206

generalization of Eq. (14)207

SN ( f )≈
Na2ν̄

γmax f
. (24)

In the above ν̄ is strictly the mean number of pulses per unit time generated by a single charge208

carrier.209

As can be seen in Fig. 6 (a), the signal generated by multiple independent charge carri-210

ers is no longer composed of non–overlapping pulses, although it retains discrete nature as211
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Figure 6: Sample of a signal generated by 103 independent charge carriers (a), the
probability mass function of the amplitude of the signal (b), and the power spectral
density of the signal (c). Red curves represent results of numerical simulation, while
dashed black curves provide theoretical fits: (b) Binomial probability mass function
with pF ≈ 0.984 and N = 103, (c) the power spectral density approximation Eq. (24).
Simulation parameters: R = 1, N = 103, T = 6710.8864, a = 1, γθ = 1, γmin = 0,
γmax = 103.

individual charges drift freely or are trapped by the trapping centers. The amplitude and the212

slope of the power spectral density are well predicted by Eq. (24) (as seen in Fig. 6 (c)). The213

distribution of the signal’s amplitude would be expected to follow the Binomial distribution214

with sample size N and success probability (probability that the charge carrier is free)215

pF =
〈θ 〉

〈θ 〉+ 〈τ〉
≈ 1−

〈τ〉
〈θ 〉

. (25)

The fit by the Binomial distribution shown in Fig. 6 (b) is not perfect, because the nonergodic216

case is simulated and 〈τ〉 is ill–defined, but predicts the overall shape of the probability dis-217

tribution rather well. For γmin ≫ 1/T the fit would be much better. Notably, with larger N218

and under noisy observation, the Binomial distribution predicted by the model will quickly219

become indistinguishable from the Gaussian distribution. While in some cases 1/ f noise is220

known to behave as a non–Gaussian process, most often it is found to exhibit Gaussian fluctu-221

ations [3,68,69].222

Notably, [70] also discusses a spurious low–frequency cutoff that could be observed in223

single particle experiments. Of the 1/ f noise models considered in [70] superimposed random224

telegraph signals and blinking quantum dot models are the most comparable to the model225

presented here. In [70] each of the superimposed random telegraph signals was assumed to be226

characterized by their own Poissonian switching rate γ= γθ = γτ between the “on” and “off”227

states. It was shown that the conditional power spectral density (requiring a certain minimum228

number of pulses, Kmin, to be observed) exhibits low–frequency cutoff at fc ∼ Kmin/T . In our229

simulations, we typically observe a large number of pulses, K ≈ γθ T , and should therefore230

observe the cutoff at fc ∼ γθ , but instead, we observe that the cutoff frequency scales as 1/γθ .231

The nature of the cutoff is different in the model introduced here. The other, blinking quantum232

dot, model does not predict low–frequency cutoff, only the ageing effect, which for the pure233

1/ f noise will not be noticeable [58].234

4 Derivation of Hooge’s empirical relation and Hooge’s parameter235

It is straightforward to see that we can rewrite Eq. (24) in the form of Hooge’s empirical236

relation, Eq. (1), if we define Hooge’s parameter as237

αH =
N2a2ν̄

γmax Ī2
. (26)
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Further we show that the straightforward expression above can be simplified, and given a238

more compact form.239

As the height of the pulses a corresponds to the current generated by a single charge carrier240

we have241

a =
qvc

L
, (27)

where q stands for the charge held by the carrier, vc is the drift velocity between the trappings,242

and L is the length of the material. Expression for a can be rewritten in terms of the average243

current flowing through the cross–section of the material σM244

Ī = σM nqvd , (28)

where n stands for the density of the charge carriers (i.e., n = N
LσM

), and vd is the average245

velocity of the charge carriers. The average velocity is related to the free drift velocity via the246

fraction of time the charge carrier spends drifting247

vd =
〈θ 〉

〈θ 〉+ 〈τ〉
vc = ν̄ 〈θ 〉 vc . (29)

Consequently we have248

a =
Ī

N ν̄ 〈θ 〉
. (30)

Inserting Eq. (30) into Eq. (26) yields the expression of the Hooge’s parameter in terms of249

the characteristic trapping rate and the maximum detrapping rate, assuming that the pulses250

are comparatively long 〈θ 〉 ≫ 〈τ〉,251

αH =
1

ν̄ 〈θ 〉2 γmax

≈
γθ
γmax

=
〈τmin〉
〈θ 〉

. (31)

In the above 〈τmin〉 =
1
γmax

is the expected gap duration generated when a charge carrier is252

trapped by the shallowest trapping center. The purer materials (i.e., ones with lower trapping253

center density nc) will have lower αH values, as the trapping rate is given by γθ = 〈σc vc〉nc254

(here σc is the trapping cross–section).255

Consequently the approximations for the power spectral density generated by the proposed256

model, Eqs. (14) and (24), can be rewritten in the same form as Hooge’s empirical relation.257

Inserting Eq. (31) into Eq. (1) yields258

SN ( f ) = Ī2 γθ
γmaxN f

. (32)

This expression appears to imply that the process under consideration is stationary, but this259

is not true as the average current Ī is proportional to the number of pulses per unit time ν̄,260

which in the γmin → 0 limit is a function of the observation time T [58]. Although, for the261

case of pure 1/ f noise, the dependence on T is logarithmically slow, and barely noticeable.262

Nevertheless, even if the process would be non–stationary, this should not have any impact on263

the estimate of Hooge’s parameter as only Ī is impacted by the non–stationarity.264

5 Conclusions265

We have proposed a general physical model of 1/ f noise based on the trapping–detrapping266

process in homogeneous electrical conductors. Unlike in the previous works, we have assumed267
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that the detrapping rate of each trapping center is random, and sampled from the uniform dis-268

tribution. This assumption leads to a power–law distribution of the detrapping times Eq. (8),269

which arises from a superposition of exponential detrapping time distributions representing270

the individual trapping centers with their own detrapping rates (see Fig. 2). Under this as-271

sumption, regardless of the details of the trapping process, as long as the trapping process is272

slow in comparison to the detrapping process, pure 1/ f noise in a form of Hooge’s empirical273

relation is obtained, Eq. (32). Under the assumptions of the proposed model, Hooge’s param-274

eter is just a ratio between the rate parameters of the trapping and the detrapping processes275

Eq. (31).276

In Section 3, we have noted that as long as a finite signal generated by a single charge277

carrier is considered, the power spectral density may exhibit spurious low–frequency cutoff.278

The cutoff width is of the same order of magnitude as γmax
γθ

. This cutoff disappears when the279

power spectral density is averaged over a large number of experiments of finitely long observa-280

tion time, or when the power spectral density is generated by a large number of independent281

charge carriers over finitely long observation time. In the latter case the distribution of the282

signal’s amplitude follows Binomial distribution, which under noisy observations will quickly283

become indistinguishable from the Gaussian distribution.284

Future extensions of the approach presented here could include a more detailed analysis285

of multiple charge carrier dynamics, and allowing the detrapping rates to come from a discrete286

uniform distribution with a reasonably small number of possible detrapping rate values.287

All of the code used to perform the reported numerical simulations is available in [71].288

Author contributions Conceptualization (BK), Software (AK), Validation (AK), Visualization289

(AK), Writing (AK, BK).290
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