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Abstract

By employing the Lindblad equation, we derive the evolution of the two-point
correlator for a free-fermion chain of length L subject to bulk dephasing and
boundary losses. We use the Bethe ansatz to diagonalize the Liouvillian L(2)

governing the dynamics of the correlator. The majority of its energy levels are
complex. Precisely, L(L− 1)/2 complex energies do not depend on dephasing,
apart from a trivial shift. The remaining complex levels are perturbatively re-
lated to the dephasing-independent ones for large L. The long-time dynamics
is governed by a band of real energies, which contains an extensive num-
ber of levels. They give rise to diffusive scaling at intermediate times, when
boundaries can be neglected. Moreover, they encode the breaking of diffusion
at asymptotically long times. Interestingly, for large loss rate two boundary
modes appear in the spectrum. The real energies correspond to string solu-
tions of the Bethe equations, and can be treated effectively for large chains.
This allows us to derive compact formulas for the dynamics of the fermionic
density. We check our results against exact diagonalization, finding perfect
agreement.

1 Introduction

Markovian master equations [1], such as the Lindblad equation, provide a versatile tool
to understand the interplay between coherent and dissipative dynamics in open quantum
many-body systems [2]. Although the interaction with an environment typically is a strong
adversary for quantum coherence, it can also be exploited to imprint nontrivial quantum
correlations [3], to aid quantum computation [4], or to stabilize topological order [5].

Exact solvable models could potentially help to build a general understanding of open
quantum systems, similar to what happened in out-of-equilibrium closed systems [6]. Un-
fortunately, despite intense effort there are comparatively few examples of exact solvable
Lindblad equations. Free-fermion and free-boson models subject to arbitrary linear jump
operators lead to quadratic Liouvillians, and stand out as prominent examples [7]. Still,
non quadratic Liouvillians that are solvable, for instance by the Bethe ansatz, exist [8–24].
Remarkably, it has been shown in Ref. [11] that the Liouvillian describing the out-of-
equilibrium dynamics of the fermionic tight-binding chain with global dephasing can be
mapped to the Hubbard chain with imaginary interaction strength, which can be solved
by Bethe ansatz [25]. Interestingly, it is well-established that the dynamics of simple
observables, such as few-point correlation functions can be obtained analytically [26–28],
without explicitly relying on the exact solvability of the full Liouvillian. Furthermore,
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Figure 1: Setup considered in this paper. A tight-binding fermionic chain with L sites is
subject to global dephasing, with dephasing rate γ. We employ open boundary conditions.
At the edges of the chain fermions are incoherently removed at rate γ−.

integrability is crucial to devise effective descriptions for out-of-equilibrium open systems.
For instance, it has been shown recently that, by exploiting integrability, the Lindblad
dynamics of paradigmatic observables can be captured within the hydrodynamic frame-
work [29–34]. For quadratic Liouvillians one can employ the quasiparticle picture [35–37]
to describe the dynamics of entanglement-related quantities [38–41]. Similar results were
derived for free fermions in the presence of localized dissipation [42–44]. In conclusion,
widening the set of integrable Lindblad equations is of paramount importance to make
progress in out-of-equilibrium open quantum systems.

Here we provide new results in this direction considering the setup depicted in Fig. 1.
We focus on a fermionic tight-binding chain of length L with open boundary conditions.
Global dephasing is present on each site of the chain. We denote by γ the dephasing rate.
Besides, the chain is subject to incoherent fermion losses with the same rate γ− at the
edges. This prototypical setup was investigated in Ref. [8], and more recently in Ref. [45,46]
(see also Ref. [47, 48]). The focus was on the interplay between the diffusive transport
induced by the global dephasing and the ballistic one due to the boundary driving. The
same setup was employed to study the interplay between dissipation and criticality [2,49].

Here we focus on the two-point fermionic correlation function Gx1,x2 := Tr(ρ(t)c†x1cx2),
with cx1 , cx2 standard fermion operators, and ρ(t) the full-system density matrix. The
out-of-equilibrium dynamics of Gx1,x2 is governed by a Liouvillian super operator L(2) (see
section 2).

We show that the spectrum, i.e., eigenvalues and eigenvectors, of L(2) can be con-
structed explicitly using the Bethe ansatz. This happens despite the fact that the full
Liouvillian, to the best of our knowledge, is not integrable. Indeed, as we show, the full
Liouvillian is mapped to the one-dimensional Hubbard model with imaginary density-
density interaction, imaginary boundary magnetic fields, and imaginary boundary pair
production. The last term creates a pair of fermions with opposite spins at the boundaries,
making the model non integrable. Since L(2) is not hermitian, its eigenvalues (energies)
are in general complex. The spectrum of L(2), at least for moderate dephasing rate, splits
into three different components. We show that there are L(L−1)/2 complex energies that
are trivially related by a shift by −γ to the energies obtained in the absence of dephas-
ing. These correspond to eigenstates that are free-fermionic in nature. For γ− = 0 these
energies are purely imaginary forming a vertical band in the complex plane. For nonzero
γ− the band is deformed. Nearby in energy, there are ∼ L(L− 1)/2 complex eigenvalues,
which become the same as the dephasing-independent ones in the large L limit.

Finally, a band containing ∼ L real energies is present. A similar band is present
for periodic boundary conditions (see Ref. [26] and Ref. [28]), where it is responsible for
diffusive dynamics at long times. For this reason we dub it diffusive band. The energies
with the largest real parts, and the gap of L(2), are in the diffusive band. The diffusive band
correspond to so-called string solutions of the Bethe equations, which in the large L limit
can be treated within the framework of the string hypothesis [25]. For instance, this allows
us to derive the Liouvillian gap analytically as ∆L(2) = −2π2/(γL2) + β/L3 + O(L−4),

2



SciPost Physics Submission

where the constant β, which we determine, depends both on γ and γ−. The number
of energies in the diffusive band depends on γ, γ−. We show that in the large L limit,
i.e., in the regime of validity of the string hypothesis, there is a “critical” γc = 4 above
which the band contains the largest number of energies. Upon lowering γ the band gets
progressively depleted. In the limit L → ∞ the energies ε in the diffusive band are such
that ε >

√
γ2 − 16− γ for γ > γc. The number of levels depends on γ− as well. Precisely,

for γ > γc the band contains L levels for γ− < γ−c = exp(−arccosh(γ/4)). At larger γ−,
two of the energies detach from the diffusive band, and are pushed to lower energies upon
increasing γ−. The energy splitting between them is exponentially suppressed with L.
These eigenvalues correspond to edge modes of L(2), and are reminiscent of the boundary-
related eigenstates of the Hubbard chain with boundary magnetic fields [25].

The Bethe ansatz diagonalization of L(2) allows, in principle, to obtain the full-time
dynamics of Gx1,x2(t). This is not straightforward because it requires to extract all the L2

solutions of the Bethe equations. Still, in the long-time limit the dynamics of the correlator
is determined by the diffusive band, which can be treated by using the string hypothesis.
Here we provide compact expressions for the dynamics of the density profile starting from
a fermion localized at an arbitrary site of the chain. This is the main ingredient to obtain
the dynamics from an arbitrary initial density profile. At long times, but short enough
that the boundaries can be neglected, the density profile exhibits the same diffusive scaling
as for periodic boundary conditions. At long time the diffusive regime breaks down due
to the boundary losses.

The manuscript is organized as follows. In section 2 we introduce the tight-binding
chain with dephasing and boundary losses, and the Lindblad equation. In section 3 we
present the Bethe ansatz treatment of the Liouvillian L(2). Specifically, in section 3.1
we introduce the ansatz for the eigenstates of L(2). In section 3.2 we derive the Bethe
equations. In section 3.3 we discuss the energies that correspond to dephasing-independent
solutions of the Bethe equations. In section 3.4 we investigate the eigenvalues of L(2)

that are perturbatively connected to the dephasing-independent ones in the large L limit.
Finally in section 3.5 we discuss the diffusive band. In section 4 we focus on the dynamics
of the two-point fermionic correlation function. In particular, in section 4.1 we discuss how
to expand the initial correlator in the basis of the Bethe states. In section 4.2 we derive the
normalization of the Bethe states. In section 4.3, by using the string hypothesis, we derive
the long-time limit of the fermion density profile. We discuss numerical results in section 5.
Precisely, in section 5.1 we focus on the solution of the Bethe equations. We provide the
full set of solutions for chains with L = 2 and L = 3. In section 5.2 we discuss the solution
of the Bethe-Gaudin-Takahashi equation for the diffusive band. In section 5.3 we overview
the general structure of the eigenvalues of L(2) presenting exact diagonalization (ED) data.
In section 5.4 we compare the ED data against Bethe ansatz results. In section 5.5 we
focus on the finite-size scaling of the Liouvillian gap. In section 5.6 we benchmark the
Bethe ansatz results for Gx1,x2 with exact diagonalization. Section 5.7 provides numerical
results for the dynamics of the density profile. In section 5.8 we focus on the diffusive
scaling of the fermion density and its violation due to the boundary losses. We conclude
in section 6. In Appendix A we show that the full Liouvillian of the system is mapped to
a one-dimensional Hubbard model with imaginary interaction, imaginary boundary fields
and imaginary boundary fermion pair production. In Appendix A.1 we compare the Bethe
equations for the Hubbard chain with boundary fields and the Bethe equations derived in
section 3.2, showing that they are equivalent.
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2 Free fermions with dephasing and boundary losses

Here we consider the fermionic tight-binding chain described by the Hamiltonian

H =
L−1∑
x=1

(c†xcx+1 + c†x+1cx), (1)

where c†x, cx are standard fermionic creation and annihilation operators. The system lives
on a chain with L sites. We employ open boundary conditions. Our setup is depicted
in Fig. 1. The chain undergoes a nonunitary dynamics described by the Lindblad master
equation [1]. The state of the system is described by a density matrix ρ(t). Within the
framework of Markovian master equations [1], the dynamics of ρ is obtained by solving
the Lindblad equation as

dρ(t)

dt
:= L(ρ) = −i[H, ρ(t)] +

L∑
x=1

∑
α

(
Lx,αρ(t)L

†
x,α − 1

2

{
L†
x,αLx,α, ρ(t)

})
, (2)

where {, } denotes the anticommutator, and Lx,α is the so-called Lindblad operator acting
at site x. In (2), L is the Liouvillian. The label α encodes the different types of dissipation.
Specifically, we choose α = 1 for global dephasing and α = 2 for boundary losses. The
Lindblad operator for global dephasing reads as

Lx,1 =
√
γc†xcx, x ∈ [1, L]. (3)

Localized losses at the edges of the chain are described by

Lx,2 =
√
γ−cx, x = 1, L, (4)

In (3) and (4), γ and γ− are the dephasing and loss rates, respectively. By using (2), it
is straightforward to obtain the evolution of the fermionic two-point correlation function
Gx1,x2(t) defined as [50]

Gx1,x2(t) := Tr(ρ(t)c†x1
cx2). (5)

The dynamics of Gx1,x2 from a generic initial condition Gx1,x2(0) is obtained by solving
the system of equations as [38]

dGx1,x2

dt
:= L(2)(Gx1,x2) = i(Gx1−1,x2 +Gx1+1,x2 −Gx1,x2−1 −Gx1,x2+1)

− γGx1,x2(1− δx1,x2)− γ−Gx1,x2(δx1,1 + δx2,1 + δx1,L + δx2,L), (6)

where we define the L2×L2 linear super operator L(2). The superscript in L(2) is to stress
that L(2) is not the same Liouvillian appearing in (2), which is a 2L × 2L matrix and
governs the dynamics of the full-system density matrix. In the following we will refer to
L(2) as the Liouvillian, and to L (cf. (2)) as the full Liouvillian. In (6) we consider the
symmetric situation in which the fermions are removed at the edges of the chain at the
same rate γ−. However, the case with different rates γ−L(R) at the left and right edges of
the chain can be considered as well. The first term in (6) describes the unitary dynamics
governed by the Hamiltonian (1). The second term is the dephasing, which suppresses the
off-diagonal elements of Gx1,x2 . The last term describes incoherent absorption of fermions
at the edges of the chain.

Importantly, the solution of (6) allows one to obtain the dynamics of Gx1,x2 in several
physical situations. For instance, let us consider the setup investigated in Ref. [45], in
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which a free-fermion chain is subject to global dephasing and fermion pumping at the
left edge of the chain and fermion losses at the right one. Let us focus on the case with
dephasing rate γ, and equal pump/loss rate γ′. The evolution of Gx1,x2 is obtained by
solving [46]

dGx1,x2

dt
:= L(2)(Gx1,x2) = i(Gx1−1,x2 +Gx1+1,x2 −Gx1,x2−1 −Gx1,x2+1)

− γGx1,x2(1− δx1,x2)−
γ′

2
Gx1,x2(δx1,1 + δx2,1 + δx1,L + δx2,L) + γ′δx1,1δx2,1. (7)

Eq. (7) is the same as (6) apart for the boundary terms. The boundary dissipation is

modeled by the Lindblad operators Lx,2 =
√
γ′c†1 and Lx,2 =

√
γ′cL. Importantly, Eq. (7)

becomes the same as (6) after the redefinition γ− = γ′/2, apart for the “driving” term
γ′δx1,1δx2,1. However, since Eq. (6) and (7) are linear in Gx1,x2 , given the general solution
of (6), it is possible to construct the solution of (7) with generic initial condition G(in)

x1,x2 .
Indeed, let us consider G(I)

x1,x2 solution of (7) without the last term, and with initial
condition Gx1,x2(0) = G(in)

x1,x2 . Let us also consider the solution G(II)
x1,x2 of (7) without the

driving term and with delta initial condition G(II)
x1,x2(0) = δx1,1δx2,1. Now, one can verify

that the solution of (7) is

Gx1,x2(t) = G(I)
x1,x2

+ γ′
∫ t

0
dτG(II)

x1,x2
(t− τ). (8)

In the following sections we will determine the full spectrum, i.e., the eigenvalues and
the eigenvectors of L(2) (cf. (6)), for arbitrary γ, γ− by using the Bethe ansatz. This allows
us to derive compact formulas for the fermionic correlator Gx1,x2 at arbitrary long times
and chain sizes. In principle, by using (8) this also allows to obtain the dynamics of Gx1,x2

for the setup of Ref. [45].

3 Bethe Ansatz treatment of the Liouvillian L(2)

Here we discuss the Bethe ansatz framework that allows to solve (6). We first introduce the
ansatz à la Bethe for the right eigenvectors of L(2) in section 3.1. In section 3.2 we discuss
the solutions of the Bethe equations and the general structure of the eigenvalues (energies)
of the Liouvillian L(2). In section 3.3 we focus on a special class of states, which do not
depend on dephasing, i.e., they are the same as in the tight-binding chain with boundary
losses. In section 3.4 we discuss eigenvalues of L(2) that are perturbatively related to the
ones of section 3.3 in the large L limit. Finally, in section 3.5 we discuss solutions of the
Bethe equations that form perfect strings in the complex plane (see Fig. 2). These states
correspond to real energies and govern the long-time dynamics of the fermion correlator.

3.1 Bethe ansatz for the eigenstates of L(2)

Inspired by the coordinate Bethe Ansatz solution of the XXZ chain with open boundary
conditions [51] and by the Bethe Ansatz treatment of dephasing [11,26,27] and incoherent
hopping [28] in free-fermion systems, we employ the following ansatz for Gx1,x2 as

Gx1,x2 =
∑

r1,r2=±
r1r2e

ε(k1,k2)t
{[

A12(r1, r2)e
ir1k1x1+ir2k2x2

+ (−1)x1+x2A21(r1, r2)e
ir2k1x2+ir1k2x1

]
Θ(x2 − x1) + σ

[
A12(r1, r2)e

ir1k1x2+ir2k2x1

+ (−1)x1+x2A21(r1, r2)e
ir2k1x1+ir1k2x2

]
Θ(x1 − x2)

}
. (9)
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Figure 2: Free-fermion chain with global dephasing and boundary losses. (a) Allowed
values for the solutions k1 and k2 of the Bethe equations (cf. (18) and (19)). Only the
region 0 < Re(k) < π is allowed. Some of the solutions form complex conjugate pairs
as k1 = k∗2, corresponding to real energies ε. The remaining solutions are all complex
but do not form perfect strings. (b) Typical structure of the Liouvillian spectrum: Im(ε)
versus Re(ε). We only consider the situation with γ > 4. The red circles are purely real
energies. They form an isolated diffusive band of energies. The diffusive band extends
up to ε =

√
γ2 − 16 − γ, and it contains L energies for generic γ > 4 and γ−. Upon

lowering γ the diffusive band is depleted. The cluster around ε = −γ contains ∼ L(L− 1)
energies. L(L − 1)/2 of the levels are trivially obtained from the spectrum of the model
at γ = 0. The diamond denotes a pair of almost degenerate energies, which correspond to
boundary-localized modes of the Liouvillian.

Here k1, k2 are complex quasimomenta, which have to be determined by solving the so-
called Bethe equations. Gx1,x2 (after vectorization) are the right eigenvectors of L(2) with
eigenvalues ε(k1, k2). The evolution of (9) is “simple” because L(2)(Gx1,x2) = εGx1,x2 ,
although it is not trivial, due to the energies ε being complex. The sum over r1, r2 in (9)
is over the reflections of k1, k2, similar to the Bethe Ansatz solution of the Heisenberg
chain [51] with boundary fields. The functions Θ(x) are Heaviside step functions. For
x1 = x2, Gx1,x2 is given by the first row in (9). The coefficients A12 and A21 are scattering
amplitudes, which depend on k1, k2. Crucially, the Liouvillian L(2) is invariant under
the transformation R that transforms Gx1,x2 → (−1)x1+x2Gx2,x1 as it can be verified by
substitution in (6). Since R2 is the identity, one has for the eigenfunctions of R that
(−1)x1+x2Gx2,x1 = σGx1,x2 , where σ = ±1. The second term in (9) takes into account this
symmetry.

To proceed, let us observe that in the bulk of the chain, i.e., for 1 < x1, x2 < L, after
substituting (9) in (6), we obtain the condition

i(Gx1−1,x2 +Gx1+1,x2 −Gx1,x2−1 −Gx1,x2+1)− γ(1− δx1,x2)Gx1,x2 − εGx1,x2 = 0. (10)

Let us consider the situation with x1 ̸= x2. One can verify that the ansatz (9) satisfies (10)
if we fix

ε(k1, k2) = 2i cos(k1)− 2i cos(k2)− γ. (11)

Importantly, the minus sign in the second term in (11) depends on the choice of the
ansatz (9). By redefining k2 → k2 + π in the terms that contain the sign factor (−1)x1+x2

in (9), one obtains that ε = 2i cos(k1)+2i cos(k2)−γ, which is symmetric under exchange
k1 ↔ k2 (see, for instance, Ref. [11]). Notice that one has to change k2 → k2 + π also in
the Bethe equations (see section 3.2). After these redefinitions, the new Bethe equations
become the same as the Bethe equations for the Hubbard chain with imaginary boundary
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magnetic fields (see Appendix A.1). This happens despite the fact that the full Liouvillian
contains a boundary pair production term (see Appendix A).

Let us now determine the coefficients A12 and A21 in (9). It is convenient to to treat
the cases σ = 1 and σ = −1 separately. Let us start with the case with σ = 1 in (9). As
it will be clear in section 3.3, for σ = −1 the ansatz (9) does not depend on γ, and the
eigenstates of L(2) are the same as those of the chain with boundary losses and no bulk
dephasing. Let us now impose the “contact” condition obtained by fixing x1 = x2 in (9).
A long calculation gives

A21(r1, r2) = −A12(r2, r1)
γ/2 + r2 sin(k1) + r1 sin(k2)

γ/2− r2 sin(k1)− r1 sin(k2)
. (12)

Finally, we impose the boundary conditions. For Eq. (10) to be compatible with the
Lindblad equation (6) at the boundaries, we require that

iG0,x2 + γ−G1,x2 = 0 (13)

iGx1,L+1 − γ−Gx1,L = 0. (14)

The conditions (13) and (14) give eight equations. They allow us to fix

A12(−1, 1) =
1− ieik1γ−

1− ie−ik1γ−
A12(1, 1) (15)

A12(1,−1) = e2ik2(1+L) 1 + ie−ik2γ−

1 + ieik2γ−
A12(1, 1) (16)

A12(−1,−1) = e2ik2(1+L) 1− ieik1γ−

1− ie−ik1γ−
1 + ie−ik2γ−

1 + ieik2γ−
A12(1, 1). (17)

Moreover, one obtains two more equations (Bethe equations) that provide the quantization
conditions for k1 and k2. Before discussing the Bethe equations, let us stress that it is
natural to expect that Eq. (13) and (14) can be modified to account for different loss rates
γ−L and γ−R at the two edges of the chain.

3.2 Bethe equations and general structure of the Liouvillian spectrum

The two extra conditions obtained from (13) and (14) provide two coupled nonlinear
equations for k1, k2 as

e2ik1(L−1)
( eik1 − iγ−

e−ik1 − iγ−

)2
=

∏
r2=±1

γ/2− sin(k1) + r2 sin(k2)

γ/2 + sin(k1)− r2 sin(k2)
(18)

e2ik2(L−1)
( eik2 + iγ−

e−ik2 + iγ−

)2
=

∏
r1=±1

γ/2− r1 sin(k1) + sin(k2)

γ/2 + r1 sin(k1)− sin(k2)
. (19)

Eq. (18) and (19) differ from the Bethe equations for the periodic tight-binding chain with
dephasing. For periodic boundary conditions one has that γ− = 0 and one has to replace
e2ikjL → eikjL. Moreover, only one of the two terms in the right-hand side survives,
because there is no product over the reflections of the quasimomenta.

Let us now discuss some properties of the Bethe equations (18) and (19). The total
number of solutions is L2 because the Liouvillian L(2) is a L2 × L2 matrix. The momenta
k1, k2 are all complex. The allowed domain of kj is reported in Fig. 2 (a), plotting Im(kj)
versus Re(kj). The Bethe equations possess several symmetries that we now discuss.
Given a generic pair of quasimomenta (k1, k2) solving (18) and (19), the pairs obtained
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by arbitrary reflections ±k1 and ±k2 are also solutions of (18) and (19). This can be used
to fix Re(kj) > 0. Notice that kj = 0 and kj = π are solutions of the Bethe equations,
although they have to be discarded because they give vanishing eigenvectors (9). The
invariance of (18) and (19) under k1 → ±k2 ± π can be exploited to fix Re(kj) < π. Since
the imaginary part of kj can be arbitrary, the solutions of the Bethe equations live in the
strip (0, π)× (−i∞, i∞) (see Fig. 2 (a)). Another important property of (18) and (19) is
that given a pair (k1, k2) solving (18) (19), then (k∗2, k

∗
1), with the star denoting complex

conjugation, is also a solution. This means that (cf. (11)) the energies ε appear in complex
conjugated pairs.

Crucially, some of the solutions (k1, k2) form complex conjugate pairs (see Fig. 2 (a)),
i.e., k1 = k∗2. These solutions form “strings” patterns in the complex plane (see Fig. 2).
The corresponding energies are real. We anticipate that these solutions will determine
the behavior of the fermionic correlator at long times, because the solutions giving the
energies with the larger real parts will be of this type. String solutions of the Bethe
equations can be effectively described in the limit L → ∞ by using the framework of
the string hypothesis [52]. As we will discuss in section 3.5, in the large L limit the
imaginary part of k1, k2 can be derived by solving a nonlinear equation, similar to the
so-called Bethe-Gaudin-Takahashi (BGT) equation that appears within the framework of
the string hypothesis for integrable models [52]. Corrections to the string hypothesis are
exponentially suppressed in the limit L → ∞.

Let us now discuss the general structure of the spectrum of L(2). This is illustrated in
Fig. 2 (b). First, for γ− = 0, there is a zero-energy state ε = 0, which corresponds to the
steady-state of the system at t → ∞. Within the Bethe ansatz treatment, the steady state
corresponds to diverging momenta k1, k2. At nonzero γ−, the eigenvalue ε = 0 disappears.
We can generically distinguish two different regions in the energy spectrum. The energies
ε with the larger real parts form a band of real energy near ε = 0. As these solutions
are responsible for diffusive behavior [26, 28], we dub them diffusive band [26]. These are
reminiscent of the diffusive band appearing for the periodic chain with dephasing [26], or
incoherent hopping [28]. The number of energies in the band depends on γ. As it will be
clear in the following, for γ > 4, the diffusive band contains L energies at small γ−, which
is the largest possible number of states. Interestingly, for γ− > γ−c = exp(−arccosh(γ/4))
(see section 3.5) two of the solutions move outside of the diffusive band towards lower
energies (see the diamond symbol in Fig. 2). Concomitantly, the two eigenvalues become
almost degenerate. Precisely, their splitting in energy decays exponentially with L. These
states are boundary-related, and are present also in the one-dimensional Hubbard model
with boundary fields [25]. Boundary-related states have been investigated in the two-
particle sector for the open XXZ spin chain in Ref. [53].

Furthermore, a cluster of energies is present around ε = −γ. As it will be clear in
section 3.3, there are L(L−1)/2 energies that are related by a γ shift to the eigenvalues of
L(2) with γ = 0, i.e., with only losses. Specifically, they are given by (9) with σ = −1. The
associated Bethe equations are decoupled and are given by (24) and (25). The remaining
complex energies correspond states with σ = 1 in (9). Still, in the large L limit they differ
from the states with σ = −1 by O(1/L) terms, i.e., they are “perturbatively” related to
the states with σ = −1.

3.3 Dephasing-independent solutions

Let us now characterize the states (9) with σ = −1. Now, the main difference with the
case σ = 1 is that the contact condition (12) has to be modified as

A21(r1, r2) = −A12(r2, r1). (20)
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The boundary conditions to be imposed are the same as (13) and (14). They give

A12(−1, 1) =
1− ieik1γ−

1− ie−ik1γ−
A12(1, 1) (21)

A12(1,−1) =
1 + ieik2γ−

1 + ie−ik2γ−
A12(1, 1) (22)

A12(−1,−1) =
1− ieik1γ−

1− ie−ik1γ−
1 + ieik2γ−

1 + ie−ik2γ−
A12(1, 1). (23)

Notice that there is no dependence on L in (21)-(23), in contrast with the case with σ = 1.
The Bethe equations now read as

(γ−)2 sin(k2(1− L)) + 2iγ− sin(k2L) + sin(k2(L+ 1)) = 0 (24)

(γ−)2 sin(k1(1− L))− 2iγ− sin(k1L) + sin(k1(L+ 1)) = 0. (25)

The Bethe equations for k1 and k2 are decoupled, reflecting that the system is noninter-
acting. Also, k1, k2 do not depend on the dephasing rate γ. The energies ε are the same
as in (11), implying that the dependence on γ is only a shift. As it is clear from (25),
given a solution k1, then −k1 and k1 ± π is also a solution. The same holds for k2. This
means that one can restrict to 0 < Re(kj) < π. Moreover, the solutions of Eq. (24) and
Eq. (25) are related by complex conjugation.

Eq. (24) and (25) are the same equations describing the tight-binding chain with
boundary losses and no bulk dephasing [54]. Since Eq. (24) has L solutions k(p)

1 with
p = 1, . . . , L, the pairs (k(p)

1 , (k(q)

1 )∗) give all the L2 energies of the Liouvillian. Upon
switching on γ, only L(L− 1)/2 survive. These correspond to the pairs (k1, k2) such that
kj ̸= 0, π. Moreover, one has to exclude all the pairs k1, k2 such that k1 + k2 = 0 mod π,
and the pairs (k′1, k

′
2) that are obtained as (k′1, k

′
2) = (π−k2, π−k1) from a set of solutions

(k1, k2). Indeed, one can check that the total number of pairs satisfying these constraints
is L(L− 1)/2. Let us also observe that in the limit L → ∞ the solutions of (24) and (25)
are given as

k1,2 =
π

L+ 1
j1,2 +O(1/L), j1,2 = 1, 2, . . . L. (26)

Specifically, the imaginary part of k1,2 is O(1/L), although it is nonzero. Clearly, Eq. (26)
is exact without the O(1/L) correction for γ− = 0. In the last case the energies ε are
purely imaginary forming a straight line parallel to the imaginary axis (see Fig. 1).

3.4 Solutions with vanishing imaginary parts

Near the energies that correspond to dephasing-independent solutions of the Bethe equa-
tions, there are ∼ L(L−1)/2 energies that correspond to σ = 1 in (9), and that in the large
L limit differ by terms O(1/L) from the dephasing-independent energies. The number of
energies depends on γ. In particular, for γ > 4 their number is exactly L(L− 1)/2.

We now discuss them restricting to the case with γ− = 0. A similar analysis can be
performed for nonzero γ−. The large L behavior of the Bethe equations (18) (19) suggests
the expansion

k1 = k
(r,0)
1 + k

(r,2)
1 L−2 + ik

(i,1)
1 L−1 (27)

k2 = k
(r,0)
2 + k

(r,2)
2 L−2 + ik

(i,1)
2 L−1. (28)

Here k(r,0)

j , k(r,2)

j and k(i,1)

j (j = 1, 2) are real parameters that have to be determined.
After substituting the ansatz (27) and (28) in the Bethe equations (18) and (19), Taylor

9
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Figure 3: Spectrum of L(2) for L = 20, γ = 5 and γ− = 0. We plot Im(ε) versus Re(ε).
We only show the energies near ε = −γ. The circles correspond to the complex solutions
(k1, k2) of the Bethe equations with vanishing imaginary parts Im(kj) → 0 in the limit
L → ∞ (see section 3.4). The diamonds are the solutions that do not depend on the
dephasing rate γ (see section 3.3).

expanding in the large L limit, and equating the coefficients of the terms with the same
powers of L, we obtain

2k
(r,0)
1 (L+ 1) = j1π, 2k

(r,0)
2 (L+ 1) = j2π, with j1, j2 = 1, 2, . . . 2(L+ 1). (29)

We now provide the expression for k(i,1)

j . A similar expression can be obtained for k(r,2)

j ,
although since it is cumbersome we do not report it. We obtain

k
(i,1)
1 = −1

2

L

L+ 1
ln

[
(−1)j1

γ2 − 2 cos(2k
(r,0)
1 ) + 2 cos(2k

(r,0)
2 )− 4γ sin(k

(r,0)
1 )

γ2 − 2 cos(2k
(r,0)
1 ) + 2 cos(2k

(r,0)
2 ) + 4γ sin(k

(r,0)
1 )

]
(30)

k
(i,1)
2 = −1

2

L

L+ 1
ln

[
(−1)j2

γ2 + 2 cos(2k
(r,0)
1 )− 2 cos(2k

(r,0)
2 ) + 4γ sin(k

(r,0)
2 )

γ2 + 2 cos(2k
(r,0)
1 )− 2 cos(2k

(r,0)
2 )− 4γ sin(k

(r,0)
2 )

]
. (31)

Consistency with (27) and (28) requires that k(i,1)

j is real. One can readily check that for
γ > 4 the term inside the square brackets in (30) and (31) is positive provided that j1
and j2 are both even. For γ < 4, Eq. (30) and (31) are correct only for the energies near
ε = −γ. Oppositely, away from ε = −γ the energies are affected by the presence of the
diffusive band, and are not accurately described by (30) and (31). Notice that k(i,1)

1,2 vanish
in the large L limit, even at j1,2/L fixed. The energies ε that correspond to solutions of the
Bethe equations with vanishing imaginary parts are discussed in Fig. 3. We consider only
the case with γ = 5 because for γ > 4 the diffusive band at smaller Re(ε) is well separated
from bulk of the spectrum and (27) and (28) are accurate. The diamonds in the Figure
correspond to the eigenstates with σ = −1 in (9) discussed in section 3.3. The circles
are the energies obtained from to momenta of the type (27) and (28). It is interesting to
focus on the inner and outer “envelope” of the energies. They are obtained from (29) (30)
and (31) as follows. We checked that the levels εin of the inner envelope correspond to the

10
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choice j1 = 2 and j2 ∈ [2, 2(L+ 1)] and j1 ∈ [2, 2(L+ 1)] in (29). The levels εout forming
the outer envelope are obtained by choosing j1 ∈ [2, 2(L+ 1)] and j2 = 2(L+ 1)− j1.

3.5 Diffusive band & boundary states

As we anticipated, the eigenenergies of L(2) having the largest real part form a diffusive
band, and are real. These states correspond to string solutions of the Bethe equations (see
Fig. 2 (a)) with nonvanishing imaginary parts in the limit L → ∞. They form complex
conjugate pairs (k1, k

∗
1). It is convenient to define k1 = kr+ iki and k2 = kr− iki. We start

discussing the case with γ− = 0. In terms of kr, ki, the Bethe equations (18) and (19)
become

e2(L+1)(ikr−ki) =
(γ − 4 cosh(ki) sin(kr))(γ − 4i cos(kr) sinh(ki))

(γ + 4 cosh(ki) sin(kr))(γ + 4i cos(kr) sinh(ki))
(32)

e2(L+1)(ikr+ki) =
(γ + 4 cosh(ki) sin(kr))(γ − 4i cos(kr) sinh(ki))

(γ − 4 cosh(ki) sin(kr))(γ + 4i cos(kr) sinh(ki))
. (33)

To proceed, we can assume without loss of generality that ki > 0. In the limit L → ∞ the
left-hand side of (33) diverges exponentially. This suggests that the denominator in the
right-hand side of (32) vanishes. For consistency we can impose that

γ − 4 cosh(ki) sin(kr) = 0. (34)

Solving (34) for kr, we obtain

kr = π − arcsin

(
γ

4 cosh(ki)

)
. (35)

To remove the singular denominator in (32) we take the product of (32) and (33), and
after using (35), we obtain that ki satisfies the equation 4

γsech(ki)− i
√
16− γ2sech2(ki)

4(L+1)

=

γcosech(ki) + i
√

16− γ2sech2(ki)

γcosech(ki)− i
√
16− γ2sech2(ki)

2

.

(36)
The derivation of (36) is similar to that of the Bethe-Gaudin-Takahashi (BGT) equations
for the Hubbard chain [25,52]. For this reason, we refer to (36) as the BGT equation. The
derivation can be extended to the case with nonzero γ−. The BGT equation becomes

(4eki + γγ−sech(ki) + iγ−B(ki))2(4e−ki − γγ−sech(ki)− iγ−B(ki))2

(4ekiγ− − γsech(ki)− iB(ki))2(4e−kiγ− + γsech(ki) + iB(ki))2

× (γcosech(ki) + iB(ki))2

(γcosech(ki)− iB(ki))2
−
(

4

γsech(ki)− iB(ki)

)4L

= 0, (37)

where we defined

B(x) :=
√

16− γ2sech2(x). (38)

After solving (37) for ki, we obtain kr by using (35). It is convenient to take the logarithm
of both terms in (37) to obtain the BGT equations in logarithmic form. Let us first define

z :=
γ

4 cosh(ki)
, ki = arccosh

( γ

4z

)
. (39)

11
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After taking the logarithm of both members in (37) and using (39), we obtain

2iL arcsin(zj) + ln

zjγ + i
√
1− z2j

√
γ2 − 16z2j

zγ − i
√
1− z2j

√
γ2 − 16z2j


+ ln

γ−(−izj +
√

1− z2j )(γ +
√
γ2 − 16z2j ) + 4izj

(izj −
√

1− z2j )(γ +
√

γ2 − 16z2j ) + 4izjγ−


+ ln

 γ +
√

γ2 − 16z2j + 4zj(zj + i
√
1− z2j )γ

−

4zj(zj + i
√
1− z2j )− (γ +

√
γ2 − 16z2j )γ

−

 = −πiIj . (40)

Here Ij ∈ [0, L − 2) are integers, forming the so-called BGT quantum numbers, which
identify the different solutions zj . They originate from the branch cut of the logarithm.
The energy with the largest real part corresponds to Ij = 0. Notice that here we assume
γ− > 0. For γ− = 0 Ij = 0 has to be excluded, because it would correspond to ε = 0. The
number of solutions in the diffusive band depends on γ and γ−. Specifically, for γ > 4
there are at least L − 2 solutions of (40). Two extra solutions appear provided that γ−

is small enough. Precisely, for γ− > γ−c two of the energies detach from the diffusive
band, moving towards lower energies. They correspond to boundary-related modes of the
Liouvillian L(2) (see diamond symbol in Fig. 2). Similar boundary states appear in the
open Hubbard chain with boundary magnetic fields [25]. Precisely, from (37) we obtain
that the boundary-related states are present for γ− > γ−c given as

γ−c = exp (−arccosh(γ/4)) . (41)

The condition (41) is obtained by noticing that at the left edge of the diffusive band (see
Fig. 2) one has that ki = arccosh(γ/4), and by solving Eq. (37) for γ−. Eq. (41) holds
true for γ > 4, and, since we are employing the framework of the string hypothesis, in the
thermodynamic limit L → ∞. Finally, we should stress that to extract the quasimomenta
that correspond to the boundary-related energies it is convenient to use Eq. (37) rather
than the logarithmic BGT equation (40), as it will be clear in section 5.2 (see Fig. 6).

Let us now discuss the gap of the Liouvillian L(2). This is obtained by considering the
energy ε with the smallest nonzero real part. Precisely, the gap ∆L(2) is defined as

∆L(2) := −max
j

Re(εj), with Re(εj) ̸= 0. (42)

We numerically verified that for nonzero γ−, ∆L(2) corresponds to Ij = 0 in (40). For
γ− = 0 one has to choose Ij = 1. Focusing on γ− ̸= 0, a straightforward expansion of (40)
for Ij = 0 in the large L limit gives

z ≃ π

2

1

L
+

(
π

2
− π(1− (γ−)2)

γγ−

)
1

L2
, (43)

where we neglected higher order terms in 1/L. After substituting in the expression for the
energy (11) we obtain the gap of the Liouvillian as

∆L(2) ≃ − 2π2

γL2
+

4π2(2− γγ− + 2(γ−)2)
γ2γ−

1

L3
. (44)

At the leading order in 1/L, the gap depends only on the bulk dephasing. At higher orders
a dependence on γ− appears. This reflects that the effect of the boundaries appear at later
times.
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4 Asymptotic dynamics of the fermionic two-point function

Here we derive a formula for the time-dependent correlation function Gx1,x2(t) starting
from an arbitrary initial condition Gx1,x2(0). The strategy is to build a complete basis
of operators by using the Bethe states (9). This basis is then used to expand the initial
condition for the correlator. In section 4.1 we construct the complete basis for the generic
two-point correlation function, using the left and right eigenvectors of L(2). In section 4.2
we compute the leading contribution of the norm of the Bethe states (9) in the large L
limit. We only consider the states forming the diffusive band, because they are dominant
in the long-time limit. Finally, in section 4.3 we derive the long-time limit of the density
profile, i.e., the diagonal correlator Gx,x(t).

4.1 Left and right eigenvectors of L(2)

One can decompose the initial correlator Gx1,x2(0) in the basis of eigenvectors of L(2). Let
us denote with G

(k1,k2)
x1,x2 the eigenvector of L(2) identified by the solutions k1, k2 of the Bethe

equations (18) (19). The dynamics of G
(k1,k2)
x1,x2 is given as

dG
(k1,k2)
x1,x2

dt
= L(2)(G(k1,k2)

x1,x2
) = ε(k1, k2)G

(k1,k2)
x1,x2

. (45)

The generic correlator Gx1,x2 can be decomposed as

Gx1,x2(t) =
∑

{k1,k2}
|k1, k2⟩⟨k1, k2|0⟩eε(k1,k2)t, |k1, k2⟩ := N−1

k1,k2
G(k1,k2)

x1,x2
. (46)

where the sum is over the solutions of the Bethe equations {k1, k2} (cf. (18) and (19)).
In (46) we redefined |0⟩ := Gx1,x2(0), and we defined ⟨k1, k2| := Ḡ

(k1,k2)
x1,x2 as the left eigen-

vector of the Liouvillian. Since the Liouvillian is not hermitian we have that ⟨k1, k2| ̸=
(|k1, k2⟩)†. In (46) we defined the “scalar product”

⟨k1, k2|k3, k4⟩ :=
L∑

z1,z2=1

Ḡ(k1,k2)
z1,z2 G(k3,k4)

z1,z2 . (47)

Similar definition holds for the scalar product with the initial correlator |0⟩, i.e., ⟨k1, k2|0⟩.
In (46) Nk1,k2 := ⟨k1, k2|k1, k2⟩ is the normalization of the eigenvectors. Since L(2) is a
symmetric matrix, a naive choice would be Ḡ

(k1,k2)
x1,x2 = G

(k1,k2)
x1,x2 . Again, as the Liouvillian is

not hermitian, this choice yields vanishing norm for the eigenstates. Following Ref. [28],
it is possible to determine a more convenient choice for ⟨k1, k2| by observing that the
energy (11) is invariant under the redefinition

k1 = π − k2, k2 = π − k1. (48)

This suggests to define
⟨k1, k2| := |π − k2, π − k1⟩. (49)

Under the redefinition (48), the ansatz (9) gets modified. Apart from the redefinition (48),
one obtains new scattering amplitudes Ā12 and Ā21. For σ = 1 they read as

Ā21(r1, r2) = −Ā12(r2, r1)
γ/2 + r1 sin(k1) + r2 sin(k2)

γ/2− r1 sin(k1)− r2 sin(k2)
. (50)
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Notice that (50) differs from (12) by the exchange r1 ↔ r2 in the ratio on the right-hand
side. Moreover, we have that

Ā12(−1, 1) =
1 + ie−ik2γ−

1 + ieik2γ−
Ā12(1, 1) (51)

Ā12(1,−1) = e−2ik1(L+1) 1− ieik1γ−

1− ie−ik1γ−
A12(1, 1) (52)

Ā12(−1,−1) = e−2ik1(L+1) 1− ieik1γ−

1− ie−ik1γ−
1 + ie−ik2γ−

1 + ieik2γ−
Ā12(1, 1). (53)

Importantly, the Bethe equations remain the same as in (18) and (19).
Let us now discuss the case of σ = −1. Repeating the steps as above we obtain that

Ā21(r1, r2) = −Ā12(r2, r1). (54)

Moreover, we have

Ā12(−1, 1) =
1 + ie−ik2γ−

1 + ieik2γ−
Ā12(1, 1) (55)

Ā12(1,−1) =
1− ie−ik1γ−

1− ieik1γ−
Ā12(1, 1, ) (56)

Ā12(−1,−1) = Ā12(1,−1)Ā12(−1, 1)/Ā12(1, 1). (57)

We anticipate, however, that since the states with σ = −1 have typically small Re(ε),
they do not contribute significantly at long times. Moreover, for delta initial conditions
Gx1,x2(0) considered in section 4.3 their contribution is exactly zero.

4.2 Norm of the eigenvectors

Here we derive the normNk1,k2 for a Bethe eigenstate (9) characterized by generic solutions
of the Bethe equations k1, k2. To proceed, let us focus on eigenstates with σ = 1 (cf. (9))
because they dominate the dynamics at long times. By using (9) (47) and (49) we obtain
that

Nk1,k2 = ⟨k1, k2|k1, k2⟩ = N0 +N1L+N2L
2, (58)

where N0, N1, N2 are functions of k1, k2. A tedious calculation gives

N2 = −8
γ/2 + sin(k1) + sin(k2)

γ/2− sin(k1)− sin(k2)
. (59)

A similar calculation gives N1 as

N1 = 4iγ(cos(k1)− cos(k2))
[ 1

(γ/2− sin(k1)− sin(k2))2

+
γ/2 + sin(k1) + sin(k2)

(γ/2− sin(k1)− sin(k2))(γ/2− sin(k1) + sin(k2))(γ/2 + sin(k1)− sin(k2))

]
− γ/2 + sin(k1) + sin(k2)

γ/2− sin(k1)− sin(k2)

[ 8(1 + (γ−)2)
(1− iγ−eik1)(1− iγ−e−ik1)

+
8(1 + (γ−)2)

(1 + iγ−eik2)(1 + iγ−e−ik2)

]
. (60)

Finally, we observe that N0 is in general nonzero. This is in contrast with the case of
the tight-binding chain with incoherent hopping and periodic boundary conditions [28].
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Crucially, we notice that for the string solutions of the Bethe equations forming the dif-
fusive band (see section 3.5) both N1 and N2 are singular in the limit L → ∞ because
γ/2− sin(k1)− sin(k2) vanishes. Similar divergences will plague the overlaps ⟨k1, k2|0⟩ and
|k1, k2⟩. This means that to extract the dynamics of Gx1,x2 one has to take carefully the
limit L → ∞, i.e., going beyond the string hypothesis. In the following section we will
show that to obtain the leading behavior of the norm in the large L limit it is sufficient
to consider the term in (60).

4.3 Evolution of the density profile

In this section we provide analytic results for the dynamics of Gx,x(t) starting from the
initial condition

|0⟩ := Gx1,x2(0) = δx1,xδx2,x, (61)

which corresponds to a fermion initially localized at position x. Our results hold in the
long-time limit and for large L.

Crucially, since Eq. (6) is linear as a function of Gx1,x2 , its solution with the delta initial
condition (61) is sufficient to obtain the dynamics of Gx1,x2 starting from an arbitrary
initial density profile. Precisely, let us consider a generic diagonal initial condition as

|0⟩ = δx1,x2f(x2), (62)

where 0 ≤ f(x) ≤ 1. Given the solution G(x)
x1,x2(t) with initial condition (61) at fixed x,

the solution Gx1,x2(t) with initial condition (62) is obtained as

Gx1,x2(t) =
L∑

x=1

G(x)
x1,x2

(t). (63)

Let us now discuss the time-dependent correlator Gx1,x2(t) starting from (61). To be
specfic, let us consider the situation with a fermion initially localized at x away from the
boundaries, i.e., with x/L ̸= 0, 1 in (61). To obtain Gx1,x2(t) we employ (46), restricting
ourselves to the eigenstates of the Liouvillian forming the diffusive band (see section 3.5).
Moreover, we exploit the string hypothesis, which holds in the limit L → ∞. A straight-
forward calculation gives the overlaps between (61) and the generic Bethe eigenstate (9)
as

⟨k1, k2|0⟩ =
∑

r1,r2=±
r1r2

[
e−i(r2k1+r1k2)xĀ12(r1, r2) + e−i(r1k1+r2k2)xĀ21(r1, r2)

]
, (64)

where we used (49) and (48). Eq. (64) is valid for all the Bethe eigenstates (9). However,
it is straightforward to check that the eigenstates with σ = −1 (see section (24)) have zero
overlap with (61).

Let us now restrict ourselves to the eigenstates forming the diffusive band (see Fig. 2
(b)). As discussed in section 3.5, the corresponding solutions of the Bethe equations form
complex conjugated pairs, and can be treated by means of the string hypothesis. As
anticipated in section 4.2, an important issue is that upon substituting the solutions of
the BGT equation (40) in the expression for |k1, k2⟩, ⟨k1, k2|, spurious divergences appear.
The divergences are due to the presence of the term (γ/2− sin(k1)− sin(k2))

−1. Moreover,
both N1 and N2 in (59) and (60) diverge as well. To solve this issue, one can first exploit
the invariance under reflections of k1, k2. Specifically, it is convenient to consider new
quasimomenta

k1 → k1, k2 → −k2. (65)
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After using (65), one obtains that the term (γ/2− sin(k1)+ sin(k2))
−1 is singular. This is

convenient because now only N1 is singular, whereas N2 (cf. (59)) is regular. To proceed,
one has to determine the singularities of |k1, k2⟩, ⟨k1, k2|. The singularity structure of the
terms entering in |k1, k2⟩ (cf. (9)) is given as

e−ik1x1−ik2x2A12(−,−) ≃ δ1−(x1+x2)/(2L) (66)

e−ik1x1+ik2x2A12(−,+) ≃ δ−(x1−x2)/(2L) (67)

eik1x1−ik2x2A12(+,−) ≃ δ1+(x1−x2)/(2L) (68)

eik1x1+ik2x2A12(+,+) ≃ δ(x1+x2)/(2L), (69)

where we assume x1 ≤ x2, and we defined δ as

δ = γ/2− sin(k1) + sin(k2). (70)

Notice that δ = O(e−aL), with a > 0. A similar result can be obtained for the terms
with scattering amplitudes A21 (cf. (9)). Importantly, to derive (66) (67) (68) (69), we
employed the Bethe equations (18) and (19) to write the diverging contributions eikjL

in terms of δ. To proceed, we observe that a similar calculation can be done for the
contributions appearing in ⟨k1, k2|. Now, upon taking the limit δ → 0 the singulari-
ties cancel out. Precisely, the term N1 in the norm (59) diverges as δ−1, implying that
(cf. (46)) |k1, k2⟩⟨k1, k2|0⟩ = O(δ−1) for any k1, k2 satisfying the BGT equation (40). A
straightforward calculation shows that the only possibility is that ⟨k1, k2|0⟩ = O(δ−1) and
|k1, k2⟩ = O(1). Precisely, only the term with A12(−,+) (cf. (9)) survives in |k1, k2⟩.
Similarly, one has to keep only the terms with Ā12(+,−) and Ā21(+,−) in the overlap
⟨k1, k2|0⟩. After removing the singularities, the fermionic density Gx1,x1 is given as

Gx1,x1 =
∑

{k1,k2}
Ñ−1

1 ei(k2−k1)x1B12(−,+)ḡx,x. (71)

The sum in (71) is over the eigenstates of L(2) forming the diffusive band (see section 3.5),
and which are treated within the framework of the string hypothesis. In (71) we defined

B12(−,+) =
eik1(1− ie−ik1γ−)

eik1 − iγ−
. (72)

In (71) ḡx,x is the finite part of the overlap with the initial condition, and it reads as

ḡx,x = ei(k1−k2)xB̄12(+,−) + e−i(k1−k2)zB̄21(+,−), (73)

where

B̄12(+,−) =
1− iγ−e−ik1

1− iγ−eik1
γ/2 + sin(k1)− sin(k2)

γ/2− sin(k1)− sin(k2)
(γ + 2 sin(k1) + 2 sin(k2)) (74)

B̄21(+,−) = − 1 + iγ−eik2

1 + iγ−e−ik2
(γ + 2 sin(k1)− 2 sin(k2)). (75)

Finally, the finite part of the normalization Ñ−1
1 in (71) is given as

Ñ−1
1 =

4iγ(cos(k1)− cos(k2))(γ + sin(k1) + sin(k2))

(γ/2 + sin(k1)− sin(k2))(γ/2− sin(k1)− sin(k2))
L. (76)

Again, Eq. (71) should hold in the long-time limit, provided that L is large enough to
ensure the validity of the string hypothesis.
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5 Numerical results

Here we provide numerical results supporting the Bethe ansatz treatment of the previous
sections. First, in section 5.1 we discuss the numerical solution of the Bethe equations (18)
and (19). In section 5.2 we focus on the Bethe-Gaudin-Takahashi equation (37) and (40).
In section 5.3 we discuss exact diagonalization data for the eigenvalues of L(2). In sec-
tion 5.4 we compare the spectrum of L(2) obtained from exact diagonalization with the
Bethe ansatz results. In section 5.5 we investigate the finite-size scaling of the Liouvillian
gap. In section 5.6 we address the dynamics of the full correlator Gx1,x2 (cf. (6)). In
section 5.7 we focus on the profile of the fermion density. Finally, in section 5.8 we discuss
the diffusive scaling of the fermion density and its violation due to the boundary losses.

5.1 Numerical solution of the Bethe equations

The numerical solution of the Bethe equations is in general a challenging task. Indeed,
Eq. (18) and (19) have L2 solutions in the complex plane. Moreover, k1 = 0 and k2 = 0,
as well as k1 = π and k2 = π are always solutions, although they have to be excluded
because they correspond to vanishing eigenvectors. Similarly, the solutions with k1 = k2
have to be excluded. Pairs of solutions (k1, k2) that are related by a shift by ±π have
to be counted only once. Crucially, since all the solutions of (18) and (19) are complex,
multiple-precision arithmetic is necessary to evaluate the exponentials in the left-hand side
of the equations.

Solutions of Bethe equations for L = 2 and L = 3, with γ = γ− = 1/10

L σ k1 k2 ε

2 + 2.1919997294− 0.1312558459i 1.1457120114− 0.0351640458i −0.25− 1.9993749023i
2 + 1.1457120114 + 0.0351640458i 2.1919997294 + 0.1312558459i −0.25 + 1.9993749023i
2 + 0.7866450552− 0.0353040029i 0.7866450552 + 0.0353040029i −0.2
2 − 2.0934365739− 0.0576711461i 2.0934365739 + 0.0576711461i −0.3

3 + 1.28745845407− 0.04147721049i 1.28745845407 + 0.04147721049i −0.2593393435
3 + 2.67275603750 + 0.00860942154i 2.67275603750− 0.00860942154i −0.1155608174
3 + 2.28508055892 + 0.03633954446i 0.71654617450 + 0.08931362935i −0.162549919− 2.8251952277i
3 + 0.71654617450− 0.08931362935i 2.28508055892− 0.03633954446i −0.162549919 + 2.8251952277i
3 + 2.36338604213− 0.06913029032i 1.57756565342 + 0.0014316741i −0.2− 1.4142135623i
3 + 1.5775656534− 0.00143167416i 2.36338604213 + 0.0691302903i −0.2 + 1.4142135623i
3 − 0.7866450552− 0.0353040029i 0.78664505521 + 0.03530400298i −0.2
3 − 1.5707963267− 0.0499791900i 2.35494759837 + 0.03530400298i −0.25 + 1.4133294025i
3 − 2.3549475983− 0.0353040029i 1.57079632679 + 0.04997919006i −0.25− 1.4133294025i

Table 1: Full set of solutions of the Bethe equations (cf. (18)(19)) for with L = 2 (first
four rows) and L = 3 (last nine rows) sites, and with γ = γ− = 1/10. We show the two
quasimomenta k1, k2 and the associated energy ε. The last solution for L = 2 and the last
three solutions for L = 3 correspond to σ = −1 in (9), i.e., they are the same as for γ = 0.
Notice that by using the symmetries of the Bethe equations, we fix 0 < Re(k1) < π and
0 < Re(k2) < π. Given a set of solutions (k1, k2), one has that (k∗2, k

∗
1) is also a solution.

Notice that for σ = −1 only L(L− 1)/2 solutions are allowed.

To illustrate the structure of the solutions of the Bethe equations, it is useful to focus
on chains with small L. In Table 1 we show the full set of solutions of (18) and (19) for
L = 2 and L = 3. We only a consider fermionic chain with open boundary conditions
and γ = γ− = 1/10. The second column of the table shows the eigenvalues of σ (cf. (9)).
The states with σ = −1 are not affected by dephasing, as discussed in section 3.3. The
number of solutions with σ = −1 is L(L − 1)/2. The third and fourth column show the
solutions (k1, k2) of the Bethe equations. Importantly, the invariance of (18) and (19)
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Figure 4: Solutions (k1, k2) of the Bethe equations (18) and (19) for L = 2 and fixed
γ− = 1/10. We only consider solutions with σ = 1 (cf. (9)). We plot (k1, k2) as functions
of the dephasing rate γ. Panel (a) shows the real parts of k1 and k2, the imaginary parts
being reported in panel (b). Starting from γ = 0 one has the three pairs (k(j)

1 , k(j)

2 ) with
j = 1, 2, 3. The solutions with j = 1, 2 are related by (k(1)

1 , k(1)

2 ) = (k(2)

2 , k(2)

1 )∗, with the
star denoting complex conjugation. The solution with j = 3 is such that k(3)

1 = (k(3)

2 )∗.
At γ = 4 the solutions with j = 1, 2 “collide”. The solutions at γ > 4 are denoted with a
tilde. At γ > 4 all the solutions are formed by complex conjugate pairs, i.e., k̃(j)

1 = (k̃(j)

2 )∗

for any j.

under the change of sign of kj and under shifts by π can be used to fix 0 < Re(kj) < π.
Notice also that the Bethe equations are not invariant under exchange k1 ↔ k2. However,
given a solution (k1, k2), then (k∗2, k

∗
1), with the star denoting complex conjugation, is also

a solution. As it is clear from (1), some of the solutions are formed by pairs of complex
conjugated momenta (k1, k

∗
1). These correspond to the real eigenvalues ε of L(2). The last

column in Table 1 is the energy ε as obtained by using (11). We checked that the energies
coincide with the exact diagonalization results to machine precision.

It is interesting to investigate how the solutions of the Bethe equations change as a
function of dissipation. In Fig. 4 we show the solutions of the Bethe equations for L = 2
at fixed γ− = 1/10 as a function of γ. We only consider the three solutions with σ = 1
(cf. (9) and Table 1). Panel (a) and (b) show Re(kj) and Im(kj) as a function of γ. We
consider the interval γ ∈ [1/10, 6]. We denote the different solutions as (k(p)

1 , k(p)

2 ), with
p ∈ [1, 3]. Now, the solution at the bottom in Fig. 4 (a), i.e., with p = 3, corresponds to
k2 = k∗1, i.e., to real energy ε. The remaining two solutions are such that k(1)

1 = (k(2)

2 )∗

and k(2)

1 = (k(1)

2 )∗. Interestingly, the behavior of the solutions as a function of γ is not
“smooth”. Precisely, at γ = 4 the solutions with p = 1 and p = 2 “collide”, whereas the
one with p = 3 remains isolated. At γ > 4 the solutions with p = 1, 2 get reorganized.
Precisely, they emerge as new pairs of solutions (k̃(p)

1 , k̃(p)

2 ), with p = 1, 2 for γ > 4. Notice
that for γ > 4 all the three solutions are formed by complex conjugated momenta, i.e.,
k̃(p)

1 = (k̃(p)

2 )∗ for any p.

5.2 Numerical solution of the Bethe-Gaudin-Takahashi (BGT) equation

The numerical results of the previous section showed that extracting the full set of solutions
of the Bethe equations can be a challenging task, as expected. Here we focus on the solu-
tions of the Bethe equations forming the diffusive band (see Fig. 2 and section 3.5). These
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Figure 5: Numerical solution of the BGT equation (37) for a fermionic chain with L = 10
and γ = 5 and γ− = 0. The two curves show the real and imaginary parts of (37), plotted
versus the imaginary part kim of the quasimomenta k1, k2. The circles are the solutions
of the BGT equations. Notice that there are L − 1 solutions. The missing solution gives
ε = 0, and it corresponds to kim → ∞.

solutions dominate the long-time behavior of physical observables, such as the fermion
correlator Gx1,x2 . In the limit of large L, one can use the string hypothesis [52]. Thus, the
solutions of the Bethe equations forming the diffusive band are well approximated by the
solutions of the Bethe-Gaudin-Takahashi equation (37). Solving (37) is a much simpler
task because Eq. (37) is only function of kim, which is real. Importantly, by using the
BGT equation in logarithmic form (40) and by varying the quantum numbers Ij , one can
target the different momentum pairs (k1, k2) forming the diffusive band.

Here we focus on the numerical solution of the BGT equation (37). In Fig. 5 we plot
the real and imaginary parts (curves with different colors) of (37) for a chain with L = 10,
γ = 5 and γ− = 0. On the x-axis kim is the imaginary part of k1 = k∗2. The real part
is obtained from (35). The simultaneous crossing (full circles) of the two curves with the
horizontal axis marks the solutions of the BGT equation. Notice that there are L − 1
solutions. The missing solution is that with ε = 0. This is present only for γ− = 0 and it
corresponds to diverging k1, k2. Let us now investigate the effect of the losses. In Fig. 6
we show the numerical solutions of (37) for L = 10, γ = 5 and γ− = 1. Now, there are L
solutions. The solution with ε = 0 is not present. Interestingly, the leftmost circle in Fig. 6
corresponds to two almost degenerate solutions of (37). These are the boundary-related
eigenvalues of L(2) discussed in section 3.5. These boundary states are present only for
γ− > exp(−arccosh(γ/4)). Upon lowering γ− they merge with the diffusive band (cf. 2).
The inset of Fig. 6 shows a zoom of the real and imaginary parts of the BGT equation (37)
around the two degenerate solutions (leftmost circle in the main Figure). For L = 10 the
difference between the two solutions is O(10−4).

5.3 Spectrum of the Liouvillian L(2): Overview

Here we illustrate the general structure of the spectrum of the Liouvillian L(2) for a
fermionic chain with open boundary conditions with γ− = 0 as a function of γ. In Fig. 7
we report exact diagonalization results for a chain with L = 20 and no boundary losses,
i.e., with γ− = 0. First, for γ = γ− = 0 the L2 energies ε are purely imaginary (not
shown in the Figure). Indeed, for γ = 0, k1, k2 are solutions of (24) and (25) with γ− = 0,
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Figure 6: Same as in Fig. 5 for γ− = 1. Now there are L − 2 solutions within the
diffusive band. The solution with ε = 0 is not present for nonzero γ−. The two almost
degenerate solutions at kim ≈ 0.5 (see inset in the Figure) correspond to the boundary-
related eigenvalues of the Liouvillian (star symbol in Fig. 2 (b)).
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Figure 7: Spectrum of the Liouvillian L(2) for a fermionic chain with bulk dephasing
and no boundary losses, i.e., γ− = 0. The symbols are exact diagonalization results for
L = 20. We plot Im(ε) versus Re(ε). The different panels show different values of γ. As
one increases γ (from left to right in the Figure), the diffusive band with real energies gets
populated and well separated from the rest of the spectrum.

and are real. As a consequence the energies ε (cf. (11)) are imaginary. As discussed in
section 3.3, at finite γ there are L(L−1)/2 momentum pairs (k1, k2) that remain the same
as for γ = 0. This implies that the energies ε are the same as for γ = 0, apart from a
trivial shift by −γ (cf. (11)). These energies correspond to the vertical straight lines with
Re(ε) = −γ in the different panels. Near this vertical lines there are ∼ L(L−1)/2 energies
that depend in a nontrivial way on γ. These energies correspond to complex solutions of
the Bethe equations (18) and (19) with vanishing imaginary parts in the limit L → ∞.
For large L these energies can be understood perturbatively in 1/L, as it was discussed in
section 3.4, at least for large enough γ. Finally, upon increasing γ a band of real energies
appear. This band contains the energies that are responsible for the diffusive spreading of
particles at long times. A similar band appears in the tight-binding chain with periodic
boundary conditions [26], and for the periodic tight-binding chain subject to incoherent
hopping [28]. As γ increases, the separation in energy between the diffusive band and
the remaining part of the spectrum increases. Similar separation in different connected
components of the Liouvillian spectrum has been observed in random Liouvillians [55]. As
discussed in section 3.5, at γ > 4 the diffusive band contains at least L−2 states, whereas
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Figure 8: Spectrum of the Liouvillian L(2) for the open fermionic chain with L = 20
and γ− = 0. The left (right) panel shows exact diagonalization results (circles) for γ = 3
(γ = 5). In both panels a vertical band of L(L−1)/2 energies is present at ε = −γ. These
energies are the same as for γ− = 0, apart from a trivial shift by −γ. Near the vertical
band a connected region with ∼ L2/2 energies is present. This correspond to the complex
solutions of the Bethe equations with vanishing imaginary parts (see section 3.4). Finally,
a diffusive band of real energies is also visible in both panels. For γ = 5 (right panel) the
diffusive band is well separated from the rest of the spectrum, and it contains L states.
The large L expansion (30) and (31) is reported in both panels with the full circles. The
expansion describes well the energies near the vertical band. The crosses in the right panel
are Bethe ansatz results obtained by solving numerically (32) and (33) using the solutions
of the BGT equation (40) as initial guess.

the number of states diminishes upon lowering γ. These energies in the diffusive band
correspond to string solutions of the Bethe equations (18) and (19), and can be effectively
treated within the framework of the string hypothesis (see section 3.5).

5.4 Spectrum of L(2): Exact diagonalization versus Bethe ansatz

Let us now compare the Bethe ansatz results for the energies ε of the Liouvillian L(2) and
exact diagonalization (ED) data. In Fig. 8 we show ED data for L = 20, γ− = 0 and
γ = 3 and γ = 5 (left and right panel, respectively). In both panels there is a vertical
band containing L(L− 1)/2 energies. These are the same, except for a trivial shift by −γ,
as for the open fermionic chain with γ = 0. At small energies the diffusive band of real
energies is visible. The complex energies ε between the diffusive band and the vertical
band correspond to complex solutions of the Bethe equations with vanishing imaginary
parts in the limit L → ∞. As discussed in section 3.4 these eigenvalues of L(2) can be
understood perturbatively in 1/L. The full circles in the Figure are obtained from the
large L expansions (30) and (31). Fig. 8 shows that the large L expansion works well
at γ = 5, i. e., when the diffusive band is well separated from the rest of the spectrum.
However, when the diffusive band overlaps with the other regions of the spectrum, the
agreement between the large L expansions and the ED data is not perfect.

For γ = 5 in Fig. 8 we report with the crosses the Bethe ansatz results for the energies
of the diffusive band. As it was stressed in section 5.1, extracting the full set of solutions
of the Bethe equations is a challenging task. A convenient strategy for the diffusive band
is to first solve the BGT equation (37), and then use the solutions as initial guess to
solve (18) and (19). The agreement between the Bethe ansatz results and the ED data
is perfect. A similar agreement is found for γ = 3, although we do not report the results
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Figure 9: Same as in Fig. 8 for L = 20, and γ = 5 and γ− = 1. The diffusive band
with ε >

√
γ2 − 16− γ contains L− 2 solutions. An isolated doublet of quasi-degenerate

energies is present at ε ≈ −2.7, and it corresponds to the boundary-related energies in
Fig. 2 (b) (see full diamond symbol in the Figure). The empty circles in the Figure are
exact diagonalization (ED) results. The diamonds are the results obtained by solving the
BGT equation (37) numerically.

in the Figure. Finally, let us discuss the effect of γ−. In Fig. 9 we show ED results for
L = 20, γ = 5 and γ− = 1. Now, the vertical band at small energies ε ≈ −γ is deformed.
Still, there are L(L − 1)/2 energies that are the same as in the case with γ = 0, apart
from the trivial shift by −γ. Again, a diffusive band is present at large energies ε ≈ 0.
The band contains L energies. The full diamonds are the results obtained using the string
hypothesis, i.e., by solving the BGT equation (37). The agreement with the ED data is
perfect, even at finite γ− and despite the fact that the BGT equation (37) is valid only
in the limit L → ∞. Finally, the real energy at ε ≈ −2.7 corresponds to the almost
degenerate doublet of boundary-related eigenvalues of the Liouvillian (see section 3.5),
which appear for γ− > exp(−arccosh(γ/4)).

5.5 Finite-size scaling of the Liouvillian gap

Let us now discuss the finite-size scaling of the gap of the Liouvillian L(2). The Liouvillian
gap ∆L(2) is the eigenvalue of L(2) with the largest nonzero real part, i.e.,

∆L(2) := max
j

Re(εj), with Re(εj) ̸= 0. (77)

As it is clear from Fig. 8 and Fig. 9, the gap coincides with the largest nonzero energy in
the diffusive band. For γ− = 0 and in the large L limit the gap is obtained by solving the
BGT equation (40) with Ij = 1. For γ− > 0 one has to fix Ij = 0 in (40). In Fig. 10 we
plot the Liouvillian gap as a function of L. We show results for γ = 3, 5 and γ− = 0, 1.
The symbols are the exact numerical data obtained from the BGT equation (40). The
dashed-dotted lines are the results (44) in the large L limit. The leading behavior as
∝ 1/L2 is visible. Notice that although Eq. (44) was derived for the case with nonzero γ−

(see section 3.5), it works also for γ− = 0. In the inset in Fig. 10 we focus on subleading
terms, subtracting from ∆L(2) the leading 1/L2 behavior (cf. (44)). Precisely, we plot
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Figure 10: Finite-size scaling of the Liouvillian gap defined in (77). We show results for
several values of the dephasing rate γ and boundary loss rate γ− (different symbols in the
Figure). We consider chains with L ≲ 500. The dashed-dotted line is the Bethe ansatz
prediction (44) in the limit L → ∞. In the inset we focus on the subleading contributions
to the gap for the case with γ = 5 and γ− = 1. The symbols are ∆L(2)+2π2/(γL2) plotted
versus L. The continuous line is the analytic prediction (cf. second term in (44)).

∆L(2) + 2π2/(γL2) versus L. We only consider the case with γ = 5 and γ− = 1. The
continuous line is the second term in (44), which perfectly matches the data.

5.6 Dynamics of the fermionic correlator: Bethe ansatz versus exact
diagonalization

Having compared Bethe ansatz versus exact diagonalization results for the spectrum of
the Liouvillian, we now focus on the time-dependent fermionic correlator Gx1,x2(t). Here
we compare ED data versus Bethe ansatz results for the full correlator Gx1,x2 . The circles
in Fig. 11 are ED data for a chain with L = 10 sites, γ = 5, and γ− = 1. The results
are at fixed time t = 20. The left and right panels in the Figure show Re(Gx1,x2) and
Im(Gx1,x2), respectively. Notice that on the y-axis we employ a logarithmic scale. The
numbers on the real axis label the different matrix elements of Gx1,x2 . The full diamonds
are Bethe ansatz results. Precisely, here we obtain the full-time dynamics ofGx1,x2 by using
the expansion (46). However, since finding all the solutions of the Bethe equations (18)
and (19) is a daunting task, we truncate (46) restricting the sum over the energies in the
diffusive band, which is expected to dominate the long-time behavior of the correlator. We
first numerically solve the BGT equation (40), using the solutions as initial guess for the
exact Bethe equations (18) and (19). As it is clear from Fig. 11, the agreement between
the Bethe ansatz and the exact diagonalization data is quite satisfactory. Deviations are
present for the smaller matrix elements, and can be attributed to the complex eigenvalues
ε of the Liouvillian, which we are neglecting.

5.7 Dynamics of the density profile

Here we address the long-time limit of the fermionic density profile, i.e., the diagonal
correlators Gx,x. This is investigated in Fig. 12. In the left and right panels we show the
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Figure 11: Fermionic correlator Gx1,x2 as a function of time t. The left and right panels
show the real and imaginary parts of the correlator, respectively. The initial condition
is Gx1,x2 = δx1,L/2δx2,L/2. The empty circles are exact diagonalization (ED) results for
the matrix elements of Gx1,x2 at t = 20. Results are for a chain with L = 10, γ = 5 and
γ− = 1. The full diamonds are the Bethe ansatz results. These are obtained by solving the
Bethe equations (18) and (19) and using (46), where the sum is restricted to the energies
of the diffusive band.

dynamics of GL/2,L/2 and G1,1, respectively. We focus on a chain with L = 10 sites. The
data are for γ = 5 and γ− = 1. The circles in the figures are exact diagonalization results.
The dashed line is the Bethe ansatz result obtained by using (46), where we restrict the
sum to the energies in the diffusive band (see Fig. 9). Importantly, we use the solutions
of the Bethe equations (18) and (19). Let us first focus on GL/2,L/2. At t = 0 one has
that GL/2,L2 = 1, while GL/2,L/2 vanishes for t → ∞. The agreement between the ED
data and the Bethe ansatz is remarkable. Deviations are visible at short times. This is
expected because of the truncation in (46). At short times the contribution of the complex
energies of the Liouvillian cannot be neglected. The continuous line in Fig. 12 is obtained
by considering in (46) only the contribution of the Liouvillian gap, i.e., the energy ε with
the largest nonzero real part. The scenario is slightly different for G1,1 (right panel in
Fig. 12). Precisely, G1,1 is zero at t = 0, it increases at later times as the particle initially
at x = L/2 spreads towards the edges. At long times the dynamics is dominated by the
boundary loss, and G1,1 vanishes. As for GL/2,L/2 the agreement between the ED data
and the Bethe ansatz obtained by using the diffusive band states (dashed line) is quite
satisfactory, although at intermediate times is only qualitatively accurate. On the other
hand, the approximation obtained by restricting the sum in (46) to the Liouvillian gap
works only at long times.

The profile of the fermionic density Gx,x at fixed time and as a function of x is reported
in Fig. 13. We show results for a chain with L = 10 and time t = 20 (empty circles) and
t = 40 (empty squares). The full diamonds are Bethe ansatz results obtained from (46)
restricting the sum over the states in the diffusive band but using the exact solutions of the
Bethe equations (18) and (19). The agreement between the Bethe ansatz and the exact
diagonalization data is excellent for any x. The hexagons symbols show the Bethe ansatz
results obtained employing the string hypothesis, i.e., by using the results of section 4.3.
The agreement with the ED data is satisfactory, although some deviations are visible.
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Figure 12: Evolution of the fermionic correlator Gx1,x2 as a function of time t. We show
results for a chain with L = 10 sites, γ = 5 and γ− = 1. The correlator at t = 0 is
Gx1,x2 = δx1,L/2δx2,L/2, i.e., a fermion localized at the center of the chain. The left and
right panels show GL/2,L/2 and G1,1, respectively. The circles are exact diagonalization
data. The dashed line is the Bethe ansatz result obtained by solving numerically the Bethe
equations (18) and (19), and using (9). In evolving Gx1,x2 we only considered the energies
in the diffusive band (see Fig. 2), which explains the deviations from the ED data. The
continuous line is the result considering only the energy with the largest nonzero real part.

5.8 Diffusive scaling

In the long-time limit the density profile Gx,x should exhibit diffusive scaling, at least if
time is short enough that we can neglect the effect of the boundary losses. This diffusive
behavior is observed in the periodic chain [26]. This is investigated in Fig. 14 focusing on
the late-time dynamics of Gx,x starting from the initial condition with a fermion localized
at the center of the chain. In Fig. 14 (a) we show Gx,x as a function of x − L/2. The
symbols are data at different times, and are obtained by using the results of section 4.3.
The data are for a system with L = 100 sites. As it is clear from the Figure, the fermion
density spreads diffusively as time increases, reaching the boundary of the chain at late
times. Precisely, in the diffusive regime Gx,x is given by

Gx,x =
1√
4πDt

exp
[
−(x− L/2)2

4Dt

]
, D :=

2

γ
, (78)

with D the diffusion constant, which was derived in Ref. [26]. The diffusive scaling is
investigated in Fig. 14 (b), plotting t1/2Gx,x versus (x − L/2)/t1/2. Up to t = 80 all the
data collapse on the same curve, which is in perfect agreement with (78). At longer times
the effect of the boundary loss is non negligible and the diffusive scaling breaks down. At
times t ≫ L2 the fermion density is vanishing at the edges of the chain, and the height of
the fermionic lump that is left around the center of the chain diminishes with time.

6 Conclusions

We derived the Bethe ansatz for the spectrum of the Liouvillian L(2), which determines
the dynamics of the fermionic correlator Gx1,x2 in the fermionic tight-binding chain in the
presence of bulk dephasing and boundary losses. For large enough dephasing, the spectrum
of the Liouvillian comprises three different parts. Precisely, there are L(L− 1)/2 complex
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Figure 13: Density profile Gx,x plotted as a function of the position x is the chain. The
results are for a chain with L = 10, dissipation rate γ = 5 and boundary loss rate γ− = 1.
The empty circles are exact diagonalization results for t = 20 and t = 40. At t = 0 the
correlator is Gx1,x2 = δx1,L/2δx2,L/2. The empty hexagons are Bethe ansatz results in the
limit L → ∞. These are obtained by solving the BGT equation (40) and using (71). The
full diamonds are the same Bethe ansatz results as in Fig. 11.

energies that are trivially related to those of the tight-binding chain with boundary losses
and no bulk dephasing. For this reason we dub them dephasing-indepedent energies.
Furthermore, there are ∼ L(L − 1)/2 complex energies that are perturbatively related
to the dephasing-independent ones in the large chain limit. Finally, there is band of
∼ L real energies. Since the band contains the energies with the largest real parts, it
dominates the long-time behavior of the correlator, and determines the diffusive scaling
at intermediate times. For this reason we dub it diffusive band. Interestingly, for large
enough loss rate boundary-related modes of the Liouvillian appear. Both the diffusive
band and the boundary modes can be characterized by using the framework of the string
hypothesis. Crucially, the Bethe ansatz allowed us to obtain the time-dependent fermionic
correlator Gx1,x2 . In particular, we provided analytic formulas for the long-time behavior
of the fermionic density Gx,x.

Let us now illustrate some possible directions for future work. First, we showed that
despite the Liouvillian L(2) being diagonalized by Bethe ansatz, the full Liouvillian is
mapped to the Hamiltonian of the open Hubbard chain with boundary magnetic fields
and boundary pair production, which is not integrable. It would be interesting to in-
vestigate whether the Liouvillian L(4) that describes the dynamics of the fermionic four
point function can be diagonalized by the Bethe ansatz. Furthermore, we showed that at
long times the diffusive scaling of the fermionic density is broken, due to the boundary
losses. It would be interesting to further investigate this regime to understand whether
any universal scaling behavior can be extracted. An interesting direction would be to
employ the Bethe ansatz framework to characterize the interplay between dissipation and
criticality [2]. This would require to extend the results of section 4 to non-diagonal initial
conditions. Recently, it has been shown that several one-dimensional out-of-equilibrium
systems exhibit the so-called quantum Mpemba effect [56]. It would be interesting to
investigate how the Mpemba effect is affected by dissipation. While this issue has been
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Figure 14: Dynamics of the density profile Gx,x for a fermionic chain with L = 100,
dephasing rate γ = 5, and boundary loss rate γ− = 1. Panel (a) shows the time-dependent
correlator Gx,x as a function of x−L/2. At t = 0, Gx1,x2 = δx1,L/2δx2,L/2. Panel (b) shows

the rescaled density t1/2Gx,x as a function of (x − L/2)/t1/2. For t < 600 the dynamics
exhibits a clear diffusive scaling. At later times the boundary losss affect the dynamics,
and the diffusive scaling breaks down.

addressed numerically (see for instance Ref. [57]), the Bethe ansatz would allow to clarify
the scenario analytically.

The full Liouvillian describing dephasing dissipation is not quadratic in the fermion
operators. This implies that entanglement-related quantities are not fully determined
by the two-point fermionic correlation function, in contrast with quadratic models [58].
Still, it was observed in Ref. [38] that the “entanglement entropies” defined from the
fermionic correlator exhibit scaling behavior in the weak-dissipation hydrodynamic limit.
Our results could allow to clarify the origin of this scaling. Finally, it would be important
to understand whether the tight-binding chain with localized dephasing can be solved by
Bethe ansatz, paving the way to characterize analytically entanglement scaling [43,44,59,
60].
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A Derivation of the full Liouvillian

Here we derive the full Liouvillian L governing the evolution of the density matrix ρ
(cf. (2)). We employ the formalism of the third quantization [7]. This will allow us
to map the Liouvillian to a one-dimensional system of spinful fermions described by a
Hubbard-like Hamiltonian. In section A.1 we compare the result with the Hamiltonian of
the one-dimensional Hubbard model with boundary magnetic fields.

The action of the Liouvillian on a generic density matrix can be understood by using
the formalism of Ref. [7]. A generic density matrix can be decomposed as a superposition
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of strings of Majorana operators Γν defined as

Γν := aν11 aν22 · · · aν2L2L , (79)

where aj are Majorana fermionic operators with standard anticommutation relations
{aj , ak} = 2δjk, and νj = 0, 1 occupation numbers. The string of operators in (79) is
ordered. The relationship between Majorana fermions aj and Dirac fermions cj is given as

a2j−1 = cj + c†j , a2j = i(cj − c†j). (80)

It is convenient to define the creation and annihilation super operators â†j and âj (notice
the hat) acting on Γν as follows

â†jΓν = δνj ,0πjΓν′ (81)

âjΓν = δνj ,1πjΓν′ , (82)

where we defined the sign πj as

πj := (−1)
∑j−1

r=1 νj . (83)

In (81) and (82), we defined ν ′r = νr for r ̸= j and ν ′r = 1 − νr for r = j. The super

operators âj , â
†
j satisfy the standard anticommutation relations of Dirac fermions. First,

it is straightforward to check that

ajΓν = (â†j + âj)Γν (84)

Γνaj = (â†j − âj)Γν . (85)

In (85) we focus on fermionic states with even parity, i.e., for which
∑2L

r=1 νr is even. By
using (84) and (85), one can easily derive the commutation relations

[aj ,Γν ] = 2âjΓν (86)

[ajak,Γν ] = 2(â†j âk − â†kaj)Γν . (87)

For the following, it is convenient to define new fermionic super operators â±,j as

â±,j :=
1√
2
(â2m−1 ± iâ2m). (88)

Notice that â±,j and â+,k act as “creation” or “destruction” super operators. For instance,

â−,k and â+,k destroy the operator c†k and ck, respectively. Similarly, â†−,k and â†+,k create

c†k and ck, respectively.
Let us decompose the Liouvillian in (2) in a bulk contribution and in a boundary one

as
L(Γν) = Lbulk(Γν) + Lboundary(Γν), (89)

where Lbulk contains the Hamiltonian part and the dephasing contribution, whereas Lboundary

takes into account the boundary losses. Specifically, the bulk Liouvillian is given as [11,38]

Lbulk = i
L−1∑
j=1

∑
α=±

α(â†α,j âα,j+1 + â†α,j+1âα,j)

+
γ

2

L∑
j=1

(2â†+,j â+,j â
†
−,j â−,j − â†+,j â+,j − â†−,j â−,j), (90)
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where â±,j are defined in (88). Let us discuss the boundary term Lboundary. Its action on
a generic string Γν reads as

Lboundary(Γν) = γ−
(
c1Γνc

†
1 −

1

2
{c†1c1,Γν}

)
+ c1 → cL, (91)

where cj are Dirac fermions. By using (84) and (85), Eq. (91) is rewritten as

Lboundary = −γ−

2
â†1â1 −

γ−

2
â†2â2 + iγ−â†1â

†
2 + (â1, â2) → (âL−1, âL). (92)

Finally, by using the definition of â+,j and â−,j in (88), we can rewrite (92) as

Lboundary = −γ−

2
â†+,1â+,1 −

γ−

2
â†−,1â−,1 − γ−â†−,1â

†
+,1 + â±,1 → â±,L. (93)

Now the first two terms in (93) are interpreted as boundary magnetic fields in the Hubbard
chain. The last term, however, corresponds to creation of a pair of fermions with opposite
spins at the boundary.

Before proceeding, we should observe that to map L to a Hubbard-like Hamiltonian
H as in Ref. [11] we have to perform a unitary transformation as

H = iU†LU , (94)

where the unitary transformation U is defined as [11]

U =
∏
odd j

(1− 2â†−,j â−,j). (95)

The effect of (95) is to change the sign of the term with α = −1 in (90). Finally, the
Liouvillian is mapped to the Hubbard-like Hamiltonian H as

H = −
L−1∑
j=1

∑
σ=↑,↓

(c†j,σcj+1,σ + h.c.) + iγ
∑
j

nj,↑nj,↓ − i
γ

2

∑
j

(nj,↑ + nj,↓)

− i
γ−

2
(n1,↑ + n1,↓ + nL,↑ + nL,↓) + iγ−(c†1,↑c

†
1,↓ + (−1)L+1c†L,↑c

†
L,↓), (96)

where we redefined cj,↑ := â+,j and cj,↓ := â−,j . Now, the Hamiltonian (96) is similar to
that of the Hubbard chain with boundary magnetic fields. Precisely, Eq. (96) describes a
chain of spinful fermions with imaginary density-density interaction, imaginary boundary
fields. Crucially, the last term in (96) describes creation of pairs of fermions with opposite
spins at the boundary of the chain. To the best of our knowledge, the boundary pair-
production term renders the Hamiltonian (96) not integrable.

However, after including a boundary fermion pump term with pump rate γ+ = γ−,
which is described by the Lindblad operators Lx,3 =

√
γ+c†xδx,1 and Lx,4 =

√
γ+c†xδx,L,

the last term in (93) cancels out. As it was observed in Ref. [11], the resulting Hamiltonian
is that of the open Hubbard chain with imaginary interactions and imaginary boundary
magnetic fields, which is integrable [25].

A.1 Comparison with the Hubbard model with boundary fields

Although Eq. (96) is not integrable in general, as we showed in section 3, the Liouvillian
L(2) can be diagonalized by the Bethe ansatz. In this section we report the Bethe equations
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for the open Hubbard chain with boundary magnetic fields. We show that in the two-
fermion sector the Bethe equations are the same as the ones derived in section 3 after
some appropriate transformations.

The Hamiltonian of the one-dimensional Hubbard chain with open boundary conditions
read as [25]

H = −
L−1∑
j=1

∑
σ=↑,↓

(c†j,σcj+1,σ + h.c.) + 4u
∑
j

nj,↑nj,↓ − 2u
∑
j

(nj,↑ + nj,↓)

− p(n1,↑ + n1,↓)− p′(nL,↑ + nL,↓), (97)

where cj,σ are spinful fermionic operators, nj,σ := c†j,σcj,σ is the local fermionic density, u
is the interaction strength, and p, p′ is the strength of the boundary fields. Eq. (97) is the
same as (96) after redefining u = iγ/4 and p = iγ−/2, except for the last term in (96).
The Bethe equations for the quasimomenta kj read as [25]

e2ikjL
eikj − p

1− peikj
eikj − p′

1− p′eikj
=

M∏
ℓ=1

sin(kj)− λℓ + iu

sin(kj)− λℓ − iu

sin(kj) + λℓ + iu

sin(kj) + λℓ − iu
, (98)

where j = 1, . . . , N , together with

N∏
j=1

λℓ − sin(kj) + iu

λℓ − sin(kj)− iu

λℓ + sin(kj) + iu

λℓ + sin(kj)− iu
=

M∏
m=1,m ̸=j

λℓ − λm + 2iu

λℓ − λm − 2iu

λℓ + λm + 2iu

λℓ + λm − 2iu
, (99)

with ℓ = 1, . . . ,M , and N,M integers. The energies ε of the eigenstates are given as

ε = −
N∑
j=1

(2 cos(kj) + 2u). (100)

Now, we are interested in the case with N = 2 and M = 1. As it is clear from the
case of the tight-binding chain with periodic boundary conditions and bulk dephasing, the
spectrum of the Hubbard chain with N = 2 and M = 1 is mapped to the spectrum of
L(2). To proceed, we can solve (100) for λ1 to obtain

λ1 = ± 1√
2
(sin2(k1) + sin2(k2) + 2u2)

1
2 . (101)

After substituting (101) in (98), we obtain

e2ik1L
eik1 − p

1− peik1
eik1 − p′

1− p′eik1
=

sin(k1)− sin(k2) + 2iu

sin(k1)− sin(k2)− 2iu

sin(k1) + sin(k2) + 2iu

sin(k1) + sin(k2)− 2iu
(102)

e2ik2L
eik2 − p

1− peik2
eik2 − p′

1− p′eik2
=

sin(k2)− sin(k1) + 2iu

sin(k2)− sin(k1)− 2iu

sin(k2) + sin(k1) + 2iu

sin(k2) + sin(k1)− 2iu
. (103)

After choosing p = p′ = iγ−/2 and u = iγ/4, Eq. (102) and Eq. (103) become the same
as (18) (19) if one redefines k2 → k2 + π.
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boundary-driven monitored fermionic chains, Phys. Rev. B 106, 024304 (2022),
doi:10.1103/PhysRevB.106.024304.

33

https://doi.org/10.1103/PhysRevA.107.052213
https://doi.org/10.1103/PhysRevLett.130.210402
2305.06944
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1073/pnas.1703516114
https://www.pnas.org/content/114/30/7947.full.pdf
https://www.pnas.org/content/114/30/7947.full.pdf
https://doi.org/10.1103/PhysRevB.103.L020302
https://doi.org/10.1103/PhysRevB.105.144305
https://doi.org/10.1088/1751-8121/ac48ec
2205.02139
https://doi.org/10.1103/PhysRevB.105.054303
https://doi.org/10.21468/SciPostPhys.12.1.011
https://doi.org/10.1088/1742-5468/acb429
https://doi.org/10.1103/PhysRevB.104.144301
https://doi.org/10.1103/PhysRevB.106.024304


SciPost Physics Submission

[47] T. Jin, M. Filippone and T. Giamarchi, Generic transport formula for a
system driven by markovian reservoirs, Phys. Rev. B 102, 205131 (2020),
doi:10.1103/PhysRevB.102.205131.

[48] T. Jin, J. a. S. Ferreira, M. Filippone and T. Giamarchi, Exact description of
quantum stochastic models as quantum resistors, Phys. Rev. Res. 4, 013109 (2022),
doi:10.1103/PhysRevResearch.4.013109.

[49] F. Tarantelli and E. Vicari, Quantum critical systems with dissipative boundaries,
Phys. Rev. B 104, 075140 (2021), doi:10.1103/PhysRevB.104.075140.

[50] G. T. Landi, D. Poletti and G. Schaller, Nonequilibrium boundary-driven quantum
systems: Models, methods, and properties, Rev. Mod. Phys. 94, 045006 (2022),
doi:10.1103/RevModPhys.94.045006.

[51] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter and G. R. W. Quispel,
Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models, Journal
of Physics A: Mathematical and General 20(18), 6397 (1987), doi:10.1088/0305-
4470/20/18/038.

[52] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models, Cambridge
University Press, doi:10.1017/CBO9780511524332 (1999).

[53] V. Alba, K. Saha and M. Haque, Bethe ansatz description of edge-localization in
the open-boundary XXZ spin chain, Journal of Statistical Mechanics: Theory and
Experiment 2013(10), P10018 (2013), doi:10.1088/1742-5468/2013/10/P10018.

[54] C. Guo and D. Poletti, Analytical solutions for a boundary-driven XY chain, Phys.
Rev. A 98, 052126 (2018), doi:10.1103/PhysRevA.98.052126.

[55] J. Costa, P. Ribeiro, A. de Luca, T. Prosen and L. Sá, Spectral and steady-state
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