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Abstract

Different classes of low-dimensional superconducting systems exhibit an inhomogeneous
filamentary superconducting condensate whose macroscopic coherence still needs to be
fully investigated and understood. Here we present a thorough analysis of the superfluid
response of a prototypical filamentary superconductor embedded in a two-dimensional
metallic matrix. By mapping the system into an exactly solvable random impedance
network, we show how the dissipative (reactive) response of the system non-trivially
depends on both the macroscopic and microscopic characteristics of the metallic (super-
conducting) fraction. We compare our calculations with resonant-microwave transport
measurements performed on LaAlO3/SrTiO3 heterostructures over an extended range of
temperatures and carrier densities finding that the filamentary character of supercon-
ductivity accounts for unusual peculiar features of the experimental data.
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1 Introduction

The availability of low-dimensional compounds exhibiting superconductivity is steadily in-
creasing, often displaying unconventional behaviours in their physical properties. The un-
avoidable presence of (even weak) microscopic disorder in the vast majority of two-dimensional
(2D) materials, as well as other external and/or internal electronic interactions, can fragment
the SC condensate leading to inhomogeneity on a mesoscopic scale. In particular, there is in-
creasing evidence that in several classes of low-dimensional superconducting (SC) systems the
strongly inhomogeneous nature of the electronic condensate appears as a filamentary SC pat-
tern. Inhomogeneous superconductivity can indeed result from several different mechanisms,
where the competition of the SC order parameter with other phases can act as a primary
source of filamentarity. This is the case for the competition with charge-density waves in high-
temperature SC cuprates [1,2], in Cu-intercalated TiSe2 [3,4] and in HfTe3 [5]. Hints of fila-
mentary superconductivity have been observed also in the low-temperature antiferromagnetic
phase of Fe-based superconductors [6–11], persisting until the long-range antiferromagnetic
order is completely suppressed. The clustering of superconducting electrons into anisotropic
stripe-like or puddle-like geometry is found also in WO2.90 probably caused by the presence of
W5+ - W5+ electron bipolarons [12]. Alongside chemical doping, also gating fields can trigger
phase separation leading to a filamentary SC condensate. For instance, the ion-liquid gating
technique, used to inject and tune the number of carriers in systems such as transition metal
dichalcogenides (TMD) and transition metal nitride (TMN), can induce a negative compress-
ibility while acting as a primary source of phase separation [13]. One paradigmatic class of
materials displaying a strong anisotropy of superconducting regions in their two-dimensional
electron gas (2DEG) are SrTiO3-based heterostructures, like, e.g., LaAlO3/SrTiO3 (LAO/STO).
The inhomogeneities in these systems can be ascribed to various causes related to oxygen va-
cancies [14, 15], to the so-called polar catastrophe caused by the abrupt polar discontinuity
between stacked planes [16, 17], to a kind of combination of them [18] or to the sizable
Rashba spin-orbit coupling [19,20].

2



SciPost Physics Submission

While the microscopic origin of filamentary superconductivity depends on the specific na-
ture of the system under investigation, some properties of the emergent SC condensate are
generically related to its filamentary inhomogeneous nature, the study of which is therefore
of interest to a very broad class of systems. Indeed, it has already been discussed how the
anomalous transport properties observed in some inhomogeneous superconductors can be al-
most entirely ascribed to spatial inhomogeneities of the condensate on a mesoscopic scale
rather than to its microscopic nature. That is the case, for instance, of the large broadening
of the resistive transition, which cannot be ascribed to paraconductivity effects [21], but is
instead the hallmark of the percolating nature of the SC transition. Furthermore, the rela-
tive width of the transition ∆Tc/Tc = (Th − Tc)/Tc, where Th is the temperature of the first
high-temperature-downturn of R and Tc is the zero-resistance temperature, gives a quantitative
measure of the inhomogeneity of the sample. In fact, paraconductivity effects due to Cooper
pair fluctuations, e.g., à la Aslamazov-Larkin or à la Halperin-Nelson, can account at most for
widths of the transition of the order ∆Tc/Tc ∼ 0.1, whereas in several compounds such as
STO-based heterostructures [21–23], TMD [4, 24], TMN [13, 25] one observes ∆Tc/Tc ∼ 1.
Along with the broad resistive transition, anomalous metallic states, sometimes termed ‘failed
superconductors’, also find an explanation in this percolative transition scenario, which we
proposed inspired by the seminal work of Kirkpatrick [26]. This is the case, for instance, of
granular and amorphous films of TaNx and InOx [27,28]. Failed superconducting behaviours
are also found in films of Bi, Al, In, Ga, Pg, Sn, and a−MoGe (see [29] for a review). More
recently, a similar theoretical framework was also used to account for the anomalous trans-
port properties observed in random nanocrystalline samples fabricated combining half-metallic
ferromagnet and SC components [30]. Likewise, the observation on non-linear IV charac-
terics [31] or pseudo-gap signatures in the tunneling spectra of STO-based interfaces [32] at
temperatures higher than Tc have also been connected with the physics of inhomogeneities.
Finally, the well-known conundrum of pre-forming Cooper pairs in the pseudogap region of
cuprates has been related to a possible percolative scenario emerging from the presence of
strong inhomogeneities [33,34]. Yet, the debate is still ongoing [35].

So far several studies have focused on the effect of the mesoscale inhomogeneity on the SC
transition above the critical temperature, while few studies have investigated the superfluid
response of the resulting filamentary condensate [36,37]. In this paper, we face this issue by
mapping the problem into a random-impedance network (RIN) model that we solve exactly.
By studying different RIN realizations, we show how the superfluid response of the system
non-trivially depends on its microscopic and macroscopic characteristics. At the same time, by
comparing our theoretical results with complex conductivity measurements on LaAlO3/SrTiO3
(LAO/STO) interfaces, we show how the different doping regimes can be understood in terms
of an intrinsically less or more robust filamentary SC condensate.

The paper is organized as follows. In Section 2, we introduce the problem of the superfluid
stiffness in a filamentary superconductor. In Section 3, we discuss the RIN model implemented
to study the odd features that can arise from a fractal-like geometry of the superconducting
condensate. Sections 4 and 4.1 are devoted to the specific case of LaAlO3/SrTiO3 (LAO/STO)
interfaces, summarizing what has been done and what are the unconventional observations of
superfluid density and residual conductivity. Finally, in Section 5 we present our theoretical
results and in Section 6 our conclusions.

2 Filamentary superconductivity

Disregarding the specific microscopic origin of inhomogeneities, we aim at investigating the
superfluid stiffness response of a filamentary superconductor.
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According to the Bardeen-Cooper-Schrieffer (BCS) theory, in conventional superconduc-
tors the energy scale ∆ – associated with the formation of the Cooper pairs – is much smaller
than the superfluid stiffness Js – associated with the global phase rigidity of the SC condensate.
Being ∆≪ Js, the superconducting transition is thus essentially driven by the suppression of
∆. This scenario holds even in the presence of strong disorder and partially inhomogeneous
systems [38, 39]. At the same time, in BCS conventional superconductors, Js ≈ EF (EF being
the Fermi energy of the metal) is directly proportional to the number of superfluid carriers
ns, with Js ∼ ns/m

∗, and m∗ the effective carrier mass. Due to this proportionality, Js and
ns are often used synonymously. However, it is important to emphasize here that superfluid
density and superfluid stiffness are generally two separate quantities. That is clear in those
SC systems where, being Js < ∆, the SC phase transition is driven by phase fluctuations that
destroy the phase rigidity of the condensate while preserving a finite density of paired carri-
ers. Granular superconductors and some Josephson-junction arrays are well-known examples
of such cases. In 2D superconductors, the leading role of phase fluctuation emerges clearly
in the Berezinskii-Kosterlitz-Thouless (BKT) theory [40–42] that provides a clear picture of
the SC transition in terms of vortex-antivortex binding [39]. The BKT fingerprints in real SC
systems can be, however, partially or completely masked by the presence of disorder. While
spatially uncorrelated disorder is essentially irrelevant to the BKT SC transition [43, 44], the
presence of spatially-correlated inhomogeneities can, indeed, significantly modify its nonuni-
versal properties [45, 46]. Finally, in some systems, the inhomogeneities are so strong and
correlated in space, that the vortex-antivortex unbinding is no longer the leading mechanism
for the SC transition [31]. An even stronger role of phase fluctuations takes place in quasi-
one-dimensional superconductors, where the so-called phase slips, induced either by thermal
or quantum excitations, prevent the onset of a global SC phase coherence [47].

The occurrence of superconductivity on structures made of random nearly 1D filaments,
which can intersect and/or go almost parallel, obviously raises the complex issue of phase
rigidity both at the local level of single filaments and at the global level of interconnected fil-
aments with more or less pronounced long-range connectivity. While this issue was already
addressed some time ago for DC transport [48], and in comparing the BKT physics with the
effects of inhomogeneities [31], it is of obvious interest to directly investigate, both experimen-
tally and theoretically, the phase rigidity of the condensate in such complex filamentary geom-
etry. In the present work, we precisely aim at studying the superfluid response of a filamentary
superconductor, devoting specific attention to the separate role of local and global (geometric)
properties and their specific role in determining the complex conductivity response.

Having this goal in mind, we investigate a model system, keeping separate the role of the
geometric structure, i.e., the density of filaments and their long-range connectivity, and the
role of local disorder, from the role of local superfluid density and conductivity. The former
determines the distribution of the local superconducting temperature in the various regions of
the system (embedded in an otherwise metallic matrix), while the latter the local stiffness in
the single individual pieces of the random superconducting structure.

To keep our study as general as possible, we will assume the filamentary structure to be
given from the start, regardless of its microscopic origin.

3 Theoretical description: the Random Impedance Network

Several 2D superconducting systems, such as LAO/STO [48,49], TMD, and TMN [13], exhibit
an unusual gradual and broad vanishing of R(T ) that cannot be ascribed to conventional SC
fluctuations but rather to the emergence of an inhomogeneous SC condensate. The first de-
pletion of R(T ) by lowering the temperature can be, indeed, attributed to the appearance of
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SC puddles, i.e., rather bulky regions that, at lower temperatures, get connected through SC
filamentary branches, with long-distance connectivity, ultimately responsible for the long tail
of R(T ) approaching the critical temperature (see Fig. 1). In what follows, we will refer to the
bulky SC puddles with the subscript (b), and to the filamentary SC regions with (f).

In a series of previous works, we demonstrated that DC transport in such strongly inho-
mogeneous compounds can be conveniently described by a Random Resistor Network (RRN)
model [26], in which the 2D system is discretized on a square lattice, where each bond is
associated with a resistor. Kirchhoff’s and Omh’s Law’s are then exactly solved for all currents
and voltages on bonds and nodes, given an applied external voltage V ext and open boundary
conditions. More details about the algorithm can be found in Appendix A.
Note that in this coarse graining procedure, a resistor represents a mesoscopic region, large
enough so that a critical temperature can be locally defined, but small enough with respect to
the size of the sample.

While part of the resistors remains in the normal-metal state down to the lowest attained
temperatures, thereby forming a metallic matrix, some others become superconducting when
T decreases below their local critical temperature T i, j

νc , where i, j are the neighbouring sites
of the square lattice and ν = x , y is the direction identifying the resistor bond. Specifically, a
Gaussian distribution of critical temperatures T i, j

νc ̸= 0 was assumed, characterized by a given
average value µ and a variance σ. An extended analysis also showed that different statisti-
cal distributions provide more or less equivalent physical results [48] and therefore, for the
sake of simplicity, we here only consider Gaussian distributions of local critical temperatures.
A more precise description of transport data also led to distinguishing between the Gaussian
distribution of bulkier (puddle-like) regions, with a mean value of the SC critical tempera-
ture (µb) slightly higher than the global Tc , and a Gaussian distribution of the filamentary
regions where the average SC temperature (µ f ) is slightly lower and, in general, more broadly
distributed.Once the random inhomogeneous structure of the system has been specified, we
define Rm as the resistance of the metallic matrix, while for the superconducting bonds, which
include both the filamentary and the puddle-like regions, we assign a resistance value such
that Ri, j

ν (T > T i, j
νc ) = Rs and Ri, j

ν (T < T i, j
νc ) = 0. The standard deviations, σ f and σb, relative

to the two Gaussian distributions for the filamentary and puddle-like SC regions, determine
the extension in temperature of the resistance tail, while the spatial filamentary structure of
the SC cluster is crucial to recover the R(T ) approaching Tc with a long slowly vanishing tail.

So far, the discussion of the consequences of filamentarity on transport has focused only on
the metallic phase stressing the ‘tailish’ behaviour of R(T ) as the signature of filamentary SC.
In this work, we more directly address the issue of the superconducting response of the system
by generalizing the RRN to finite frequencies thereby calculating the complex conductivity of
the system. Thus, we assign to each bond a complex impedance Z i, j

ν = Ri, j
ν + iω0 L i, j

ν , whereω0
is the frequency of the circuit and L i, j

ν is either the inductance of the superconducting bonds,
Ls, or that of the metallic matrix, Lm. The extension to finite frequencies of the RRN model into
a Random Impedance Network (RIN) model was already investigated in its effective medium
analytical solution [36,37], where the information on the geometrical structure of the cluster
was, however, completely neglected. Here, we calculate exactly the global effective impedance
Ztot = Rtot + iω0 Ltot of the lattice by solving the Kirchhoff and Ohm laws of the network (see
Appendix A.1). That allows us to account for the role played by the SC cluster geometry
that we generated using a diffusing limited aggregation algorithm, discussed in Appendix A.2.
In order to be quantitative, in the present work we will take as a case study the resonant-
microwave measurements performed on LAO/STO interfaces, which we discuss in the next
Sections. That is why, in our numerical study, we will fix the frequency to the experimental
resonant frequency ω0/2π= 0.36 GHz. Here, we are interested in the linear response of the
system, neglecting possible non-linear effects that might arise, e.g., from currents exceeding
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critical currents in the system. We are thus implicitly assuming that I i, j
ν < I i, j

νc in each bond,
I i, j
ν being the current flowing in the (i, j)-th bond in the direction ν and I i, j

νc the local critical
current. Our goal is to identify the physical ingredients needed to reproduce the specific
peculiarities found in experiments and summarized in the next Section.

4 LaAlO3/SrTiO3 interfaces

In SrTiO3-based heterostructures, the carrier density of the 2DEG formed at the interface can
be tuned by a gate voltage VG . Despite their very clean and regular structure, these het-
erostructures have revealed an intrinsic tendency to electronic phase separation [16], lead-
ing to the formation of an inhomogeneous superconducting state with a filamentary charac-
ter [49,50]. This happens even for the [001] orientation, i.e., when the interface is orthogonal
to the c-axis of both LAO and STO; henceforth, we will always refer to [001] LAO/STO sam-
ples. Tunnelling [32,51], atomic force microscopy [52], and critical current experiments [53]
provide clear evidence of an inhomogeneous superconducting condensate at the LAO/STO in-
terface. Direct measurements of the superfluid density via SQUID measurements [54] showed
that Js(T ) does not follow neither BCS nor BKT prescriptions; the behaviour was instead
well captured once the inhomogeneous character of the condensate was considered [49].
Transport measurements report further signs of inhomogeneity, with a percolating metal-to-
superconductor transition where a sizable fraction of the 2DEG remains metallic down to the
lowest accessible temperature [21, 48–50]. The resulting filamentary state, where the SC re-
gions live on 100-nanometer length scales [55], coexist with the linear SC regions identified
on the micron scale at structural domain boundaries [56,57]. The length scales at play are in
perfect agreement with the effective medium approach used in [49], which accounts for the
intrinsic averaging operated by the SQUID device over the micrometric scale.

In a previous publication [58], we reported the results of resonant microwave transport
experiments at the lowest temperatures. Dynamical transport measurements provide in fact
direct access to the superfluid stiffness Js. When ħhω0≪∆, the system behaves as a RLC res-
onant circuit, allowing to identify the inductive response with the superfluid stiffness through
Js =

ħh2

4e2 Lk
, where Lk is the kinetic inductance of the circuit; hence σ2∝

1
ω0 Lk
∝ Js accounts

for the inertia of Cooper pairs while σ1 accounts for the transport of unpaired electrons, in
analogy with optical conductivity. From a comparison between the gap and the superfluid
stiffness energy scales, we identified two distinct regimes: an overdoped (OD) regime (i.e.,
with a carrier density higher than the one corresponding to the maximum superconducting
critical temperature Tc), in which the LAO/STO system has the character of a dirty but rather
homogeneous two-dimensional (2D) superconductor and an underdoped (UD) regime (i.e.,
with a carrier density lower than the one corresponding to the maximum superconducting
critical temperature Tc), where the superconducting state closely resembled a disordered 2D
Josephson-junction array (see Fig. 4 of Ref. [58]).

In this work, we consider the resonant microwave transport experiments over a broad
temperature and carrier density range. The correspondence between gate voltage and car-
rier density is given in Fig. 5 of Ref. [58]. By measuring both the complex conductivity, i.e.,
σ = σ1− iσ2, and the DC resistivity, we study the superconductor-to-metal transition charac-
terizing the emerging filamentary superconducting state, via the temperature dependence of
its superfluid stiffness Js and conductance σ1.

In Fig. 1, we report the DC resistivity (green) and complex conductivity data (real part in
black, imaginary part in red) for a LAO/STO sample. In particular, Fig. 1(a) and 1(b) show
two paradigmatic examples for the OD (gate voltage VG = 50 V) and UD (VG = 20V) regimes,
respectively. The data of DC resistivity and complex conductivity in a wider range of back-gate
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a)                                                   c)                                                d)

b)

Figure 1: DC resistance (green), superfluid stiffness Js∝ σ2 (red) and optical con-
ductance σ1 (black) as functions of temperature. (a) Experimental data for a gate
voltage VG = 50 V (OD) and (b) for VG = 20V (UD). The grey dashed line is the
BKT critical line 2T/π. (c) Sketched summary of the observed features in the UD
(dashed lines) and OD regimes (solid lines): (1) the broad and tailish transition of
R(T ) coincide with a very gradual increase of Js at T ∼ Tc; this results in a wide
separation between the two, paradigmatic of a percolating yet filamentary supercon-
ducting cluster; (2) increase of Js at T ≲ Tc , more abrupt in OD systems than in the
UD ones, thus signalling the more or less homogeneous nature of the superconduc-
tor at different fillings; (3) the substantial residual value of σ1, more important in
the UD case yet more peaked in the OD. Those features are clearly at odds with the
scenario of a dirty yet homogeneous 2D superconductor, schematically reported in
(d).

voltage, from 8 V up to 50 V, are presented in Fig. 8 of Appendix B.
In Fig. 1(c), we schematically summarize the peculiar features found in the two doping

regimes of LAO/STO samples. Besides the broad transition and tailish behaviour of the re-
sistance curve R(T ) (green solid line), near the temperature Tc that marks the transition to a
filamentary superconducting state [21,48–50], we outline three main peculiar features:

(1) going through the metal-to-superconductor transition, an unusual and surprising separa-
tion appears between the temperature at which the resistivity vanishes and that relative
to the onset of a sizable superfluid stiffness. Both R(T ) and Js(T ) show a long tail, symp-
tomatic of a percolating filamentary superconducting state, still too fragile to establish
a 2D rigid condensate;

(2) lowering the temperature below Tc , the superfluid stiffness shows an increase, steep in
the OD case and more gradual in the UD regime; notice that in the OD regime, the steep
increase of Js occurs at a temperature much lower than Tc;

(3) at T ≪ Tc , the real part of the conductance σ1(ω0, T ) takes a significant residual value.
This last feature marks the persistence of a sizable fraction of normal metal down to the
lowest temperatures, further supporting the idea of an inhomogeneous superconducting
state.

This last feature marks the persistence of a sizable fraction of normal metal down to the lowest
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temperatures, further supporting the idea of an inhomogeneous superconducting state.
Finally, in Fig. 1(d) we sketch the behaviour of the same quantities as a function of tem-

perature within the BKT scenario in the presence of moderate disorder [59]. The BKT scheme
clearly fails to reproduce the main features of the data. Even the seeming jump experimentally
observed in the superfluid stiffness, e.g., at VG = 50 V, cannot be interpreted as the paradig-
matic hallmark of the BKT transition, rather expected at the intercept with the 2T/π critical
line [dashed-grey line in Fig. 1(a)].

In what follows, we present our extensive resonant microwave transport analysis. We
show the actual occurrence of these three peculiar features in the experimental data, and we
discuss our theoretical analysis to extract information about the structural characteristics of the
superconducting system throughout the temperature and carrier density range considered. It
is worth noting that the three peculiar features summarized above are indeed characteristic of
the rather disordered sample, whereas in more homogeneous ones the long tails in R(T ∼ Tc)
and in Js(T ∼ Tc), and the hugeσ1 residue at T ≪ Tc are less enhanced and one would recover
an intermediate phenomenology between a standard BCS scenario [Fig. 1(d)] and the one
presented here [Fig. 1(a)-(c)]. Nonetheless, although this sample may not be representative
of every LAO/STO interface, it offered the motivation to study the effect of filamentarity and
to generalize its consequences, without the burden of worrying about microscopic details.
Indeed, measurements on different samples could lead to different resistive and superfluid
responses having, in general, a different amount of mesoscopic disorder, which is intrinsic
and unavoidable in LAO/STO heterostructures. Our theoretical framework provides insights
both into the amount and the spatial distribution of this emerging mesoscopic inhomogeneity.
For the present disordered sample, our theoretical investigation provides a coherent rationale
for the observed peculiar experimental features in terms of a filamentary superconducting
structure embedded in a metallic matrix and following their evolution with carrier density
and temperature.

4.1 Resonant microwave transport experiment

In this work, we used the same sample and experimental setup of Ref. [58]. While in [58] only
the data at the lowest temperature were presented, here we perform a complex conductivity
analysis of the back-gated [001] LAO/STO sample throughout an extensive carrier density
and temperature range. We refer the reader to Appendix B and [58] for further experimental
details.

In Fig. 2b and c we report the real and imaginary part of the complex conductivity as a
function of temperature for a resonant frequencyω0/2π= 0.36 GHz and several values of the
gate potential. Panel (c) reports the imaginary part of the conductivityσ2(ω0, T ), proportional
to the superfluid stiffness, displaying two markedly different temperature trends, according to
the applied gate voltage. In the OD regime, with gating between 28 V and 50 V, the superfluid
stiffness grows slowly with reducing the temperature below 0.16 K and then rapidly increases
with a downward curvature between 0.11−0.13 K. In the UD regime, from 26 V down to 8 V,
the superfluid stiffness grows much more gradually, with an upward curvature down to lower
temperatures 0.04−0.07 K. A similar dichotomous behaviour is observed in the real part of
the conductivity σ1(ω0, T ) (panel b): in the OD regime, a rather sharp peak is observed at
temperatures corresponding to the rapid increase of the superfluid stiffness, while in the UD
regime, σ1(ω0, T ) presents a much broader peak or no peak at all. In both cases, however,
the real part of conductivity stays finite at the lowest temperatures, assuming values that are
non-monotonic and maximal around gate voltages ∼ 20− 24 V.

This crossover is even more evident if one looks at the whole picture as a function of the
gate voltage. While the voltage dependence of the critical temperature Tc vs VG (green dots in
Fig.2a) does not give any clear indications, the temperature at which σ1 reaches its maximum
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Figure 2: (a) Critical temperature dome Tc as function of the gate voltage VG (green
dots) experimentally measured in LAO/STO interfaces. In the same plot we com-
pared Tc(Vg) with the extrapolated temperature of the peak in σ1 in Kelvin (T (σmax

1
grey dots). Finally, in red (right axis), we display ∆exp = 4e2JsRN/ħhπ. In a bare BCS
scenario, this should be proportional to the Tc dome, i.e., ∆BCS = 1.76kB Tc (right
axis). The dashed vertical line indicates the crossover from the UD and the OD sys-
tem at VG = 26 V. (b) The imaginary, σ2(ω0, T ), and (c) the real part, σ1(ω0, T ), of
the complex conductivity measured as functions of temperature and at different gate
voltages. The microwave frequency experimentally used, i.e. the circuit’s resonant
frequency, is ω0/2π= 0.36 GHz.

value (T (σmax
1 ) in grey) gives a rather clear idea of the crossover between the UD to the OD

regimes. At the same time, the saturating value of Jmax
s = Js(T → 0) shows how the system

falls outside the theoretical framework of conventional BCS superconductors. Within the
standard BCS scenario, the superconducting gap at zero temperature ∆0 is expected to follow
the Tc dome, being ∆0 ≈ 1.76kB Tc; in Fig. 2a, we report in green ∆BCS (right axis). On the
other hand, assuming the dirty limit, the same gap should behave as∆0 ∼ Js(0)RN . We display
in red (right axis) the quantity ∆exp = 4e2JsRN/ħhπ, to underline once again the discrepancy
of such measurements with the BCS scenario [58]. The deviation observed, i.e., ∆exp <∆BCS,
is consistent with our idea of filamentary superconductivity presented in Section 2.

5 Theoretical results and their interpretation

Despite its conceptual simplicity, the RIN model is complete and flexible enough to reproduce
the rather unconventional trends experimentally observed. By lowering T , the bonds with
T i, j

c ≥ T become superconducting, so that the SC network nucleates inside the normal-metal
matrix with specific signatures depending on the geometric structure (more or less dense fil-
aments), the disorder (represented by the width of the random distribution of T i, j

c ), and on
the characteristics of the mesoscopic metallic/superconducting regions, as modelled by the
parameters Rm, Lm, Rs, Ls. We anticipate that the choice of the values for the “microscopic”
resistors and impedances are made to match the experimental measurements at our disposal
assuming an angular frequency ω0 = 2× 109 s−1. More details can be found in Appendix C.
Our goal is to infer and understand micro- and mesoscopic features of the electronic condensate
from the macroscopic phenomenology given by transport measurements.
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5.1 Effect of the geometry and disorder on the resistance and superfluid be-
haviours

The geometry of the superconducting cluster and the widths σb and σ f of the random distri-

bution, P(T i, j
c ), of the individual SC bonds critical temperatures T i, j

c encode the most promi-
nent peculiar property (1) of the LAO/STO superconductor [Fig. 1(c)]. Starting from the nor-
mal state, by lowering the temperature, the resistance smoothly decreases, mostly due to the
puddle-like regions becoming superconducting; if these were absent, with a SC cluster only
made of filaments, the decrease of R(T ) would indeed start in a much sharper way. We thus
investigated the relevance of both filaments and puddles.

The filamentary structure is built via a diffusion-limited aggregation (DLA) algorithm [13,
48] (see Methods for details). We stress here that extensive iterations of the DLA algorithm
would produce a fractal-like geometrical structure, but in our case this is instead a mere tech-
nical tool to produce a random assembly of filamentary structures on our finite square-lattice
cluster. The superconducting puddles, with a given radius rpd , are afterwards added to the
cluster, to reach the total superconducting density w we fixed. It follows that the larger rpd ,
the less numerous the puddles will be. Their role is fundamental in explaining the first down-
turn of R(T ) but, once they became superconducting, their size is almost irrelevant to the
complex conductivity properties. Indeed, the superfluid rigidity and the residual dissipation
are mainly determined by the structure and the density of the filamentary components of the
superconducting cluster, while the puddles play a minor role. Specifically, by lowering T , the
filamentary structures become more and more superconducting and, when a superconducting
percolating path forms, the resistance vanishes at the global critical temperature Tc , R(Tc) = 0.
Due to the nearly one-dimensional (1D) character of the filamentary structures and their poor
connectivity, the resistance stays low but finite until the very last resistor of the percolating
path is switched off. That explains why the filamentary geometry is crucial to account for the
tailish behaviour of R(T ).

How broad the transition and how long the tail depends instead on the width σ f ,b of

the Gaussian distribution of the T i, j
c s, accounting for the microscopic impurities generically

present in real systems. At the same time, the filamentary percolating cluster is formed by
a low fraction of superconducting bonds with a nearly 1D structure. Therefore, they cannot
result in a large rigidity of the superconducting condensate. Indeed, a rather small σ2∝ Js is
found for T ≲ Tc . The long tails observed in LAO/STO interfaces in both R(T ) and Js(T ), which
also lead to the apparent separation of the two curves, find in this way a natural explanation
[Fig. 1(c)].

By further lowering the temperature, more and more bonds in the random filamentary
subset become superconducting, leading to the more or less rapid growth of the condensate
rigidity depending on the specific features of the superconducting subset. Quite obviously, the
more or less dense (and interconnected) character of the filamentary structure determines the
more or less rapid growth and the intensity of the condensate rigidity Js (See Appendix A).

5.2 Effects of the internal character of the mesoscopic metallic and supercon-
ducting regions

Besides the effect of the geometry and density of the filaments, the more or less rapid growth of
σ2∝ Js at some T < Tc – peculiarity (2) of Fig. 1(c) – is also dependent on the internal rigidity
of the individual mesoscopic superconducting bonds, via their parameter Ls. The smaller the
local inductance Ls, the more rigid the individual mesoscopic superconducting bond and the
more rapidly and intensely the overall rigidity grows.

In Fig. 3, we show how both the two experimentally observed regimes, OD and UD, can be
successfully captured by fixing the geometric structure of the superconducting cluster, shown
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Overdoped regime

Underdoped regime

Figure 3: Temperature dependence of complex conductivity and DC resistivity calcu-
lated with the RIN model to describe the (a) OD and (d) UD system (real part in black,
imaginary part in red and DC resistivity in green). The superconducting structure to
which they correspond are shown in panels (c) and (f) respectively; the colour code
refers to the local critical temperatures, yellow to blue regions are superconducting,
while the metallic matrix is in the white background. Both cases in (a) and (d) refer
to the same geometry of the underlying RIN, with total SC density w= 0.43, and the
same parameters of the metallic matrix Rm = 200Ω, Lm = 2nH. Instead, the param-
eters of the superconducting cluster are different: (a) OD: Rs = 2000Ω Ls = 0.7nH
(d) UD: Rs = 90000Ω Ls = 2 nH as well as the width of the T i, j

c distribution for the
filamentary SC regions, as visible from the corresponding panels in which (b) OD:
σb = 0.03K, and σ f = 0.02K and (e) UD: σb = 0.03K, and σ f = 0.05 K. This last
difference is highlighted in panels (c) and (f) where we show the corresponding dis-
tributions of T i, j

c for the puddles and the filamentary structure.

in Figs. 3(b) and 3(e), whose filamentary character keep R(T ) and Js(T ) well separated. By
simply varying the value of the inductances Ls and the width of the random distribution P(T i, j

c )
for both the filamentary, σ f , and the puddle-like SC regions, σb. For the OD regime [see
Fig. 3(a)], by fixing Ls = 0.7 nH, σ f = 0.02 K, and σb = 0.03 K, we recover both the steep
increase of σ2(T ) (red curve) and the peak of the optical conductivity σ1(T ) (black curve)
found experimentally. At the same time, for the UD regime [see Fig. 3(d)], we recover the
slow increase of σ2(T ) as well as the much broader peak of σ1(T ) by employing a larger value
of Ls =2.0 nH and ima slightly wider distribution of critical temperatures for the filamentary
SC bonds, with σ f =0.05 K [see Figs. 3(f) and 3(c)].By comparing our calculations with the

experimental results, we can affirm that: a) disorder, i.e., the width of the T i, j
c distributions, is

comparatively larger in UD systems and b) the local mesoscopic superconducting regions, in
the UD regime, have a smaller intrinsic rigidity, i.e., a larger inductance, likely as a consequence
of a lower carrier density.

Finally, we address the issue of the substantial residual normal-state real conductivity at
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T ≪ Tc [peculiarity (3) of Fig. 1(c)]. According to our analysis (see also Appendix A and
C), we found that at low temperatures the resistance of the residual metallic bonds largely
determines the real (dissipative) part of the complex conductivity, with the residual σ1 being
inversely proportional to Rm. At the same time, a sparser geometry of the filaments will re-
sult in a more abundant residual metallic component, hence enhancing the dissipation in the
superconducting state. The use of different values for the internal character of the resistors,
Rs and Rm, reflects the presence in [001] LAO/STO samples of two different types of carriers,
with different mobilities, whose relative density depends on the gating applied (see Appendix
C for details).

6 Discussion and concluding remarks

In summary, we presented here a detailed theoretical interpretation of the complex conductiv-
ity experimentally measured in a [001] LAO/STO interface. Our theoretical analysis shed light
on the intriguing peculiar features experimentally observed, revealing that they stem from the
interplay between the filamentary structure of the superconducting cluster, embedded in a
normal metal, and disorder, resulting in a random distribution of local critical temperatures.
The main consequence is that the superfluid properties, in particular, the rigidity of the con-
densate, primarily depend on the geometrical structure of the superconducting cluster and
only secondarily on the density of the superfluid matter. This result is highly nontrivial since
the concepts of superfluid density and stiffness are often used as synonymous. We point out
that, by neglecting the role of phase fluctuations, that reduces the superfluid stiffness with-
out affecting the density of carriers, this identity is only true for homogeneous systems and
can be strongly violated when the system is highly inhomogeneous. Our LAO/STO interface
can therefore be taken as an example for a new paradigm of superconducting matter. We are
aware that other interfaces and low-dimensional superconductors do not always display the
same peculiar features, but we here point out precisely the physical ingredients leading to such
anomalous behaviours, which may or may not be present depending on the amount of inho-
mogeneous charge distribution (resulting in regions with different local critical temperatures)
and its more or less filamentary spatial structure.

The very starting point of the model, where disorder is encoded both in the randomly
generated filamentary-puddle superconducting cluster and in a random distribution of local
critical temperatures, may seem at odds with the very clean and structurally ordered LAO/STO
interface. However, the presence of filamentary superconducting regions in [001] LAO/STO
interfaces has been experimentally assessed both at the micron [56,57] and at the submicron
[55] scales and it is supported by many experimental and theoretical evidence.

The main message of this work is that the peculiar features of the complex conductivity
data arise from the inhomogeneous filamentary character of the superconducting regions and
the main differences between OD and UD systems stem both from the more or less broad
distribution of local Tc ’s (i.e from the relative relevance of disorder) and from the microscopic
characteristics resulting in different values of the parameters Ls, Lm, Rs, Rm. In particular, we
were able to identify the specific physical effects of each handle of the model on macroscopic
transport: the resistivity and inductance of the various regions, how rapidly the normal metal
becomes superconducting by decreasing T , due to the width of the T i, j

c distribution associated
with the microscopic disorder, and so on.

Finally, beyond its theoretical understanding, the study of inhomogeneous filamentary
electronic condensates can pave the way for a systematic control and exploitation of super-
fluid systems with extremely small phase rigidity. This may result in interesting applications
for sensors; systems with stiffness that can be tuned by gating and/or temperature; or where
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the features of a Josephson-junction array can continuously be tuned from nearly homoge-
neous BCS to quasi-1D superconductors. Last but not least, filamentary superconductors in
the presence of large Rashba spin-orbit coupling could provide a new path for the emergence
and observation of Majorana fermions [60].
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A RIN equations and geometry of the superconducting network

A.1 RIN equations and algorithm

We present here the equations for the bonds and nodes of the RIN model. A sketch of the system
is shown in Fig. 4. We use open boundary conditions to have a more realistic description of a
finite sheet of impedances with an external applied voltage V ext at the left-right extrema. It is
worth noting that the parent model of the RIN, namely the RRN model, is recovered forω= 0
so Z i, j

ν = Ri, j
ν .

Kirchoff’s and Ohm’s equations are solved linearizing the problem as

Â · X⃗ = B̂ (1)

where B̂ contains the known terms, i.e., the external voltage, which can be either V or zero, Â
is a sparse matrix, whose elements of a single row can contain at most three non-zero terms,
which can be either ±1 or Zi, j; X⃗ is the vector containing all the unknown (complex) currents

I i, j
ν , with ν = x , y , and (complex) potentials Vi, j . Note that the boundary condition V ext is a

real value and the total number of complex equations is N2+2N(N−1) = 3N2−2N , where N is
the linear size of the network. Once Eq. 1 is solved for X⃗ , we compute the effective impedance
of the whole system simply as:

Ztot =
V ext

∑

i, j I i, j
x

(N − 1) (2)
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Zy
i,j

Zx
i,j

(i,j) 1,1

N,1 N,N

1,N

Vext 0
Zν

i,j

=
Rν

i,j+iωLν
i,j

Figure 4: Scheme of the impedance network with open boundary conditions. The
currents are positive when entering in the node, negative if exiting (upper left
sketch). Each impedance in the ν direction is Zν = Ri, j

ν + iωL i, j
ν . The various colors

correspond to the 5 different domains: the bulk domain 1 is in black, the upper and
lower edges corresponds respectively to domains 2 and 3 in green (i = 1) and blue
(i = N) and a potential difference V is applied to the left and right edge, the former
corresponding to domain 4 in red ( j = 1), the latter in orange is domain 5 ( j = N).

The equations for the 5 different domains and showed with different colors in in Fig. 4 are
the following.
Domain 1 - bulk (black):











Vi, j − Vi, j+1 − Z i, j
x I i, j

x = 0

Vi, j − Vi+1, j − Z i, j
y I i, j

y = 0

I i, j−1
x − I i, j

x + I i−1, j
y − I i, j

y = 0

(3)

where i, j runs over 2, N − 1.
Domain 2 - upper edge (i = 1) (green):











V1, j − V1, j+1 − Z1, j
x I1, j

x = 0

V1, j − V1+1, j − Z1, j
y I1, j

y = 0

I1, j−1
x − I1, j

x − I1, j
y = 0

(4)

where i = 1 and j runs over 2, N − 1
Domain 3 - lower edge (i = N) (blue):

¨

VN , j − VN , j+1 − ZN , j
x IN , j

x = 0

IN , j−1
x − IN , j

x + IN , j−1
y = 0

(5)

i = N and j running over 2, N − 1.
Domain 4 - left edge ( j = 1) (red): Boundary conditions: the nodes are all set to a V ext

external potential, so the currents along y are all zero.










Vi,1 = V i = 1, N

Vi,1 − Vi,2 − Z i,1
x I i,1

x = 0 i = 1, N

I i,1
y = 0 i = 1, N − 1

(6)
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Domain 5 - right edge ( j = N) (orange): Boundary conditions.
¨

Vi,N = 0 i = 1, N

I i,1
y = 0 i = 1, N − 1

(7)

Note that the complex nature of such equations (if ω ̸= 0) doubles the actual number
of unknown elements in Eq. 1. Hence, numerically, we double the matrix Â in order to solve
separately Eq. 1 for the real and imaginary parts. We use a sparse matrix to save only non-
zero elements and we solve the two systems of linear equations using a standard algorithm for
sparse linear systems [61].

A.2 Generation of the fractal

The generation of the superconducting filamentary structure is obtained by means of diffusion-
limited aggregation (DLA) algorithm [13, 48]. Of course, this choice is arbitrary and it does
not rest on a straight physical reason nor it aims at demonstrating that the superconducting
regions have some defined fractal-like structure. It is simply a technical way to represent
strongly inhomogeneous systems with space correlation and connectivity over large distances.
The fractal-like structure is grown by diffusing from left to right nRW random walk particles
in a square of size L□ larger than the size (L × L) of the square lattice network (L□ > L), that
we investigate in the complex conductivity calculations. We allow each of the nRW to move
rDLA bonds (steps) to the right and yDLA bonds up or down, with equal probability, whereas
in the RRN calculations presented in Refs. [13,48] rDLA = yDLA = 1. Hence, we can construct
a more or less dense network of filaments just by tuning those parameters, keeping a higher
fraction of the metallic residue without preventing percolation.

a)                                                     b)

Figure 5: Examples of filamentary structures constructed via the “improved” DLA
algorithm launching nrw =15 000 diffusing particles across a 350×350 square lattice.
In orange are shown the obtained clusters with (a)rDLA = 10, yDLA = 10 and (b)
rDLA = 2, yDLA = 2. Highlighted in blue is the metallic region that defines the final
100× 100 square lattice.

This procedure is iterated until the particle stops, as soon as it reaches the top, bottom or
right edge where it sticks; if it reaches a site already occupied by one of the previously diffused
particles, it takes a step back and stops thereby increasing the cluster of aggregated particles:
the cluster obtained is defined by all the bonds connecting two stuck particles. From this
super-network, a sub-network of size 100×100 is selected and it will be the superconducting
backbone of the RIN. Then, patches of radius rpd will be superimposed until a fraction w of su-
perconducting resistors is reached. In Fig. 5, are shown two 250×250 different super-network
constructed launching nRW = 15000 particles. In panel a, the (orange) superconducting frac-
tal is built from random walkers allowed to do rDLA = 10 steps on the right and yDLA = 10 steps
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on the left, the same used for the results shown in Fig.3, while in panel b the constraints were
rDLA = 2, yDLA = 2. In both panels, the region coloured in blue is the metallic background of
the final 100× 100 network.

For the sake of completeness, we show here how a denser fractal geometry modifies the
superfluid and resistive responses. In Fig. 6 we present the RIN results obtained for a cluster
constructed from a rDLA = 2, yDLA = 2 fractal, all other parameters being equal to the ones
used in Fig. 3. By looking at panels a and d of Fig. 6 one can observe how the shapes of the
curves σ1, σ2 as functions of the temperature are qualitatively different from their counter-
parts presented in Fig. 3. In particular, the saturating value of σ2 is increased by the denser
geometry of the underlying fractal. Concerning instead the optical conductivity σ1, one can
observe that the saturating value at T = 0 is unchanged with respect to the geometry of the
fractal, whereas its generic behaviour and, particularly, its peak are non-trivially dependent on
the filamentary geometry. That occurs despite the fact that the total number of superconduct-
ing bonds is the same in all four cases presented in Figs. 3 and 6, being w = 0.43, revealing
once again the fallacy, in inhomogeneous systems, of the assumption that superfluid density
is equivalent to superfluid stiffness. One can also note that the probability distributions P(Tc)
(panels b and e) are only slightly changed by the different geometry.

B Resonant microwave transport experiment

In this work, we used 8 uc-thick LAO layers grown on 3×3 mm2 (001) STO single crystals by
Pulsed Laser Deposition (PLD). The substrates were first treated with buffered HF to ensure a
TiO2 termination of the surface. The LAO layer was deposited at a temperature of 800 ◦C in an
oxygen partial pressure of 1×10−4mbar. PLD was performed with a KrF excimer laser at a rate
of 1 Hz with an energy density of 0.56-0.65 J cm−2. After the growth, a weakly conducting
metallic back-gate of resistance∼100 kΩ, to avoid microwave shortcut of the two-dimensional
electron gas (2DEG) is deposited on the backside of the 200 µm thick STO substrate.

Resonant microwave transport measurements were performed using a setup identical to
that described in Reference [58] and the same approach was used to extract the complex
conductivity of the oxide 2DEG. In short, the LAO/STO sample was inserted into a parallel RLC
electrical resonant circuit to perform microwave measurement in a reflection configuration as
already used to probe the SrTiO3 and KTaO3 based superconducting interfaces [58, 62, 63].
Fig. 7 provides the equivalent sample electrical circuit. Inductor L1 and resistor R1 are Surface
Mounted microwave Devices (SMD) and capacitor CSTO represents the contribution of the STO
substrate itself in parallel with the 2DEG. Because of the high dielectric constant of STO at
low temperature (i. e. ε ≃ 24000), CSTO dominates the circuit capacitance. Cp are protective
capacitors that avoid dc current to flow through L1 and R1 without affecting the resonance. A
bias tee allows measuring both the dc and ac microwave transport properties of the 2DEG at
the same time.

In the normal state, the sample circuit resonates at the frequency ω0 =
1p

L1Csto
, which can

be determined by measuring the reflection coefficient of the sample circuit Γ (ω) = Ain

Aout . The
resonance manifests itself as an absorption dip in the magnitude of Γ (ω) accompanied by a 2π
phase shift. In the superconducting state, the 2DEG conductance acquires an imaginary part
σ2(ω) =

1
Lkω

that generates a shift of ω0 towards high frequencies since the total inductance

of the circuit becomes Ltot(T ) =
L1 Lk(T )

L1+Lk(T )
(Lk is the kinetic inductance of the 2DEG). σ2, or

equivalently the superfluid stiffness Js(T ) can thus be extracted from the resonance shift for all
gate voltage values. Likewise, the depth of the resonance is controlled by the dissipation of the
sample circuit and gives access to the temperature-dependent σ1 of the 2DEG. In our experi-
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Overdoped regime

Underdoped regime

Figure 6: Temperature dependence of complex conductivity and DC resistivity cal-
culated with the RIN model using the same parameters and probability distributions
of Fig. 3 but with a denser fractal geometry. (a) Same parameters used to describe
the OD regime and (d) the UD regime (real part in black, imaginary part in red and
DC resistivity in green). The superconducting structure to which they correspond are
shown in panels (c) and (f) respectively; the colour code refers to the local critical
temperatures, yellow to blue regions are superconducting, while the metallic matrix
is in the white background. Both cases in (a) and (d) refer to the same geometry of
the underlying RIN, with total SC density w= 0.43, and the same parameters of the
metallic matrix Rm = 200Ω, Lm = 2 nH. Instead, the parameters of the supercon-
ducting cluster are different: (a) OD: Rs = 2000Ω Ls = 0.7nH (d) UD: Rs = 90000Ω
Ls = 2nH as well as the width of the T i, j

c distribution for the filamentary SC re-
gions, as visible from the corresponding panels in which (b) OD: σb = 0.03 K, and
σ f = 0.02K and (e) UD: σb = 0.03K, and σ f = 0.05 K. This last difference is high-

lighted in panels (c) and (f) where we show the corresponding distributions of T i, j
c

for the puddles and the filamentary structure.

Z0 Csto

CpCp

L1R1

LAO/STO

Ain

Aout
Idc

Z0

Idc

Z 2
D

E
G

Figure 7: Sketch of the microwave measurement setup.
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ment, Js(T ) and σ1 can be directly extracted from the measured data for most of the regions
of the phase diagram. Nevertheless, a calibration procedure can be applied to improve the
precision of the measured quantities. It involves the realization of three known impedances of
the sample circuit using three different gate voltage values. Details on the calibration method
including a comparison between calibrated and uncalibrated data can be found in reference
[58]. Uncertainty in the determination of the absolute value of σ2 is estimated to be lower
than 15% and the uncertainty on the absolute value of σ1 is estimated to be lower than 10%.
In both cases, the relative uncertainty in the temperature dependence is marginal.

For the sake of completeness, the temperature dependence of R, σ1 and σ2 for different
back gate voltages ranging from 8 to 50V are reported in Fig. 8.

C Choice of the parameters

Besides its overall geometrical structure – filamentary density and broadness of the T i, j
c distri-

bution – the model is endowed with local parameters characterizing the transport properties of
the individual mesoscopic regions, both the metallic (Rm, Lm) and the superconducting (Rs, Ls)
ones. While Lm plays a minor role at any temperature, the resistivity of the metallic regions
is crucial to determine the dissipative residual character of the system at low temperature:
the lower is Rm, the higher is σ1 [peculiarity (3) in Fig. 1(d)]. At the same time, the value of
Rs is immaterial in the same low-T regime, but is fundamental in fitting the resistivity in the
overall normal state R(T > Tc). Ls, instead, determines the local rigidity of the condensate
inside each mesoscopic superconducting region and plays a relevant role in determining the
global rigidity: the lower is Ls the higher is the saturating value of σ2 and the steeper is its
growth. The choice of Rs and Rm becomes rather stringent in UD systems, where the large
low-T dissipation requires rather small values of Rm, while R(T ) is rather large at high T . This
requires the use of high values of Rs. Although this might seem at odds with the idea that the
superconducting regions correspond to those regions where the electron density is higher, this
choice of parameters can find a rationale by carefully considering the two families of carriers
appearing in these LAO/STO interfaces. As discussed in Ref. [64], the 2DEG can be effectively
described in terms of low-mobility and high-mobility carriers (LMC and HMC, respectively),
the latter being ultimately responsible for the superconductivity onset. Indeed, one could ar-
gue that the density of states (DOS) of the superconducting regions, i.e., the effective electron
mass, is large in spite of a small fraction of HMC and leads to a large local resistivity.

The mobility of these few carriers can be high if the small scattering compensates for the
larger mass. At the same time, the metallic regions could have a small DOS, preventing them
from becoming superconducting, but a large number of LMC can result in a comparatively
smaller resistivity. To be more quantitative, the values extrapolated in [64] for the density of
the two carriers n1, n2, for LMC and HMC, respectively, and their mobility µ1,µ2, give us the
order of magnitude for the ratio Rm/Rs in the UD and OD regime. In particular, Rm

Rs
= n1µ1

n2µ2
∼ 30

for VG ≃ 50 V and Rm
Rs
= n1µ1

n2µ2
∼ 100 for VG ≤ 25 V Finally, having an estimate of the effec-

tive masses of the two carriers, we can also extrapolate the order of magnitude of the ratio

L2/L1 = L f /L0. Being m∗2/m
∗
1 ∼ 0.07 [65] and n1/n2 ∼ 100, we have L2

L1
=

L f
L0
≃ m∗2

m∗1

n1
n2
≃ 7.

We report in Fig. 9 the real σ1 and imaginary σ2 parts of the conductivity and the DC
resistivity R at various Rm and Ls for both underdoped and overdoped regimes. We use as a
reference the cases discussed in Section 5, reporting panels a and d in Fig. 3 in panels a and
d of Fig. 9, hence referring to Fig. 3c-d and d-e for the corresponding probability distributions
P(Tc) and the fractal geometry. As one can see looking at panels b and e of Fig 9, an increase of
Rm acts differently on bothσ1, σ2 curves. Whereasσ2 is only suppressed by less than 0.01Ω−1
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Figure 8: Experimental DC resistivity (green, right axis), real (black, left axis) and
imaginary part of the conductance (red, left axis) plotted as a function of temperature
for different values of the gate potential 8V≤ VG ≤ 50 V.
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at T = 0, the real part of the conductivity, σ1, gets significantly reduced by larger values of
Rm. Conversely, a decrease in Ls from a value 2 nH to 0.7 nH results in the increase of both
σ1 and σ2, acting primarily on the latter one. For the OD case, this effect can be observed by
comparing panels c and a, whereas for the UD case, one can compare panels d and f of Fig. 9.

It is worth noting that even if Rm and Ls act on the behaviours in temperature ofσ1 andσ2,
they are not enough to capture the anomalous superfluid response experimentally observed.
Together with the fractal geometry, indeed, also a slight difference in the probability distribu-
tions P(Tc) – namely σ f = 0.02K for the OD case, σ f = 0.05K for the UD – of the filamentary
component is required in order to capture the qualitative experimental behaviour of both the
OD and UD regime, as already stated in Section 5.1.

Overdoped regime

Underdoped regime

Figure 9: Temperature dependence of complex conductivity (real part in black, imaginary
part in red and DC resistivity in green) and DC resistivity calculated with the RIN model using
the same parameters and probability distributions of Fig. 3 (see panels c and for the OD case,
panels f and g for UD). The tuning parameters are here Rm and Ls, both acting on the superfluid
response, keeping Lm = 2nH. OD regime: Rs = 200Ω. (a) Ls =0.7 nH and Rm = 200Ω, (b)
Ls =0.7 nH and Rm = 1000Ω, (c) Ls =2 nH and Rm = 200Ω. UD regime: Rs = 90000
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