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In the half-filled one-orbital Hubbard model on a square lattice, we study the effect of next-nearest neighbor
hopping on the single-particle spectral function at finite temperature using an exact-diagonalization + Monte-
Carlo based approach to the simulation process. We find that the pseudogap-like dip, existing in the density
of states in between the Néel temperature TN and a relatively higher temperature T ∗, is accompanied with a
significant asymmetry in the hole- and particle-excitation energy along the high-symmetry directions as well
as along the normal-state Fermi surface. On moving from (π/2, π/2) toward (π, 0) along the normal state
Fermi surface, the hole-excitation energy increases, a behavior remarkably similar to what is observed in the
d-wave state and pseudogap phase of high-Tc cuprates, whereas the particle-excitation energy decreases. The
quasiparticle peak height is the largest near (π/2, π/2) whereas it is the smallest near (π, 0). These spectral
features survive beyond TN . The temperature window TN . T . T ∗ shrinks with an increase in the next-
nearest neighbor hopping, which indicates that the next-nearest neighbor hopping may not be supportive to the
pseudogap-like features.

I. INTRODUCTION

Cuprates are archetypal systems of materials, which be-
sides showing uncoventional superconductivity, also exhibit
a wide variety of interesting but complex phases as a func-
tion of doping and temperature [1, 2]. Cu atom in the un-
doped/parent cuprates has 3d9 outermost electronic configu-
ration, which gets altered to 3d9L as a hole is doped [3]. L
indicates the fact that the doped hole resides instead on the
neighboring oxygen atoms, which forms a bridge between the
two neighboring Cu2+ as well as a square that surrounds a
Cu2+ ion. The hole binds to the Cu2+ ion leading to the
emergence of Zhang-Rice singlet [4, 5]. The electron dop-
ing, whereas, modifies the electronic configuration from 3d9

to 3d10. The low-energy physics involving either hole or par-
ticle doping have been studied quite extensively in the span
of last three decades within the one-orbital Hubbard model,
which has provided us with important insight into the under-
standing of correlation effects [6–11].

Photoemission studies at a temperature well above the
Néel temperature TN in the undoped cuprates such as
Sr2CuO2Cl2 [12] shows characteristics of the quasiparticle
excitations, which have several features similar to the one ob-
served in the pseudogap and d-wave superconducting phases.
First, the quasiparticle peak is sharp near (π/2, π/2) and gets
broadened on approaching (π, 0). Secondly, the hole excita-
tion energy is the least near (π/2, π/2) while it is the largest
close to (π, 0). The broad peak near (π, 0) gets sharpened
on doping hole. One-orbital Hubbard model with only near-
est neighbor hopping or t-J model couldn’t reproduce the fea-
tures in different studies based on different approaches. A cru-
cial role of long-range hopping was emphasized on later, es-
pecially, the next-nearest neighbor hopping within t-J model
often employed to study the hole dynamics [13–16].

A striking feature of the doping-vs-temperature phase dia-
gram of the high-Tc cuprates is the asymmetry with respect to
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hole or electron doping [1, 17]. In particular, the long-range
antiferromagnetic order (AFM) is found to survive up to only
a small hole doping of∼ 1% [18] whereas it is robust against a
relatively larger electron doping of ∼ 15% [19]. On the other
hand, the d-wave superconductivity as well as the pseudogap
phase exist in a comparatively wide range of hole doping.
Recent experiments suggest that the pseudogap phase found
upon hole doping may be marked with the presence of vari-
ety of symmetry breaking phonomena including the nematic
order [20], stripe order [21–23], short- or long-range charge-
density wave [24–27], pair-density wave [28] etc., while the
possibility of coexisting more than one of these is also not
ruled out.

The one-orbital Hubbard model with only nearest-neighbor
hopping t possesses particle-hole symmetry, therefore it can-
not describe the asymmetrical behavior of the phase dia-
gram. Earlier works suggest a crucial role for the next-nearest
neighbor hopping parameter t′ [13, 14], which allows the
hole/electron to hop within the same sublattice, in describ-
ing various spectral features [12], spin-wave excitation spec-
tra [29, 30], and the asymmetry of the phase diagram. For
the hole and electron doping, t′ is positive and negative, re-
spectively, thus bringing in frustration in the case of former.
In presence of next-nearest neighbor hopping, the AFM state
is known to be stabilized for a wide electron-doping region,
whereas even a single hole doping may prove to be detrimen-
tal to it [31]. Besides, the asymmetry introduced in the density
of states, t′ is also known to enhance the tendency towards
ferromagnetic order (FM) upon hole or electron doping [32].
Furthermore, the maximum value of the transition tempera-
ture Tc for the high-Tc cuprates may exhibit sensitiveness to
t′ [35].

The spectral properties in the half-filled Hubbard model
has been investigated by a variety of methods. While the
slave-boson [33] or -spin [34] meanfield theoretic approach
captures the Mott transition, they fail to incoporate the spa-
tial fluctuations in the order-parameter fields. The methods,
which go beyond mean-field theories, such as dynamial-mean
field theories (DMFT) [36, 37], cluster-perturbation theory
(CPT) [38, 39], determinant QMC [40–43] etc. suffer from
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finite-cluste size induced momentum resolution. Furthermore,
the QMC-based simulation face the sign problem in the ab-
sence of particle-hole symmetry when the next-nearest neigh-
bor hopping is taken into account. Even for the doping away
from half-filling, these methods may be applicable for only
a certain temperature range. For these reasons, they have
been employed mostly for the Hubbard model at half filling
with only nearest neighbor hopping. The spectral features, in
the hole-doped cases, were examined using the Hartree-Fock
meanfield [44], DMFT [45, 46], QMC [11, 47, 48], classi-
cal Monte Carlo [49, 50], Gutzwiller approximation [51] etc.,
where some of them focused on the correlation corresponding
to the d-wave superconductivity as well. Most of the work us-
ing variational Monte Carlo (VMC) has been largely restricted
for obtaining the ground-state phase diagram [52–54], how-
ever, a recent attempt explores the spectral features but only
without next-nearest neighbor [11]. In the absence of second-
neighbor hopping, the nature of hole-excitation energy may
retain its features even beyond TN with the peak height al-
most independent of the momentum along the normal-state
Fermi surface [55]. The peak-to-peak distance increases on
going from (π/2, π/2) to (π, 0) along the normal state Fermi
surface.

Not much is known about the variation of the single-particle
spectral features with temperature when t′ is incorporated
into a microscopic model such as Hubbard model at half fill-
ing. Does the peak-to-peak separation increase on including
t′? If the hole-excitation energy increases on moving from
(π/2, π/2) to (π, 0) then how does the particle-excitation en-
ergy vary? How do these spectral features evolve with change
in temperature? Answers to these questions are of significant
interest in order to understand the role of t′ on the pseudogap-
like behavior.

In this paper, we investigate the role of nearest-neighbor
hopping on the single-particle spectral function within one-
orbital and half-filled Hubbard model as a function of tem-
perature. We employ exact-diagonalization + Monte-Carlo
scheme based on parallelization to extract the characteris-
tics of single-particle spectral function at different temper-
ature. In order to handle a larger system size so that the
momentum resolution without any finite-size effect can be
achieved, traveling-cluster approximation (TCA) [56] and
twisted-boundary condition [57] are used additionally. We
arrive at the following major results for the single-particle
spectral function: on moving along the normal state Fermi
surface from (π/2, π/2) to (π, 0), (i) the hole- and particle-
excitation energy increases and decreases, respectively and
(ii) the height of the quasiparticle peak for the hole- and par-
ticle excitation decreases and increases, respectively. (iii) Be-
low TN , the spectral weight is significantly suppressed along
(0, 0) → (π/2, π/2) and (π, 0) → (0, 0) for the upper band
and along (π/2, π/2) → (π, π) and (π, π) → (π, π) for the
lower band. (iv) For T & TN , a relatively larger spectral
weight near (π/2, π/2) is continued to be noticed in compar-
ison to (π, 0). (v) The hole-excitation energy increases with
t′ and (vi) the dip in the density of states, which persists be-
yond TN becomes shallower with increasing t′ indicating that
the latter may be unfavorable for the pseudogap-like features,

which is also reflected in the behavior of momentum-resolved
spectral function.

II. MODEL AND METHOD

We start with the following one-orbital Hubbard Hamilto-
nian

H =
∑
i,δ,σ

ti,i+δd
†
iσdi+δσ − µ

∑
i,σ

niσ + U
∑
i

ni↑ni↓ (1)

where the operator d†iσ(diσ) creates (annihilates) an electron
with spin σ. δ is a vector which connects a given site to the
nearest neighboring and next-neighboring sites. ti,i+δ = -
t and t′ for the nearest and next-nearest neighbor hopping,
respectively. niσ = d†iσdiσ is the charge-density operator for
spin σ electron. U and µ are the onsite Coulomb repulsion
and chemical potential, respectively.

For the simulation, the grand-partition function used corre-
sponding to the original Hamiltonian given by Eq. (1) is

Z =

∫
DψDψ̄e−A[ψ,ψ̄], (2)

where the action [58]

A =

∫ β

0

dτ
∑
i,δ,σ

ψ̄iσ(τ)((∂τ − µ)δi,i+δ + ti,i+δ)ψi+δσ(τ)

+ U
∑
i

(
n2
i (τ)

4
−
(
~Si(τ) · r̂i

)2
)
. (3)

ψiσ(τ) and ψ̄iσ(τ) are the Grassman variables corresponding
to the operators diσ and d†iσ , respectively. The form of inter-
action term used in Eq. (3) follows from

ni↑ni↓ =
n2
i

4
− (Siz)

2. (4)

Siµ = 1
2

∑
α,β d

†
iασ

µ
αβdiβ is the µth component of local

electron-spin operator. Siz = ~Si · r̂ when the unit vector r̂ is
oriented along z axis. The Hubbard interaction has the SU(2)
rotational symmetry in spin space, therefore

ni↑ni↓ =
n2
i

4
− (~Si · r̂i)2, (5)

where the unit vector r̂ may now be oriented along any arbi-
trary direction.

To make further progress, we use Hubbard-Stratonovich
(HS) transformation to decouple the Hubbard interaction by
introducing two auxiliary fields, a scalar field φi(τ) coupled
to the charge density ni and a vector field mi coupled to the
spin of electron σi. This modifies the grand-partition function
to

Z =

∫ ∏
i

dψ̄idψidφidmi

4π2U
e−A(ψ̄i,ψi,φi,mi) (6)
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with contribution to the action due to the on-site interaction
being

Aint =

∫ β

0

dτ
∑
i

{
iφi
∑
σ

ψ̄iσψiσ −mi ·
∑
σσ′

ψ̄iσ~σσσ′ψiσ′

}
+

1

U

∑
i

(φ2
i + m2

i ). (7)

In the simulation, the Hubbard-Stratonovich fields are
treated as classical fields so that time (τ) dependence is ig-
nored. Next, we use the saddle-point approximation for the
scalar field φi, for which, the spatial and temporal fluctuations
are ignored, so that (U/2)〈ni〉 = U/2 at half filling. Thus, the
effective Hamiltonian can be shown to be

Heff =
∑
i,δ,σ

ti,i+δd
†
iσdi+δσ − µ̃

∑
i

ni −
U

2

∑
i

mi · ~σi

+
∑
i

U

4
m2
i

= He +Hcls, (8)

where µ̃ = µ − U/2. The field mi are scaled by mi →
U
2 mi so that it can be turned into a dimensionless field. Note
the term in the effective Hamiltonian Hcls = U

4 m
2
i , which is

treated as classical in the simulation process, i.e., the temporal
fluctuations are ignored. On the other hand, all the spatial and
thermal fluctuations are retained as described below.

The equilibrium configurations for the auxiliary field {mi}
are generated according to the following distribution

P{mi} ∝ Trd,d†e−βHee−βHcls (9)

where the trace over the fermionic degree of freedom cannot
be calculated exactly due to the terms in He coupled to the
classical fields. Therefore, the equilibrium field is generated
through MC sampling. In each MC update process, He is di-
agonalized and then the eigenvalues are used to calculate the
change in free energy of the system. ED + MC method allows
an access only to a small system size. The observables gen-
erated in the simulation suffer from the finite-size effect and
therefore limiting the access to a good momentum resolution.

The limitation posed for the momentum resolution can be
overcome upon combining three steps in the simulation pro-
cess. For each update process, instead of considering the full
lattice, only a small cluster of sites around the update site is
considered. Thus, the process involves the diagonalization of
Hamiltonian for the cluster (sizeNc×Nc) centered around the
update site. The computational cost is reduced by a factor of
∼ Nc/Nl, where Nl×Nl is the original system size [56]. We
use Nl = 40 and Nc = 8 throughout the current work. The
simulation can be further sped up by using parallelized up-
date process, where Np, a factor of total number of available
processors, sites can be updated simultaneously. The compu-
tational cost reduction in this step is achieved up to a factor of
∼ 1/Np [55, 59]. In order to reduce the finite size effect fur-
ther, we make use of twisted-boundary condition (TBC) [57],
where a superlattice is formed by repeating the original sys-
tem of size Nl×Nl and associated field in x- and y-direction
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FIG. 1. The (a) long- and (b) short-range AFM correlations as a func-
tion temperature for different t′ = 0.1, 0.2, 0.3 and 0.4. The long-
range correlation function shows relatively sharper rise for larger t′.
The short-range correlation function as defined in the text does not
vanish beyond TN and it may show weak dependence on t′.
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FIG. 2. The DOS as a function of energy ω at different temperatures
T/TN = (a) 1.0 and (b) 1.5 for various t′ = 0.1, 0.2, 0.3 and 0.4.
Unlike t = 0 case, the dip in the DOS may vanish completely at
higher temperature when the next-nearest neighbor hopping is incor-
porated.

Nt times. The spectral function calculated for such a superlat-
tice is equivalent to the spectral function of an effective system
size NlNt×NlNt. In order to calculate the spectral function,
which is to be discussed later, we use Nt = 6 which allows us
to access an effective system size of 240 × 240.

It may be noted that, in the absence of particle-hole sym-
metry (t′ 6= 0), the chemical potential fluctuates with temper-
ature, therefore, the simulation requires to check the chemical
potential and update the same in accordance with half filling
at intermediate steps. This enhances the computational cost of
the simulation. Another factor which is responsible for raising
of the computational cost is the frustration introduced by the
next-nearest neighbor hopping in the system, which delays the
thermal equiliberation.
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FIG. 3. (a) t′ − T phase diagram based on the onset temperatures
TN and T ∗ described in the main text, where paramagnetic metallic
(PM), pseudogap-like (PG) and AFM-insulating (AFM-I) phases are
shown. The region occupied by the pseudogap-like phase is reduced
with increasing t′ indicating antagonistic behavior between the two.

The simulation process is started at a temperature, which
is nearly twice of TN , and then the system is cooled down
in small steps of temperature. At each temperature, first thou-
sand MC sweeps are used to reach equilibrium field configura-
tion {mi}. In the next thousand sweeps, data related to struc-
ture factor, spectral function etc. are obtained for different
thermal configurations so as to carry out thermal averaging.
We set U to be 4t, which is not far from the screened value
as recent works suggest [60]. Since the Hubbard model can
be mapped to the Heisenberg model with the exchange cou-
pling 4t2/U , it can be noted that with larger U , one expects a
larger broadening in the spectral function. This follows from
the softening of the AFM state with increasing U .

III. RESULTS

Fig. 1(a) shows the structure factor for the AFM state with
ordering wavevector Q = (π, π) given by

S(Q) =
1

N2

∑
i,j

〈mi ·mj〉eiQ·(ri−rj), (10)

where ri is the position vector of site i and mi is the magnetic-
vector field at that point. Two features are easily noted. First,
the structure factors for different t′ approach the same value as
T → 0, which agrees with the Hartree-Fock approximation at
low temperature. Then, the rise in S(Q), which is indicative
of the onset of long-range AFM order, becomes sharper with
increasing t′ because TN gets smaller. It may be recalled that
S(Q) remains largely unaffected by the system size except in
the vicinity of T ∼ TN [55].

Fig. 1(b) shows the onset of short-range magnetic order de-

FIG. 4. Quasiparticle dispersion for t′ = 0.3 along the high symme-
try directions for three different temperatures at T/TN = (a) 0.5, (b)
1.0, and (c) 1.5.
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FIG. 5. A(k, 0) along the high-symmetry directions for t′ = (a) 0.1
and (b) 0.3 at several different temperatures T/TN = 0.7 , 1.0, 1.2
and 1.5.

fined by

φ1 =
1

4N

∑
〈i,j〉

〈mi ·mj〉, (11)

where 〈i, j〉 denotes summation over nearest neighbors. It ap-
pears that φ1 is not independent of t′. In particular, it dimin-
ishes with a rise in t′ when T & TN . Below TN , however,
the behavior of short- and long-range magnetic order is simi-
lar. Therefore, an important question arises, is non vanishing
of the short-range magnetic correlation function linked to the
pseudogap-like features in the spectral function? Perhaps, the
nature of rise in the structure factor in the vicinity of TN as
well as short-range magnetic correlations can be an indicator
for the pseudogap-like feature. As we will see below that a
sharper rise in the structure factor indicates a smaller temper-
ature window for the pseudogap-like features and vice-versa.
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FIG. 6. A(k, ω) as a function of ω for (a-c) t′/t = 0.1 and 0.3 (d-f)
at three different temperatures T/TN = 0.5, 1.0, 1.5. The curves at
the bottom and top correspond to the points (π/2, π/2) and (π, 0),
respectively, while the others to the points in between as one moves
from (π/2, π/2) to (π, 0) along the normal-state Fermi surface.
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FIG. 7. The hole-excitation energy calculated with the help of spec-
tral function A(k, ω) as one moves on the Fermi surface from along
X′ = (π/2, π/2)→M′ = (π, 0).

Fig. 2 shows the density of states (DOS) calculated for
T/TN = 1 and 1.5 using

N(ω) =
∑
q,λ,i

|ψq,λ(i)|2δ(ω − Eq,λ). (12)

Here, Eq,λ and ψq,λ are the eigenvalues and eigenvectors for

the whole superlattice. It is not difficult to notice the persisting
pseudogap-like dip in the DOS at the Néel temperature and
beyond. However, most interestingly, the dip becomes shal-
lower with rising t′ and it can be seen to be almost absent for
t′ ∼ 0.4 near T/TN ∼ 1.5 and beyond, whereas it is present at
T/TN ∼ 1. Thus, the next-nearest neighbor hopping appears
to be unfavorable for the pseudogap-like features beyond TN .
This can be noticed also in the t′ − T phase diagram where
the temperature windows for both the long-range AFM order
as well as for the pseudogap-like phase shrinks with rising t′.
We have chosen onset temperature of the AFM order to be
the temperature where S(Q) starts to rise from zero. Simi-
larly, the onset temperature T ∗ of the pseudogap-like phase
, marked by presence of dip in the density of state, is deter-
mined by the condition when there is no further change in the
dip of the DOS or the dip disappears as temperature rises.

Next, we examine the evolution of quasiparticle dispersion
as a function of temperature using the single-particle spectral
function

A(k, ω) =
∑
q,λ

|〈k|ψq,λ〉|2δ(ω − Eq,λ), (13)

where 〈k|ψq,α〉 =
∑
l

∑
i〈k|l, i〉〈l, i|ψq,λ〉, and l, i are super-

lattice and site indices, respectively. Fig. 4 shows the quasi-
particle dispersion for t′/t = 0.3 a value close to the one
obtained through various estimates for high-Tc cuprates [30,
61, 62]. Well-formed but asymmetrical gap can be seen
near (π/2, π/2) as well as (π, 0). The hole- and particle-
excitation energies are the least near (π/2, π/2) and (π, 0),
respectively. The gap does not disappear even at T/TN = 1
and beyond, which is evident from the suppression of spec-
tral weight at the Fermi level. More specifically, the gap dis-
appears near (π/2, π/2) relatively more quickly with rising
temperature and it can be seen to persist near (π, 0) even at
a relatively higher temperature. Another band with a rela-
tively smaller spectral weight is found along (0, 0) → (π, 0),
(0, 0) → (π/2, π/2), and (π/2, π/2) → (π, 0), which disap-
pears near TN and beyond. In order to compare the quasipar-
ticle spectral weight along the high-symmetry directions, we
also plot A(k, 0) as shown in the Fig. 5. The spectral weight
is the largest near (π/2, π/2) and (π, 0), with an increasing
peak height with t′. Elsewhere, it is suppressed to be neglige-
ably small. In addition, the peaks height changes drastically
near T/TN ∼ 1 as expected but continues to have a very small
but non zero value even below T/TN = 1 in contrast with the
Hartree-Fock mean-field theories.

Further, we look at the evolution of the gap structure along
the normal-state Fermi surfaces as a function of temperature
for different t′ (Fig. 6). At lower t′ = 0.1, the asymme-
try in the particle-hole excitation is weak, however, the gap
along the normal-state Fermi surface survives at TN and be-
yond. On the contrary, the particle-hole asymmetry is much
more evident for a relatively larger t′ ∼ 0.4 as expected.
Near (π/2, π/2), the hole excitation energy is significantly
smaller in comparison to the particle excitation energy. As
one moves along (π/2, π/2)→ (π, 0), the hole-excitation en-
ergy increases while the particle-excitation energy decreases.
Secondly, there is a significant asymmetry in the quasiparti-
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cle peak size. It is the largest for the hole excitation near
(π/2, π/2) in comparison to the particle excitation. These
features are reversed as one moves towards (π, 0).

Fig. 7 shows the hole-excitation energy along the normal
state Fermi surface as a function of next-nearest neighbor hop-
ping. The excitation energy increases monotonically on mov-
ing from (π/2, π/2) to (π, 0) for all t′ and becomes almost
linear in the vicinity of T/TN ∼ 1. It is also nearly indepen-
dent of t′ in the vicinity of (π/2, π/2). The energy decreases
with a rise in temperature as the spectral weight continues to
get transferred to the Fermi level. For T & TN and higher t′,
the energy nearly vanishes.

IV. DISCUSSION

One important consequence of inclusion of t′ is the shift
of spectral weight to higher and lower values of the quasipar-
ticle energy depending on whether t′ induced energy change
4t′ cos kx cos ky is positive or negative for a given quasiparti-
cle momentum. This feature can be seen in our results, espe-
cially when T < TN and the lower and upper bands are ac-
companied with significant suppression of spectral weight in
parts of the high-symmetry direction. The spectral weight is
shifted towards the Fermi level near (π, 0) and away to a large
energy near (π, π) or (0, 0). These features are in agreement
with the results obtained via cluster-perturbation theory [63].
More importantly, our calculation establishes that the gap at
the Fermi level does not disappear near T ∼ TN and beyond
though the gain in the spectral weight does take place with
rising temperature.

In this work, we have restricted our study to the half-filled
Hubbard model, which corresponds to zero doping. However,
majority of the theoretical and experimental works have fo-
cused on the hole-doped cuprates because that leads to the ap-
pearance of unconventional high-Tc d-wave superconductiv-
ity. The doping, however, introduces not only the d-wave su-
perconductivity but a variety of other complex phases includ-
ing the nematic, pair-density wave, striped spin and charge
order, charge-density wave etc. The origin of these phases in
the hole-doped cuprates are yet to be completely understood.
On the other hand, the simulations that we applied to the half-
filled Hubbard model provide us with important insight into
the role of next-nearest neighbor hopping with regard to the
spectral features.

At the half filling, we ignored the spatial and thermal fluc-
tuations in the auxiliary field corresponding to the charge de-
gree of freedom. This was based on the assumption that the
effect of the fluctuations in the magnetic moments, is expected
to be comparatively large on the single-particle spectral func-
tion. This is mainly because the rotation of the magnetic mo-
ments costs only a small amount of energy in comparison to
the double occupancy involved with the charge fluctuations at
half filling. In other words, the charge fluctuations are sup-
pressed unless the system is doped with the charge carriers.
For a finite hole doping, the effective model used in the simu-
lation should suitably modified in order to study the magnetic
and charge dynamics away from half filling. One such related

model is the t-J model [64] with explicit two terms describing
magnetic-exchange and charge-density interaction. As indi-
cated earlier, the temporal fluctuations are ignored in our ap-
proach, which results into the absence of the Brinkman-Rice
peak of the quasiparticle excitation near the Mott transition
for a moderate U , otherwise obtained by the DMFT-based ap-
proaches. This is at the cost of full inclusion of the spatial
fluctuations in the auxiliary fields and their consequences on
the single-particle spectral function.

Findings on the role of next-nearest neighbor hopping
t′ shows a very good qualitative agreement of momentum-
dependent spectral features with experiments for the undoped
cuprates [12, 14, 16]. Interestingly, these features are qualita-
tively similar to what are observed for the hole-doped cuprates
especially in the direction (π/2, π/2) → (π, 0) along the
normal state Fermi surface in the pseudogap and d-wave su-
perconducting phase. Within the scheme used in the cur-
rent work, study of spectral function for the hole-doped case
will necessarily involve at least the competition between two
tendencies, i.e., AFM ordering and d-wave superconducting,
which, in turn, will require the inclusion of auxiliary fields
associated with d-wave superconductivity also.

The consequence of competing interactions, in the case of
doped cuprates, can be examined within either t-J model [64]
or t-U -V models [65]. It will be of strong interest to see
the consequence of such a competition on the momentum-
dependent gap structure in the d-wave state as it will help
to find the answer to questions such as does the d-wave gap
get enhanced because of the AFM ordering tendencies? An-
swer to that question may help in gaining insight into the
role of t′ in increasing the superconducting-transition tem-
perature. Here, it may be recalled that our findings also in-
dicate momentum-dependent gap structure at higher tempera-
ture even in the absence of any long-range magnetic order. We
also find that the temperature window, where the pseudogap-
like features exists, shrinks with an increase in t′. This raises
another pertinent question about the compatibility of the pseu-
dogap phase with t′ while it may be noted that a larger t′ is
known to enhance Tc.

V. CONCLUSION

To conclude, we have examined in details, role of the next-
nearest neighbor hopping on the single-particle excitation near
AFM ordering temperature and beyond. Our findings based
on an approach free of any finite size effect, while taking into
account the thermal and spatial fluctuations, provides impor-
tant insight into nature of possible hole and particle excitations
along the high-symmetry direction in the half-filled Hubbard
model. The spectral gap along high-symmetry, which per-
sists even beyond AFM ordering temperature, shows a very
good qualitative agreement with the experiments on undoped
cuprates whereas the results also indicate that the long-range
hopping may not be favorable for the pseudogap phase. On the
other hand, the increase in the gap size along the high symme-
try direction especially along nodal to anti-nodal point often
used in the context of cuprate supercondctors, grows with an
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increase in the next-nearest neighbor hopping. Here, we have
restricted ourself to the case of only one auxiliary field cor-
responding to the magnetic moment. However, the approach
adopted in this work can suitably be modified to incorporate
other auxiliary fields. These auxiliary fields may correspond
to the d-wave superconductivity or to the charge-density wave.
Such a study of momentum-resolved spectral function incor-
porating multiple auxiliary fields can provide critical insight

into the origin of the pseudogap phase observed in the high-
Tc cuprates.
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