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Abstract

In the half-filled one-orbital Hubbard model on a square lattice, we study the effect of
next-nearest neighbor hopping on the single-particle spectral function at finite temper-
ature using an exact-diagonalization + Monte-Carlo based approach to the simulation
process. We find that the pseudogap-like dip, existing in the density of states in be-
tween the Néel temperature TN and a relatively higher temperature T ∗, is accompanied
with a significant asymmetry in the hole- and particle-excitation energy along the high-
symmetry directions as well as along the normal-state Fermi surface. On moving from
(π/2,π/2) toward (π, 0) along the normal state Fermi surface, the hole-excitation energy
increases, a behavior remarkably similar to what is observed in the d-wave state and
pseudogap phase of high-Tc cuprates, whereas the particle-excitation energy decreases.
The quasiparticle peak height is the largest near (π/2,π/2) whereas it is the smallest near
(π, 0). These spectral features survive beyond TN . The temperature window TN ≲ T ≲ T ∗

shrinks with an increase in the next-nearest neighbor hopping, which indicates that the
next-nearest neighbor hopping may not be supportive to the pseudogap-like features.
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1 Introduction

Cuprates are archetypal systems of materials, which besides showing uncoventional supercon-
ductivity, also exhibit a wide variety of interesting but complex phases as a function of doping
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and temperature [1, 2]. Cu atom in the undoped/parent cuprates has 3d9 outermost elec-
tronic configuration, which gets altered to 3d9 L as a hole is doped [3]. L indicates the fact
that the doped hole resides instead on the neighboring oxygen atoms, which forms a bridge
between the two neighboring Cu2+ as well as a square that surrounds a Cu2+ ion. The hole
binds to the Cu2+ ion leading to the emergence of Zhang-Rice singlet [4,5]. The electron dop-
ing, whereas, modifies the electronic configuration from 3d9 to 3d10. The low-energy physics
involving either hole or particle doping have been studied quite extensively in the span of last
three decades within the one-orbital Hubbard model, which has provided us with important
insight into the understanding of correlation effects [6–11].

Photoemission studies at a temperature well above the Néel temperature TN in the un-
doped cuprates such as Sr2CuO2Cl2 [12] shows characteristics of the quasiparticle excitations,
which have several features similar to the one observed in the pseudogap and d-wave super-
conducting phases. First, the quasiparticle peak is sharp near (π/2, π/2) and gets broadened
on approaching (π, 0). Secondly, the hole excitation energy is the least near (π/2, π/2)
while it is the largest close to (π, 0). The broad peak near (π, 0) gets sharpened on doping
hole. One-orbital Hubbard model with only nearest neighbor hopping or t-J model couldn’t
reproduce the features in different studies based on different approaches. A crucial role of
long-range hopping was emphasized on later, especially, the next-nearest neighbor hopping
within t-J model often employed to study the hole dynamics [13–16].

A striking feature of the doping-vs-temperature phase diagram of the high-Tc cuprates is
the asymmetry with respect to hole or electron doping [1, 17]. In particular, the long-range
antiferromagnetic order (AFM) is found to survive up to only a small hole doping of∼ 1% [18]
whereas it is robust against a relatively larger electron doping of ∼ 15% [19]. On the other
hand, the d-wave superconductivity as well as the pseudogap phase exist in a comparatively
wide range of hole doping. Recent experiments suggest that the pseudogap phase found upon
hole doping may be marked with the presence of variety of symmetry breaking phonomena
including the nematic order [20], stripe order [21–23], short- or long-range charge-density
wave [24–27], pair-density wave [28] etc., while the possibility of coexisting more than one
of these is also not ruled out.

The one-orbital Hubbard model with only nearest-neighbor hopping t possesses particle-
hole symmetry, therefore it cannot describe the asymmetrical behavior of the phase diagram.
Earlier works suggest a crucial role for the next-nearest neighbor hopping parameter t ′ [13,
14], which allows the hole/electron to hop within the same sublattice, in describing various
spectral features [12], spin-wave excitation spectra [29,30], and the asymmetry of the phase
diagram. For the hole and electron doping, t ′ is positive and negative, respectively, thus bring-
ing in frustration in the case of former. In presence of next-nearest neighbor hopping, the AFM
state is known to be stabilized for a wide electron-doping region, whereas even a single hole
doping may prove to be detrimental to it [31]. Besides, the asymmetry introduced in the den-
sity of states, t ′ is also known to enhance the tendency towards ferromagnetic order (FM) upon
hole or electron doping [32]. Furthermore, the maximum value of the transition temperature
Tc for the high-Tc cuprates may exhibit sensitiveness to t ′ [33].

The spectral properties in the half-filled Hubbard model has been investigated by a variety
of methods. While the slave-boson [34] or -spin [35] meanfield theoretic approach captures
the Mott transition, they fail to incoporate the spatial fluctuations in the order-parameter fields.
The methods, which go beyond mean-field theories, such as dynamial-mean field theories
(DMFT) [36,37], cluster-perturbation theory (CPT) [38,39], determinant QMC [7,40–42] etc.
suffer from finite-cluste size induced momentum resolution. Furthermore, the QMC-based
simulation face the sign problem in the absence of particle-hole symmetry when the next-
nearest neighbor hopping is taken into account. Even for the doping away from half-filling,
these methods may be applicable for only a certain temperature range. For these reasons, they
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have been employed mostly for the Hubbard model at half filling with only nearest neighbor
hopping. The spectral features, in the hole-doped cases, were examined using the Hartree-Fock
meanfield [43], DMFT [44, 45], QMC [11, 46, 47], classical Monte Carlo [48, 49], Gutzwiller
approximation [50] etc., where some of them focused on the correlation corresponding to the
d-wave superconductivity as well. Most of the work using variational Monte Carlo (VMC)
has been largely restricted for obtaining the ground-state phase diagram [51–53], however, a
recent attempt explores the spectral features but only without next-nearest neighbor [11]. In
the absence of second-neighbor hopping, the nature of hole-excitation energy may retain its
features even beyond TN with the peak height almost independent of the momentum along the
normal-state Fermi surface [54].The peak-to-peak distance increases on going from (π/2,π/2)
to (π, 0) along the normal state Fermi surface.

Not much is known about the variation of the single-particle spectral features with temper-
ature when t ′ is incorporated into a microscopic model such as Hubbard model at half filling.
Does the peak-to-peak separation increase on including t ′? If the hole-excitation energy in-
creases on moving from (π/2,π/2) to (π, 0) then how does the particle-excitation energy
vary? How do these spectral features evolve with change in temperature? Answers to these
questions are of significant interest in order to understand the role of t ′ on the pseudogap-like
behavior.

In this paper, we investigate the role of nearest-neighbor hopping on the single-particle
spectral function within one-orbital and half-filled Hubbard model as a function of tempera-
ture. We employ exact-diagonalization + Monte-Carlo scheme based on parallelization to ex-
tract the characteristics of single-particle spectral function at different temperature. In order to
handle a larger system size so that the momentum resolution without any finite-size effect can
be achieved, traveling-cluster approximation (TCA) [55] and twisted-boundary condition [56]
are used additionally. We arrive at the following major results for the single-particle spectral
function: on moving along the normal state Fermi surface from (π/2, π/2) to (π, 0), (i) the
hole- and particle-excitation energy increases and decreases, respectively and (ii) the height
of the quasiparticle peak for the hole- and particle excitation decreases and increases, respec-
tively. (iii) Below TN , the spectral weight is significantly suppressed along (0, 0)→ (π/2,π/2)
and (π, 0)→ (0, 0) for the upper band and along (π/2,π/2)→ (π,π) and (π,π)→ (π,π) for
the lower band. (iv) For T ≳ TN , a relatively larger spectral weight near (π/2, π/2) is con-
tinued to be noticed in comparison to (π, 0). (v) The hole-excitation energy increases with
t ′ and (vi) the dip in the density of states, which persists beyond TN becomes shallower with
increasing t ′ indicating that the latter may be unfavorable for the pseudogap-like features,
which is also reflected in the behavior of momentum-resolved spectral function.

2 Model and Method

We start with the following one-orbital Hubbard Hamiltonian

H =
∑

i,δ,σ

ti,i+δd†
iσdi+δσ −µ
∑

i,σ

niσ + U
∑

i

ni↑ni↓ (1)

where the operator d†
iσ(diσ) creates (annihilates) an electron with spin σ. δ is a vector which

connects a given site to the nearest neighboring and next-neighboring sites. t i,i+δ = -t and t ′

for the nearest and next-nearest neighbor hopping, respectively. niσ = d†
iσdiσ is the charge-

density operator for spin σ electron. U and µ are the onsite Coulomb repulsion and chemical
potential, respectively.

For the simulation, the grand-partition function used corresponding to the original Hamil-
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tonian given by Eq. (1) is

Z =
∫

DψDψ̄e−A[ψ,ψ̄], (2)

where the action [57]

A =

∫ β

0

dτ
∑

i,δ,σ

ψ̄iσ(τ)((∂τ −µ)δi,i+δ + ti,i+δ)ψi+δσ(τ)

+ U
∑

i

�

n2
i (τ)

4
−
�

S⃗i(τ) · r̂i

�2
�

. (3)

ψiσ(τ) and ψ̄iσ(τ) are the Grassman variables corresponding to the operators diσ and d†
iσ,

respectively. The form of interaction term used in Eq. (3) follows from

ni↑ni↓ =
n2

i

4
− (Siz)

2. (4)

Siµ =
1
2

∑

α,β d†
iασ

µ

αβ
diβ is the µth component of local electron-spin operator. Siz = S⃗i · r̂ when

the unit vector r̂ is oriented along z axis. The Hubbard interaction has the SU(2) rotational
symmetry in spin space, therefore

ni↑ni↓ =
n2

i

4
− (S⃗i · r̂i)

2, (5)

where the unit vector r̂ may now be oriented along any arbitrary direction.
To make further progress, we use Hubbard-Stratonovich (HS) transformation to decouple

the Hubbard interaction by introducing two auxiliary fields, a scalar field φi(τ) coupled to the
charge density ni and a vector field mi coupled to the spin of electron σi . This modifies the
grand-partition function to

Z =

∫

∏

i

dψ̄idψidφidmi

4π2U
e−A(ψ̄i,ψi,φi ,mi) (6)

with contribution to the action due to the on-site interaction being

Aint =

∫ β

0

dτ
∑

i

¨

iφi

∑

σ

ψ̄iσψiσ −mi ·
∑

σσ′

ψ̄iσσ⃗σσ′ψiσ′

«

+
1
U

∑

i

(φ2
i +m2

i ). (7)

In the simulation, the Hubbard-Stratonovich fields are treated as classical fields so that
time (τ) dependence is ignored. Next, we use the saddle-point approximation for the scalar
field φi , for which, the spatial and temporal fluctuations are ignored, so that (U/2)〈ni〉= U/2
at half filling. Thus, the effective Hamiltonian can be shown to be

He f f =
∑

i,δ,σ

ti,i+δd†
iσdi+δσ − µ̃
∑

i

ni −
U
2

∑

i

mi · σ⃗i +
∑

i

U
4

m2
i

= He +Hcls, (8)

where µ̃ = µ − U/2. The field mi are scaled by mi →
U
2 mi so that it can be turned into a

dimensionless field. Note the term in the effective Hamiltonian Hcls =
U
4 m2

i , which is treated
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Figure 1: The (a) long- and (b) short-range AFM correlations as a function temper-
ature for different t ′ = 0.1,0.2, 0.3 and 0.4. The long-range correlation function
shows relatively sharper rise for larger t ′. The short-range correlation function as
defined in the text does not vanish beyond TN and it may show weak dependence on
t ′.

as classical in the simulation process, i.e., the temporal fluctuations are ignored. On the other
hand, all the spatial and thermal fluctuations are retained as described below.

The equilibrium configurations for the auxiliary field {mi} are generated according to the
following distribution

P{mi}∝ Trd,d† e−βHe e−βHcls (9)

where the trace over the fermionic degree of freedom cannot be calculated exactly due to the
terms in He coupled to the classical fields. Therefore, the equilibrium field is generated through
MC sampling. In each MC update process, He is diagonalized and then the eigenvalues are used
to calculate the change in free energy of the system. ED + MC method allows an access only
to a small system size. The observables generated in the simulation suffer from the finite-size
effect and therefore limiting the access to a good momentum resolution.

The limitation posed for the momentum resolution can be overcome upon combining three
steps in the simulation process. For each update process, instead of considering the full lattice,
only a small cluster of sites around the update site is considered. Thus, the process involves
the diagonalization of Hamiltonian for the cluster (size Nc×Nc) centered around the update
site. The computational cost is reduced by a factor of ∼ Nc/Nl , where Nl × Nl is the original
system size [55]. We use Nl = 40 and Nc = 8 throughout the current work. The simulation can
be further sped up by using parallelized update process, where Np, a factor of total number of
available processors, sites can be updated simultaneously. The computational cost reduction
in this step is achieved up to a factor of ∼ 1/Np [54, 58]. In order to reduce the finite size
effect further, we make use of twisted-boundary condition (TBC) [56], where a superlattice is
formed by repeating the original system of size Nl×Nl and associated field in x- and y-direction
Nt times. The spectral function calculated for such a superlattice is equivalent to the spectral
function of an effective system size Nl Nt×Nl Nt . In order to calculate the spectral function,
which is to be discussed later, we use Nt = 6 which allows us to access an effective system size
of 240 × 240. It may be noted that, in the absence of particle-hole symmetry (t ′ ̸= 0), the
chemical potential fluctuates with temperature, therefore, the simulation requires to check the
chemical potential and update the same in accordance with half filling at intermediate steps.
This enhances the computational cost of the simulation. Another factor which is responsible
for raising of the computational cost is the frustration introduced by the next-nearest neighbor
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Figure 2: The DOS as a function of energy ω at different temperatures T/TN = (a)
1.0 and (b) 1.5 for various t ′ = 0.1,0.2, 0.3 and 0.4. Unlike t = 0 case, the dip in the
DOS may vanish completely at higher temperature when the next-nearest neighbor
hopping is incorporated.

hopping in the system, which delays the thermal equiliberation.
The simulation process is started at a temperature, which is nearly twice of TN , and then the

system is cooled down in small steps of temperature. At each temperature, first thousand MC
sweeps are used to reach equilibrium field configuration {mi}. In the next thousand sweeps,
data related to structure factor, spectral function etc. are obtained for different thermal con-
figurations so as to carry out thermal averaging. We set U to be 4t, which is not far from the
screened value as recent works suggest [59]. Since the Hubbard model can be mapped to the
Heisenberg model with the exchange coupling 4t2/U , it can be noted that with larger U , one
expects a larger broadening in the spectral function. This follows from the softening of the
AFM state with increasing U .

3 Results

Fig. 1(a) shows the structure factor for the AFM state with ordering wavevector Q = (π,π)
given by

S(Q) =
1

N2

∑

i,j

〈mi ·mj〉eiQ·(ri−rj), (10)

where ri is the position vector of site i and mi is the magnetic-vector field at that point. Two
features are easily noted. First, the structure factors for different t ′ approach the same value
as T → 0, which agrees with the Hartree-Fock approximation at low temperature. Then, the
rise in S(Q), which is indicative of the onset of long-range AFM order, becomes sharper with
increasing t ′ because TN gets smaller. It may be recalled that S(Q) remains largely unaffected
by the system size except in the vicinity of T ∼ TN [54].

Fig. 1(b) shows the onset of short-range magnetic order defined by

φ1 =
1

4N

∑

〈i, j〉

〈mi ·m j〉, (11)

where 〈i, j〉 denotes summation over nearest neighbors. It appears that φ1 is not independent
of t ′. In particular, it diminishes with a rise in t ′ when T ≳ TN . Below TN , however, the
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Figure 3: (a) t ′ − T phase diagram based on the onset temperatures TN and T ∗ de-
scribed in the main text, where paramagnetic metallic (PM), pseudogap-like (PG) and
AFM-insulating (AFM-I) phases are shown. The region occupied by the pseudogap-
like phase is reduced with increasing t ′ indicating antagonistic behavior between the
two.

behavior of short- and long-range magnetic order is similar. Therefore, an important ques-
tion arises, is non vanishing of the short-range magnetic correlation function linked to the
pseudogap-like features in the spectral function? Perhaps, the nature of rise in the structure
factor in the vicinity of TN as well as short-range magnetic correlations can be an indicator
for the pseudogap-like feature. As we will see below that a sharper rise in the structure factor
indicates a smaller temperature window for the pseudogap-like features and vice-versa.

Fig. 2 shows the density of states (DOS) calculated for T/TN = 1 and 1.5 using

N(ω) =
∑

q,λ,i

|ψq,λ(i)|2δ(ω− Eq,λ). (12)

Here, Eq,λ and ψq,λ are the eigenvalues and eigenvectors for the whole superlattice. It is not
difficult to notice the persisting pseudogap-like dip in the DOS at the Néel temperature and
beyond. However, most interestingly, the dip becomes shallower with rising t ′ and it can be
seen to be almost absent for t ′ ∼ 0.4 near T/TN ∼ 1.5 and beyond, whereas it is present
at T/TN ∼ 1. Thus, the next-nearest neighbor hopping appears to be unfavorable for the
pseudogap-like features beyond TN . This can be noticed also in the t ′−T phase diagram where
the temperature windows for both the long-range AFM order as well as for the pseudogap-like
phase shrinks with rising t ′. We have chosen onset temperature of the AFM order to be the
temperature where S(Q) starts to rise from zero. Similarly, the onset temperature T ∗ of the
pseudogap-like phase , marked by presence of dip in the density of state, is determined by
the condition when there is no further change in the dip of the DOS or the dip disappears as
temperature rises.

Next, we examine the evolution of quasiparticle dispersion as a function of temperature
using the single-particle spectral function

A(k,ω) =
∑

q,λ

|〈k|ψq,λ〉|2δ(ω− Eq,λ), (13)

where 〈k|ψq,α〉=
∑

l

∑

i〈k|l, i〉〈l, i|ψq,λ〉, and l, i are superlattice and site indices, respectively.
Fig. 4 shows the quasiparticle dispersion for t ′/t = 0.3 a value close to the one obtained
through various estimates for high-Tc cuprates [30,60,61]. Well-formed but asymmetrical gap
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Figure 4: Quasiparticle dispersion for t ′ = 0.3 along the high symmetry directions
for three different temperatures at T/TN = (a) 0.5, (b) 1.0, and (c) 1.5.
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Figure 5: A(k, 0) along the high-symmetry directions for t ′ = (a) 0.1 and (b) 0.3 at
several different temperatures T/TN = 0.7 , 1.0, 1.2 and 1.5.

can be seen near (π/2,π/2) as well as (π, 0). The hole- and particle-excitation energies are the
least near (π/2,π/2) and (π, 0), respectively. The gap does not disappear even at T/TN = 1
and beyond, which is evident from the suppression of spectral weight at the Fermi level. More
specifically, the gap disappears near (π/2,π/2) relatively more quickly with rising temperature
and it can be seen to persist near (π, 0) even at a relatively higher temperature. Another band
with a relatively smaller spectral weight is found along (0,0) → (π, 0), (0,0) → (π/2,π/2),
and (π/2,π/2) → (π, 0), which disappears near TN and beyond. In order to compare the
quasiparticle spectral weight along the high-symmetry directions, we also plot A(k, 0) as shown
in the Fig. 5. The spectral weight is the largest near (π/2,π/2) and (π, 0), with an increasing
peak height with t ′. Elsewhere, it is suppressed to be negligeably small. In addition, the peaks
height changes drastically near T/TN ∼ 1 as expected but continues to have a very small but
non zero value even below T/TN = 1 in contrast with the Hartree-Fock mean-field theories.

Further, we look at the evolution of the gap structure along the normal-state Fermi sur-
faces as a function of temperature for different t ′ (Fig. 6). At lower t ′ = 0.1, the asymmetry
in the particle-hole excitation is weak, however, the gap along the normal-state Fermi surface
survives at TN and beyond. On the contrary, the particle-hole asymmetry is much more evi-
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Figure 6: A(k,ω) as a function of ω for (a-c) t ′ = 0.1 and 0.3 (d-f) at three different
temperatures T/TN = 0.5,1.0, 1.5. The curves at the bottom and top correspond to
the points (π/2,π/2) and (π, 0), respectively, while the others to the points in be-
tween as one moves from (π/2,π/2) to (π, 0) along the normal-state Fermi surface.

dent for a relatively larger t ′ ∼ 0.4 as expected. Near (π/2,π/2), the hole excitation energy
is significantly smaller in comparison to the particle excitation energy. As one moves along
(π/2,π/2)→ (π, 0), the hole-excitation energy increases while the particle-excitation energy
decreases. Secondly, there is a significant asymmetry in the quasiparticle peak size. It is the
largest for the hole excitation near (π/2,π/2) in comparison to the particle excitation. These
features are reversed as one moves towards (π, 0).

Fig. 7 shows the hole-excitation energy along the normal state Fermi surface as a function
of next-nearest neighbor hopping. The excitation energy increases monotonically on moving
from (π/2,π/2) to (π, 0) for all t ′ and becomes almost linear in the vicinity of T/TN ∼ 1. It is
also nearly independent of t ′ in the vicinity of (π/2,π/2). The energy decreases with a rise in
temperature as the spectral weight continues to get transferred to the Fermi level. For T ≳ TN
and higher t ′, the energy nearly vanishes.

4 Discussion

One important consequence of inclusion of t ′ is the shift of spectral weight to higher and
lower values of the quasiparticle energy depending on whether t ′ induced energy change
4t ′ cos kx cos ky is positive or negative for a given quasiparticle momentum. This feature can
be seen in our results, especially when T < TN and the lower and upper bands are accompa-
nied with significant suppression of spectral weight in parts of the high-symmetry direction.
The spectral weight is shifted towards the Fermi level near (π, 0) and away to a large energy
near (π,π) or (0, 0). These features are in agreement with the results obtained via cluster-
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Figure 7: The hole-excitation energy calculated with the help of spectral function
A(k,ω) as one moves on the Fermi surface from along X′ = (π/2,π/2)→M′ = (π, 0).

perturbation theory [62]. More importantly, our calculation establishes that the gap at the
Fermi level does not disappear near T ∼ TN and beyond though the gain in the spectral weight
does take place with rising temperature.

In this work, we have restricted our study to the half-filled Hubbard model, which cor-
responds to zero doping. However, majority of the theoretical and experimental works have
focused on the hole-doped cuprates because that leads to the appearance of unconventional
high-Tc d-wave superconductivity. The doping, however, introduces not only the d-wave su-
perconductivity but a variety of other complex phases including the nematic, pair-density
wave, striped spin and charge order, charge-density wave etc. The origin of these phases
in the hole-doped cuprates are yet to be completely understood. On the other hand, the sim-
ulations that we applied to the half-filled Hubbard model provide us with important insight
into the role of next-nearest neighbor hopping with regard to the spectral features.

At the half filling, we ignored the spatial and thermal fluctuations in the auxiliary field
corresponding to the charge degree of freedom. This was based on the assumption that the
effect of the fluctuations in the magnetic moments, is expected to be comparatively large on the
single-particle spectral function. This is mainly because the rotation of the magnetic moments
costs only a small amount of energy in comparison to the double occupancy involved with
the charge fluctuations at half filling. In other words, the charge fluctuations are suppressed
unless the system is doped with the charge carriers. For a finite hole doping, the effective
model used in the simulation should suitably modified in order to study the magnetic and
charge dynamics away from half filling. One such related model is the t-J model [63] with
explicit two terms describing magnetic-exchange and charge-density interaction. As indicated
earlier, the temporal fluctuations are ignored in our approach, which results into the absence of
the Brinkman-Rice peak of the quasiparticle excitation near the Mott transition for a moderate
U , otherwise obtained by the DMFT-based approaches. This is at the cost of full inclusion of
the spatial fluctuations in the auxiliary fields and their consequences on the single-particle
spectral function.

Findings on the role of next-nearest neighbor hopping t ′ shows a very good qualitative
agreement of momentum-dependent spectral features with experiments for the undoped cuprates [12,
14,16]. Interestingly, these features are qualitatively similar to what are observed for the hole-
doped cuprates especially in the direction (π/2,π/2) → (π, 0) along the normal state Fermi
surface in the pseudogap and d-wave superconducting phase. Within the scheme used in
the current work, study of spectral function for the hole-doped case will necessarily involve
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at least the competition between two tendencies, i.e., AFM ordering and d-wave supercon-
ducting, which, in turn, will require the inclusion of auxiliary fields associated with d-wave
superconductivity also.

The consequence of competing interactions, in the case of doped cuprates, can be exam-
ined within either t-J model [63] or t-U-V models [64]. It will be of strong interest to see the
consequence of such a competition on the momentum-dependent gap structure in the d-wave
state as it will help to find the answer to questions such as does the d-wave gap get enhanced
because of the AFM ordering tendencies? Answer to that question may help in gaining insight
into the role of t ′ in increasing the superconducting-transition temperature. Here, it may be
recalled that our findings also indicate momentum-dependent gap structure at higher temper-
ature even in the absence of any long-range magnetic order. We also find that the temperature
window, where the pseudogap-like features exists, shrinks with an increase in t ′. This raises
another pertinent question about the compatibility of the pseudogap phase with t ′ while it
may be noted that a larger t ′ is known to enhance Tc .

5 Conclusion

To conclude, we have examined in details, role of the next-nearest neighbor hopping on the
single-particle excitation near AFM ordering temperature and beyond. Our findings based on
an approach free of any finite size effect, while taking into account the thermal and spatial
fluctuations, provides important insight into nature of possible hole and particle excitations
along the high-symmetry direction in the half-filled Hubbard model. The spectral gap along
high-symmetry, which persists even beyond AFM ordering temperature, shows a very good
qualitative agreement with the experiments on undoped cuprates whereas the results also
indicate that the long-range hopping may not be favorable for the pseudogap phase. On the
other hand, the increase in the gap size along the high symmetry direction especially along
nodal to anti-nodal point often used in the context of cuprate supercondctors, grows with an
increase in the next-nearest neighbor hopping. Here, we have restricted ourself to the case
of only one auxiliary field corresponding to the magnetic moment. However, the approach
adopted in this work can suitably be modified to incorporate other auxiliary fields. These
auxiliary fields may correspond to the d-wave superconductivity or to the charge-density wave.
Such a study of momentum-resolved spectral function incorporating multiple auxiliary fields
can provide critical insight into the origin of the pseudogap phase observed in the high-Tc
cuprates.
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