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Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we
study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of
local criticality. We vary the Kondo coupling JK at fixed doping x. At large positive JK , we confirm
the expected conventional Luttinger liquid phase with 2kF = 1+x

2
(in units of 2π), an analogue of

the heavy Fermi liquid (HFL) in the higher dimension. In the JK ≤ 0 side, our simulation finds
the existence of a fractional Luttinger liquid (LL*) phase with 2kF = x

2
, accompanied by a gapless

spin mode originating from localized spin moments, which serves as an analogue of the fractional
Fermi liquid (FL*) phase in higher dimensions. The LL* phase becomes unstable and transitions to
a spin-gapped Luther-Emery (LE) liquid phase at small positive JK . Then we mainly focus on the
‘critical regime’ between the LE phase and the LL phase. Approaching the critical point from the
spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin
correlation length in real space stays finite and small. For a certain range of doping, in a point (or
narrow region) of JK , the dynamical spin structure factor obtained through the time-evolving block
decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum
space above a small energy scale (around 0.035J) that is limited by the TEBD accuracy. All of these
results are unexpected for a regular gapless phase (or critical point) described by conformal field
theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite
dynamical exponent z = +∞. The numerical discovery here may have important implications on
our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we
propose to simulate the model in a bilayer optical lattice with a potential difference.

I. INTRODUCTION

The study of quantum phase transition between a
small Fermi surface phase and a large Fermi surface phase
is a central topic in modern quantum condensed matter
physics and may be closely related to the strange met-
als observed in heavy Fermion systems[1–8] and in hole-
doped high Tc cuprates[9–12]. The standard Landau-
Ginzburg theory involves the onset of a symmetry-
breaking order and its fluctuation[13, 14]. However, a
number of experiments in heavy Fermion systems[15–17]
do not appear to be consistent with the simple spin-
density-wave (SDW) approach. It was suggested that
the transition in heavy fermion systems may be charac-
terized by a jump in Fermi surface volume resulting from
Kondo breakdown, rather than fluctuations in symmetry-
breaking orders. There have been many attempts to for-
mulate a framework of an exotic transition following dif-
ferent approaches, such as extended dynamical mean field
theory (EDMFT)[18], fractionalization and slave boson
theory[19–21], ancilla qubit theory[22, 23]. However, a
well-established theoretical description of such a Kondo
breakdown transition is still elusive.

In this paper, we take a microscopic approach to
avoid uncontrolled approximations usually existing in
low-energy effective field theory methods. Specifically, we
will numerically simulate a one-dimensional Kondo lat-
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tice model using density matrix renormalization group
(DMRG)[24]. DMRG has been demonstrated to be an
unbiased method with excellent performance in one di-
mension (1D). Therefore, the numerical results should be
reliable. The only question is whether there is anything
interesting in a 1D model. We will show that the answer
is yes and we find a critical point or phase which seems
to support local criticality behaviour. We note that there
already exist a few numerical studies of the Kondo lattice
model in one dimension [25–28], but to our best knowl-
edge, there is no detailed study of how a Kondo break-
down phase at negative JK evolves to the Luttinger liquid
in the large positive JK at a generic filling.

The model we study consists of a t-J model of itinerant
electron and a Heisenberg model of spin 1/2 chain[29].
They couple to each other through a Kondo coupling
JK . At a density x for the itinerant electron, we vary
JK to study the phase diagram. In the JK ≤ 0 side, the
ground state has one charge mode and two spin modes
(C1S2), where the localized spin 1/2 moments provide
an additional gapless mode with momentum Q = π. The
itinerant electron forms a Luttinger liquid with 2k∗F = x

2
(in units of 2π). The phase is an analogue of the frac-
tional Fermi liquid (FL*) phase in higher dimension and
we call it fractional Luttinger liquid (LL*)[30]. In the
large positive JK we find the expected Luttinger liquid
(LL) phase with 2kF = 1+x

2 (in units of 2π), which is
an analogue of the heavy Fermi liquid (HFL) phase in
the higher dimensional Kondo lattice model. Therefore,
we have the same problem of small to large Fermi sur-
face evolution as in higher dimensions. Complexity arises
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in one dimension because the LL* phase is unstable at
small positive JK and transitions to a Luther-Emery liq-
uid (LE) phase with a spin gap and only one gapless
charge mode[26, 29, 31, 32]. The LE phase is best de-
scribed as a descendant of the LL* phase[29]. It is simi-
lar to a superconductor phase in a higher dimension and
above the energy scale of the spin gap it smoothly con-
nects to the LL* phase. We note, that in the heavy
Fermion experiments, the transitions between the small
and large Fermi surface metals are typically covered by a
superconductor dome. Thus, the situation in 1D is sim-
ilar to higher dimension and we will try to understand
the nature of the evolution from the LE phase to the
LL phase upon increasing JK . The hope is that there
may also be a ‘strange metal’ critical point or a phase in
between.

As the LE phase descends from the LL* phase and we
are not aware of any way to construct it from the LL
phase, we do not expect any obvious continuous transi-
tion between the LE and LL phases. Indeed, we find that
there is either a first-order transition or an intermediate
region in between. We will focus on the latter case and
provide evidence of local criticality behaviour beyond the
familiar Luttinger liquid or conformal field theory (CFT)
descriptions. At one point (or a narrow region) of JK , we
find that the spin gap is almost vanishing, while there is
still a finite correlation length in equal time spin-spin cor-
relation function in real space. Meanwhile, the dynam-
ical spin structure factor S(ω, q) ∼ ImχS(ω, q) obtained
from the time-evolving block decimation (TEBD) simu-
lation shows dispersion-less spin fluctuations in a range
of the momentum space above an energy cutoff (around
0.035J , J is the Heisenberg spin coupling) imposed by
the numerical accuracy itself. Such behaviour resembles
what is called local criticality. We note, that in the lit-
erature sometimes local criticality is also used[18] for the
case where only the self-energy is momentum indepen-
dent, while there is still a significant spatial correlation.
In this weaker case, the dynamical exponent is still finite.
The behaviour in our model is closer to a stronger def-
inition with an infinite dynamical exponent. Therefore,
we follow Ref. [33] and call it ultra-local criticality to be
distinguished from the weaker definition.

The discovery of ultra-local critical spin fluctuations
above a small energy scale is quite remarkable, as this
phenomenon is not generally believed to be possible in
a reasonable model with translation invariance and a
finite-dimensional Hilbert space at each site. The ex-
istence of ultra-local criticality also has significant impli-
cations for our understanding of the strange metal. For
example, it may be a loophole of the anomaly approach
of non-Fermi liquid[33] and it is known that ultra-local
critical spin fluctuations with a constant spectral func-
tion over frequency can lead to a marginal Fermi liquid
and linear T resistivity[34]. On the experimental side,
similar local critical behaviours have been discovered in
neutron scattering measurements of some heavy Fermion
materials[17, 35]. One may worry that the experimental

results arise from disorder effects. Our numerical obser-
vation of similar local critical behaviours in a clean model
strongly suggests that such a phenomenon may likely be
intrinsic and does not need disorders. On the theoretical
side, similar behaviour has been discussed in holographic
theory from the gravity side and dubbed as ‘semi-local
quantum fluid’[36]. However, we are not aware of a well-
established theory of ultra-local criticality for a local and
translation invariant quantum lattice model directly. We
hope our numerical confirmation of the existence of ultra-
local criticality will stimulate theoretical efforts in this di-
rection. Lastly, we propose to simulate the Kondo lattice
model in a bilayer optical lattice with a potential differ-
ence, which hopefully will provide more information at
finite temperatures and higher dimensions.

II. LAYER SELECTIVE MOTT LOCALIZATION
AND KONDO LATTICE MODEL IN BILAYER

OPTICAL LATTICE

FIG. 1: The geometry and corresponding couplings of
the Hamiltonian in Eq. 2. The first layer corresponds to

a t− J model, while the second layer is an
antiferromagnetic spin 1/2 model. The two layers are
coupled together through the on-site Kondo coupling
JK and nearest neighbour Kondo interaction Jcs.

Here we first propose to simulate a Kondo lattice model
in bilayer optical lattice, as has been experimentally re-
alized in Ref. [37]. One new requirement now is that we
need to add a potential difference ∆ between the two
layers. The system is described by a bilayer Hubbard
model:

H = ∆
∑
i

ni;1 − t
∑
a=1,2

∑
σ=↑,↓

∑
⟨ij⟩

(c†i;aσcj;aσ + h.c.)

− t12
∑
a=1,2

∑
σ=↑,↓

∑
⟨ij⟩

(c†i;1σcj;2σ + c†i;2σcj;1σ + h.c.)

− t⊥
∑
a,σ

∑
i

(c†i;1σci;2σ + h.c.)− µ
∑
a=1,2

∑
i

ni;a

+
U

2

∑
a

∑
i

ni;a(ni;a − 1) + U ′
∑
i

ni;1ni;2, (1)
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where ni;a =
∑

σ c
†
i;aσci;aσ is the density at site i for

layer a = 1, 2. ni = ni;1 + ni;2 is the total density at
site i. We also define the average density n = 1

Ns

∑
i ni,

where Ns is the total number of sites in the system. Here
a = 1, 2 labels the two layers and t⊥ is the inter-layer
vertical tunnelling. A non-zero ∆ > 0 is caused by a
displacement field or a potential difference between the
two layers. We will stay in the limit U >> t and U >>
U ′. We assume t⊥, t < ∆ < U − U ′. At density n = 1,
we have a Mott insulator with one particle at the layer
2. Then at density n = 1 + x with x ∈ (0, 1), the doped
additional particle enters the layer 1 to reduce the on-
site Hubbard U. In this case the layer 2 is always Mott
localized and provides a spin 1/2 moment. The itinerant
electron in the layer 1 is described by a t−J model which
then couples to the local moment of the layer 2 through
a Kondo coupling. At low energy we can deal with an
effective Kondo lattice model:

H = −tP
∑

<i,j>,σ

(c†i,σcj,σ + h.c)P + Jc
∑
⟨ij⟩

S⃗e
i · S⃗e

j

+ (V − 1

4
Jc)

∑
⟨ij⟩

ninj + J
∑
<i,j>

S⃗i · S⃗j

+ JK
∑
i

S⃗e
i · S⃗i + Jcs

∑
⟨ij⟩

S⃗e
i · S⃗j + S⃗i · S⃗e

j , (2)

where P is the projection operator to forbid dou-
ble occupancy in the familiar t-J model. S⃗e

i =
1
2

∑
σσ′=↑,↓ c

†
i;σσ⃗σσ′ci;σ′ is the spin operator of the itin-

erant electron. The first two lines describe a t-J model in
the first layer and a Heisenberg spin 1/2 model in the sec-
ond layer. We will call these two layers C layer and S layer
respectively in what follows. The third line includes the
inter-layer Kondo coupling. We have Jc = J = 4t2

U , Jcs =

2
t212

U−U ′−∆ + 2
t212

U+U ′+∆ and JK = 2
t2⊥

U−U ′−∆ + 2
t2⊥

U−U ′+∆ .
Jc is the super-exchange term within the t-J layer. V is
a repulsive interaction which we will set to zero later. J
is the Heisenberg term in the spin layer. JK is the on-
site Kondo coupling. Jcs is the nearest neighbour Kondo
coupling arising from off-diagonal interlayer hopping. We
will later see that Jcs does not change the physics qualita-
tively. Fig. 1. shows the geometry and the corresponding
couplings pictorially.

In the rest of the paper, we fix t = 1, J = Jc = 0.5
and study how the system evolves as we change Kondo
coupling JK . We will simulate the model with both finite
and infinite DMRG. The bond dimension varies from 500
to 8000 depending on parameters. The typical truncation
error is at order 10−8 or even smaller.

III. PHASE DIAGRAM

We start by providing an illustrated phase diagram of
the model in Fig. 2. Previous calculations have found a

FIG. 2: Illustration of phase diagram of the Kondo
lattice model with Jcs = 0.5J, V = 4J . LL∗ phase

corresponds to fractional Luttinger liquid, LE stands for
Luther-Emery(spin gap) phase, and LL is a Luttinger

liquid phase. LL*, LE and LL phases can be labelled as
C1S2, C1S0 and C1S1 respectively and they have

central charges c = 3, 1, 2. Here CmSn means that there
are m charge modes and n spin modes. Grey shadowed
regions correspond to commensurate fillings x = 1/3
and x = 1/2 where the system turns into a charge

density wave (CDW) insulator. The red vertical line
marks the first-order transition between LE and LL
phases. Region I is a gapless phase with a central

charge c = 3. When approaching the region I from the
LE phase, the spin gap vanishes continuously, while the

spin correlation length in real space stays finite and
small, indicating possible infinite dynamical exponent.

Region II hosts an exotic phase with a weak
ferromagnetic moment and ultra-local criticality at the
phase boundary. Within region II, around the doping

x ≈ 0.61− 0.63, there is a re-entrance of another
spin-gapped phase. We find signatures of ultra-local

criticality between the two spin-gapped domes. We use
system size L = 113, and maximum bond dimension

m = 1000 with finite DMRG for this plot.

dominant ferromagnetic phase in the conventional Kondo
lattice model with J = 0[25]. Here we use J = 0.5t
to get rid of the FM order. Then the phase diagram
is dramatically different from that of the conventional
Kondo lattice model with J = 0.

At JK = 0, we can start from the layer decoupled
phase. We know the itinerant electron in the C layer just
forms a spinful Luttinger liquid, while the spin moments
in the S layer form a gapless phase with one spin mode.
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We can dub this phase C2S1 because it has two charge
modes and one spin mode. The itinerant electrons in the
C layer form a Fermi surface with 2k∗F = x

2 ×2π, which is
different from the required value of the Luttinger theorem
by 1/2 of 2π. This feature is similar to the fractional
Fermi liquid (FL*) phase discussed in higher dimensions.
Therefore, we dub this phase a fractional Luttinger liquid
(LL*)[29]. The LL* phase is stable in the negative JK
regime. However, it is unstable to a spin-gapped Luther
Emery (LE) liquid phase with a finite positive JK [29]. In
the large positive JK , we recover the expective Luttinger
liquid (LL) as an analogue of the heavy Fermi liquid in
higher dimensions. The LL phase has a Fermi surface
with 2kF = 1+x

2 ×2π, satisfying the Yamanaka-Oshikawa
theorem [38]. Note that the central charge for the LL*,
LE, and LL phases are c = 3, 1, 2 respectively and they
can be labelled as C1S2, C1S0, C1S1.

FIG. 3: Spin gap ∆S jumps at the first order transition.
L = 113, x = 45/113 and maximum bond dimension
m = 1000. In the inset, we also show the jump of V =

2⟨S⃗i · S⃗e
i and the central charge c. We use Jcs = 0.5 and

V = 1
4Jc for this plot.

Although the LL* phase is unstable to the spin-gapped
LE phase, one can view the LE phase as a descendant of
the LL* phase. Above the energy scale of the spin gap,
we can still think of this phase as a LL* phase with a
small Fermi surface. Therefore we can ask how the small
Fermi surface changes to the large Fermi surface in the
large JK regime. In the regime of intermediate filling
x ∈ (0.33, 0.43) the transition appeared to be of the first
order, labelled as the red line in Fig. 2. As evidence
of the first order transition, the spin gap ∆s jumps to
zero discontinuously and other physical quantities such as

V = 2⟨S⃗i · S⃗e
i ⟩ also experience a jump, as shown in Figure

3. The central charge changes from c = 1 in the LE phase
to c = 2 in the LL phase directly at the transition.

A. Intermediate region I

At small doping x < 1
3 the LE phase evolves to the LL

phase through an intermediate region I. Region I has a
central charge c = 3 and a finite spin susceptibility, in
agreement with a conformal field theory (CFT) descrip-
tion with both gapless charge and spin modes. We list
results for intermediate region I at x = 7

31 , Jcs = 0.5J
in Fig. 4. In Fig. 4(a) we plot ∆SL from finite DMRG,
where ∆S is the spin gap and L is the system size. ∆S is
obtained from E(St

z = 1)−E(St
z = 0), where E(St

z = m)
is the ground state energy of the sector of the total spin
Sz = m sector. Note that the total St

z = Sz + Se
z com-

ponent is conserved in our calculation, so we can target
a state at each St

z = m. It is known that the inverse
of the uniform spin susceptibility χ−1

S ∝ ∆SL. When
JK < 2.05, we can see that ∆SL increases with the sys-
tem size L, indicating a finite spin gap in agreement with
the LE phase. But when JK > 2.05, ∆SL is constant
with system size, indicating a finite uniform spin suscep-
tibility. This is expected from the scaling ∆S ∼ 1

L of
a conformal field theory (CFT) description. Inside the
intermediate region I, we find that the central charge is
c = 3 from the infinite DMRG result in Fig. 4(b). This
central charge is larger than both the LE phase (c = 1)
on the left and the LL phase (c = 2) on the right. One
natural interpretation is that there are two Fermi sur-
faces per spin component in the intermediate region I,
leading to two charge and two spin modes. Then one of
the four modes gets gapped, giving c = 3. In the ap-
pendix, we will argue that a simple mean-field theory is
able to explain the existence of several Fermi surfaces and
show how a flat band scenario is able to explain a finite
coherence length in the gapless system.

To support the above picture, we indeed find that the
peak of the spin-spin correlation function ⟨S⃗(q) · S⃗(q)⟩ is
still at 2kF = 1+x

2 (in units of 2π) in the intermediate re-
gion (see Fig. 4(c)), while the peak of density-density
correlation functions ⟨N(q)N(−q)⟩ shifts from 2kF to
4kF gradually in the intermediate phase I, as shown in
Fig. 4(d). A gradually changing momentum is a signa-
ture of a split Fermi surface. The phase may be labelled
as C1S2 or C2S1. We conjecture that it is C2S1 and
there is only one spin mode, given that the peak of the
spin-spin correlation function seems to be pinned at 2kF .
But more analysis is needed to fully understand how a
spin mode gets gapped starting from four modes. Ex-
cept for the unusually odd central charge, the phase is
otherwise consistent with a CFT. It easily converges in
our numerical calculation with expected CFT behaviour.
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FIG. 4: Results for the intermediate region I at x = 7
31 , Jcs = 0.5J , V = 0. (a) ∆SL for a few system sizes obtained

from finite DMRG with bond dimension m = 2000. L is the system size and ∆S is the spin gap. ∆SL is proportional
to the inverse of the uniform spin susceptibility. The two dashed lines are at JK = 2.05 and JK = 2.7, which mark
the phase boundaries of the intermediate region I. (b) Central charge fit from infinite DRMG with unit cell L = 31.
The central charge is c = 1, 3, 2 for the three phases when increasing JK . Here the bond dimension m varies from
500 to 2000 and we fit the central charge with the formula S = c

6 log ξ, where ξ is the correlation length obtained
from the transfer matrix technique[39]. (c) Spin-spin correlation function in momentum space. Here we use the total
spin operator S⃗t = S⃗ + S⃗e. (d) Density-density correlation function in momentum space. In (c)(d) the black dashed

vertical line labels q = 2k∗F = x
2 × 2π. The red dashed line labels q = 4kF = x× 2π. The blue dashed line labels

q = 2kF = 1+x
2 × 2π. In (c)(d) the lines of different JK are shifted, so the absolute value of the y-axis is meaningless.

B. Dip of inverse charge compressibility and
Luttinger parameter

Overall at a generic filling, we find dips in both the
inverse charge compressibility κ−1

c and the Luttinger pa-
rameter Kc in the intermediate regime, shown in Fig. 5.
They are extracted using the formulas κ−1

c = ∂µ/∂n =
L(E(N+2)+E(N−2)−2E(N))/4 and ⟨N(q)N(−q)⟩ =
Kcq/2π at small q. We find Kc < 1

3 quite generi-
cally, indicating strong repulsive interaction. Given that
κc = πKc

υc
with υc as the charge velocity in a Luttinger

liquid, a dip of both κ−1
c and Kc means that the velocity

υc goes down even faster than Kc. This also means that
the Drude weight Dc ∝ Kcυc gets much smaller in the
intermediate region. All of these properties suggest that

the intermediate region has a large repulsive interaction
and slow charge velocity. It is a region where the charge
compressibility tends to become large, while the Drude
weight tends to vanish.

C. Charge density wave at commensurate filling

One consequence of the small Luttinger parameter Kc

is that the ground states at commensurate filling such
as x = 1

3 ,
1
2 are charge density wave(CDW) insulators.

That is because the umclapp terms become relevant for
a small Luttinger parameter. To identify the insulating
nature, we computed the inverse charge compressibility
κ−1
c In the insulating phase we have κ−1

c = L∆c/2 which
means that inverse compressibility diverges when L →
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FIG. 5: a) Charge Luttinger parameter for different
dopings x. The inset shows density-density correlations
at small q at commensurate doping x = 37/113 ≈ 0.33
to demonstrate the quadratic behaviour. b) Inverse

compressibility for different dopings x. The inset shows
inverse compressibility for a commensurate doping
x = 37/113 ≈ 0.33(blue line) and incommensurate
x = 35/113 ≈ 0.31(red line). The maximum bond

dimension m = 1000(finite DMRG).

∞. As shown in the inset of Fig. 5(b), at commensurate
filling κ−1

c is significantly larger than the corresponding
one at incommensurate filling nearby. Moreover, in the
insulator phase we expect that ⟨N(q)N(−q)⟩ ∼ q2 at
small q. This is indeed the case as shown in the inset of
Fig. 5(a).

IV. UNCONVENTIONAL CRITICALITY
AROUND THE REGION I

After we have a general understanding of the global
phase diagram in the (JK , x) parameter space, we now
zoom in on the ‘critical region’ to understand the evolu-
tion from the LE phase to the LL phase. As shown in the

phase diagram, we never find a direct continuous transi-
tion between the LE phase and the LL phase. Instead,
we find either a first-order transition or another interme-
diate phase. The intermediate phase I appears to be well
described by a CFT with c = 3. Below we are interested
in how the spin gap closes when approaching this inter-
mediate phase I, starting from the Luther-Emery liquid
phase at small JK .

Surprisingly we find that the transition between the
Luther-Emery liquid phase and the c = 3 intermediate
phase (in Region I of fig. 2) is not described by a usual
conformal field theory(CFT). First, when approaching
the critical point between the LE and the intermediate
region I around JK = 2.05, ∆sL vanishes and the uniform
spin susceptibility diverges, shown in Fig. 4(a). This is
already unexpected from a usual critical point described
by CFT, where we should still expect ∆S ∝ 1

L and a
finite ∆SL.

Besides, when approaching the critical point from the
spin-gapped phase, the correlation length remains finite,
shown in Fig. 6. At JK = 2.05, we still have a very small
correlation length ( ξS ≈ 2) in spin channel correspond-
ing to ξ−1

S ≈ 0.46. Then across the critical point, ξ−1
S

jumps to 0. This is a clear signature that the dynamical
exponent z at the critical point must be larger than 1, be-
cause otherwise in a relativistic critical theory we should
expect the inverse spin correlation length ξ−1

S ∝ ∆S and
also vanishes from the spin gapped side.

FIG. 6: Spin-Spin correlation functions when
approaching the critical point JK = 2.05 from the

spin-gapped Luther Emery liquid phase. At JK = 2.05,
we still have a finite correlation length ξ−1

S ≈ 0.46.
Then ξ−1

S jumps to 0 into the intermediate phase with
c = 3. The jump of the correlation length from finite to

infinite around Jc
K ≈ 2.05 is in contrast to the

continuous vanishing of ∆SL in Fig. 4(a), indicating a
critical point with dynamical exponent z > 1, and

probably z = +∞. The parameters are the same as in
Fig. 4 with system size L = 124 in finite DMRG.

In summary, when approaching the critical point Jc
K ≈
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2.05 from the LE phase, we find that the spin gap ∆S goes
to zero continuously, indicating a divergent correlation
length ξt in the time direction. But the correlation length
ξS in the real space stays finite (around 2 even at JK →
Jc
K − ϵ, with ϵ an infinitesimal number). Then if we

use the conventional scaling ξt ∼ ξzS , we reach a striking
conclusion that z = +∞. At small JK the spin excitation
has a dispersion ω2 = c2(δq)2 + ∆2 with δq = q − π.
Initially ∆ increases with JK , but then ∆ decreases when
JK is close to the critical point Jc

K ≈ 2.05. Note in this
ansatz the inverse of the real space spin correlation length
is ξ−1

S = ∆/c. So the only way that ξ−1
S can stay finite

is that the velocity c also vanishes along with the gap
∆. So we are in an unusual situation: the gap is closing
while the dispersion of the excitation also becomes flat.
We leave it to the future to develop an analytical theory
of this kind of exotic criticality.

V. EVIDENCE OF ULTRA-LOCAL
CRITICALITY AROUND REGION II

The intermediate region I in Fig. 2 seems to be well
described by a CFT. In contrast, the intermediate region
II (see Fig. 2.) is much more exotic.

In the following, we provide numerical evidence for
ultra-local criticality around region II with dynamical ex-
ponent z = +∞. We will also show evidence of gapless
spin fluctuations in a range of momentum space in the
dynamical spin structure factor.

Inside region II, there is a small sub-region coloured
red in Fig. 2. This small regime has a re-entrance of a
spin gap. In the other places of region II, there is no
spin gap. Instead, the inverse spin susceptibility even
vanishes. We will show that it has a weak ferromagnetic
moment and/or spin glass behaviour. We will discuss
these two cases separately. But both of them have sig-
natures of ultra-local criticality at a critical point (or
region) of JK .

A. ultra-local criticality between LE and LE2 phase

We first look at the subregion inside region II coloured
red in Fig. 2. We list results in Fig. 7 at x = 7

11 for
Jcs = 0. We can see two spin-gapped phases with cen-
tral charge c = 1. In between them, the central charge
seems to approach 2 (see Fig. 7(b)). There is one point
of JK = 1.42 which has entanglement entropy growing
faster than log ξ in infinite DMRG so one can not ex-
tract a reasonable central charge (see Fig. 7(c)). As
shown in Fig. 7(d), the entanglement entropy S scales
as S ∼ logm with the bond dimension m, as in a usual
CFT. However, the correlation length ξN (obtained in the
sector (Q,St

z) = (0, 0)) has a tendency of saturation with
logm. This indicates deviation from CFT behaviour at
JK = 1.42.

FIG. 7: Numerical results at Jcs=0 with x = 7
11 . (a)

Spin gap ∆S from finite DMRG with system size
L = 99, 110, 121. The bond dimension is m = 2000. One
can see that there is a re-entrance of spin gapped phase
when JK > 1.42, which we dub as LE2. The dashed line
is at JK = 1.42. (b) The inverse spin correlation length
ξ−1
S obtained from infinite DMRG for bond dimension
m up to 3000. We use a unit cell size L = 22. The

dashed line is at JK = 1.42. ξS is obtained from the
transfer matrix technique in the charge sector

(Q,St
z) = (0, 1). The value at m = ∞ is extrapolated

with the formula ξ−1
S (m) = ξ−1

S (m = ∞) + a 1
m + b 1

m2 .
(c) Central charge from infinite DMRG. We use the
relationship S = c

6 log ξ, where ξ is the correlation
length in the charge sector (Q,Sz) = (0, 0), which serves
as an effective length scale of the infinite DMRG. We

then get c(m) = 6 ∂S
∂ log ξ where the derivative is

calculated with the values from two nearby bond
dimensions. For example, c(m = 3000) is calculated
from m = 2500, 3000. The dashed vertical line is at
JK = 1.42. The two dashed horizontal lines label

c = 1, 2. (d) The growth of the entanglement entropy S
and the correlation length ξ with the bond dimension
m. Here ξN is from the sector (Q,Sz) = (0, 0) and

should correspond to the density operator. We can see
that S ∼ logm as in a typical critical phase, while ξN
saturates to around 21. We also plot the correlation
length ξS in the sector (Q,Sz) = (0, 1) and ξC in the
sector (Q,Sz) = (1, 1

2 ). One can see that the single
electron correlation length ξC is around 3 as in finite
DMRG. For the spin correlation length ξS , it reaches
ξS ≈ 12.5 for m = 6000, only slightly larger than the

value from finite DMRG (see Fig. 8 below).

We also find that the spin correlation length ξS in real
space is finite at JK = 1.42, shown in Fig. 7(b). In Fig. 8
we fit the correlation length also from finite DMRG at
JK = 1.42. We confirm that the spin correlation length
ξS ≈ 10. We also confirm that ξS actually becomes
shorter with a larger bond dimension (see the Appendix).
The single electron Green function has an even shorter



8

correlation length of around 3 (see Fig. 8(c)). The cor-
relation length in the density channel ξN also appears to
be finite with ξN ≈ 20 from Fig. 8(d). This is also con-
sistent with the infinite DMRG result in Fig. 7(d). In
summary from both finite and infinite DMRG, we find
that the correlation lengths in single electron, spin and
density channels are all finite, which are around 3, 10 and
20 respectively.

FIG. 8: (a)(b)(c) Correlation function and fitted
correlation lengths in finite DMRG with system size
L = 132, 154, 176 for JK = 1.42 at filling x = 7

11 . The
bond dimension is m = 6000. (d) Evolution of the
density-density correlation function with the bond

dimension at L = 176. Here we fix x0 = L/4. One can
see that the correlation length ξN becomes shorter with

increasing bond dimension, suggesting a finite
correlation length also in the density channel.

Here we will mainly focus on the spin channel. A finite
correlation length ξS ≈ 10 is in contradiction with a van-
ishing spin gap (see Fig. 7(a)) at JK = 1.42 if we assume
an usual relativistic scaling ∆S ∝ ξ−1

S with dynamical ex-
ponent z = 1. This suggests a dynamical exponent z > 1
in the spin-spin correlation. To further check the dy-
namical exponent, we plot the imaginary part of the dy-
namical spin susceptibility Imχ+−(ω, q) in Fig. 9, which
is proportional to dynamical spin structure factor. The
results are obtained from the TEBD algorithm (see the
appendix for details). We apply the operator S−(L/2)
to the ground state and then evolve the system under
e−iHt to obtain ⟨S†(x, t)S−(L/2, 0)⟩. Imχs(ω, q) is then
calculated by Fourier transformation. The total evolve
time is T = 100 with a step δt = 0.15 for each TEBD
step. The maximal bond dimension is set to be m = 500
in the calculation. In Fig. 9(a)(b) we get the expected
spectroscopy results for the LL and LL* phase. One can
see the gapless mode at 2kF = 1+x

2 ×2π for the LL phase
and the gapless mode at 2k∗F = x

2 ×2π for the LL* phase
at JK = 0. For the LL* the dominant spectral weight
is actually at the momentum Q = π from the local spin
moments. Around the gapless momentum, the dispersion

is linear in agreement with a dynamical exponent z = 1.
In contrast, at JK = 1.42, there are gapless spin fluc-

tuations in a range of momentum instead of just one sin-
gle momentum point. From the line cut at several mo-
menta (see Fig. 9(d)), we can see that the spectral weight
grows when decreasing ω for a range of momentum un-
til it reaches a cutoff energy scale (around 0.035J) be-
low which our calculation can not resolve. We note that
the TEBD calculation is not quantitatively accurate, but
qualitatively these results suggest that there is no disper-
sion within our numerical resolution.

As the dynamical spin structure factor ImχS(ω, q) is
not accurate at the low energy limit, it is not clear
whether the local criticality can survive down to zero
energy limit or not. To understand the property at the
zero energy limit, we need to rely on the ground state
calculation. From the ground state calculation in finite
DMRG (shown in Fig. 8) we already know that the spin
correlation length is finite with ξS ≈ 10 at JK = 1.42.
For a regular phase, we must also have a finite spin gap
∆S ∝ ξ−1

S . We scale the spin gap at JK = 1.42 with bond
dimension up to m = 6000 (m = 8000 for L = 176) in
Fig. 10(a). The conclusion is that there is an almost zero
spin gap ∆S ≈ 2× 10−4. We conjecture that the gapless
modes in a finite momentum region found in ImχS(ω, q)
can survive down to this scale ∆S ≈ 2 × 10−4. Note
that ∆S may still become truly zero if JK is fine-tuned
to a critical point Jc

K ≈ 1.42. Because the calculation
is quite time-consuming, it is impossible for us to do a
dense sampling around JK = 1.42. Therefore it is still an
open question whether the minimal spin gap is truly zero
or not. However, even if there is a gap ∆S ≲ 2× 10−4 at
true Jc

K , the ultra-local criticality behaviour still applies
for the temperature scale above it. Given that almost
any experimental measurement is likely performed well
above this energy scale, we may conclude that ultra-local
criticality exists for practical purposes.

Lastly, we comment on the density correlations. The
inverse charge compressibility κ−1

c in Fig. 10(b) shows a
dip around JK = 1.42, indicating that this point is still
a compressible phase with zero charge gap. Meanwhile
in Fig. 7(d) and Fig. 8(d), we find that the correlation
length in the density channel ξN is also finite. It is then
possible that there is also ultra-local critical behaviour
in the density channel.

B. An intermediate weak ferromagnetic phase and
ultra-local criticality

In the previous subsection, we find two spin-gapped
domes for doping x around 0.61 − 0.63. Away from this
narrow doping regime, we do not find another LE2 phase.
Instead, there is a very narrow but finite intermediate
region which hosts a very weak ferromagnetic (FM) mo-
ment and also ultra-local criticality around the phase
boundary.

In Fig. 11 we show that the inverse spin susceptibility
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FIG. 9: Dynamical spin structure factor Imχ+−(ω, q) at Jcs = 0 and x = 7
11 . Here we use a system size of L = 110

in finite DMRG. (a) Imχ+−(ω, q) for the LL phase at JK = 2. There is a gapless mode at q = 0 and
2kF = 1+x

2 × 2π. (b) LL* phase at JK = 0. Note that the colour bar is significantly larger than other plots due to
the large contribution from Q = π from the local spin moments. There is also a gapless mode at q = 2k∗F = x

2 × 2π
corresponding to a small Fermi surface, but its spectral weight is smaller than that at q = π. (c) The unusual

ultra-local critical behaviour at JK = 1.42. (d) Line cuts along several momenta q (in units of 2π
a ) at JK = 1.42.

The vertical dashed line is at 0.035J . Below 0.035J the spectral weight vanishes as proportional to ω, but this is due
to numerical accuracy with a finite time evolution. In (a)(b)(c), the vertical red dashed line is at 2kF = 1+x

2 × 2π,
while the blue dashed line is at 2k∗F = x

2 × 2π. In the TEBD calculation, the total time is T = 100 with a step
δt = 0.15 and the maximal bond dimension is m = 500. We use η = 0.035 for the damping term.

χ−1
S ∝ ∆SL goes to basically zero in an intermediate re-

gion of JK at x = 4
7 for both Jcs = 0 and Jcs = 0.5J . It

also happens at a larger filling x = 21
31 (see Fig. 11(c)(d)),

suggesting that this is a quite generic phenomenon. In
the following we focus on the parameter x = 21

31 and
Jcs = 0.5J . A vanishing ∆SL in the intermediate region
indicates a divergence of the uniform spin susceptibil-
ity χs = ∂Sz

∂h where h is the Zeeman field. It usually
signatures an FM phase. However, here we find that
the FM moment is very small and only at the order of
1%. For an FM phase, we expect that ∆S(Sz) = 0 for
Sz < ML, where M is the ferromagnetic moment per
site. In Fig. 11(d) we find that the gap of two spin flips
becomes finite in this intermediate region except in a

much smaller interval. Especially at the two boundaries
JK = 1.095 and JK = 1.15 there is a finite ∆S(Sz = 2),
indicating that M < 2

L if there is an FM order.
In Fig. 12 we provide spin-spin correlation functions

from JK = 1.09 to JK = 1.14 for Jcs = 0.5J and x = 21
31 .

They are obtained from finite DMRG, so boundary ef-
fects may matter here. One can see that the correla-
tion function saturates to a small but finite value, which
should be identified as M2, where M is the FM moment.
We can see that around JK = 1.12− 1.14, the FM mag-
netic moment M is at order 10−2. At JK = 1.09, it is
much smaller and at order M ∼ 10−4, which even de-
creases with the system size L. We note that a small
FM moment of M ∼ 10−2 is roughly polarizing one spin
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FIG. 10: (a)Spin gap ∆S from different system sizes at
filling x = 7

11 , JK = 1.42 and Jcs = 0. ∆S is obtained as
E(Sz = 1)− E(Sz = 0). The bond dimension m ranges
from 1000 to 6000. For L = 176, the bond dimension is
up to 8000. The dashed horizontal line indicates a gap

of 2× 10−4. (b) Inverse charge compressibility κ−1
c with

JK obtained from finite dmrg with bond dimension
m = 2000. κc =

∂n
∂µ . For finite size L with N number of

electron, we use the formula:
κ−1
c = L

4 (E(N + 2) + E(N − 2)− 2E(N)). At
JK = 1.42, κ−1

c remains finite, indicating that this is
still a compressible phase. Actually, the compressibility

is largest around JK = 1.42.

in the entire system with L ∼ 100. Hence it is even not
clear whether this weak FM moment survives to the ther-
modynamic limit. We tend to conjecture that the weak
FM moment is only a secondary effect in this region.

Despite the weak FM moment, we still discover ultra-
local criticality behaviour in the dynamical spin structure
factor at the two boundaries of this intermediate phase.
In Fig. 13 we plot the imaginary dynamical spin suscep-
tibility at the right boundary JK = 1.15 and the left
boundary JK = 1.1 of the weak FM phase at Jcs = 0.5J
and x = 21

31 . At JK = 1.15, one can see gapless spin
modes in a range of momentum around q = 0. At
JK = 1.1, the gapless spin modes are mainly concen-
trated at q = π. From the line cuts at fixed momentum
in Fig. 13(d) we can see that Imχ(ω, q) in a range of q
around q = π have constant spectral weight at intermedi-
ate energy and then grows at lower energy at JK = 1.1.
Within our numerical resolution, we can not see obvi-
ous dispersion, which suggests z = ∞ at least above
the energy scale corresponding to our energy resolution
(around 0.035J). Spin fluctuations around q = π should
be mainly from the localized spin moments, suggesting
that they are not fully Kondo screened at this parame-
ter.

Inside the weak FM phase, we already know that there
is a very small weak FM moment M ∼ 1%. However, we
find the real part of the dynamical spin susceptibility is
still dominated by q = π instead of q = 0 as can be seen
in Fig. 14. At JK = 1.08, the system is still in a spin-
gapped phase, one can see that the imaginary part of the
dynamical spin susceptibility has spectral weights mainly
around q = π with the spin gap already very small. Cor-
respondingly, the real part of the dynamical spin suscep-

FIG. 11: (a)∆SL with JK for Jcs = 0.5J , x = 4
7 from

finite DMRG for a few system sizes.
∆S = E(Sz = 1)− E(Sz = 0) is the spin gap and ∆SL
is proportional to the inverse of the uniform static spin
susceptibility. Here bond dimension is m = 2000. (b)
∆SL at x = 4

7 for Jcs = 0. Here bond dimension is
m = 2000. (c) ∆SL at x = 21

31 and Jcs = 0.5J . (d)
∆S(Sz = 2)L at x = 21

31 and Jcs = 0.5J .
∆S(Sz = 2) = E(Sz = 2)−E(Sz = 0). In (c)(d) the two
dashed vertical lines label JK = 1.095 and JK = 1.15.

FIG. 12: Spin-spin correlation functions from finite
DMRG results at Jcs = 0.5J , x = 21

31 . (a) JK = 1.09;
(b) JK = 1.1; (c) JK = 1.12; (d) JK = 1.14.

tibility is largest around q = π. The real susceptibility at
q = 0 is very weak here. We can also approach the weak
FM phase from large JK . At JK = 1.15 (see Fig. 14(d))
we find the real part of the dynamical spin susceptibility
is large around q = π and around q = 2kF = 1+x

2 . The
susceptibility at q = 0 is again quite small here. Then
when we decrease JK to JK = 1.14, there is some feature
in Reχ+−(ω, q) around q = 0, but the region with largest
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FIG. 13: Dynamical spin susceptibility χ+−(ω, q) at the
two boundaries of the weak FM phase at Jcs = 0.5J

and x = 21
31 . The system size is L = 62 in this

calculation. (a) Imχ+−(ω, q) at JK = 1.15. (b) Line
cuts of Imχ+−(ω, q) at several q at JK = 1.15. (c) (d)

are at JK = 1.1. The calculation is done from the
TEBD algorithm with total evolution time T = 200

with a step δt = 0.1. The bond dimension is m = 2000.
We include a damping term e−ηt with η = 0.025 when
performing the Fourier transformation along the time

direction. The dashed vertical line is at ω = 0.035J . the
momentum q is in units of 2π/a, where a is the lattice

constant.

susceptibility is still around q = π (see Fig. 14(c)). All of
these results suggest that the weak FM moment is likely
only a secondary effect, not the main property of this
region.

Next, we try to offer a possible explanation for the
weak FM order. In the appendix, we will show that
the dynamical spin structure factors inside the weak FM
phase (such as JK = 1.12 and JK = 1.14) have gap-
less spin fluctuations in a region around q = 0. Such
many gapless fluctuations may couple to the boundary
of the system and order at certain small momentum in-
cluding q = 0. Our interpretation is that the spin modes
get dispersion-less in a region around q = 0 and thus is
very easy to be stuck in a profile with zero momentum
or a small momentum. In real experiments with even
weak disorder, we conjecture the system will develop a
spin glass order. However, we note that the weak FM or
spin glass order has only a very small moment and we
should still expect ultra-local critical behaviour above a
very small energy scale.

VI. DISCUSSION

Here we discuss the implications of the unusual be-
haviour we found at intermediate JK (phase boundary

FIG. 14: (a) Reχ+−(ω, q) at JK = 1.08.
(b)Imχ+−(ω, q) at JK = 1.08. (c)Reχ+−(ω, q) at
JK = 1.14. (d)Reχ+−(ω, q) at JK = 1.15. The

parameters are the same as in Fig. 13.

between LE and region I (or region II) of Fig. 2). One
common property of the intermediate narrow region is
that the spin velocity υs apparently becomes small and
even vanishes. So the question is how to understand a
vanishing spin velocity or spatial correlations.

The usual way of dealing with a Kondo lattice model
is through Abrikosov fermion theory:

S⃗i =
1

2
f†
i;σσ⃗σσ′fi;σ′ (3)

Then a Kondo screened phase at large JK is captured
by a simple mean-field ansatz:

HM = −b
∑
i

c†i;σfi;σ (4)

where b ̸= 0 describes a Kondo-screened phase.
If we consider a model with J = 0 for

the localized spin and also ignore the Ruder-
man–Kittel–Kasuya–Yosida(RKKY) interaction, then
the f band is perfectly flat. In this case, one expects
b ∼ e

−A t
JK and one can get a very small velocity in the

JK → 0 limit. This is the usual heavy Fermion picture.
However, the model considered in this paper is dif-

ferent. We have a quite sizable J = 0.5t between the
localized spin moments. Therefore, in the above theory,
there is a sizable velocity υf for the f band itself and one
should not expect a vanishing velocity in the mean field
picture. A simple way to describe the Kondo breakdown
transition is to let b vanish at a critical Jc

K starting from
the large JK phase[19]. However, in this picture, one
does not expect υf (or the bandwidth of the f band) to
vanish at the Kondo breakdown transition. Therefore,
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we still expect dispersion in spin fluctuations. This is in
contrast to our discovery where we find dispersion-less
gapless spin fluctuations in a range of momentum space
within our energy resolution. For example, in Fig. 13(c)
we can see a gapless spin fluctuation continuum in a range
of (ω, q) space around q = π. In 1D we indeed expect that
the localized spin moments contribute a gapless mode at
q = π in the Kondo breakdown phase, but it should have
a strong dispersion proportional to J (for example, see
Fig. 9(b) for the result at JK = 0). It is clear that the dis-
persion (or spatial correlation) of the localized spin mo-
ments also gets suppressed when approaching the critical
regime. This is beyond the usual mean-field theory[19]
where only the hybridization c†σfσ vanishes, while the
bandwidth of the f band is still proportional to J . The
lesson we learned is that in the ‘critical regime‘ between
small JK and large Jk, the spatial correlation of local
spin moments can get suppressed and then they fluctu-
ate locally in real space. This is a property not cap-
tured by any theory we are aware of and thus offers a
theoretical challenge. One can of course argue that this
property may be special to this one-dimensional model
and is irrelevant to higher dimensions. However, we note
that similar features were observed in some neutron scat-
tering experiments of higher dimensional heavy fermion
material[17, 35]. This suggests that the ‘ultra-local crit-
ical’ phenomenon may be universal and relevant also for
the higher dimensions.

VII. CONCLUSION

In summary, we present the DMRG results of a one-
dimensional Kondo lattice model. Through varying the
Kondo coupling JK , we studied how the Kondo break-
down phase evolves to the Kondo-screened Luttinger liq-
uid phase. Around the intermediate regime, we discover

signatures of ultra-local criticality with dynamical expo-
nent z = +∞ in the spin fluctuations. Similar phenom-
ena have been reported in neutron scattering experiments
of certain heavy fermion materials[17, 35]. Momentum-
independent density fluctuations have also been observed
at optical doping of hole-doped cuprates[40]. However,
the inevitable existence of disorder in real materials com-
plicates the interpretations of these experimental results.
Our numerical observations in a simple translation invari-
ant model suggest that ultra-local criticality can arise in-
trinsically without the disorder. The fact that it shows up
even in a 1D model may suggest that the phenomenon is
quite universal around small to large Fermi surface tran-
sition and may be dimension independent. Theoretically,
it was proposed that local criticality may be key to the
solution of the mysterious strange metal phase[11, 34].
We plan to study the transport properties of this model
in the near future to test this idea. Given the simplicity
of a one-dimensional model, we hope future work on the
current model will lead to progress on a better under-
standing of ultra-local criticality and strange metal.
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Appendix A: Spin correlation length at the critical point near the intermediate region I

In this Appendix, we elaborate more on the transition between the LE phase and the intermediate region I phase.
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FIG. 15: Spin gap and inverse coherence length at the transition between LE and intermediate I phase. The parameters
are: L = 113, x = 31/113 ≈ 0.27, Jcs = 0.5J , V = 4J , m = 1000.

Fig. 15(a) shows the spin gap in the LE phase, gradually vanishing as we approach the transition point. Fig.
15(b) shows the inverse coherence length, extracted from the spin-spin correlation function. Right at the transition
point JKc ≈ 2.0 we again observe the signature of the ultra criticality: the spin gap is almost zero, while the inverse

http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://arxiv.org/abs/cond-mat/9702143
http://arxiv.org/abs/cond-mat/9702143
http://dx.doi.org/10.1073/pnas.1719374115
http://dx.doi.org/10.1073/pnas.1719374115
http://arxiv.org/abs/1710.04847
http://arxiv.org/abs/1710.04847
http://dx.doi.org/10.48550/arXiv.2302.09701
http://arxiv.org/abs/2302.09701
http://dx.doi.org/10.1103/PhysRevLett.79.1110
http://dx.doi.org/10.1103/PhysRevLett.79.1110
http://dx.doi.org/10.21468/SciPostPhysLectNotes.5
http://dx.doi.org/10.21468/SciPostPhysLectNotes.5
https://github.com/tenpy/tenpy
https://github.com/tenpy/tenpy
http://arxiv.org/abs/1805.00055


14

coherence length is finite ξ−1
s ≈ 0.4. Assuming that transition between LE and I phase is of BKT type, the action in

the massive phase is

S =
1

2πKc

1

βΩ

∑
k,n

(
ω2
n + c2k2 +∆2

)
ϕ∗
k,nϕk,n. (A1)

Based on this action, the most general relation between the coherence length and the gap is ξ−1
s = ∆/c. The natural

way to obtain finite coherence length at zero spin gap is to have c → 0. Note that c is different from vs, shown in Fig.
4(a) of the main text. While vs is the property of the gapless state, c measures the dispersion of the excitation in
the gapped phase. Therefore, c = 0 implies having a band of dispersionless excitations at energy ∆ above the ground
state. More detailed studies of this transition would be the purpose of our future work.

FIG. 16: (a)(b) Spin-Spin correlation function with bond dimension at system size L = 154 and L = 176. Here we
set the initial value x0 = L/4. One can see that the correlation length ξS becomes shorter when increasing the bond

dimension for L = 176.

Appendix B: Convergence of spin correlation length at JK = 1.42, Jcs = 0, x = 7
11

We focus on Jcs = 0, JK = 1.42 at x = 7
11 . In the main text, we show that the spin correlation length is finite while

the spin gap is very small. Here we provide more evidence that the spin correlation length is indeed finite. In Fig. 16
we show the spin-spin correlation function with bond dimension. At L = 176, we find that the correlation becomes
more short-ranged when increasing the bond dimension, in agreement with a finite correlation length at the infinite
bond dimension limit.

We also plot ⟨Sz
t (x)⟩ in Fig. 17. For a model with SU(2) spin rotation symmetry, we should expect ⟨Sz

t (x)⟩ = 0
in the ground state. At the intermediate regime such as JK = 1.42, ⟨Sz

t (x)⟩ vanishes quite slowly with the bond
dimension. We need to use the bond dimension m = 8000 for L = 176.

Lastly in fig. 18 we show that the same re-entrance of spin-gapped phase also exists at a different but close filling
x = 19

31 with Jcs = 0.

Appendix C: TEBD calculation of the dynamical spin susceptibility

We want to calculate the dynamical spin susceptibility:

χij(t− t′) = i⟨[S⃗i(t), S⃗j(t
′)]θ(t− t′) (C1)

We can decompose χij to be:
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FIG. 17: (a)(b) Total spin ⟨Sz
t (x)⟩ for system size L = 154, 176 at JK = 1.42, Jcs = 0 and x = 7

11 .

FIG. 18: Re-entrance of spin gapped phase at a different filling x = 19
31 .

χij(t− t′) = χzz
ij (t− t′) + χyy

ij (t− t′) + χzz
ij (t− t′) (C2)

We define:

Cab;ij(t) = ⟨Sa
i (t)S

b
j (0)⟩ − ⟨Sa

i ⟩⟨Sb
j ⟩ (C3)

We will mainly focus on calculation χ+−
ij (t− t′). We have the following identity:

χxx;ij(t) + χyy;ij(t) = iθ(t)(
1

2
(χ+−;ij(t) + χ−+;ij(t))) (C4)

where

χ+−;ij(t) = iθ(t)(C+−;ij(t)− C+−;ji(−t)) (C5)

χ−+;ij(t) = iθ(t)(C−+;ij(t)− C−+;ji(−t)) (C6)
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FIG. 19: Imχ+−(ω, q). (a) JK = 3, Jcs = 0.5J and x = 21
93 with L = 93. This is a Luttinger phase. The red and blue

dashed lines are at q = 2kF = 1+x
2 × 2π and q = 2k∗F = x

2 × 2kF respectively. (b) JK = 1, Jcs = 0, x = 7
11 with

L = 110. This is in the spin-gapped Luther-Emery phase. In both calculations, we use bond dimension m = 500,
total time T = 100 and a step δt = 0.15. We use η = 0.025 in performing the Fourier transformation along the time

direction.

We have the equation:

C∗
+−;ij(t) = C+−;ji(−t) (C7)

Therefore

χ+−;ij(ω) = i

∫ ∞

0

(C+−;ij(t)− C∗
+−;ij(t))e

iωt (C8)

χ−+;ij(ω) = i

∫ ∞

0

(C−+;ij(t)− C∗
−+;ij(t))e

iωt (C9)

In practice our evolution is limited to a finite time T , we use the following formula:

χ−+;ij(ω) = i

∫ T

0

(C−+;ij(t)− C∗
−+;ij(t))e

iωte−ηt (C10)

where η is a damping term.
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FIG. 20: Change of Imχ+−(ω, q) with the bond dimension. Here Jcs = 0.5, JK = 1.1, L = 62 and x = 42
62 . (a)(c)

bond dimension m = 1000. (b)(d) bond dimension m = 2000.

For our model, the above two quantities are the same. Therefore we focus on χ+−. By doing Fourier transformation
also in real space, we get:

χ+−(ω, q) =
∑
i

χ+−;i,j=L/2(ω) cos(q(i− L/2)) (C11)

Here we use cos(qx) instead of eiqx by assuming the inversion symmetry respect to x = L/2. This can remove the
artificial inversion breaking from numerical inaccuracy.

In our calculation, we use the TEBD algorithm with T = 200 (assuming the hopping t = 1) with a step δt = 0.1.
The largest bond dimension is m = 500− 2000. When doing the Fourier transformation, we typically use η = 0.035.
Note that without η we will find oscillations in χ(ω) because of the finite time T .

To benchmark the calculation, we first try two points deep inside the LL and the spin-gapped LE phase, shown in
Fig. 19. Here we only use bond dimension m = 500, but one can see the results are already quite reasonable. In (a)
we find gapless mode at q = 2kF and q = 0, typical behaviour of a Luttinger liquid phase. There are also features
at higher harmonics. In (b) we find a clear spin gap in the LE phase. These results demonstrate the validity of the
TEBD calculation.

To check that the TEBD results converge with the bond dimension even in the intermediate regime with ultra-local
criticality, we plot Imχ+−(ω, q) at the left boundary of the weak FM phase at Jcs = 0.5, JK = 1.1, x = 42

62 in Fig. 20.
We can see that the results are qualitatively the same for bond dimensions m = 1000 and m = 2000. Both show
dispersionless gapless spin fluctuations around q = π.

Appendix D: The weak FM phase

In this section we add more discussions on the weak FM phase in the region II.

1. More results at Jcs = 0.5J, x = 21
31

Here in Fig. 21 and Fig. 22 we show more data to supplement the discussions in the main text on the weak FM
regime for the parameter Jcs = 0.5J, V = 0 at the filling x = 21

31 . These results are again obtained from the TEBD
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FIG. 21: Dynamical spin susceptibility χ+−(ω, q) at JK = 1.14 and JK = 1.12. (a)(c) Reχ+−(ω, q). (b)(d)
Imχ+−(ω, q). One can see gapless spectral weights in a region around q = 0.

FIG. 22: Line cut at fixed q of Imχ+−(ω, q) inside the weak FM phase at JK = 1.12 and JK = 1.14.

calculation with system size L = 62. From the Imχ+−(ω, q) at Jk = 1.12, 1.14 inside the weak FM phase, we can see
gapless spin fluctuations in a region around q = 0.

2. Another filling

We also provide the results from a different filling x = 4
7 for the weak FM region. From infinite DMRG in Fig. 23,

we can see that there is a c = 2 region (with spin gap) in JK ∈ [1.295, 1.305] and a c = 3 region in JK ∈ [1.32, 1.38].
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FIG. 23: Infinite DMRG results at Jcs = 0.5J , x = 4
7 . We use unit cell size 22. (a) Central charge obtained from

c = 6∂S
∂ξ . (b) The inverse of the spin correlation length ξ−1

S . ξS is obtained from the transfer matrix technique in the
sector (Q,Sz) = (0, 1). (c) Scaling of the entanglement entropy and correlation lengths with bond dimension m at

JK = 1.3. ξN , ξS , ξC correspond to density, spin and single electron operators, obtained from the sector
(Q,Sz) = (0, 0), (0, 1), (1, 1

2 ) respectively. (d) Scaling of the entanglement entropy and correlation lengths with the
bond dimension m at JK = 1.31.

Compared to the finite DMRG in the main text (Fig. 11(a)), ∆SL approaches zero in the whole c = 2 region and
the left part of the c = 3 region. Between JK = 1.31 and JK = 1.32, we again see that the entanglement entropy S
grows with logm while the correlation length ξN saturates. In the region JK ∈ [1.295, 1.305], there is a quite short
correlation length in the spin channel, as shown in Fig. 24(a). This is again at odds with the vanishing ∆SL from our
finite DMRG calculation in Fig. 11(a). In this case, the charge correlation length is infinite and we have a regular
central charge c = 2, presumably from two charge modes. However, the spin modes are not simply gapped given that
∆SL goes to zero even faster than any power of 1/L. We conjecture that in the spin channel there is still ultra-local
criticality. When JK > 1.31, we find that |⟨S†(x)S−(0)⟩ seems to saturate to a finite value in the large x limit,
indicating a very small FM moment.

Appendix E: TEBD calculation of the single electron spectral density

In this appendix, we demonstrate the existence of the small and large Fermi momenta by calculating the electron
spectral function. The spectral function is defined as Ak(ω) = −ImGR

k (ω) and GR
k (t) = ⟨{ck(t), c†k(0)}⟩. The

calculations were done for the Kondo-Heisenberg model to ensure that the Luther-Emery phase at JK → 0 coincides
with the free electrons phase.

H = −t
∑

<i,j>,σ

(c†i,σcj,σ + h.c) + JK
∑
i

S⃗e
i S⃗i + J

∑
i

S⃗iS⃗j (E1)
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FIG. 24: Log-x plot of the spin spin correlation function ⟨S†(x)S−(0)⟩ from infintie DMRG at x = 4
7 , Jcs = 0.5J .

(a) JK = 1.3. (b) JK = 1.31.

We studied the model at x = 0.25 and observed the same phases as in Figure 2, with phase I being in the region
JK ≈ (2.5, 2.8). Fig. 25 a) shows the small Kondo coupling regime with the spectral function simply matching the
free electron band with small Fermi momentum 2kF = x/2. The spin gap should also be present but it is too small
to be distinguishable. At larger JK the layer of spins starts to interfere and the band dispersion is modified, see Fig.
25 b). A similar band reconstruction happens if we implement a mean-field theory. Fig. 25 c) shows the dispersion in
phase I which has a c = 3 central charge and a split in Fermi momentum. We do not clearly see two Fermi momenta,
but the bands are strongly reconstructed and the accuracy is not enough to make a definite conclusion. Finally, at
large Kondo coupling the system is in LL phase with a large Fermi momentum 2kF = (1 + x)/2, see Fig. 25 d).

To obtain better frequency resolution we used a linear prediction algorithm, see [41]. We extrapolated to times
3 times larger than the initial computation. The energies also need to be shifted by the chemical potential. We
computed it separately by using the formula µc = (E(ne + 2)− E(ne − 2))/4.

Appendix F: Mean-field theory

In this appendix, we show how some of the observations in the main part of the paper can be explained using simple
mean-field analysis. As in the previous appendix, we start with the simpler Kondo-Heisenberg Hamiltonian

H = −t
∑

<i,j>,σ

c†i,σcj,σ +
∑
<i,j>

(
JS⃗iS⃗j + JcsS⃗e

i S⃗j

)
+ JK

∑
i

S⃗e
i S⃗i. (F1)

We fractionalize spin S⃗ = 1/2f†
ασαβfβ and use Pauli identities to obtain

H = −2t cos(ka)c†kck − J

2
f†
iαfjαf

†
jβfiβ − Jcs

2
f†
iαcjαc

†
jβfiβ − JK

2
f†
iαciαc

†
iβfiβ . (F2)

After taking a large M limit (where M is a number of spin indices), we arrive at the following saddle-point equations:

P = −JK⟨f†
i ci⟩ = −JK

V

∑
k

⟨f†
kck⟩,

Q = −J⟨f†
i fi+1⟩ = − J

V

∑
k

cos(ka)⟨f†
kfk⟩,

PR = −Jcs⟨f†
i ci+1⟩ = −Jcs

V

∑
k

cos(ka)⟨f†
kck⟩,

1

2
=

1

V

∑
k

⟨f†
kfk⟩.

(F3)
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FIG. 25: TEBD calculation of electron spectral function for Kondo-Heisenberg model. Figures a)-d) correspond to
the Kondo coupling JK = 1, 2.3, 2.6, 4 correspondingly, while other parameters are J = 0.5, t = 1. The length of the
chain was L = 80 and the number of electrons ne = 20, while the bond dimension m = 500 with the time evolution

t = 12 and additional linear prediction interpolation.

The corresponding free Hamiltonian is

H = (−2t cos(ka)− µ)c†kck + (2Q cos(ka) + λ)f†
kfk + P (1 + 2R cos(ka))c†kfk + P (1 + 2R cos(ka))f†

kck. (F4)

We take x = 2ρc = 0.7, J = 0.5,Jcs = 0.25 and t = 1, which is close to the parameters in the paper, and study the
phase diagram as a function of JK . This requires solving Eq. F3 self-consistently. At small JK < 1.4 there is only a
trivial solution for the mean-field P = 0 which corresponds to an LL∗ phase with a small Fermi surface kF = πx/2.
For the intermediate JK ∈ [1.4, 2] there is a nontrivial solution which corresponds to a nontrivial hybridized Fermi-
surfaces, see Fig. 26(a). There is another solution with two Fermi surfaces, see Fig.26(b), which proves to be unstable
after a comparison of Free energies. Finally, at large JK > 2, there is a nontrivial solution with a large Fermi surface
kF = π(1 + x)/2, which correspond to an LL phase, see Fig.26(c).
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(a) Two FS solution at JK = 1.8. (b) Unstable solution at JK = 2.7. (c) One large FS solution at JK = 3.

FIG. 26: The energy bands of the Hamiltonian in Eq. F4 at different JK . The red line is a dispersion of a c particle,
the dashed black line is a dispersion of an f particle, and the blue lines are full hybridized dispersions, given by
eigenvalues of H.

The point of the analysis above is to show that a simple mean-field model is able to capture certain properties of
the phase diagram, such as a transition from an LL∗ to an LL phase through the intermediate phase with two FS.
Though certain features, such as the spin gap, are missing from the above analysis, the rough boundaries of the phases
match our DMRG predictions in Fig. 2.

Now we address another question, stated in Section V of the paper, namely the existence of the phase with zero
gap and finite coherence length. To evaluate the coherence length, we computed the density-density response of the
Hamiltonian in Eq. F4. Equal time density-density correlation in Fourier space is:

⟨N(q)N(−q)⟩ =
∑

k,ωn,qn

Gc(k + q, ωn + qn)Gc(k, ωn) (F5)

For the Kondo-Heisenberg model, the Green function Gc is

Gc =
1

iωn − E+

E+ − ef
E+ − E−

+
1

iωn − E−

E− − ef
E− − E+

=
u2
+

iωn − E+
+

u2
−

iωn − E−
, (F6)

where E+ and E− are the eigenvalues of the Hamiltonian H. The full density-density correlation functions are

⟨N(q)N(−q)⟩ =
∑
k

(nF (E+q)− nF (E+)nB(E+q − E+)u
2
+u

2
+q + (nF (E−q)− nF (E−)nB(E−q − E−)u

2
−u

2
−q+

+ (nF (E+q)− nF (E−)nB(E+q − E−)u
2
−u

2
+q + (nF (E−q)− nF (E+)nB(E−q − E+)u

2
+u

2
−q,

(F7)

where each term correspond to scattering from the band Ei to the band Ej , i, j = +,−. The leading contribution
will be given by the scattering in the lower band E− → E−, since this band hosts zero-energy excitations. We
computed the density-density response for the simple mean-field model in Fig. 27(a) at two temperatures. At small
temperatures, we observed a typical power law decay with an infinite coherence length, see Fig. 27(b). However,
at finite temperatures comparable to the dispersion of the f electron, the density-density correlation demonstrated
an exponential decay, with finite coherence length and zero spin gap. Though our DMRG calculations are done at
zero temperature, there is always a finite error in energy calculation δEs. Therefore, we can successfully explain the
existence of a finite coherence length and zero spin gap by assuming that the dispersion of the f electron is even
smaller Q ≪ δEs. δEs is very small in our calculation, and the f fermion band should be almost flat, which is quite
a surprise for a finite J .
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(b) Small temperature T = 0.001.
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(c) Finite temperature T = 0.1.

FIG. 27: (a) The hybridized bands for parameters x = 0.4, Q = −0.1, P = 0.5, R = 0 and t = 1. (b) Density-Density
response at small temperatures in logarithmic scale shows power-law decay with ξ−1 = 0. (c) Density-density response
at finite temperatures in logarithmic scale shows exponential decay with finite coherence length.
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