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Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we
study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of
local criticality. We vary the Kondo coupling JK at fixed doping x. At large positive JK , we confirm
the expected conventional Luttinger liquid phase with 2kF = 1+x

2
(in units of 2π), an analogue of

the heavy Fermi liquid (HFL) in the higher dimension. In the JK ≤ 0 side, our simulation finds
the existence of a fractional Luttinger liquid (LL*) phase with 2kF = x

2
, accompanied by a gapless

spin mode originating from localized spin moments, which serves as an analogue of the fractional
Fermi liquid (FL*) phase in higher dimensions. The LL* phase becomes unstable and transitions to
a spin-gapped Luther-Emery (LE) liquid phase at small positive JK . Then we mainly focus on the
‘critical regime’ between the LE phase and the LL phase. Approaching the critical point from the
spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin
correlation length in real space stays finite and small. For a certain range of doping, in a point (or
narrow region) of JK , the dynamical spin structure factor obtained through the time-evolving block
decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum
space above a small energy scale (around 0.035J) that is limited by the TEBD accuracy. All of these
results are unexpected for a regular gapless phase (or critical point) described by conformal field
theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite
dynamical exponent z = +∞. The numerical discovery here may have important implications on
our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we
propose to simulate the model in a bilayer optical lattice with a potential difference.

I. INTRODUCTION

The study of quantum phase transition between a
small Fermi surface phase and a large Fermi surface phase
is a central topic in modern quantum condensed matter
physics and may be closely related to the strange metals
observed in heavy Fermion systems [1–8] and in hole-
doped high Tc cuprates [9–12]. The standard Landau-
Ginzburg theory involves the onset of a symmetry-
breaking order and its fluctuation [13, 14]. However, a
number of experiments in heavy Fermion systems [15–
17] do not appear to be consistent with the simple spin-
density-wave (SDW) approach. It was suggested that
the transition in heavy fermion systems may be charac-
terized by a jump in Fermi surface volume resulting from
Kondo breakdown, rather than fluctuations in symmetry-
breaking orders. There have been many attempts to for-
mulate a framework of an exotic transition following dif-
ferent approaches, such as extended dynamical mean field
theory (EDMFT) [18], fractionalization and slave boson
theory [19–21], ancilla qubit theory [22, 23]. However, a
well-established theoretical description of such a Kondo
breakdown transition is still elusive.

In this paper, we take a microscopic approach to
avoid uncontrolled approximations usually existing in
low-energy effective field theory methods. Specifically,
we will numerically simulate a one-dimensional Kondo
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lattice model using density matrix renormalization group
(DMRG) [24]. DMRG has been demonstrated to be an
unbiased method with excellent performance in one di-
mension (1D). Therefore, the numerical results should be
reliable. The only question is whether there is anything
interesting in a 1D model. We will show that the answer
is yes and we find a critical point or phase which seems
to support local criticality behaviour. We note that there
already exist a few numerical studies of the Kondo lattice
model in one dimension [25–28], but to our best knowl-
edge, there is no detailed study of how a Kondo break-
down phase at negative JK evolves to the Luttinger liquid
in the large positive JK at a generic filling.

The model we study consists of a t-J model of itinerant
electron and a Heisenberg model of spin 1/2 chain [29].
They couple to each other through a Kondo coupling JK .
At a density x for the itinerant electron, we vary JK to
study the phase diagram. In the JK ≤ 0 side, the ground
state has one charge mode and two spin modes (C1S2),
where the localized spin 1/2 moments provide an addi-
tional gapless mode with momentum Q = π. The itiner-
ant electron forms a Luttinger liquid with 2k∗F = x

2 (in
units of 2π). The phase is an analogue of the fractional
Fermi liquid (FL*) phase in higher dimension and we call
it fractional Luttinger liquid (LL*) [30]. In the large pos-
itive JK we find the expected Luttinger liquid (LL) phase
with 2kF = 1+x

2 (in units of 2π), which is an analogue
of the heavy Fermi liquid (HFL) phase in the higher di-
mensional Kondo lattice model. Therefore, we have the
same problem of small to large Fermi surface evolution
as in higher dimensions. Complexity arises in one di-
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mension because the LL* phase is unstable at small pos-
itive JK and transitions to a Luther-Emery liquid (LE)
phase with a spin gap and only one gapless charge mode
[26, 29, 31, 32]. The LE phase is best described as a
descendant of the LL* phase [29]. It is similar to a su-
perconductor phase in a higher dimension and above the
energy scale of the spin gap it smoothly connects to the
LL* phase. We note, that in the heavy Fermion experi-
ments, the transitions between the small and large Fermi
surface metals are typically covered by a superconduc-
tor dome. Thus, the situation in 1D is similar to higher
dimension and we will try to understand the nature of
the evolution from the LE phase to the LL phase upon
increasing JK . The hope is that there may also be a
‘strange metal’ critical point or a phase in between.

As the LE phase descends from the LL* phase and we
are not aware of any way to construct it from the LL
phase, we do not expect any obvious continuous transi-
tion between the LE and LL phases. Indeed, we find that
there is either a first-order transition or an intermediate
region in between. We will focus on the latter case and
provide evidence of local criticality behaviour beyond the
familiar Luttinger liquid or conformal field theory (CFT)
descriptions. At one point (or a narrow region) of JK , we
find that the spin gap is almost vanishing, while there is
still a finite correlation length in equal time spin-spin cor-
relation function in real space. Meanwhile, the dynam-
ical spin structure factor S(ω, q) ∼ ImχS(ω, q) obtained
from the time-evolving block decimation (TEBD) simu-
lation shows dispersion-less spin fluctuations in a range
of the momentum space above an energy cutoff (around
0.035J , J is the Heisenberg spin coupling) imposed by
the numerical accuracy itself. Such behaviour resembles
what is called local criticality. We note, that in the liter-
ature sometimes local criticality is also used [18] for the
case where only the self-energy is momentum indepen-
dent, while there is still a significant spatial correlation.
In this weaker case, the dynamical exponent is still finite.
The behaviour in our model is closer to a stronger def-
inition with an infinite dynamical exponent. Therefore,
we follow Ref. [33] and call it ultra-local criticality to be
distinguished from the weaker definition.

The discovery of ultra-local critical spin fluctuations
above a small energy scale is quite remarkable, as this
phenomenon is not generally believed to be possible in a
reasonable model with translation invariance and a finite-
dimensional Hilbert space at each site. The existence of
ultra-local criticality also has significant implications for
our understanding of the strange metal. For example,
it may be a loophole of the anomaly approach of non-
Fermi liquid [33] and it is known that ultra-local critical
spin fluctuations with a constant spectral function over
frequency can lead to a marginal Fermi liquid and linear
T resistivity [34]. On the experimental side, similar lo-
cal critical behaviours have been discovered in neutron
scattering measurements of some heavy Fermion materi-
als [17, 35]. One may worry that the experimental re-
sults arise from disorder effects. Our numerical observa-

tion of similar local critical behaviours in a clean model
strongly suggests that such a phenomenon may likely be
intrinsic and does not need disorders. On the theoretical
side, similar behaviour has been discussed in holographic
theory from the gravity side and dubbed as ‘semi-local
quantum fluid’ [36]. However, we are not aware of a
well-established theory of ultra-local criticality for a local
and translation invariant quantum lattice model directly.
We hope our numerical confirmation of the existence of
ultra-local criticality will stimulate theoretical efforts in
this direction. Lastly, we propose to simulate the Kondo
lattice model in a bilayer optical lattice with a potential
difference, which hopefully will provide more information
at finite temperatures and higher dimensions.

II. MODEL AND PHASE DIAGRAM

FIG. 1. The geometry and corresponding couplings of the
Hamiltonian in Eq. 1. The first layer corresponds to a t-
J model, while the second layer is an antiferromagnetic spin
1/2 model. The two layers are coupled together through the
on-site Kondo coupling JK and nearest neighbour Kondo in-
teraction Jcs.

We formulate our model as a generalization of the
Kondo-Heisenberg lattice model, which is described by
the following Hamiltonian:

H = −tP
∑

<i,j>,σ

(c†i,σcj,σ + h.c)P + Jc
∑
⟨ij⟩

S⃗e
i · S⃗e

j

+ (V − 1

4
Jc)

∑
⟨ij⟩

ninj + J
∑
<i,j>

S⃗i · S⃗j

+ JK
∑
i

S⃗e
i · S⃗i + Jcs

∑
⟨ij⟩

S⃗e
i · S⃗j + S⃗i · S⃗e

j . (1)

The first layer is described by the t-J model, P is
the projection operator to forbid double occupancy and
S⃗e
i = 1

2

∑
σσ′=↑,↓ c

†
i;σσ⃗σσ′ci;σ′ is the spin operator of the

itinerant electron. The couplings V and Jc account for
the nearest neighbour interaction in the first layer. The
second layer is described by Heisenberg spin 1/2 model
with coupling J . We will call these two layers C layer and
S layer respectively in what follows. Finally, we have the
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inter-layer Kondo couplings JK and Jcs. Fig. 1. shows
the geometry and the corresponding couplings pictorially.
In the Appendix A we show how the studied model can
be realized in bilayer optical lattices.

In the rest of the paper, we fix t = 1, J = Jc = 0.5 and
study how the system evolves as we change Kondo cou-
pling JK . We also use two different values Jcs = 0, 0.5J
which we concluded does not change the underlying
physics much. We will simulate the model with both
finite and infinite DMRG. The bond dimension varies
from 500 to 8000 depending on parameters. The typical
truncation error is at order 10−8 or even smaller.

FIG. 2. Illustration of phase diagram of the Kondo lattice
model with Jcs = 0.5J, V = 4J . LL∗ phase corresponds to
fractional Luttinger liquid, LE stands for Luther-Emery(spin
gap) phase, and LL is a Luttinger liquid phase. LL*, LE and
LL phases can be labeled as C1S2, C1S0 and C1S1 respec-
tively and they have central charges c = 3, 1, 2. Here CmSn
means that there are m charge modes and n spin modes.
Grey shadowed regions correspond to commensurate fillings
x = 1/3 and x = 1/2 where the system turns into a charge
density wave (CDW) insulator. The red vertical line marks
the first-order transition between LE and LL phases. Re-
gion I is a gapless phase with a central charge c = 3. When
approaching the region I from the LE phase, the spin gap
vanishes continuously, while the spin correlation length in
real space stays finite and small, indicating possible infinite
dynamical exponent. Region II hosts an exotic phase with
a weak ferromagnetic moment and ultra-local criticality at
the phase boundary. Within region II, around the doping
x ≈ 0.61− 0.63, there is a re-entrance of another spin-gapped
phase. We find signatures of ultra-local criticality between
the two spin-gapped domes. We use system size L = 113, and
maximum bond dimension m = 1000 with finite DMRG for
this plot.

We start our analysis by providing an illustrated phase

diagram of the model in Fig. 2. Previous calculations
have found a dominant ferromagnetic phase in the con-
ventional Kondo lattice model with J = 0 [25]. Here
we use J = 0.5t to get rid of the FM order. Then the
phase diagram is dramatically different from that of the
conventional Kondo lattice model with J = 0.

At JK = 0, we can start from the layer decoupled
phase. We know the itinerant electron in the C layer just
forms a spinful Luttinger liquid, while the spin moments
in the S layer form a gapless phase with one spin mode.
We can dub this phase C1S2 because it has one charge
mode and two spin modes. The itinerant electrons in
the C layer form a Fermi surface with 2k∗F = x

2 × 2π,
which is different from the required value of the Luttinger
theorem by 1/2 of 2π. This feature is similar to the
fractional Fermi liquid (FL*) phase discussed in higher
dimensions. Therefore, we dub this phase a fractional
Luttinger liquid (LL*) [29]. The LL* phase is stable in
the negative JK regime. However, it is unstable to a
spin-gapped Luther Emery (LE) liquid phase with a finite
positive JK [29]. In the large positive JK , we recover the
Luttinger liquid (LL) as an analogue of the heavy Fermi
liquid in higher dimensions. The LL phase has a Fermi
surface with 2kF = 1+x

2 × 2π, satisfying the Yamanaka-
Oshikawa theorem [37]. Note that the central charge for
the LL*, LE, and LL phases are c = 3, 1, 2 respectively
and they can be labeled as C1S2, C1S0, C1S1.

FIG. 3. Spin gap ∆S jumps at the first order transition. L =
113, x = 45/113 and maximum bond dimension m = 1000.
In the inset, we also show the jump of V = 2⟨S⃗i · S⃗e

i ⟩ and the
central charge c. We use Jcs = 0.5 and V = 1

4
Jc for this plot.

Although the LL* phase is unstable to the spin-gapped
LE phase, one can view the LE phase as a descendant
of the LL* phase. Above the energy scale of the spin
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FIG. 4. Results for the intermediate region I at x = 7
31

, Jcs = 0.5J , V = 0. (a) ∆SL for a few system sizes obtained from
finite DMRG with bond dimension m = 2000. L is the system size and ∆S is the spin gap. ∆SL is proportional to the inverse
of the uniform spin susceptibility. The two dashed lines are at JK = 2.05 and JK = 2.7, which mark the phase boundaries of
the intermediate region I. (b) Central charge fit from infinite DRMG with unit cell L = 31. The central charge is c = 1, 3, 2
for the three phases when increasing JK . (c) Spin-spin correlation function in momentum space. Here we use the total spin
operator S⃗t = S⃗ + S⃗e. (d) Density-density correlation function in momentum space. In (c)(d) the black dashed vertical line
labels q = 2k∗

F = x
2
× 2π. The red dashed line labels q = 4kF = x× 2π. The blue dashed line labels q = 2kF = 1+x

2
× 2π. In

(c)(d) the lines of different JK are shifted, so the absolute value of the y-axis is meaningless.

gap, we can still think of this phase as a LL* phase with
a small Fermi surface. Therefore we can ask how the
small Fermi surface changes to the large Fermi surface
in the large JK regime. In the regime of intermediate
filling x ∈ (0.33, 0.43) the transition appeared to be of the
first order, labeled as the red line in Fig. 2. As evidence
of the first order transition, the spin gap ∆s jumps to
zero discontinuously and other physical quantities such as
V = 2⟨S⃗i · S⃗e

i ⟩ also experience a jump, as shown in Figure
3. The central charge changes from c = 1 in the LE phase
to c = 2 in the LL phase directly at the transition.

A. Intermediate region I

At small doping x < 1
3 the LE phase evolves to the LL

phase through an intermediate region I. Region I has a
central charge c = 3 and a finite spin susceptibility, in

agreement with a conformal field theory (CFT) descrip-
tion with both gapless charge and spin modes. We list
results for intermediate region I at x = 7

31 , Jcs = 0.5J
in Fig. 4. In Fig. 4(a) we plot ∆SL from finite DMRG,
where ∆S is the spin gap and L is the system size. ∆S is
obtained from E(St

z = 1)−E(St
z = 0), where E(St

z = m)
is the ground state energy of the sector of the total spin
Sz = m sector. Note that the total St

z = Sz + Se
z com-

ponent is conserved in our calculation, so we can target
a state at each St

z = m. It is known that the inverse
of the uniform spin susceptibility χ−1

S ∝ ∆SL. When
JK < 2.05, we can see that ∆SL increases with the sys-
tem size L, indicating a finite spin gap in agreement with
the LE phase. But when JK > 2.05, ∆SL is constant
with system size, indicating a finite uniform spin suscep-
tibility. This is expected from the scaling ∆S ∼ 1

L of a
conformal field theory (CFT) description.

Using bond dimension m from 500 to 2000 we fit the
central charge with the formula S = c

6 log ξ, where ξ is
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the correlation length obtained from the transfer matrix
technique [38] and S is the entanglement entropy. Inside
the intermediate region I, we find that the central charge
is c = 3 from the infinite DMRG result in Fig. 4(b). This
central charge is larger than both the LE phase (c = 1)
on the left and the LL phase (c = 2) on the right. One
natural interpretation is that there are two Fermi surfaces
per spin component in the intermediate region I, leading
to two charge and two spin modes. Then one of the
four modes gets gapped, giving c = 3. In the Appendix
G, we will argue that a simple mean-field theory is able
to explain the existence of several Fermi surfaces and
show how a flat band scenario is able to explain a finite
correlation length in the gapless system.

To support the above picture, we indeed find that the
peak of the spin-spin correlation function ⟨S⃗(q) · S⃗(q)⟩ is
still at 2kF = 1+x

2 (in units of 2π) in the intermediate re-
gion (see Fig. 4(c)), while the peak of density-density
correlation functions ⟨N(q)N(−q)⟩ shifts from 2kF to
4kF gradually in the intermediate phase I, as shown in
Fig. 4(d). A gradually changing momentum is a signa-
ture of a split Fermi surface. Based on the value of the
central charge, the phase could be either C1S2 or C2S1.
We conjecture that it is C2S1 and there is only one spin
mode, given that the peak of the spin-spin correlation
function seems to be pinned at 2kF . But more analy-
sis is needed to fully understand how a spin mode gets
gapped starting from four modes. Except for the unusu-
ally odd central charge, the phase is otherwise consistent
with a CFT. It easily converges in our numerical calcu-
lation with expected CFT behaviour.

B. Dip of inverse charge compressibility and
Luttinger parameter

Overall at a generic filling, we find dips in both the
inverse charge compressibility κ−1

c and the Luttinger pa-
rameter Kc in the intermediate regime, shown in Fig. 5.
They are extracted using the formulas κ−1

c = ∂µ/∂n =
L(E(N+2)+E(N−2)−2E(N))/4 and ⟨N(q)N(−q)⟩ =
Kcq/2π at small q. We find Kc < 1

3 quite generi-
cally, indicating strong repulsive interaction. Given that
κc = πKc

υc
with υc as the charge velocity in a Luttinger

liquid, a dip of both κ−1
c and Kc means that the velocity

υc goes down even faster than Kc. This also means that
the Drude weight Dc ∝ Kcυc gets much smaller in the
intermediate region. All of these properties suggest that
the intermediate region has a large repulsive interaction
and slow charge velocity. It is a region where the charge
compressibility tends to become large, while the Drude
weight tends to vanish.

C. Charge density wave at commensurate filling

One consequence of the small Luttinger parameter Kc

is that the ground states at commensurate filling such

FIG. 5. a) Charge Luttinger parameter for different dopings
x. The inset shows density-density correlations at small q
at commensurate doping x = 37/113 ≈ 0.33 to demonstrate
the quadratic behaviour. b) Inverse compressibility for dif-
ferent dopings x. The inset shows inverse compressibility for
a commensurate doping x = 37/113 ≈ 0.33(blue line) and
incommensurate x = 35/113 ≈ 0.31(red line). The maximum
bond dimension m = 1000(finite DMRG).

as x = 1
3 ,

1
2 are charge density wave(CDW) insulators.

That is because the umclapp terms become relevant for
a small Luttinger parameter. To identify the insulating
nature, we computed the inverse charge compressibility
κ−1
c . In the insulating phase we have κ−1

c = L∆c/2 which
means that inverse compressibility diverges when L →
∞. As shown in the inset of Fig. 5(b), at commensurate
filling κ−1

c is significantly larger than the corresponding
one at incommensurate filling nearby. Moreover, in the
insulator phase we expect that ⟨N(q)N(−q)⟩ ∼ q2 at
small q. This is indeed the case as shown in the inset of
Fig. 5(a).
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III. UNCONVENTIONAL CRITICALITY
AROUND THE REGION I

After we have a general understanding of the global
phase diagram in the (JK , x) parameter space, we now
zoom in on the ‘critical region’ to understand the evolu-
tion from the LE phase to the LL phase. As shown in the
phase diagram, we never find a direct continuous transi-
tion between the LE phase and the LL phase. Instead,
we find either a first-order transition or another interme-
diate phase. The intermediate phase I appears to be well
described by a CFT with c = 3. Below we are interested
in how the spin gap closes when approaching this inter-
mediate phase I, starting from the Luther-Emery liquid
phase at small JK .

Surprisingly we find that the transition between the
Luther-Emery liquid phase and the c = 3 intermediate
phase (in Region I of Fig. 2) is not described by a usual
conformal field theory(CFT). First, when approaching
the critical point between the LE and the intermediate
region I around JK = 2.05, ∆sL vanishes and the uniform
spin susceptibility diverges, shown in Fig. 4(a). This is
already unexpected from a usual critical point described
by CFT, where we should still expect ∆S ∝ 1

L and a
finite ∆SL.

Besides, when approaching the critical point from the
spin-gapped phase, the correlation length remains finite,
shown in Fig. 6. At JK = 2.05, we still have a very small
correlation length ( ξS ≈ 2) in spin channel correspond-
ing to ξ−1

S ≈ 0.46. Then across the critical point, ξ−1
S

jumps to 0. This is a clear signature that the dynamical
exponent z at the critical point must be larger than 1, be-
cause otherwise in a relativistic critical theory we should
expect the inverse spin correlation length ξ−1

S ∝ ∆S and
also vanishes from the spin gapped side.

In summary, when approaching the critical point Jc
K ≈

2.05 from the LE phase, we find that the spin gap ∆S goes
to zero continuously, indicating a divergent correlation
length ξt in the time direction. But the correlation length
ξS in the real space stays finite (around 2 even at JK →
Jc
K − ϵ, with ϵ an infinitesimal number). Then if we

use the conventional scaling ξt ∼ ξzS , we reach a striking
conclusion that z = +∞. At small JK the spin excitation
has a dispersion ω2 = c2s(δq)

2 + ∆2 with δq = q − π.
Initially ∆ increases with JK , but then ∆ decreases when
JK is close to the critical point Jc

K ≈ 2.05. Note in this
ansatz the inverse of the real space spin correlation length
is ξ−1

S = ∆/cs. So the only way that ξ−1
S can stay finite

is that the velocity cs also vanishes along with the gap
∆. So we are in an unusual situation: the gap is closing
while the dispersion of the excitation also becomes flat.
We leave it to the future to develop an analytical theory
of this kind of exotic criticality.

FIG. 6. Spin-Spin correlation functions when approaching
the critical point JK = 2.05 from the spin-gapped Luther
Emery liquid phase. At JK = 2.05, we still have a finite
correlation length ξ−1

S ≈ 0.46. Then ξ−1
S jumps to 0 into the

intermediate phase with c = 3. The jump of the correlation
length from finite to infinite around Jc

K ≈ 2.05 is in contrast
to the continuous vanishing of ∆SL in Fig. 4(a), indicating a
critical point with dynamical exponent z > 1, and probably
z = +∞. The parameters are the same as in Fig. 4 with
system size L = 124 in finite DMRG.

IV. EVIDENCE OF ULTRA-LOCAL
CRITICALITY AROUND REGION II

The intermediate region I in Fig. 2 seems to be well
described by a CFT. In contrast, the intermediate region
II (see Fig. 2.) is much more exotic.

In the following, we provide numerical evidence for
ultra-local criticality around region II with dynamical ex-
ponent z = +∞. We will also show evidence of gapless
spin fluctuations in a range of momentum space in the
dynamical spin structure factor.

Inside region II, there is a small sub-region coloured
red in Fig. 2. This small regime has a re-entrance of a
spin gap. In the other places of region II, there is no
spin gap. Instead, the inverse spin susceptibility even
vanishes. We will show that it has a weak ferromagnetic
moment and/or spin glass behaviour. We will discuss
these two cases separately. Both of them have signatures
of ultra-local criticality at a critical point (or region) of
JK .

A. ultra-local criticality between LE and LE2 phase

We first look at the subregion inside region II coloured
red in Fig. 2. We list results in Fig. 7 at x = 7

11 for
Jcs = 0. Fig. 7(a) shows two spin-gapped phases with
central charge c = 1, which we call LE and LE2. In
between them, the central charge seems to approach 2
(see Fig. 7(c)). We use the relationship S = c

6 log ξ,
where ξ is the correlation length in the charge sector
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FIG. 7. Numerical results at Jcs=0 with x = 7
11

. (a) Spin gap
∆S from finite DMRG with system size L = 99, 110, 121. The
bond dimension is m = 2000. The dashed line is at JK = 1.42.
One can see that there is a re-entrance of spin gapped phase
when JK > 1.42. (b) The inverse spin correlation length ξ−1

S

obtained from infinite DMRG for bond dimension m up to
3000. We use a unit cell size L = 22. (c) Central charge
from infinite DMRG. The two dashed horizontal lines label
c = 1, 2. (d) The growth of the entanglement entropy S and
the correlation length ξ with the bond dimension m. We also
plot the correlation length ξS in the sector (Q,Sz) = (0, 1)
and ξC in the sector (Q,Sz) = (1, 1

2
). One can see that the

single electron correlation length ξC is around 3 as in finite
DMRG. For the spin correlation length ξS , it reaches ξS ≈
12.5 for m = 6000, only slightly larger than the value from
finite DMRG (see Fig. 8 below).

(Q,Sz) = (0, 0), which serves as an effective length scale
of the infinite DMRG. We then get c(m) = 6 ∂S

∂ log ξ where
the derivative is calculated with the values from two
nearby bond dimensions. There is one point of JK = 1.42
of particular interest. The entanglement entropy at this
point is growing faster than log ξ in infinite DMRG so
one can not extract a reasonable central charge. As
shown in Fig. 7(d), the entanglement entropy S scales
as S ∼ logm with the bond dimension m, as in a usual
CFT. However, the correlation length ξN (obtained in the
sector (Q,St

z) = (0, 0)) has a tendency of saturation with
logm. This indicates deviation from CFT behaviour at
JK = 1.42.

Furthermore, we analyzed the behaviour of spin corre-
lation length ξS , see Fig. 7(b). We discovered that along
with two spin-gapped phases, ξS is finite at JK = 1.42.
ξS is obtained from the transfer matrix technique in the
charge sector (Q,St

z) = (0, 1). The value at m = ∞
is extrapolated with the formula ξ−1

S (m) = ξ−1
S (m =

∞) + a 1
m + b 1

m2 . In Fig. 8 we additionally obtained the
correlation length from finite DMRG at JK = 1.42. We
confirm that the spin correlation length ξS ≈ 10. We also
discover that ξS becomes shorter with a larger bond di-
mension (see the Appendix C). The single electron Green
function has an even shorter correlation length of around

3 (see Fig. 8(c)). The correlation length in the density
channel ξN also appears to be finite with ξN ≈ 20 from
Fig. 8(d). This is also consistent with the infinite DMRG
result in Fig. 7(d). In summary from both finite and infi-
nite DMRG, we find that the correlation lengths in single
electron, spin and density channels are all finite, which
are around 3, 10 and 20 respectively.

FIG. 8. (a)(b)(c) Correlation function and fitted correlation
lengths in finite DMRG with system size L = 132, 154, 176
for JK = 1.42 at filling x = 7

11
. The bond dimension is

m = 6000. (d) Evolution of the density-density correlation
function with the bond dimension at L = 176. Here we fix
x0 = L/4. One can see that the correlation length ξN becomes
shorter with increasing bond dimension, suggesting a finite
correlation length also in the density channel.

Here we will mainly focus on the spin channel. A fi-
nite correlation length ξS ≈ 10 is in contradiction with
a vanishing spin gap (see Fig. 7(a)) at JK = 1.42 if we
assume an usual relativistic scaling ∆S ∝ ξ−1

S with dy-
namical exponent z = 1. This suggests a dynamical expo-
nent z > 1 in the spin-spin correlation. To further check
the dynamical exponent, we plot the imaginary part of
the dynamical spin susceptibility Imχ+−(ω, q) in Fig. 9,
which is proportional to dynamical spin structure fac-
tor. The results are obtained from the TEBD algorithm
(see the Appendix D for details). We apply the operator
S−(L/2) to the ground state and then evolve the system
under e−iHt to obtain ⟨S†(x, t)S−(L/2, 0)⟩. Imχs(ω, q)
is then calculated by Fourier transformation. The total
evolve time is T = 100 with a step δt = 0.15 for each
TEBD step. The maximal bond dimension is set to be
m = 500 in the calculation. In Fig. 9(a)(b) we get the
expected spectroscopy results for the LL and LL* phase.
One can see the gapless mode at 2kF = 1+x

2 × 2π for the
LL phase and the gapless mode at 2k∗F = x

2 × 2π for the
LL* phase at JK = 0. For the LL* the dominant spectral
weight is at the momentum Q = π from the local spin
moments. Around the gapless momentum, the dispersion
is linear in agreement with a dynamical exponent z = 1.

In contrast, at JK = 1.42, there are gapless spin fluc-
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FIG. 9. Dynamical spin structure factor Imχ+−(ω, q) at Jcs = 0 and x = 7
11

. Here we use a system size of L = 110 in finite
DMRG. (a) Imχ+−(ω, q) for the LL phase at JK = 2. There is a gapless mode at q = 0 and 2kF = 1+x

2
× 2π. (b) LL* phase

at JK = 0. Note that the colour bar is significantly larger than other plots due to the large contribution from Q = π from the
local spin moments. There is also a gapless mode at q = 2k∗

F = x
2
× 2π corresponding to a small Fermi surface, but its spectral

weight is smaller than that at q = π. (c) The unusual ultra-local critical behaviour at JK = 1.42. (d) Line cuts along several
momenta q (in units of 2π

a
) at JK = 1.42. The vertical dashed line is at 0.035J . Below 0.035J the spectral weight vanishes as

proportional to ω, but this is due to numerical accuracy with a finite time evolution. In (a)(b)(c), the vertical red dashed line
is at 2kF = 1+x

2
× 2π, while the blue dashed line is at 2k∗

F = x
2
× 2π. In the TEBD calculation, the total time is T = 100 with

a step δt = 0.15 and the maximal bond dimension is m = 500. We use η = 0.035 for the damping term.

tuations in a range of momentum instead of just one sin-
gle momentum point. From the line cut at several mo-
menta (see Fig. 9(d)), we can see that the spectral weight
grows when decreasing ω for a range of momentum un-
til it reaches a cutoff energy scale (around 0.035J) be-
low which our calculation can not resolve. We note that
the TEBD calculation is not quantitatively accurate, but
qualitatively these results suggest that there is no disper-
sion within our numerical resolution.

As the dynamical spin structure factor ImχS(ω, q) is
not accurate at the low energy limit, it is not clear
whether the local criticality can survive down to zero
energy limit or not. To understand the property at the
zero energy limit, we need to rely on the ground state
calculation. From the ground state calculation in finite

DMRG (shown in Fig. 8) we already know that the spin
correlation length is finite with ξS ≈ 10 at JK = 1.42.
For a regular phase, we must also have a finite spin gap
∆S ∝ ξ−1

S . We scale the spin gap at JK = 1.42 with bond
dimension up to m = 6000 (m = 8000 for L = 176) in
Fig. 10(a). The conclusion is that there is an almost zero
spin gap ∆S ≈ 2× 10−4. We conjecture that the gapless
modes in a finite momentum region found in ImχS(ω, q)
can survive down to this scale ∆S ≈ 2 × 10−4. Note
that ∆S may still become truly zero if JK is fine-tuned
to a critical point Jc

K ≈ 1.42. Because the calculation
is quite time-consuming, it is impossible for us to do a
dense sampling around JK = 1.42. Therefore it is still an
open question whether the minimal spin gap is truly zero
or not. However, even if there is a gap ∆S ≲ 2× 10−4 at
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FIG. 10. (a)Spin gap ∆S from different system sizes at filling
x = 7

11
, JK = 1.42 and Jcs = 0. ∆S is obtained as E(Sz =

1) − E(Sz = 0). The bond dimension m ranges from 1000
to 6000. For L = 176, the bond dimension is up to 8000.
The dashed horizontal line indicates a gap of 2 × 10−4. (b)
Inverse charge compressibility κ−1

c with JK obtained from
finite dmrg with bond dimension m = 2000. κc = ∂n

∂µ
. For

finite size L with N number of electron, we use the formula:
κ−1
c = L

4
(E(N + 2) + E(N − 2) − 2E(N)). At JK = 1.42,

κ−1
c remains finite, indicating that this is still a compressible

phase. Actually, the compressibility is largest around JK =
1.42.

true Jc
K , the ultra-local criticality behaviour still applies

for the temperature scale above it. Given that almost
any experimental measurement is likely performed well
above this energy scale, we may conclude that ultra-local
criticality exists for practical purposes.

Lastly, we comment on the density correlations. The
inverse charge compressibility κ−1

c in Fig. 10(b) shows a
dip around JK = 1.42, indicating that this point is still
a compressible phase with zero charge gap. Meanwhile
in Fig. 7(d) and Fig. 8(d), we find that the correlation
length in the density channel ξN is also finite. It is then
possible that there is also ultra-local critical behaviour
in the density channel.

B. An intermediate weak ferromagnetic phase and
ultra-local criticality

In the previous subsection, we find two spin-gapped
domes for doping x around 0.61 − 0.63. Away from this
narrow doping regime, we do not find another LE2 phase.
Instead, there is a very narrow but finite intermediate
region which hosts a very weak ferromagnetic (FM) mo-
ment and also ultra-local criticality around the phase
boundary.

In Fig. 11 we show that the inverse spin susceptibility
χ−1
S ∝ ∆SL goes to basically zero in an intermediate re-

gion of JK at x = 4
7 for both Jcs = 0 and Jcs = 0.5J . It

also happens at a larger filling x = 21
31 (see Fig. 11(c)(d)),

suggesting that this is a quite generic phenomenon. In
the following we focus on the parameter x = 21

31 and
Jcs = 0.5J . A vanishing ∆SL in the intermediate region
indicates a divergence of the uniform spin susceptibil-
ity χs = ∂Sz

∂h where h is the Zeeman field. It usually
signatures an FM phase. However, here we find that

FIG. 11. (a)∆SL with JK for Jcs = 0.5J , x = 4
7

from finite
DMRG for a few system sizes. ∆S = E(Sz = 1)− E(Sz = 0)
is the spin gap and ∆SL is proportional to the inverse of
the uniform static spin susceptibility. Here bond dimension
is m = 2000. (b) ∆SL at x = 4

7
for Jcs = 0. Here bond

dimension is m = 2000. (c) ∆SL at x = 21
31

and Jcs = 0.5J .
(d) ∆S(Sz = 2)L at x = 21

31
and Jcs = 0.5J . ∆S(Sz = 2) =

E(Sz = 2) − E(Sz = 0). In (c)(d) the two dashed vertical
lines label JK = 1.095 and JK = 1.15.

the FM moment is very small and only at the order of
1%. For an FM phase, we expect that ∆S(Sz) = 0 for
Sz < ML, where M is the ferromagnetic moment per
site. In Fig. 11(d) we find that the gap of two spin flips
becomes finite in this intermediate region except in a
much smaller interval. Especially at the two boundaries
JK = 1.095 and JK = 1.15 there is a finite ∆S(Sz = 2),
indicating that M < 2

L if there is an FM order.

FIG. 12. Spin-spin correlation functions from finite DMRG
results at Jcs = 0.5J , x = 21

31
. (a) JK = 1.09; (b) JK = 1.1;

(c) JK = 1.12; (d) JK = 1.14.

In Fig. 12 we provide spin-spin correlation functions
from JK = 1.09 to JK = 1.14 for Jcs = 0.5J and x = 21

31 .
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They are obtained from finite DMRG, so boundary ef-
fects may matter here. One can see that the correla-
tion function saturates to a small but finite value, which
should be identified as M2, where M is the FM moment.
We can see that around JK = 1.12− 1.14, the FM mag-
netic moment M is at order 10−2. At JK = 1.09, it is
much smaller and at order M ∼ 10−4, which even de-
creases with the system size L. We note that a small
FM moment of M ∼ 10−2 is roughly polarizing one spin
in the entire system with L ∼ 100. Hence it is even not
clear whether this weak FM moment survives to the ther-
modynamic limit. We tend to conjecture that the weak
FM moment is only a secondary effect in this region.

Despite the weak FM moment, we still discover ultra-
local criticality behaviour in the dynamical spin structure
factor at the two boundaries of this intermediate phase.
In Fig. 13 we plot the imaginary dynamical spin suscep-
tibility at the right boundary JK = 1.15 and the left
boundary JK = 1.1 of the weak FM phase at Jcs = 0.5J
and x = 21

31 . At JK = 1.15, one can see gapless spin
modes in a range of momentum around q = 0. At
JK = 1.1, the gapless spin modes are mainly concen-
trated at q = π. From the line cuts at fixed momentum
in Fig. 13(d) we can see that Imχ(ω, q) in a range of q
around q = π have constant spectral weight at intermedi-
ate energy and then grows at lower energy at JK = 1.1.
Within our numerical resolution, we can not see obvi-
ous dispersion, which suggests z = ∞ at least above
the energy scale corresponding to our energy resolution
(around 0.035J). Spin fluctuations around q = π should
be mainly from the localized spin moments, suggesting
that they are not fully Kondo screened at this parame-
ter.

Inside the weak FM phase, we already know that there
is a very small weak FM moment M ∼ 1%. However, we
find the real part of the dynamical spin susceptibility is
still dominated by q = π instead of q = 0 as can be seen
in Fig. 14. At JK = 1.08, the system is still in a spin-
gapped phase, one can see that the imaginary part of the
dynamical spin susceptibility has spectral weights mainly
around q = π with the spin gap already very small. Cor-
respondingly, the real part of the dynamical spin suscep-
tibility is largest around q = π. The real susceptibility at
q = 0 is very weak here. We can also approach the weak
FM phase from large JK . At JK = 1.15 (see Fig. 14(d))
we find the real part of the dynamical spin susceptibility
is large around q = π and around q = 2kF = 1+x

2 . The
susceptibility at q = 0 is again quite small here. Then
when we decrease JK to JK = 1.14, there is some feature
in Reχ+−(ω, q) around q = 0, but the region with largest
susceptibility is still around q = π (see Fig. 14(c)). All of
these results suggest that the weak FM moment is likely
only a secondary effect, not the main property of this
region.

Next, we try to offer a possible explanation for the
weak FM order. In the Appendix E, we will show that
the dynamical spin structure factors inside the weak FM
phase (such as JK = 1.12 and JK = 1.14) have gap-

FIG. 13. Dynamical spin susceptibility χ+−(ω, q) at the two
boundaries of the weak FM phase at Jcs = 0.5J and x = 21

31
.

The system size is L = 62 in this calculation. (a) Imχ+−(ω, q)
at JK = 1.15. (b) Line cuts of Imχ+−(ω, q) at several q at
JK = 1.15. (c) (d) are at JK = 1.1. The calculation is done
from the TEBD algorithm with total evolution time T = 200
with a step δt = 0.1. The bond dimension is m = 2000. We
include a damping term e−ηt with η = 0.025 when perform-
ing the Fourier transformation along the time direction. The
dashed vertical line is at ω = 0.035J . the momentum q is in
units of 2π/a, where a is the lattice constant.

FIG. 14. (a) Reχ+−(ω, q) at JK = 1.08. (b)Imχ+−(ω, q) at
JK = 1.08. (c)Reχ+−(ω, q) at JK = 1.14. (d)Reχ+−(ω, q) at
JK = 1.15. The parameters are the same as in Fig. 13.

less spin fluctuations in a region around q = 0. Such
many gapless fluctuations may couple to the boundary
of the system and order at certain small momentum in-
cluding q = 0. Our interpretation is that the spin modes
get dispersion-less in a region around q = 0 and thus is
very easy to be stuck in a profile with zero momentum
or a small momentum. In real experiments with even
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weak disorder, we conjecture the system will develop a
spin glass order. However, we note that the weak FM or
spin glass order has only a very small moment and we
should still expect ultra-local critical behaviour above a
very small energy scale.

V. DISCUSSION

Here we discuss the implications of the unusual be-
haviour we found at intermediate JK (phase boundary
between LE and region I (or region II) of Fig. 2). One
common property of the intermediate narrow region is
that the spin velocity υs apparently becomes small and
even vanishes. So the question is how to understand a
vanishing spin velocity or spatial correlations.

One of the ways in dealing with a Kondo lattice model
is through the Abrikosov fermion theory:

S⃗i =
1

2
f†
i;σσ⃗σσ′fi;σ′ (2)

Then a Kondo screened phase at large JK is captured
by a simple mean-field ansatz:

HM = −b
∑
i

c†i;σfi;σ (3)

where b ̸= 0 describes a Kondo-screened phase.
If we consider a model with J = 0 for

the localized spin and also ignore the Ruder-
man–Kittel–Kasuya–Yosida(RKKY) interaction, then
the f band is perfectly flat. In this case, one expects
b ∼ e

−A t
JK and one can get a very small velocity in the

JK → 0 limit. This is the usual heavy Fermion picture.
However, the model considered in this paper is dif-

ferent. We have a quite sizable J = 0.5t between the
localized spin moments. Therefore, in the above theory,
there is a sizable velocity υf for the f band itself and one
should not expect a vanishing velocity in the mean field
picture. A simple way to describe the Kondo breakdown
transition is to let b vanish at a critical Jc

K starting from
the large JK phase [19]. However, in this picture, one
does not expect υf (or the bandwidth of the f band) to
vanish at the Kondo breakdown transition. Therefore,
we still expect dispersion in spin fluctuations. This is in
contrast to our discovery where we find dispersion-less
gapless spin fluctuations in a range of momentum space
within our energy resolution. For example, in Fig. 13(c)
we can see a gapless spin fluctuation continuum in a range
of (ω, q) space around q = π. In 1D we indeed expect that
the localized spin moments contribute a gapless mode at
q = π in the Kondo breakdown phase, but it should have
a strong dispersion proportional to J (for example, see
Fig. 9(b) for the result at JK = 0). It is clear that the
dispersion (or spatial correlation) of the localized spin
moments also gets suppressed when approaching the crit-
ical regime. This is beyond the usual mean-field theory

[19] where only the hybridization c†σfσ vanishes, while
the bandwidth of the f band is still proportional to J .
The lesson we learned is that in the ‘critical regime‘ be-
tween small JK and large Jk, the spatial correlation of
local spin moments can get suppressed and then they
fluctuate locally in real space. This is a property not
captured by any theory we are aware of and thus offers a
theoretical challenge. One can of course argue that this
property may be special to this one-dimensional model
and is irrelevant to higher dimensions. However, we note
that similar features were observed in some neutron scat-
tering experiments of higher dimensional heavy fermion
material [17, 35]. This suggests that the ‘ultra-local crit-
ical’ phenomenon may be universal and relevant also for
the higher dimensions.

VI. CONCLUSION

In summary, we present the DMRG results of a one-
dimensional Kondo lattice model. Through varying the
Kondo coupling JK , we studied how the Kondo break-
down phase evolves to the Kondo-screened Luttinger liq-
uid phase. Around the intermediate regime, we discover
signatures of ultra-local criticality with dynamical expo-
nent z = +∞ in the spin fluctuations. Similar phenom-
ena have been reported in neutron scattering experiments
of certain heavy fermion materials [17, 35]. Momentum-
independent density fluctuations have also been observed
at optimal doping of hole-doped cuprates [39]. However,
the inevitable existence of disorder in real materials com-
plicates the interpretations of these experimental results.
Our numerical observations in a simple translation invari-
ant model suggest that ultra-local criticality can arise in-
trinsically without the disorder. The fact that it shows up
even in a 1D model may suggest that the phenomenon is
quite universal around small to large Fermi surface tran-
sition and may be dimension independent. Theoretically,
it was proposed that local criticality may be key to the
solution of the mysterious strange metal phase [11, 34].
We plan to study the transport properties of this model
in the near future to test this idea. Given the simplicity
of a one-dimensional model, we hope future work on the
current model will lead to progress on a better under-
standing of ultra-local criticality and strange metal.
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Appendix A: Layer selective Mott localization and Kondo lattice model in bilayer optical lattice

In this Appendix, we propose to simulate a Kondo lattice model in bilayer optical lattice, as has been experimentally
realized in Ref. [40]. One new requirement now is that we need to add a potential difference ∆ between the two layers.
The system is described by a bilayer Hubbard model:

H = ∆
∑
i

ni;1 − t
∑
a=1,2

∑
σ=↑,↓

∑
⟨ij⟩

(c†i;aσcj;aσ + h.c.)− t12
∑
a=1,2

∑
σ=↑,↓

∑
⟨ij⟩

(c†i;1σcj;2σ + c†i;2σcj;1σ + h.c.)

− t⊥
∑
a,σ

∑
i

(c†i;1σci;2σ + h.c.)− µ
∑
a=1,2

∑
i

ni;a +
U

2

∑
a

∑
i

ni;a(ni;a − 1) + U ′
∑
i

ni;1ni;2, (A1)

where ni;a =
∑

σ c
†
i;aσci;aσ is the density at site i for layer a = 1, 2. ni = ni;1 + ni;2 is the total density at site i.

We also define the average density n = 1
Ns

∑
i ni, where Ns is the total number of sites in the system. Here a = 1, 2

labels the two layers and t⊥ is the inter-layer vertical tunnelling. A non-zero ∆ > 0 is caused by a displacement
field or a potential difference between the two layers. We will stay in the limit U ≫ t and U ≫ U ′. We assume
t⊥, t < ∆ < U − U ′. At density n = 1, we have a Mott insulator with one particle at the layer 2. Then at density
n = 1 + x with x ∈ (0, 1), the doped additional particle enters the layer 1 to reduce the on-site Hubbard U . In this
case the layer 2 is always Mott localized and provides a spin 1/2 moment. The itinerant electron in the layer 1 is
described by a t-J model which then couples to the local moment of the layer 2 through a Kondo coupling. At low
energy we can deal with an effective Kondo lattice model, with the same Hamiltonian as in Eq. 1 in the main text.

H = −tP
∑

<i,j>,σ

(c†i,σcj,σ + h.c)P + Jc
∑
⟨ij⟩

S⃗e
i · S⃗e

j + (V − 1

4
Jc)

∑
⟨ij⟩

ninj + J
∑
<i,j>

S⃗i · S⃗j

+ JK
∑
i

S⃗e
i · S⃗i + Jcs

∑
⟨ij⟩

S⃗e
i · S⃗j + S⃗i · S⃗e

j , (A2)

The couplings of the model are related to the optical lattice parameters in the following way: Jc = J = 4t2

U ,

Jcs = 2
t212

U−U ′−∆ + 2
t212

U+U ′+∆ and JK = 2
t2⊥

U−U ′−∆ + 2
t2⊥

U−U ′+∆ . This correspondence can be derived from the second
order perturbation theory. Note, that when t12 ̸= 0, there are also three-site correlated processes when an electron
hops from layer 1 to layer 2, and then returns back to the different site. We have dropped those terms to make the
analysis of the model simpler.
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Appendix B: Spin correlation length at the critical point near the intermediate region I

In this Appendix, we elaborate more on the transition between the LE phase and the intermediate region I phase.
Fig. 15(a) shows the spin gap in the LE phase, gradually vanishing as we approach the transition point. Fig. 15(b)
shows the inverse correlation length, extracted from the spin-spin correlation function. Right at the transition point
JKc ≈ 2.0 we again observe the signature of the ultra criticality: the spin gap is almost zero, while the inverse
correlation length is finite ξ−1

s ≈ 0.4.
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FIG. 15. Spin gap and inverse correlation length at the transition between LE and intermediate I phase. The parameters are:
L = 113, x = 31/113 ≈ 0.27, Jcs = 0.5J , V = 4J , m = 1000.

Assuming that transition between LE and I phase is of BKT type, the action in the massive phase is

S =
1

2πKcs

1

βΩ

∑
k,n

(
ω2
n + c2sk

2 +∆2
)
ϕ∗
k,nϕk,n. (B1)

Based on this action, the most general relation between the correlation length and the gap is ξ−1
s = ∆/cs. The natural

way to obtain finite correlation length at zero spin gap is to have cs → 0. Note that cs is different from vs, shown in
Fig. 4(a) of the main text. While vs is the property of the gapless state, cs measures the dispersion of the excitation
in the gapped phase. Therefore, cs = 0 implies having a band of dispersionless excitations at energy ∆ above the
ground state. More detailed studies of this transition would be the purpose of our future work.

Appendix C: Convergence of spin correlation length at JK = 1.42, Jcs = 0, x = 7
11

We focus on Jcs = 0, JK = 1.42 at x = 7
11 . In the main text, we show that the spin correlation length is finite while

the spin gap is very small. Here we provide more evidence that the spin correlation length is indeed finite. In Fig. 16
we show the spin-spin correlation function with bond dimension. At L = 176, we find that the correlation becomes
more short-ranged when increasing the bond dimension, in agreement with a finite correlation length at the infinite
bond dimension limit.

We also plot ⟨Sz
t (x)⟩ in Fig. 17. For a model with SU(2) spin rotation symmetry, we should expect ⟨Sz

t (x)⟩ = 0
in the ground state. At the intermediate regime such as JK = 1.42, ⟨Sz

t (x)⟩ vanishes quite slowly with the bond
dimension. We need to use the bond dimension m = 8000 for L = 176.

Lastly in Fig. 18 we show that the same re-entrance of spin-gapped phase also exists at a different but close filling
x = 19

31 with Jcs = 0.
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FIG. 16. (a)(b) Spin-Spin correlation function with bond dimension at system size L = 154 and L = 176. Here we set the
initial value x0 = L/4. One can see that the correlation length ξS becomes shorter when increasing the bond dimension for
L = 176.

FIG. 17. (a)(b) Total spin ⟨Sz
t (x)⟩ for system size L = 154, 176 at JK = 1.42, Jcs = 0 and x = 7

11
.

Appendix D: TEBD calculation of the dynamical spin susceptibility

We want to calculate the dynamical spin susceptibility:

χij(t− t′) = i⟨[S⃗i(t), S⃗j(t
′)]θ(t− t′) (D1)

We can decompose χij to be:

χij(t− t′) = χzz
ij (t− t′) + χyy

ij (t− t′) + χzz
ij (t− t′) (D2)

We define:

Cab;ij(t) = ⟨Sa
i (t)S

b
j (0)⟩ − ⟨Sa

i ⟩⟨Sb
j ⟩ (D3)
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FIG. 18. Re-entrance of spin gapped phase at a different filling x = 19
31

.

We will mainly focus on calculation χ+−
ij (t− t′). We have the following identity:

χxx;ij(t) + χyy;ij(t) = iθ(t)(
1

2
(χ+−;ij(t) + χ−+;ij(t))) (D4)

where

χ+−;ij(t) = iθ(t)(C+−;ij(t)− C+−;ji(−t)) (D5)

χ−+;ij(t) = iθ(t)(C−+;ij(t)− C−+;ji(−t)) (D6)

We have the equation:

C∗
+−;ij(t) = C+−;ji(−t) (D7)

Therefore

χ+−;ij(ω) = i

∫ ∞

0

(C+−;ij(t)− C∗
+−;ij(t))e

iωt (D8)

χ−+;ij(ω) = i

∫ ∞

0

(C−+;ij(t)− C∗
−+;ij(t))e

iωt (D9)

In practice our evolution is limited to a finite time T , we use the following formula:

χ−+;ij(ω) = i

∫ T

0

(C−+;ij(t)− C∗
−+;ij(t))e

iωte−ηt (D10)

where η is a damping term.
For our model, the above two quantities are the same. Therefore we focus on χ+−. By doing Fourier transformation

also in real space, we get:

χ+−(ω, q) =
∑
i

χ+−;i,j=L/2(ω) cos(q(i− L/2)) (D11)

Here we use cos(qx) instead of eiqx by assuming the inversion symmetry respect to x = L/2. This can remove the
artificial inversion breaking from numerical inaccuracy.
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In our calculation, we use the TEBD algorithm with T = 200 (assuming the hopping t = 1) with a step δt = 0.1.
The largest bond dimension is m = 500− 2000. When doing the Fourier transformation, we typically use η = 0.035.
Note that without η we will find oscillations in χ(ω) because of the finite time T .

To benchmark the calculation, we first try two points deep inside the LL and the spin-gapped LE phase, shown in
Fig. 19. Here we only use bond dimension m = 500, but one can see the results are already quite reasonable. In (a)
we find gapless mode at q = 2kF and q = 0, typical behaviour of a Luttinger liquid phase. There are also features
at higher harmonics. In (b) we find a clear spin gap in the LE phase. These results demonstrate the validity of the
TEBD calculation.

FIG. 19. Imχ+−(ω, q). (a) JK = 3, Jcs = 0.5J and x = 21
93

with L = 93. This is a Luttinger phase. The red and blue dashed
lines are at q = 2kF = 1+x

2
× 2π and q = 2k∗

F = x
2
× 2kF respectively. (b) JK = 1, Jcs = 0, x = 7

11
with L = 110. This is in

the spin-gapped Luther-Emery phase. In both calculations, we use bond dimension m = 500, total time T = 100 and a step
δt = 0.15. We use η = 0.025 in performing the Fourier transformation along the time direction.

To check that the TEBD results converge with the bond dimension even in the intermediate regime with ultra-local
criticality, we plot Imχ+−(ω, q) at the left boundary of the weak FM phase at Jcs = 0.5, JK = 1.1, x = 42

62 in Fig. 20.
We can see that the results are qualitatively the same for bond dimensions m = 1000 and m = 2000. Both show
dispersionless gapless spin fluctuations around q = π.
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FIG. 20. Change of Imχ+−(ω, q) with the bond dimension. Here Jcs = 0.5, JK = 1.1, L = 62 and x = 42
62

. (a)(c) bond
dimension m = 1000. (b)(d) bond dimension m = 2000.

Appendix E: The weak FM phase

In this section we add more discussions on the weak FM phase in the region II.

1. More results at Jcs = 0.5J, x = 21
31

Here in Fig. 21 and Fig. 22 we show more data to supplement the discussions in the main text on the weak FM
regime for the parameter Jcs = 0.5J, V = 0 at the filling x = 21

31 . These results are again obtained from the TEBD
calculation with system size L = 62. From the Imχ+−(ω, q) at Jk = 1.12, 1.14 inside the weak FM phase, we can see
gapless spin fluctuations in a region around q = 0.

2. Another filling

We also provide the results from a different filling x = 4
7 for the weak FM region. From infinite DMRG in Fig. 23,

we can see that there is a c = 2 region (with spin gap) in JK ∈ [1.295, 1.305] and a c = 3 region in JK ∈ [1.32, 1.38].
Compared to the finite DMRG in the main text (Fig. 11(a)), ∆SL approaches zero in the whole c = 2 region and
the left part of the c = 3 region. Between JK = 1.31 and JK = 1.32, we again see that the entanglement entropy S
grows with logm while the correlation length ξN saturates. In the region JK ∈ [1.295, 1.305], there is a quite short
correlation length in the spin channel, as shown in Fig. 24(a). This is again at odds with the vanishing ∆SL from our
finite DMRG calculation in Fig. 11(a). In this case, the charge correlation length is infinite and we have a regular
central charge c = 2, presumably from two charge modes. However, the spin modes are not simply gapped given that
∆SL goes to zero even faster than any power of 1/L. We conjecture that in the spin channel there is still ultra-local
criticality. When JK > 1.31, we find that |⟨S†(x)S−(0)⟩| seems to saturate to a finite value in the large x limit,
indicating a very small FM moment.
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FIG. 21. Dynamical spin susceptibility χ+−(ω, q) at JK = 1.14 and JK = 1.12. (a)(c) Reχ+−(ω, q). (b)(d) Imχ+−(ω, q). One
can see gapless spectral weights in a region around q = 0.

FIG. 22. Line cut at fixed q of Imχ+−(ω, q) inside the weak FM phase at JK = 1.12 and JK = 1.14.

Appendix F: TEBD calculation of the single electron spectral density

In this appendix, we demonstrate the existence of the small and large Fermi momenta by calculating the electron
spectral function. The spectral function is defined as Ak(ω) = −ImGR

k (ω) and GR
k (t) = ⟨{ck(t), c†k(0)}⟩. The

calculations were done for the Kondo-Heisenberg model to ensure that the Luther-Emery phase at JK → 0 coincides
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FIG. 23. Infinite DMRG results at Jcs = 0.5J , x = 4
7
. We use unit cell size 22. (a) Central charge as a function of JK . (b) The

inverse of the spin correlation length ξ−1
S as a function of JK . ξS is obtained from the transfer matrix technique in the sector

(Q,Sz) = (0, 1). (c) Scaling of the entanglement entropy and correlation lengths with bond dimension m at JK = 1.3. ξN , ξS ,
ξC correspond to density, spin and single electron operators, obtained from the sector (Q,Sz) = (0, 0), (0, 1), (1, 1

2
) respectively.

(d) Scaling of the entanglement entropy and correlation lengths with the bond dimension m at JK = 1.31.

with the free electrons phase.

H = −t
∑

<i,j>,σ

(c†i,σcj,σ + h.c) + JK
∑
i

S⃗e
i S⃗i + J

∑
i

S⃗iS⃗j (F1)

We studied the model at x = 0.25 and observed the same phases as in Figure 2, with phase I being in the region
JK ≈ (2.5, 2.8). Fig. 25(a) shows the small Kondo coupling regime with the spectral function simply matching the free
electron band with small Fermi momentum 2kF = x/2. The spin gap should also be present but it is too small to be
distinguishable. At larger JK the layer of spins starts to interfere and the band dispersion is modified, see Fig. 25(b).
A similar band reconstruction happens if we implement a mean-field theory. Fig. 25(c) shows the dispersion in phase
I which has a c = 3 central charge and a split in Fermi momentum. We do not clearly see two Fermi momenta, but
the bands are strongly reconstructed and the accuracy is not enough to make a definite conclusion. Finally, at large
Kondo coupling the system is in LL phase with a large Fermi momentum 2kF = (1 + x)/2, see Fig. 25(d).

To obtain better frequency resolution we used a linear prediction algorithm, see [41]. We extrapolated to times
3 times larger than the initial computation. The energies also need to be shifted by the chemical potential. We
computed it separately by using the formula µc = (E(ne + 2)− E(ne − 2))/4.
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FIG. 24. Log-x plot of the spin spin correlation function ⟨S†(x)S−(0)⟩ from infintie DMRG at x = 4
7
, Jcs = 0.5J . (a) JK = 1.3.

(b) JK = 1.31.

FIG. 25. TEBD calculation of electron spectral function for Kondo-Heisenberg model. Figures a)-d) correspond to the Kondo
coupling JK = 1, 2.3, 2.6, 4 correspondingly, while other parameters are J = 0.5, t = 1. The length of the chain was L = 80
and the number of electrons ne = 20, while the bond dimension m = 500 with the time evolution t = 12 and additional linear
prediction interpolation.

Appendix G: Mean-field theory

In this appendix, we show how some of the observations in the main part of the paper can be explained using simple
mean-field analysis. As in the previous appendix, we start with the simpler Kondo-Heisenberg Hamiltonian

H = −t
∑

<i,j>,σ

c†i,σcj,σ +
∑
<i,j>

(
JS⃗iS⃗j + JcsS⃗e

i S⃗j

)
+ JK

∑
i

S⃗e
i S⃗i. (G1)
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We fractionalize spin S⃗ = 1/2f†
ασαβfβ and use Pauli identities to obtain

H = −2t cos(ka)c†kck − J

2
f†
iαfjαf

†
jβfiβ − Jcs

2
f†
iαcjαc

†
jβfiβ − JK

2
f†
iαciαc

†
iβfiβ . (G2)

After taking a large M limit (where M is a number of spin indices), we arrive at the following saddle-point equations:

P = −JK⟨f†
i ci⟩ = −JK

V

∑
k

⟨f†
kck⟩,

Q = −J⟨f†
i fi+1⟩ = − J

V

∑
k

cos(ka)⟨f†
kfk⟩,

PR = −Jcs⟨f†
i ci+1⟩ = −Jcs

V

∑
k

cos(ka)⟨f†
kck⟩,

1

2
=

1

V

∑
k

⟨f†
kfk⟩.

(G3)

The corresponding free Hamiltonian is

H = (−2t cos(ka)− µ)c†kck + (2Q cos(ka) + λ)f†
kfk + P (1 + 2R cos(ka))c†kfk + P (1 + 2R cos(ka))f†

kck. (G4)

We take x = 2ρc = 0.7, J = 0.5,Jcs = 0.25 and t = 1, which is close to the parameters in the paper, and study the
phase diagram as a function of JK . This requires solving Eq. G3 self-consistently. At small JK < 1.4 there is only a
trivial solution for the mean-field P = 0 which corresponds to an LL∗ phase with a small Fermi surface kF = πx/2.
For the intermediate JK ∈ [1.4, 2] there is a nontrivial solution which corresponds to a nontrivial hybridized Fermi-
surfaces, see Fig. 26(a). There is another solution with two Fermi surfaces, see Fig. 26(b), which proves to be unstable
after a comparison of Free energies. Finally, at large JK > 2, there is a nontrivial solution with a large Fermi surface
kF = π(1 + x)/2, which correspond to an LL phase, see Fig. 26(c).

(a) Two FS solution at JK = 1.8. (b) Unstable solution at JK = 2.7. (c) One large FS solution at JK = 3.

FIG. 26. The energy bands of the Hamiltonian in Eq. G4 at different JK . The red line is a dispersion of a c particle, the
dashed black line is a dispersion of an f particle, and the blue lines are full hybridized dispersions, given by eigenvalues of H.

The point of the analysis above is to show that a simple mean-field model is able to capture certain properties of
the phase diagram, such as a transition from an LL∗ to an LL phase through the intermediate phase with two FS.
Though certain features, such as the spin gap, are missing from the above analysis, the rough boundaries of the phases
match our DMRG predictions in Fig. 2.

Now we address another question, stated in Section IV of the paper, namely the existence of the phase with zero
gap and finite correlation length. To evaluate the correlation length, we computed the density-density response of the
Hamiltonian in Eq. G4. Equal time density-density correlation in Fourier space is:

⟨N(q)N(−q)⟩ =
∑

k,ωn,qn

Gc(k + q, ωn + qn)Gc(k, ωn) (G5)
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For the Kondo-Heisenberg model, the Green function Gc is

Gc =
1

iωn − E+

E+ − ef
E+ − E−

+
1

iωn − E−

E− − ef
E− − E+

=
u2
+

iωn − E+
+

u2
−

iωn − E−
, (G6)

where E+ and E− are the eigenvalues of the Hamiltonian H. The full density-density correlation functions are

⟨N(q)N(−q)⟩ =
∑
k

(nF (E+q)− nF (E+)nB(E+q − E+)u
2
+u

2
+q + (nF (E−q)− nF (E−)nB(E−q − E−)u

2
−u

2
−q+

+ (nF (E+q)− nF (E−)nB(E+q − E−)u
2
−u

2
+q + (nF (E−q)− nF (E+)nB(E−q − E+)u

2
+u

2
−q,

(G7)

where each term correspond to scattering from the band Ei to the band Ej , i, j = +,−. The leading contribution
will be given by the scattering in the lower band E− → E−, since this band hosts zero-energy excitations. We
computed the density-density response for the simple mean-field model in Fig. 27(a) at two temperatures. At small
temperatures, we observed a typical power law decay with an infinite correlation length, see Fig. 27(b). However,
at finite temperatures comparable to the dispersion of the f electron, the density-density correlation demonstrated
an exponential decay, with finite correlation length and zero spin gap. Though our DMRG calculations are done at
zero temperature, there is always a finite error in energy calculation δEs. Therefore, we can successfully explain the
existence of a finite correlation length and zero spin gap by assuming that the dispersion of the f electron is even
smaller Q ≪ δEs. δEs is very small in our calculation, and the f fermion band should be almost flat, which is quite
a surprise for a finite J .
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(a) Hybridized bands.
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(b) Small temperature T = 0.001.
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(c) Finite temperature T = 0.1.

FIG. 27. (a) The hybridized bands for parameters x = 0.4, Q = −0.1, P = 0.5, R = 0 and t = 1. (b) Density-Density
response at small temperatures in logarithmic scale shows power-law decay with ξ−1 = 0. (c) Density-density response at finite
temperatures in logarithmic scale shows exponential decay with finite correlation length.


	Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model
	Abstract
	Introduction
	Model and Phase diagram
	Intermediate region I
	Dip of inverse charge compressibility and Luttinger parameter
	Charge density wave at commensurate filling

	Unconventional criticality around the region I
	Evidence of ultra-local criticality around region II 
	ultra-local criticality between LE and LE2 phase
	An intermediate weak ferromagnetic phase and ultra-local criticality 

	Discussion
	Conclusion
	Acknowledgement
	References
	Layer selective Mott localization and Kondo lattice model in bilayer optical lattice
	Spin correlation length at the critical point near the intermediate region I
	Convergence of spin correlation length at JK=1.42, Jcs=0, x=711
	TEBD calculation of the dynamical spin susceptibility
	The weak FM phase
	More results at Jcs=0.5 J, x=2131
	Another filling

	TEBD calculation of the single electron spectral density
	Mean-field theory


