
GrassmannTN: a Python package for Grassmann tensor network
computations

Atis Yosprakob∗

Department of Physics, Niigata University, Niigata 950-2181, Japan

Abstract

We present GrassmannTN, a Python package for the computation of the Grassmann

tensor network. The package is built to assist in the numerical computation without

the need to input the fermionic sign factor manually. It prioritizes coding readability

by designing every tensor manipulating function around the tensor subscripts. The

computation of the Grassmann tensor renormalization group and Grassmann isome-

tries using GrassmannTN are given as the use case examples.

∗E-mail address : ayosp(at)phys.sc.niigata-u.ac.jp

Contents

1 Introduction 1

2 Design principles 5

3 Features 9

3.1 Grassmann tensors as a programming object 9

3.2 Tensor contraction . 12

3.3 Tensor reshaping . 13

3.4 Tensor decomposition . 16

4 Coding examples 17

4.1 Levin-Nave TRG . 17

4.2 Isometry tensor computation . 20

5 Summary 22

A Formulation 23

A.1 Grassmann algebra . 23

A.2 Dual algebra and Grassmann contraction . 25

A.3 Joining and splitting algebras . 26

A.4 Grassmann tensors . 27

A.5 Unitary space . 28

A.6 Parallelism with non-Grassmann linear algebra 30

A.7 Tensor decomposition . 31

1 Introduction

In theoretical physics, several problems demand the computation of quantities involving

multi-variable integrals or summations. Examples include the path integral, thermal par-

tition function, and calculation of low-lying states in quantum many-body systems. These

quantities are often unsolvable using analytical methods, necessitating the use of computers

for accurate results. However, a major challenge arises when dealing with a large number

of degrees of freedom, as the complexity of the summation becomes difficult to handle. In

such cases, tensor networks offer a solution. For instance, let’s consider an n-particle wave

1

A

i1 i2 i3 in· · · i1 i2 i3 in· · ·

M (1) M (2) M (3) M (n)≈

Figure 1: The matrix product state representation of the n-particle wave function (1.2).

function

|Φ⟩ =
∑

i1,i2,··· ,in
Ai1i2···in|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩. (1.1)

In this equation, |ia⟩ denotes a basis for a single particle state. Assuming that each |ia⟩
belongs to a D-dimensional Hilbert space, the coefficient tensor Ai1i2···in consists of Dn

individual components. In a realistic case where the number of particles n is large, any

computation involving this wave function will require the resource and time to grow expo-

nentially with n. Such a heavy computation can be drastically reduced if we approximate

the coefficient tensor in (1.1) by a product of order-3 tensors, known as the matrix product

state (MPS) representation

Ai1i2···in ≈
χ∑

j1=1

χ∑
j2=1

· · ·
χ∑

jn−1=1

M
(1)
i1j1
M

(2)
j1i2j2

M
(3)
j2i3j3

· · ·M (n)
jn−1in

. (1.2)

In other words, we rewrite the tensor Ai1i2···in in terms of a network of sub-tensorsM
(a)
ja−1iaja

.

The diagrammatic representation of the MPS is shown in figure 1. Here, the auxiliary

indices ja are all restricted to be of dimension χ. Each of the sub-tensors consists of at

most Dχ2 components, which means that we only need at most nDχ2 degrees of freedom

to represent the wave function. In many systems, even with a small χ, this approximation

often yields satisfactory results [1, 2, 3, 4]. Thus, the tensor network allows us to extract the

essential physics of complex systems with a small computational resource [4, 5, 6, 7, 8, 9, 10].

Another application of the tensor network technique is in the computation of a partition

function or a path integral, which typically takes the form

Z =
∏
n⃗∈Λ

∑
xn⃗

e−Sn⃗[x]. (1.3)

Here, we assume that the degrees of freedom xn⃗ are located at the site n⃗ on the d-dimensional

hyper-cubic lattice Λ. Using an appropriate transformation, the partition function can be

rewritten in terms of ‘link variables’ instead1

Z =
∏
n⃗∈Λ

∑
un⃗,1

· · ·
∑
un⃗,d

e−S
′
n⃗[u]. (1.4)

1See Ref. [11, 12, 13, 14] for some examples.

2

T un⃗,1un⃗−1̂,1

un⃗−2̂,2

un⃗,2

un⃗,d

un⃗−d̂,d

...

...

Figure 2: (Left) The Boltzmann weight based on link variables (1.5). (Right) The three-

dimensional (d = 3) tensor network.

The link variable un⃗,µ is a degree of freedom that is located on the link between the site

n⃗ and n⃗ + µ̂. If the system is highly localized, the action S ′
n⃗[u] will depend only on link

variables surrounding the site n⃗, which means that we can write

e−S
′
n⃗[u] = Tun⃗,1,un⃗−1̂,1,un⃗,2,un⃗−2̂,2,···un⃗,d,un⃗−d̂,d

, (1.5)

which is often called the ‘site tensor’. It can be depicted diagrammatically as in figure 2.

In this equation, the link variables act as the tensor indices of the Boltzmann weight. In

this form, the partition function (1.4) is essentially a tensor network since the summation

of all link variables acts as the contraction of tensor legs. The boon of representing the

partition function as a tensor network is that it allows us to perform a coarse-graining

procedure, which approximates the original tensor network by a new network with a smaller

number of degrees of freedom. After a sufficient number of coarse-graining iterations, the

partition function can be reduced to a trace of a single tensor. This class of algorithm is

generically known as the tensor renormalization group (TRG) approach. The first version

of the TRG algorithm applies to a two-dimensional bosonic spin system [11]. The improved

versions had been subsequently proposed [15, 16, 17]. It can also be generalized to higher

dimensional lattice [18, 19, 20, 21]. Most importantly, the partition function with fermionic

or Grassmann degrees of freedom can be dealt with directly without the need to integrate the

fermions out first [22, 23, 24, 14, 21]. Recently, the TRG has been applied to gauge theories

and strongly correlated fermionic systems [25, 26, 27, 28, 24, 29, 30, 31, 32, 33, 34, 13],

which shows that it is a promising approach aside from the Monte Carlo methods.

Before the development of the Grassmann tensor network, fermions must be bosonized

in one way or another. For example, to describe a fermionic state via the ansatz state, the

3

fermionic operators are first transformed using the Jordan-Wigner transformation into spin

operators [35] (see also Ref. [36, 37, 38, 39, 40] for its application to well-known tensor

network states.) In the Monte Carlo treatment of the lattice gauge theory, the fermions are

first integrated into the determinant:

Z =

∫
DU

∫
Dψ̄Dψ e−S[U]+ψ̄D/ [U]ψ =

∫
DU detD/ [U] e−S[U]. (1.6)

The determinant is then treated as a part of the Boltzmann weight. However, the deter-

minant detD/ [U] is known to be computationally demanding since the fermion matrix size

grows like a power law of the system size. Such fermionic degrees of freedom can be treated

directly with the introduction of Grassmann tensors [22, 23]. In the Grassmann tensor

renormalization group (gTRG) methods, the partition function can be computed with the

logarithmic complexity of the system size, which allows us to access the thermodynamic

limit significantly more easily. Similarly to the bosonic TRG methods, we first transform

the site fermions ψn⃗ into link fermions ηn⃗,µ, and then rewrite the Boltzmann weight as a

Grassmann tensor

Tηn⃗,1,η̄n⃗−1̂,1,ηn⃗,2,η̄n⃗−2̂,2,···ηn⃗,d,η̄n⃗−d̂,d
. (1.7)

Coarse-graining algorithms similar to those for the non-Grassmann case can then be applied.

The numerical computations on the Grassmann tensors are done through the coefficient

tensors T ;

Tηn⃗,1,η̄n⃗−1̂,1,···ηn⃗,d,η̄n⃗−d̂,d
=

∑
I1,J1,··· ,Id,Jd

TI1J1···IdJdη
I1
n⃗,1η̄

J1
n⃗−1̂,1

· · · ηIdn⃗,dη̄Jdn⃗−d̂,d. (1.8)

Here, the indices Ia and Ja can be considered as the ‘occupation number’ of the link

fermions. Although the Grassmann tensors T are not complex-valued, the coefficient ten-

sors T are and thus can be worked out on the computer.

One thing to keep in mind when working with Grassmann numbers is that fermions

are anti-commuting. This means that the relative position of the fermions in (1.8) are

very important, as they will affect the sign factors. One can already notice that even with

a simple operation such as tensor contraction, many preparatory actions must be taken

care of first. This is even more so with more complicated operations such as the gTRG

algorithms. On the programming side, a Grassmann tensor contains more information than

just the numerical values of the coefficient tensors. Managing the information in a clear and

systematic way can be challenging when there are many fermions involved in the operation.

Here, we present a Python package grassmanntn that aims to address all of these issues.

Firstly, the sign factors are implicitly computed in every computation. Secondly, every

function is designed to work with tensor subscripts as the input, making the code easily

4

=

ψ1

ψ3

ϕ ψ2

ψ1

ψ3

ψ2

C A B

Figure 3: Diagrammatic representation of Grassmann tensor contraction (2.1) (also (A.26)).

translated from the symbolic expression. The usefulness of the package is demonstrated with

the computation of the Levin-Nave TRG method and the computation of isometry tensors.

The first application of the package is the study of the lattice gauge theory with multiple

fermion flavors [13], which successfully reproduced known results as well as demonstrated

the Silver Blaze phenomenon. The package is available online on the GitHub repository

[41].

The rest of this paper is organized as follows. We first explain the design principles of

grassmanntn in section 2. Section 3 discusses the main features of the package. Two coding

examples are given in section 4. Section 5 is devoted to the summary and discussion. The

mathematical formulation for the Grassmann tensor network is given in appendix A.

2 Design principles

The biggest obstacle in the numerical computation involving Grassmann tensors is the

sign factor arising in various steps of the algebraic manipulation such as index swapping,

index joining and splitting, and tensor contraction. Dealing with these sign factors requires

additional blocks of code that the programmer has to write manually. This requires a lot

of attention, especially for complex tasks like implementing tensor renormalization group

algorithms where mistakes can easily occur. To give an example, a Grassmann contraction2

Cψ1ψ̄2ψ̄3
=

∫
ϕ̄ϕ

Aψ1ϕψ̄3
Bψ̄2ϕ̄ (2.1)

can be computed via the following coefficient contraction:

CIJK =
∑
L

AILKBJLsJKL (2.2)

with a sign factor tensor (see (A.26))

sJKL = σL × (−)p(L)(p(J)+p(K))+p(J)p(K) (2.3)

2See appendix A for definitions and notations.

5

where σI is a sign factor given in (A.13). This sign factor is composed of those from fermion

anti-commutation and contraction. To code this in Python with the numpy package [42],

the parity function p(I) (A.9) and σI are first defined:

1 >>> def gparity(I):

2 ... # This is p(I) where I is a composite index

3 ... # Convert I (canonically encoded) to binary

4 ... I_binary = [int(c) for c in format(I,'b')]

5 ... return sum(I_binary)

6 ...

7 >>> def sgn(I):

8 ... # This is sigma_I

9 ... I_binary = [int(c) for c in format(I,'b')]

10 ... n_bits = len(I_binary)

11 ... s = 1

12 ... for a in range(1,n_bits):

13 ... for b in range(a):

14 ... s *= (-1)**(I_binary[a]* I_binary[b])

15 ... return s

Then the sign factor tensor (2.3) is constructed:

1 >>> import numpy as np

2 >>> nI, nL, nK = A.shape # Obtaining A's index dimensions

3 >>> nJ, nL = B.shape # Obtaining B's index dimensions

4 >>> sign_factor = np.zeros([nJ ,nK ,nL], dtype=int) # The sign factor

5 >>> for J in range(nJ):

6 ... for K in range(nK):

7 ... for L in range(nL):

8 ... sign_factor[J,K,L] = sgn(L)*(-1)**(

9 ... gparity(L)*(gparity(J)+gparity(K))+gparity(J)*gparity(K))

And finally, the contraction:

1 >>> C = np.einsum('ILK ,JL ,JKL ->IJK',A,B,sgn_factor)

The function p(I) and σI can be reused in other contractions, but the sign factor (2.3)

must be recalculated and rewritten for every contraction. It is not difficult to see that this

can be arduous and is prone to mistakes as the program becomes more complex.

The first goal of the grassmanntn package is to eliminate the need for the user to

compute these sign factors manually. In order to do that, grassmanntn introduces the

Grassmann tensor as a programming object that contains information about the indices as

well as the coefficient tensor. All functions will make use of this information to compute

the sign factors implicitly—reducing the user input to the minimum.

6

ψ3

ψ1

ψ2

M = U VΣ

ψ1

ψ2

ψ3

ζ ξ

Figure 4: Diagrammatic representation of the singular value decomposition (2.4)

The second goal is to implement the functions with a declarative programming philoso-

phy, where the user only has to tell the program what they want instead of how to obtain

the result. For example, the Grassmann tensor contraction in the previous example can be

computed with the grassmanntn.einsum function:

1 >>> import grassmanntn as gtn

2 >>> C = gtn.einsum('ILK ,JL->IJK',A,B)

Similar to numpy.einsum, the only input the user has to enter is the subscripts of the

operands, where the repeated characters are contracted. The properties of the resulting

tensor, such as shape and index statistics, are determined automatically. The package also

provides other operations such as complex conjugation, index joining and splitting, singular

value decomposition (SVD), and eigenvalue decomposition (EigD), among others.

An upshot for this programming design is it is straightforward to write the code from

the symbolic expression. For example, the tensor Mψ̄1ψ̄2ψ3
can be decomposed with an

SVD as

Mψ̄1ψ̄2ψ3
=

∫
ζ̄ζ

∫
ξ̄ξ

Uψ̄1ψ̄2ζΣζ̄ξVξ̄ψ3
(2.4)

where Σ is a diagonal singular value matrix (see section A.7). This can be computed with

the following code:

1 >>> # Initialize a random Grassmann tensor

2 >>> M = gtn.random(shape =(4,4,4), statistics =(-1,-1,1))

3 >>> # Performing the singular value decomposition

4 >>> U,S,V = M.svd('IJ|K') # SVD: U[I,J,A], S[A,B], and V[B,K]

Here, the SVD is performed between the first two Grassmann indices and the third, which

is represented by the string IJ|K.

The tensors U and V are unitary; i.e.,∫
ψ̄1ψ1

∫
ψ̄2ψ2

U †
ζ̄ψ1ψ2

Uψ̄1ψ̄2ξ =

∫
ψ̄3ψ3

Vζ̄ψ3
V†
ψ̄3ξ

= Iζ̄ξ, (2.5)

7

where the identity Grassmann matrix is defined in (A.39). The following code demonstrates

that U and V are unitary:

1 >>> Udagger = U.hconjugate('IJ|A') # Complex conjugate: Udagger[A,I,J]

2 >>> Vdagger = V.hconjugate('B|K') # Complex conjugate: Vdagger[K,B]

3 >>> I1 = gtn.einsum('AIJ ,IJB ->AB',Udagger ,U) # Udagger*U

4 >>> I2 = gtn.einsum('AK ,KB ->AB',V,Vdagger) # V*Vdagger

5 >>> I1.force_format('matrix ').display () # Show the coefficient elements

6

7 array type: dense

8 shape: (4, 4)

9 density: 4 / 16 ~ 25.0 %

10 statistics: (-1, 1)

11 format: matrix

12 encoder: canonical

13 memory: 296 B

14 norm: 2.0

15 entries:

16 (0, 0) 1.0

17 (1, 1) 1.0

18 (2, 2) 1.0

19 (3, 3) 1.0

20

21 >>> I2.force_format('matrix ').display () # Show the coefficient elements

22

23 array type: dense

24 shape: (4, 4)

25 density: 4 / 16 ~ 25.0 %

26 statistics: (-1, 1)

27 format: matrix

28 encoder: canonical

29 memory: 296 B

30 norm: 2.0

31 entries:

32 (0, 0) 1.0

33 (1, 1) 1.0

34 (2, 2) 1.0

35 (3, 3) 1.0

The result shows that both U †U and VV† give a 4× 4 identity matrix.

The package grassmanntn can be downloaded from the online repository [41]. The web

documentation for grassmanntn is provided3 where each class, function, and module are

3https://ayosprakob.github.io/grassmanntn/

8

https://ayosprakob.github.io/grassmanntn/

T ψ1

ψ2

ψm

...

...

ϕ1
ϕ2

ϕn

Figure 5: A Grassmann tensor of order (m,n); Tψ1···ψmϕ̄1···ϕ̄n .

described in detail, with useful examples.

3 Features

In this section, we explain the main features of the package grassmanntn as of build 1.2.3.

Full details are given on the web documentation. For the mathematical formulation of the

Grassmann tensor network, see appendix A.

3.1 Grassmann tensors as a programming object

Every Grassmann tensor

Tψ1···ψmϕ̄1···ϕ̄n =
∑

I1,··· ,Im,J1,··· ,Jn
TI1···ImJ1···Jnψ

I1
1 · · ·ψImm ϕ̄J11 · · · ϕ̄Jnn (3.1)

contains 4 kinds of information: the numerical coefficient tensor T , the statistics of the

indices, the index encoding method, and the coefficient format; all of which are explained

below.

Statistics refers to the type of index which can be: +1 for a non-conjugate fermionic

index, -1 for a conjugated index, and 0 for a bosonic index. Diagrammatically, the non-

conjugated fermionic index corresponds to the tensor leg with an arrow pointing away

from the tensor, the conjugated index corresponds to the leg with an arrow pointing into

the tensor, while bosonic legs do not have the arrow. An example of a tensor with m

non-conjugated legs and n conjugated legs (3.1) is shown in figure 5.

Index encoder refers to how the composite index I = (i1, · · · , in) is encoded as an

9

integer. There are two options, canonical and the parity-preserving [14] encoders:

Icanonical(i1, · · · , in) =
n∑
k=1

2k−1ik, (3.2)

Iparity-preserving(i1, · · · , in) =


n∑
k=1

2k−1ik ; i2 + · · ·+ in even,

1− i1 +
n∑
k=2

2k−1ik ; i2 + · · ·+ in odd.

(3.3)

The canonical encoder has the advantage that it is easy to join and split indices. For

example, if I and J corresponds to the canonical indices of an m-bit fermion and an n-bit

fermion, respectively, then I and J can be joined with

K = I + 2mJ (with canonical encoder), (3.4)

which corresponds to (i1, · · · , im, j1, · · · , jn) in the bit representation. The parity-preserving

encoder, as the name suggests, is designed in a way that the Grassmann parity of the index

is readily manifested. Namely, if I is a parity-preserving index corresponds to (i1, · · · , in)
in the bit representation, then we have

I ≡
n∑
a=1

ia (mod 2) (with parity-preserving encoder). (3.5)

The two encoders can be switched by the switching function

ε(Icanonical) = ε−1(Icanonical) = Iparity-preserving, (3.6)

which is self-inverse. The encoder switching function can be accessed via the function

grassmanntn.param.encoder(I), where I is the encoded index to be switched.

The coefficient format refers to whether the coefficient tensor is in the standard or the

matrix format, which are explained in detail in appendix A.6.

The package grassmanntn processes all of this information in a single programming

object: grassmanntn.dense or grassmanntn.sparse, depending on whether the coefficient

is stored in a sparse or dense format. Although the algorithms for the sparse and dense

tensors are different, the two objects can be used together, where the package will choose

the appropriate algorithm automatically.

grassmanntn.dense is built upon the dense multidimensional array numpy.ndarray

from the numpy package [42] while grassmanntn.sparse is built upon a sparse array

sparse.COO from the sparse package [43]. The coefficient tensor, the index statistics,

the encoder, and the coefficient format can be accessed as the attributes of the object.

10

Examples

To make a random dense Grassmann tensor Tψϕ̄ζ̄mn where m and n are bosonic indices with

dimensions dψ = dϕ = 4, dζ = 8, and dm = dn = 5, the following command is used:

1 >>> import numpy as np

2 >>> import grassmanntn as gtn

3 >>> T_data = np.random.rand(4,4,8,5,5) # a random coeff with

4 >>> # the specified shape.

5 >>> T_statistics = (1,-1,-1,0,0) # the statistics of the indices.

6 >>> T_dense = gtn.dense(data=T_data , statistics=T_statistics ,

7 ... encoder="canonical", format="standard")

Alternatively, the grassmanntn.random() function can also be used to generate a ran-

dom Grassmann tensor:

1 >>> T_dense = gtn.random(shape =(4,4,8,5,5), statistics =(1,-1,-1,0,0),

2 ... tensor_type=gtn.dense , dtype=float ,

3 ... encoder="canonical", format="standard",

4 ... skip_trimming=True) # If False (default),

5 >>> # the Grassmann -odd components

6 >>> # are removed.

Sparse Grassmann tensor can also be initialized in the COO (coordinate list) format if

a list of non-zero entries is specified. For example, if one wants to initialize the following

tensor (canonical and standard):

Tψ̄ϕ = 3.1ψ̄3ϕ5 + (7.9 + 2.3i)ψ̄2ϕ7 + 5.8ψ̄0ϕ1 − 0.2iψ̄2ϕ2 (3.7)

where ψ̄ and ϕ are 2- and 3-bit fermions (dψ = 4 and dϕ = 8), respectively, then we write

1 >>> import sparse as sp

2 >>> cI = complex (0,1)

3 >>> T_shape = (4,8)

4 >>> T_statistics = (-1,1)

5 >>> psi_bar = [3, 2, 0, 2] #psi_bar 's index

6 >>> phi = [5, 7, 1, 2] #phi's index

7 >>> coords = [psi_bar ,phi]

8 >>> coeff = [3.1, 7.9+2.3*cI , 5.8, -0.2*cI] #the coefficients

9 >>> T_data = sp.COO(coords ,coeff ,shape=T_shape)

10 >>> T_sparse = gtn.sparse(data=T_data , statistics=T_statistics ,

11 ... encoder="canonical", format="standard")

The two formats can be easily converted with

1 >>> T_dense_to_sparse = gtn.sparse(T_dense) # from dense to sparse

2 >>> T_sparse_to_dense = gtn.dense(T_sparse) # from sparse to dense

11

The coefficient of the Grassmann tensor as a multi-dimensional array can be extracted

via the property data:

1 >>> data_dense = T_dense.data

2 >>> data_sparse = T_sparse.data

3 >>> print(' dense data type:', type(data_dense),

4 ... '\n sparse data type:', type(data_sparse))

5 dense data type: <class 'numpy.ndarray '>
6 sparse data type: <class 'sparse._coo.core.COO'>

3.2 Tensor contraction

Contractions between two indices can be done if 1) they have the same dimensions and

2) their statistics are the opposite. This includes the usual bosonic contraction and the

fermionic contraction. In grassmanntn , contractions can be done via einsum(), which is

designed to work in a similar way with numpy.einsum().

The function grassmanntn.einsum() is built upon the highly optimized contraction

function opt einsum.contract() which works for both dense and sparse format of the

coefficient tensor. As of grassmanntn 1.2.3, the bottleneck of the computation time

comes from the sign factor computation, which we plan to improve in future versions.

Examples

First, prepare some tensors:

1 >>> import grassmanntn as gtn

2 >>> T = gtn.random(shape =(4,8,4),statistics =(1,-1,-1))

3 >>> S = gtn.random(shape =(4,4,6),statistics =(1,-1,0))

4 >>> G = gtn.random(shape =(6 ,6),statistics =(0 ,0))

5 >>> M = gtn.random(shape =(8 ,8),statistics =(1,-1))

The function einsum() can be used to perform a contraction within the same object

1 >>> v = gtn.einsum('iji ->j',T)
2 >>> print('shape=',v.shape ,', stats=',v.statistics)
3 shape= (8,) , stats= (-1,)

In this example, we perform the contraction between the first and the third index of T,

leaving only the second index as a free index. This is described by the first argument,

‘iji->j’ where the repeated index i are summed (in the Einstein notation). The right-

hand side of -> indicates the indices of the result. Unless the contraction is complete, the

right-hand side of -> must be specified in order to get the intended result.

The indices can also be rearranged with einsum:

12

A M
join legs()

split legs()

Figure 6: Diagrammatic representation of the reshaping process between the order-4 tensor

A and the order-2 tensor M. Legs with an arrow pointing away from the tensor have the +1

statistics while legs with an arrow pointing into the tensor have the -1 statistics.

1 >>> Q = gtn.einsum('ijk ->kij',T)
2 >>> print('shape=',Q.shape ,', stats=',Q.statistics)
3 shape= (4, 4, 8) , stats= (-1, 1, -1)

In this example, the third index is moved to the beginning without any contraction taking

place. Note that swapping of any two fermionic indices introduces a sign factor to the

coefficient matrix. This sign factor is automatically calculated by grassmanntn.einsum().

Two or more tensors can be contracted:

1 >>> X = gtn.einsum('ijk , kia ->ja',T,S)
2 >>> print('shape=',X.shape ,', stats=',X.statistics)
3 shape= (8, 6) , stats= (-1, 0)

If the contraction is complete, the function returns a scalar:

1 >>> trM = gtn.einsum('ii',M)
2 >>> print(type(trM),trM)

3 <class 'numpy.float64 '> 0.8348875099871086

The contraction can be done with more than 2 repeating indices if it is bosonic:

1 >>> R = gtn.einsum('kia ,aa->ik',S,G)
2 >>> print('shape=',R.shape ,', stats=',R.statistics)
3 shape= (4, 4) , stats= (-1, 1)

3.3 Tensor reshaping

Grassmann tensor can be reshaped similarly to the traditional multidimensional array.

However, joining and splitting the tensor legs also introduce an additional sign factor to

13

the coefficients (see appendix A.3). To compute such a sign factor, the reshaping function

must know the statistics of the target tensor. The following example shows how to reshape

an order-4 tensor with the statistics (1,1,-1,-1) into an order-2 tensor with the statistics

(1,-1)

1 >>> import grassmanntn as gtn

2 >>> A = gtn.random(shape =(4,4,4,4),statistics =(1,1,-1,-1))

3 >>> M = A.join_legs('(ij)(kl)',intermediate_stat =(1,-1))

In this example, the tensor A is reshaped with the function join legs(). The first

argument instructs how the tensor is reshaped; i.e., (ij)(kl) means that the first two

indices (ij) are grouped into one index and similarly for (kl). The statistics of the

reshaped legs are specified by the argument intermediate stat, which is (1,-1). This

means that the leg (ij) and (kl) has the +1 and -1 statistics, respectively. The dimensions

of the reshaped legs are computed automatically. A diagrammatic representation of this

reshaping process is shown in Figure 6.

Splitting the legs can be done in a similar way but with slightly different arguments.

The following example shows how to reshape the order-2 tensor above back to the original

order-4 tensor with the function split legs():

1 >>> A2 = M.split_legs('(ij)(kl)',intermediate_stat =(1,-1),
2 ... final_stat =(1,1,-1,-1),final_shape =(4,4,4,4))

In this example, the first argument tells the function how the two legs should be split.

Namely, the parent object M has two legs, so there must be two enclosed parentheses, which

are (ij) and (kl). In each parenthesis, the number of indices dictates how many legs

it should be split into; i.e., both legs are split into two legs. The argument final stat

and final shape tell the statistics and the shape of the reshaped tensor. The argument

intermediate stat, of which we will explain its significance below, should be the same as

the parent object’s statistics in most cases.

One can check that A and A2 are the same by computing the norm of the difference:

1 >>> A2 = A2.force_encoder("canonical") # convert A2 to be in

2 >>> # the same encoder as A

3 >>> # to compute A-A2

4 >>> print ((A-A2).norm) # is equal to zero if A=A2

5 0.0

Both join legs() and split legs() are designed to work in the most general cases

where fermionic legs, conjugated legs, and bosonic legs, are simultaneously involved. In

such cases, the argument intermediate stat plays a crucial role. The joining process can

be summarized in the following steps:

14

1. Consider the grouping (I1 · · · ImJ1 · · · Jni1 · · · ip) 7→ X where Ia, Jb, and ic are of +1,

-1, and 0 statistics, respectively. X is the joined leg.

2. The fermionic indices are first joined into a single fermionic index K then bosonic

indices are joined into a single bosonic index k:

(I1 · · · ImJ1 · · · Jni1 · · · ip) 7→ (Ki1 · · · ip) 7→ (Kk).

If intermediate stat of this grouping is +1, this fermion is non-conjugated. If

it is -1, the intermediate fermion is conjugated. If there are only bosonic indices,

intermediate stat must be 0. The statistic of the intermediate fermion affects the

sign factor according to the prescription described in appendix A.3.

3. The user has the option to switch the coefficient format at this point (with the optional

argument make format; see the documentation for more details). Usually, this doesn’t

matter except when we want to perform matrix manipulation, where the coefficient

must be in the matrix format.

4. Finally, the intermediate fermionic index K and the bosonic indices k are joined

(Kk) 7→ X where K is in the parity-preserving encoder and X = K + d× k (with d

being the dimension of the fermionic leg K).

Note that since d must always be even, the parity of X and K are the same. This means

that the Grassmann parity of the fermionic leg K is preserved in X even if X contains

bosonic degrees of freedom.

It should be stressed that the hybrid leg X does not furnish a representation of the

Grassmann algebra since all information of fermionic degrees of freedom (except its par-

ity) is polluted by the bosonic degrees of freedom. Because of this, if the user wants to

split the hybrid leg X back to (I1 · · · ImJ1 · · · Jni1 · · · ip), they have to specify not only

final statistics and final shape, but also intermediate stat of the intermediate in-

dex K as well. In most cases, where bosonic indices are not involved, the intermediate

statistics can be taken to be the same as the parent object’s statistics.

An example of the case where the hybrid legs are created is when one wants to perform

tensor decomposition of a hybrid tensor such as Tψiϕ into
∫
ξ̄ξ
AψiξBξ̄ϕ. In this case, the

fermion ψ and a bosonic index i are necessarily joined into a hybrid leg first. After the

decomposition, it is then split back into ψ and i. This process, however, can be conveniently

done by the functions svd() and eig() (see 3.4).

15

3.4 Tensor decomposition

Singular value decomposition (SVD) plays a central role in the low-rank approximation of

various tensor network algorithms. The SVD can be generalized for Grassmann tensors

(gSVD), which is formulated in Appendix A.7. Let

Tψ1···ϕ̄1···i1···ψ′
1···ϕ̄′1···k1··· =

∑
{I},{J},{K},{L}

TI1···J1···i1···K1···L1···k1ψ
I1
1 · · · ϕ̄J11 · · ·ψ′K1

1 · · · ϕ̄′L1
1 · · · (3.8)

be a general Grassmann tensor with indices of various statistics. Its gSVD of the form

Tψ1···ϕ̄1···i1···ψ′
1···ϕ̄′1···k1··· =

∫
ξ̄ξ,ζ̄ζ

Uψ1···ϕ̄1···i1···ξΣξ̄ζVζ̄ψ′
1···ϕ̄′1···k1···, (3.9)

where Σξ̄σ is the diagonal singular value matrix, can be computed using grassmanntn with

the command (an example with two indices of each type)

1 U, S, V = T.svd('I1 I2 J1 J2 i1 i2 | K1 K2 L1 L2 k1 k2')

In this example, the indices on the opposite sides of the renormalized legs are separated by

the | indicator.

eigenvalue decomposition can also be done if the tensor is Hermitian (see appendix A.5

for definitions). In this case, the two unitary tensors U and V are conjugate to each other,

and Σ becomes the eigenvalue matrix.

Examples

Consider a three-legged tensor:

1 >>> import grassmanntn as gtn

2 >>> A = gtn.random(shape =(4,4,4),statistics =(1,1,-1))

Its singular value decomposition with the renormalized leg between the first and the last

two legs can be computed by

1 >>> U, S, V = A.svd('i|jk')

One can check if the decomposition is correct by reconstructing the original tensor and

measuring the error:

1 >>> USV = gtn.einsum('ia ,ab,bjk ->ijk',U,S,V)
2 >>> print((A-USV).norm) # is equal to zero if A=USV

3 7.557702638948695e-16

To demonstrate the eigenvalue decomposition, consider a Hermitian tensor

1 >>> H = gtn.einsum('jki ,iJK ->jkJK',A.hconjugate('i|jk'),A)

16

ψ1T

ψ2

ψ3

ψ4

=

P
Q

ψ2

ψ3

ψ1

ψ4

R
S

ψ2

ψ3

ψ1

ψ4

=
ϕ ϕ

=

PS

R

ϕ2

Q

ϕ1

ϕ3

ϕ4

T ′

ϕ1

ϕ2ϕ3

ϕ4

ζ1

ζ2

ζ3

ζ4

Figure 7: (Top) The two configurations of Grassmann SVD. (Bottom) The construction of

the coarse-grained tensor.

Here, we form a Hermitian tensor H by contracting A with its Hermitian conjugate. Now

we can compute the eigenvalue decomposition

1 >>> U, S, V = H.eig('jk|JK')
2 >>> USV = gtn.einsum('jka ,ab,bJK ->jkJK',U,S,V)
3 >>> print((H-USV).norm) # is equal to zero if H=USV

4 9.177321373036202e-15

We can also show that U and V are conjugate to each other:

1 >>> print ((U-V.hconjugate('a|JK')).norm) # is zero if U is V-conjugate

2 0.0

4 Coding examples

4.1 Levin-Nave TRG

The initial version of the tensor renormalization group algorithms was developed to handle

the Ising model [11], which is a two-dimensional spin system. In their approach, a coarse-

graining procedure is utilized to perform a scale transformation, akin to the conventional

17

real-space renormalization group transformation. This can be directly generalized to the

Grassmann tensor network, which has been demonstrated with the Schwinger model [29,

24, 30], among others.

The Grassmann TRG method assumes that the lattice is periodic with an order-4 tensor

Tψ1ψ2ψ̄3ψ̄4
. (4.1)

The tensor is periodic in the x (1 and 3) axis and y (2 and 4) axis. At the even and odd

sites, the tensor is decomposed with different configurations of SVD:

Tψ1ψ2ψ̄3ψ̄4
=

∫
ζ̄ζ

∫
ξ̄ξ

UE
ψ2ψ̄3ζ

ΣE
ζ̄ξVE

ξ̄ψ̄4ψ1
=

∫
ϕ̄ϕ

Pψ2ψ̄3ϕQϕ̄ψ̄4ψ1
(even sites) (4.2)

=

∫
ζ̄ζ

∫
ξ̄ξ

UO
ψ̄3ψ̄4ζ

ΣO
ζ̄ξVO

ξ̄ψ1ψ2
=

∫
ϕ̄ϕ

Rψ̄3ψ̄4ϕSϕ̄ψ1ψ2
(odd sites). (4.3)

Here, both P and Q absorb a square root of ΣE (and similarly for R, S, and ΣO), where

the square root of a diagonal tensor is defined by

Σζ̄ξ =
∑
I

λIσI ζ̄
IξI →

√
Σζ̄ξ =

∑
I

√
λIσI ζ̄

IξI . (4.4)

The coarse-grained tensor can then be constructed via

T ′
ϕ1ϕ2ϕ̄3ϕ̄4

=

∫
ζ̄1ζ1,ζ̄2ζ2,
ζ̄3ζ3,ζ̄4ζ4

Sϕ̄4ζ4ζ3Qϕ̄3ζ̄3ζ2Pζ1ζ̄4ϕ1Rζ̄2ζ̄1ϕ2 . (4.5)

This procedure can be computed with the following function:

1 >>> import grassmanntn as gtn

2 >>> def LevinNaveTRG(T):

3 ... # Input a site tensor T

4 ... # Return a renormalized tensor Tprime

5 ... TE = gtn.einsum('i1 i2 i3 i4 -> i2 i3 i4 i1',T) # Even arrangement

6 ... TO = gtn.einsum('i1 i2 i3 i4 -> i3 i4 i1 i2',T) # Odd arrangement

7 ... UE , SE , VE = TE.svd('i2 i3 | i4 i1') #Even -site SVD

8 ... UO , SO , VO = TO.svd('i3 i4 | i1 i2') #Odd -site SVD

9 ... sqSE = gtn.sqrt(SE) # the square -root of the singular value

10 ... sqSO = gtn.sqrt(SO) # the square -root of the singular value

11 ... P = gtn.einsum('i2 i3 a, ab -> i2 i3 b', UE,sqSE)

12 ... Q = gtn.einsum('ab , b i4 i1 -> a i4 i1', sqSE ,VE)

13 ... R = gtn.einsum('i3 i4 a, ab -> i3 i4 b', UO,sqSO)

14 ... S = gtn.einsum('ab , b i1 i2 -> a i1 i2', sqSO ,VO)

15 ... SQ = gtn.einsum('i4 j4 j3, i3 j3 j2 -> i3 i4 j2 j4',S,Q) # S*Q

16 ... PR = gtn.einsum('j1 j4 i1, j2 j1 i2 -> j4 j2 i1 i2',P,R) # P*R

18

=T ′ T T

Figure 8: The equivalence of the tensor trace before and after performing the coarse-graining

procedure.

17 ... Tprime = gtn.einsum('i3 i4 j2 j4,j4 j2 i1 i2 ->i1 i2 i3 i4',SQ ,PR)
18 ... return Tprime

19 ...

20 >>> T = gtn.random(shape =(4,4,4,4),statistics =(1,1,-1,-1))

21 >>> Tprime = LevinNaveTRG(T) # Performing TRG of a random tensor

22 >>> Tprime.info("Tprime")

23

24 name: Tprime

25 array type: dense

26 shape: (16, 16, 16, 16)

27 density: 32768 / 65536 ~ 50.0 %

28 statistics: (1, 1, -1, -1)

29 format: standard

30 encoder: canonical

31 memory: 512.2 KiB

32 norm: 21.0229552947218

To test if our result is correct, one way is to compute the trace directly and via the

TRG. If our TRG algorithm is correct, the following relation should hold:∫
ϕ̄1ϕ1,ϕ̄2ϕ2

T ′
ϕ1ϕ2ϕ̄1ϕ̄2

=

∫
ψ̄1ψ1,ψ̄2ψ2,
ψ̄3ψ3,ψ̄4ψ4

Tψ1ψ2ψ̄3ψ̄4
Tψ3ψ4ψ̄1ψ̄2

. (4.6)

This equivalence is depicted diagrammatically in figure 8. The two traces can be shown to

be indeed the same:

1 >>> trace1 = gtn.einsum('i1 i2 i3 i4, i3 i4 i1 i2',T,T)
2 >>> trace2 = gtn.einsum('i1 i2 i1 i2',Tprime)
3 >>> print('trTT =', trace1 ,'\ntrTprime =', trace2)

4 trTT = -0.20488002067705247

5 trTprime = -0.20488002067708644

19

ψ1T

ψ2

ψ3

ψ4

i1

i2

i3

i4 —-—-

T

Figure 9: The example tensor (4.7) (left) and how the isometries (triangles) are applied

(right).

4.2 Isometry tensor computation

A standard operation in tensor renormalization group algorithms is the computation of the

isometry or the squeezer of a given set of tensor legs [44, 18, 13]. Consider the following

Grassmann tensor

Tψ1ψ2ψ̄3ψ̄4i1i2i3i4 =
∑

I1,I2,I3,I4

TI1I2I3I4i1i2i3i4ψ
I1
1 ψ

I2
2 ψ̄

I3
3 ψ̄

I4
4 , (4.7)

where ψa are 2-bit fermions and ia are bosonic indices with dimension 3. The tensor is

assumed to be periodic in the x (1 and 3) axis and y (2 and 4) axis. This is depicted as a

diagram in figure 9 (left).

Let us set up this tensor with grassmanntn.random()

1 >>> import grassmanntn as gtn

2 >>> T = gtn.random(shape =(4,4,4,4,3,3,3,3),

3 ... statistics =(1,1,-1,-1,0,0,0,0))

4 >>> T.info("Before truncation")

5

6 name: Before truncation

7 array type: dense

8 shape: (4, 4, 4, 4, 3, 3, 3, 3)

9 density: 10368 / 20736 ~ 50.0 %

10 statistics: (1, 1, -1, -1, 0, 0, 0, 0)

11 format: standard

12 encoder: canonical

13 memory: 162.3 KiB

14 norm: 58.636872692182166

15

16 >>> trT = gtn.einsum("IJIJijij",T)

20

17 >>> print("original trace:",trT)

18 original trace: -25.907152855719076

To squeeze the legs, we have to rearrange the indices so that the legs to be squeezed are

separated from the others; e.g., all of the indices to be squeezed are to the left or right of all

other indices. This can be done with grassmanntn.einsum(). For future convenience, the

non-conjugated legs (1 and 2 directions) will be separated to the right while the conjugated

legs (3 and 4 directions) will be separated to the left.

1 >>> T1 = gtn.einsum("IJKLijkl -> JKLjkl Ii",T)

2 >>> T2 = gtn.einsum("IJKLijkl -> IKLikl Jj",T)

3 >>> T3 = gtn.einsum("IJKLijkl -> Kk IJLijl",T)

4 >>> T4 = gtn.einsum("IJKLijkl -> Ll IJKijk",T)

We next perform the Hermitian conjugation.

1 >>> cT1 = T1.hconjugate("JKLjkl|Ii")

2 >>> cT2 = T2.hconjugate("IKLikl|Jj")

3 >>> cT3 = T3.hconjugate("Kk|IJLijl")

4 >>> cT4 = T4.hconjugate("Ll|IJKijk")

The Hermitian tensor can then be formed by summing out the ‘environment’ indices.

1 >>> M1 = gtn.einsum('Xx JKLjkl ,JKLjkl Yy -> Xx Yy',cT1 ,T1)
2 >>> M2 = gtn.einsum('Xx IKLikl ,IKLikl Yy -> Xx Yy',cT2 ,T2)
3 >>> M3 = gtn.einsum('Xx IJLijl ,IJLijl Yy -> Xx Yy',T3 ,cT3)
4 >>> M4 = gtn.einsum('Xx IJKijk ,IJKijk Yy -> Xx Yy',T4 ,cT4)

We next perform the eigenvalue decomposition and obtain the entanglement entropy of

each case

1 >>> #eigenvalue decomposition

2 >>> U1,S1,V1 = M1.eig("Xx|Yy")

3 >>> U2,S2,V2 = M2.eig("Xx|Yy")

4 >>> U3,S3,V3 = M3.eig("Xx|Yy")

5 >>> U4,S4,V4 = M4.eig("Xx|Yy")

6 >>> #Get the entanglement spectrum

7 >>> import numpy as np

8 >>> Spect1 = np.diag(S1.force_format("matrix").data)

9 >>> Spect2 = np.diag(S2.force_format("matrix").data)

10 >>> Spect3 = np.diag(S3.force_format("matrix").data)

11 >>> Spect4 = np.diag(S4.force_format("matrix").data)

12 >>> #Compute the entanglement entropy

13 >>> Ent1 = sum([-s*np.log(s+1e-16) for s in Spect1])

14 >>> Ent2 = sum([-s*np.log(s+1e-16) for s in Spect2])

15 >>> Ent3 = sum([-s*np.log(s+1e-16) for s in Spect3])

16 >>> Ent4 = sum([-s*np.log(s+1e-16) for s in Spect4])

21

In each direction, we pick the unitary matrix with a smaller entanglement entropy as

the isometry.

1 >>> # Get the isometries

2 >>> Ux = U1 if Ent1 <Ent3 else U3

3 >>> Uy = U2 if Ent2 <Ent4 else U4

4 >>> cUx = Ux.hconjugate("Xx|A")

5 >>> cUy = Uy.hconjugate("Xx|A")

And finally, we apply these isometries on the original tensor’s legs.

1 >>> # Apply the isometries to the tensor

2 >>> Tprime = gtn.einsum('IJKLijkl ,IiA -> AJKLjkl ',T,Ux)
3 >>> Tprime = gtn.einsum('AJKLjkl ,JjB -> ABKLkl ',Tprime ,Uy)
4 >>> Tprime = gtn.einsum('ABKLkl ,CKk -> ABCLl ',Tprime ,cUx)
5 >>> Tprime = gtn.einsum('ABCLl ,DLl -> ABCD ',Tprime ,cUy)
6 >>> Tprime.info("After truncation")

7

8 name: After truncation

9 array type: dense

10 shape: (16, 16, 16, 16)

11 density: 10368 / 65536 ~ 15.8203125 %

12 statistics: (1, 1, -1, -1)

13 format: standard

14 encoder: canonical

15 memory: 512.2 KiB

16 norm: 58.63687269218216

17

18 >>> trTprime = gtn.einsum("IJIJ",Tprime)

19 >>> print("truncated tensor trace:",trTprime)

20 truncated tensor trace: -25.907152855719076

The isometries in this example merge a fermionic leg and a bosonic leg into a new

fermionic leg. This new leg is a proper representation of the Grassmann algebra, so it can

be treated as a regular fermionic leg. Note how the tensor trace is not affected by the

isometry.

5 Summary

In this paper, we introduce grassmanntn , a Python package designed to simplify the coding

of Grassmann tensor network computation. The Grassmann tensor network is a useful tool

for handling a large fermionic system, but the sign factor which is an inherent nature

of Grassmann numbers makes the coding difficult and prone to mistakes. To that end,

22

grassmanntn computes the sign factor automatically. With the declarative programming

approach, most of the functions are designed to work with the tensors’ subscripts as the

input. As such, the code can be easily translated from the symbolic expression. Two use

case examples are given: the Levin-Nave TRG algorithm and the computation of isometries.

Additionally, the package has also been recently used for the Nf -flavor gauge theory [13].

While the current version of grassmanntn can be successfully used in realistic compu-

tations, there is still more room for improvement. In particular, we plan to optimize the

function einsum which has a bottleneck in the operational time in the sign factor tensor

computation. In that aspect, path optimization will clearly help improve the speed. An-

other future plan is the implementation of basic Grassmann arithmetic, which can be used

to construct the initial tensor from a given action without the help of external tools.

We encourage the community to use and test grassmanntn and give us feedback so

that we can improve the package further. We hope that grassmanntn will become a tool

that makes the Grassmann tensor network more accessible to new researchers and makes

theoretical developments in both high energy and condensed matter physics.

Acknowledgments

We would like to thank Jun Nishimura and Kouichi Okunishi for their valuable discussions.

This work is supported by a Grant-in-Aid for Transformative Research Areas “The Natural

Laws of Extreme Universe—A New Paradigm for Spacetime and Matter from Quantum

Information” (KAKENHI Grant No. JP21H05191) from JSPS of Japan.

A Formulation

In this section, we formulate the concept of Grassmann tensor in the bottom-up approach.

The main result of this formulation is that we have systematically introduced the process of

joining and splitting the fermionic legs in the general case where the legs can be either con-

jugated or non-conjugated. Furthermore, we also re-introduced concepts such as Hermitian

conjugation and matrix decomposition in a way that can be clearly and directly related to

the non-Grassmann counterparts.

A.1 Grassmann algebra

Given an n-dimensional vector space V = span(θ1, · · · , θn), a Grassmann algebra Λ(V) is

defined as an algebra of Grassmann generators θ1, · · · , θn and their exterior (anticommu-

23

tative) products

Λ(V) ≡ C ⊕ V ⊕ (V ∧ V)⊕ · · · ⊕ (V ∧ V ∧ · · · ∧ V)︸ ︷︷ ︸
n

. (A.1)

Elements of the Grassmann algebra are called the Grassmann numbers [45]. Essentially,

Grassmann algebra describes a system of numbers θ1, · · · , θn with the rule that they are

anticommuting with each other: θaθb = −θbθa for a, b = 1, · · · , n.
If a Grassmann number is commuting/anti-commuting with all generators, we say that

it has an even/odd Grassmann parity. In general, the commutativity of two Grassmann

numbers x1, x2 ∈ Λ(V) is given by

x1x2 = (−)p(x1)p(x2)x2x1 (A.2)

where p(x) = 0 if x is Grassmann even and p(x) = 1 if it is Grassmann odd. It follows

straightforwardly that a square of any Grassmann-odd numbers always vanishes. Conse-

quently, any element A ∈ Λ(V) can be written uniquely by the sum

A =
∑

i1,··· ,in∈{0,1}
Ai1···inθ

i1
1 · · · θinn , (A.3)

for some Ai1···in ∈ C. In contrast to the polynomial expansion of complex numbers, where

the power must be truncated at some large number, ia is already truncated at 1 because of

the property that the square (or higher power) of θa identically vanishes.

The integral of a Grassmann number, known as the Berezin integral, can be defined as

follows [46]: ∫
dθθ ≡ 1, (A.4)∫
dθ1 ≡ 0. (A.5)

Keep in mind that these operators are also anticommuting. It is easy to show that∫
dθ′dθe−θ

′θθiθ′
j
= δij, (A.6)

for any two generators θ and θ′ and i, j ∈ {0, 1}. This identity will become important when

we discuss tensor contraction below.

A Grassmann algebra v = Λ(V) of an n-dimensional vector space V is itself a vector

space with dim(v) = 2n. Basis vectors of v can be indexed by a parameter I, which we will

24

call the composite index. Specifically, a basis vector ψI of v with I = (i1, · · · , in) is defined
by

ψI ≡ θi11 · · · θinn . (A.7)

Any Grassmann number A ∈ v can then be written as (see (A.3) for comparison)

A =
∑
I

AIψ
I . (A.8)

We will refer to the symbol ψ = (θ1, · · · , θn) as an n-bit fermionic index, or just a fermion.

Note that ψ may also be referred to as the ‘multi-component Grassmann number’ in the

literature. We can define Grassmann parity of ψI by

p(I) =
n∑
a=1

ia, (A.9)

which is the sum of the occupation number of the generators. Similar to (A.2), the com-

mutativity of two Grassmann numbers are given by

ψI11 ψ
I2
2 = (−)p(I1)p(I2)ψI22 ψ

I1
1 (A.10)

A.2 Dual algebra and Grassmann contraction

For every Grassmann algebra v = Λ(V), there is a dual Grassmann algebra v̄ = Λ(V̄)

with V̄ = span(θ̄1, · · · , θ̄n). The generators θ̄a and θa are said to be dual or conjugated

to each other. The dual Grassmann algebra v̄ can also be defined as a set of all linear

maps that maps any element of v into a complex scalar via an operation called Grassmann

contraction. A Grassmann contraction between a Grassmann vector Aψ =
∑

I AIψ
I ∈ v

and a dual vector Bψ̄ =
∑

J BJ ψ̄
J ∈ v̄ is defined by∫

ψ̄ψ

AψBψ̄ ≡
∫ (n∏

a=1

dθ̄adθae
−θ̄aθa

)
AψBψ̄ (A.11)

=
∑

{i},{j}

∫ (n∏
a=1

dθ̄adθae
−θ̄aθa

)(
Ai1···inθ

i1
1 · · · θinn

) (
Bj1···jn θ̄

j1
1 · · · θ̄jnn

)
=
∑

{i},{j}

∫ (n∏
a=1

dθ̄adθae
−θ̄aθaθiaa θ̄

ja
a

)(∏
a>b

(−)iajb

)
Ai1···inBj1···jn

=
∑

{i},{j}

(
n∏
a=1

δiaja

)(∏
a>b

(−)iajb

)
Ai1···inBj1···jn

25

=
∑
{i}

(∏
a>b

(−)iaib

)
Ai1···inBi1···in , (A.12)

which is a complex number. In the equations above, the product symbol
∏

a is ordered in

a way that terms with smaller a are to the left of those with larger a. The sign factor

σI =
∏
a>b

(−)iaib (A.13)

comes from rearranging the Grassmann number from the second line to the third line. Using

(A.12), it is easy to derive the orthogonality relation∫
ψ̄ψ

ψIψ̄J = δIJσI . (A.14)

The contraction (A.12) can then be rewritten in terms of composite indices as∫
ψ̄ψ

AψBψ̄ =
∑
I

σIAIBI . (A.15)

A.3 Joining and splitting algebras

In the tensor network computation, multiple tensor legs sometimes need to be merged into

a single leg. In our context, this corresponds to the joining of the Grassmann algebra of

each leg into a single Grassmann algebra: (v1, · · · , vm, ū1, · · · , ūn) 7→ w. This can be done

in two steps: 1) the algebras are first combined with the direct sum t; 2) The joined algebra

w is then formed as a graded tensor product of t:

w ≡ C ⊕ t⊕ (t⊗ t)⊕ · · · ⊕ (t⊗ t⊗ · · · t)︸ ︷︷ ︸
m+n

, (A.16)

w̄ ≡ C ⊕ t̄⊕ (̄t⊗ t̄)⊕ · · · ⊕ (̄t⊗ t̄⊗ · · · t̄)︸ ︷︷ ︸
m+n

; (A.17)

t = v1 ⊕ · · · ⊕ vm ⊕ ū1 ⊕ · · · ⊕ ūn, (A.18)

t̄ = v̄1 ⊕ · · · ⊕ v̄m ⊕ u1 ⊕ · · · ⊕ un. (A.19)

Component-wise, the fermions ψIaa ∈ va and ϕJbb ∈ ub are joined into ξK ∈ w with the

following prescription:

ξK ≡ ψI11 · · ·ψImm ϕ̄J11 · · · ϕ̄Jnn , (A.20)

ξ̄K ≡ ψ̄I11 · · · ψ̄Imm ϕJ11 · · ·ϕJnn ×
n∏
b=1

(−)p(Jb), (A.21)

26

with the contraction defined by∫
ξ̄ξ

≡
∫
ψ̄1ψ1

· · ·
∫
ψ̄mψm

∫
ϕ̄1ϕ1

· · ·
∫
ϕ̄nϕn

. (A.22)

Note how ξK and ξ̄K are defined differently, with the conjugated one having an extra sign

factor. This is to ensure that the composite algebras w and w̄ are dual to each other in

the sense that ξK and ξ̄K are contracted by
∫
ξ̄ξ

with the identity (A.14)4. Splitting the

algebras can also be done in reverse order of the joining process.

A.4 Grassmann tensors

A Grassmann tensor algebra T is defined to be a graded tensor product of several Grass-

mann algebras va and dual algebras ūb:

T ≡ C ⊕ t⊕ (t⊗ t)⊕ · · · ⊕ (t⊗ t⊗ · · · t)︸ ︷︷ ︸
m+n

; (A.23)

t = v1 ⊕ · · · ⊕ vm ⊕ ū1 ⊕ · · · ⊕ ūn. (A.24)

If T is composed of m Grassmann algebras and n dual algebras, we say that the element

of T is a Grassmann tensor of order (m,n). If we treat T as a Grassmann algebra, T

will be equivalent to the composite Grassmann algebra w introduced in section A.3. The

difference is that we still keep the fermions separated in this case. A Grassmann tensor

T ∈ T can always be represented by the sum

Tψ1···ψmϕ̄1···ϕ̄n =
∑

I1,··· ,Im,J1,··· ,Jn
TI1···ImJ1···Jnψ

I1
1 · · ·ψImm ϕ̄J11 · · · ϕ̄Jnn (A.25)

where ψIaa ∈ va, ϕ̄
Ib
b ∈ ūb, and TI1···Jn ∈ C. A Grassmann tensor is called a Grassmann

vector if it has one index (such as Aψ or Bψ̄). If it has one non-conjugated index and one

conjugated index (such as Mψ̄ϕ), we call it a Grassmann matrix.

Two Grassmann tensors can be contracted if the contracted indices are dual to each

other. The dual indices must be moved adjacent to each other first before we can perform

the contraction. This introduces some sign factors in the coefficient tensor. The following

example shows the contraction of the pair (ϕ, ϕ̄) between Aψ1ϕψ̄3
and Bψ̄2ϕ̄:

Cψ1ψ̄2ψ̄3
=

∫
ϕ̄ϕ

Aψ1ϕψ̄3
Bψ̄2ϕ̄

4Alternatively, the sign factor can be absorbed in the definition of
∫
ξ̄ξ
. But this is not preferable since

this makes the definition of the integral depend on its integrand.

27

=
∑

I1,I2,I3,K,K′

AI1KI3BI2K′

∫
ϕ̄ϕ

ψI11 ϕ
Kψ̄I33 ψ̄

I2
2 ϕ̄

K′

=
∑

I1,I2,I3,K,K′

AI1KI3BI2K′(−)p(K
′)(p(I2)+p(I3))ψI11

(∫
ϕ̄ϕ

ϕK ϕ̄K
′
)
ψ̄I33 ψ̄

I2
2

=
∑
I1,I2,I3

∑
K

AI1KI3BI2K(−)p(K)(p(I2)+p(I3))+p(I2)p(I3)σK︸ ︷︷ ︸
= CI1I2I3

ψI11 ψ̄
I2
2 ψ̄

I3
3 . (A.26)

Keep in mind that the conjugated fermion must be on the right-hand side of the non-

conjugated fermion in the formula (A.14). Also note that the contraction operator
∫
ψ̄ψ

is

Grassmann-even, so it can be moved anywhere without introducing extra sign factors.

Grassmann tensors can be depicted diagrammatically similarly to the usual tensors.

However, the conjugated and non-conjugated legs must be clearly distinguished. Following

the convention given in Ref. [14], non-conjugated legs have an arrow pointing away from

the tensor while conjugated legs have an arrow pointing into the tensor. For example, the

diagram of (A.26) is given in figure 3.

A.5 Unitary space

Unitary space is a vector space equipped with 1) an inner product and 2) a Hermitian

conjugation map that maps between the vector space and its dual. In our context, the

vector space refers to the order-1 tensor algebra (the space of Grassmann vectors) while

the inner product is defined by

⟨B,A⟩ ≡
∫
ψ̄ψ

B†
ψAψ̄. (A.27)

The conjugation map is defined on a vector and a matrix by

Aψ =
∑
I

AIψ
I −→ A†

ψ̄
≡
∑
I

A∗
IσIψ̄

I , (A.28)

Bψ̄ =
∑
I

BIψ̄
I −→ B†

ψ ≡
∑
I

B∗
IσIψ

I , (A.29)

Mψ̄ϕ =
∑
I,J

MIJ ψ̄
IϕJ −→ M†

ϕ̄ψ
≡
∑
I,J

M∗
IJσIσJ ϕ̄

JψI . (A.30)

The symbol (·)∗ denotes complex conjugation. It is easy to see that performing the Hermi-

tian conjugation twice gives the original object. An inner product of a Grassmann vector

with itself is positive semi-definite:

⟨A,A⟩ =
∫
ψ̄ψ

A†
ψAψ̄ =

∑
I

|AI |2. (A.31)

28

For general tensors, conjugation can be done by joining the indices into two groups first

(turning into a matrix), performing the conjugation, and finally splitting the indices. For

example, considering

Tψ1ψ2ψ3ψ4 =
∑

I1I2I3I4

TI1I2I3I4ψ
I1
1 ψ

I2
2 ψ

I3
3 ψ

I4
4 , (A.32)

the conjugated with respect to the grouping (ψ1ψ2)(ψ3ψ4) is given by

T †
(ψ̄3ψ̄4)(ψ̄1ψ̄2)

=
∑

I1I2I3I4

T ∗
I1I2I3I4

σ(I1,I2)σ(I3,I4)(−)p(I1)+p(I2)+p(I3)+p(I4)ψ̄I33 ψ̄
I4
4 ψ̄

I1
1 ψ̄

I2
2 . (A.33)

In the equation above,

σ(Ia,Ib) = σIaσIb(−)p(Ia)p(Ib) (A.34)

is the sign factor (A.13) with the argument being the composite index I = (Ia, Ib) and

(−)p(I1)+p(I2)+p(I3)+p(I4) is the sign factor arising from index joining and splitting. It should

be noted that performing conjugation with different index groupings gives a different result.

A Grassmann matrix is said to be Hermitian if H†
ψ̄ϕ

= Hψ̄ϕ . In other words, its

coefficient tensor must satisfy the condition

HJI = H∗
IJσIσJ . (A.35)

The coefficient matrix of a Hermitian Grassmann matrix is not a Hermitian matrix. This

peculiar statement will be clarified when we discuss the coefficient formats in section A.6.

Although the coefficient of a Hermitian Grassmann matrix is seemingly counter-intuitive,

one can check that it has all the right properties. For example, we can show that the

eigenvalues of a Hermitian Grassmann matrix are all real by showing that its expectation

value is always real:

⟨A,HA⟩ =
∫
ψ̄ψ,ϕ̄ϕ

A†
ψHψ̄ϕAϕ̄ =

∑
IJ

A∗
IHIJAJσJ

=
∑
IJ

A∗
I(H

∗
JIσIσJ)AJσJ =

(∑
IJ

A∗
JHJIAIσI

)∗

= ⟨A,HA⟩∗, (A.36)

for all Aψ̄ ∈ v̄.

A Grassmann matrix is said to be unitary if it is its own inverse:∫
ϕ̄ϕ

U †
ψ̄ϕ
Uϕ̄ψ = Iψ̄ψ, (A.37)∫

ψ̄ψ

Uϕ̄ψU †
ψ̄ϕ

= Iϕ̄ϕ, (A.38)

29

where the Grassmann identity matrix is given by

Iψ̄ϕ ≡
∑
I

σIψ̄
IϕI . (A.39)

It is easy to check that, despite its unusual form, I is an identity under the Grassmann

matrix multiplication.

A.6 Parallelism with non-Grassmann linear algebra

So far, all definitions in terms of the coefficients are not very intuitive. However, if we write

the coefficient in the right format, the connection with the non-Grassmann linear algebra

becomes clear. Let us define the standard format of the coefficient tensor to be the one we

have been using so far (see (A.25)):

Tψ1···ψmϕ̄1···ϕ̄n =
∑

I1,I2··· ,Jn
TI1···ImJ1···Jnψ

I1
1 · · ·ψImm ϕ̄J11 · · · ϕ̄Jnn (A.40)

The matrix format, on the other hand, is defined by

T
(m)
I1···ImJ1···Jn ≡ TI1···ImJ1···JnσJ1 · · ·σJn , (A.41)

where we multiply the sign factor σJa for every conjugated index ϕ̄Jaa . The coefficient

expansion in the matrix format thus becomes

Tψ1···ψmϕ̄1···ϕ̄n =
∑

I1,I2··· ,Jn
T

(m)
I1···JnσJ1 · · ·σJnψ

I1
1 · · ·ψImm ϕ̄J11 · · · ϕ̄Jnn . (A.42)

In this format, the Grassmann matrix multiplication can be done in a trivial way. For

example, the coefficient matrix C(m) of

Cψ̄ϕ =
∫
ξ̄ξ

Aψ̄ξBξ̄ϕ (A.43)

can be shown to be equal to the regular matrix multiplication between A(m) and B(m),

without any sign factor:

Cψ̄ϕ =
∑

I,J,K,L

∫
ξ̄ξ

(A
(m)
IJ σIψ̄

IξJ)(B
(m)
KLσK ξ̄

KϕL)

=
∑
I,L

∑
J

A
(m)
IJ B

(m)
JL︸ ︷︷ ︸

= C
(m)
IL

σIψ̄
IϕL. (A.44)

30

Hermitian conjugation of different objects is now in the intuitive form:

Aψ =
∑
I

A
(m)
I ψI −→ A†

ψ̄
=
∑
I

A
(m)∗
I σIψ̄

I , (A.45)

Bψ̄ =
∑
I

B
(m)
I σIψ̄

I −→ B†
ψ =

∑
I

B
(m)∗
I ψI , (A.46)

Mψ̄ϕ =
∑
I,J

M
(m)
IJ σIψ̄

IϕJ −→ M†
ϕ̄ψ

=
∑
I,J

M
(m)∗
IJ︸ ︷︷ ︸

=M
(m)†

JI

σJ ϕ̄
JψI . (A.47)

Hermiticity condition (A.35) in the matrix format now takes the familiar form

H
(m)
IJ = H

(m)∗
JI = H

(m)†
IJ . (A.48)

And the coefficient matrix of the Grassmann identity matrix (A.39) is simply the identity

matrix

Iψ̄ϕ =
∑
I,J

I
(m)
IJ σIψ̄

IϕJ (A.49)

with I
(m)
IJ = 1IJ .

A.7 Tensor decomposition

Tensor decomposition is an important operation in tensor network computation. It gives

us a way to approximate a large tensor by smaller tensors with lower ranks. In the case

of a Grassmann matrix, the Grassmann singular value decomposition (gSVD) is a tensor

decomposition of the form

Mψ̄ϕ =

∫
ξ̄ξ,ζ̄ζ

Uψ̄ξΣξ̄ζVζ̄ϕ (A.50)

where U and V are unitary matrices and

Σξ̄ζ =
∑
I

λIσI ξ̄
IζI (A.51)

is the singular value matrix with λI being the positively-valued singular value. Grassmann

eigendecomposition (gEigD) can also be written in a similar form

Mψ̄ϕ =

∫
ξ̄ξ,ζ̄ζ

Uψ̄ξΣξ̄ζU †
ζ̄ϕ

(A.52)

where U is a unitary matrix with Σξ̄ζ being the eigenvalue matrix.

Deriving both the gSVD and gEigD becomes trivial in the matrix format, where we

have to perform the non-Grassmann counterpart of the decomposition on the coefficient

31

matrix M (m) to obtain the unitary matrices and the singular value matrix. However, if the

Grassmann matrix is Grassmann even; i.e., ψ̄IϕJ is Grassmann even, both of the indices

must have the same parity. This means that the matrix can be diagonalized into even and

odd blocks:

M =

(
ME

MO

)
. (A.53)

The matrix decomposition can then be performed on the two blocks separately, and we can

combine the result into one block in the final step. For the decomposition of the tensor of

arbitrary rank, we have to join the legs so that the tensor becomes a matrix first, then we

can split the legs after the decomposition.

References

[1] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Rigorous Results on Valence Bond

Ground States in Antiferromagnets, Phys. Rev. Lett. 59 (1987) 799.

[2] C.K. Majumdar and D.K. Ghosh, On Next-Nearest-Neighbor Interaction in Linear

Chain. I, Journal of Mathematical Physics 10 (2003) 1388

[https://pubs.aip.org/aip/jmp/article-pdf/10/8/1388/8804461/1388 1 online.pdf].

[3] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Valence Bond Ground States in

Isotropic Quantum Antiferromagnets, Commun. Math. Phys. 115 (1988) 477.

[4] J.I. Cirac, D. Perez-Garcia, N. Schuch and F. Verstraete, Matrix product states and

projected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93

(2021) 045003 [2011.12127].

[5] D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix product state

representations, 2007.

[6] R.J. Baxter, Dimers on a rectangular lattice, Journal of Mathematical Physics 9

(1968) 650 [https://doi.org/10.1063/1.1664623].

[7] S.R. White, Density matrix formulation for quantum renormalization groups, Phys.

Rev. Lett. 69 (1992) 2863.

[8] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method,

Journal of the Physical Society of Japan 65 (1996) 891

[https://doi.org/10.1143/JPSJ.65.891].

32

https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1063/1.1664978
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/10/8/1388/8804461/1388_1_online.pdf
https://doi.org/10.1007/BF01218021
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003
https://arxiv.org/abs/2011.12127
https://doi.org/10.1063/1.1664623
https://doi.org/10.1063/1.1664623
https://arxiv.org/abs/https://doi.org/10.1063/1.1664623
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1143/JPSJ.65.891
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.65.891

[9] T. Nishino and K. Okunishi, Corner transfer matrix algorithm for classical

renormalization group, Journal of the Physical Society of Japan 66 (1997) 3040

[https://doi.org/10.1143/JPSJ.66.3040].

[10] T. Nishino and K. Okunishi, A density matrix algorithm for 3d classical models,

Journal of the Physical Society of Japan 67 (1998) 3066

[https://doi.org/10.1143/JPSJ.67.3066].

[11] M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical

lattice models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687].

[12] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura,

Tensor network analysis of critical coupling in two dimensional ϕ4 theory, JHEP 05

(2019) 184 [1811.12376].

[13] A. Yosprakob, J. Nishimura and K. Okunishi, A new technique to incorporate

multiple fermion flavors in tensor renormalization group method for lattice gauge

theories, 2309.01422.

[14] S. Akiyama and D. Kadoh, More about the Grassmann tensor renormalization group,

JHEP 10 (2021) 188 [2005.07570].

[15] G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett. 115

(2015) 180405.

[16] M. Hauru, C. Delcamp and S. Mizera, Renormalization of tensor networks using

graph independent local truncations, Phys. Rev. B 97 (2018) 045111 [1709.07460].

[17] D. Adachi, T. Okubo and S. Todo, Bond-weighted Tensor Renormalization Group,

2011.01679.

[18] Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining

renormalization by higher-order singular value decomposition, Phys. Rev. B 86

(2012) 045139.

[19] D. Adachi, T. Okubo and S. Todo, Anisotropic Tensor Renormalization Group, Phys.

Rev. B 102 (2020) 054432 [1906.02007].

[20] D. Kadoh and K. Nakayama, Renormalization group on a triad network, 1912.02414.

[21] R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for

relativistic fermion systems, PTEP 2017 (2017) 063B07 [1705.07764].

33

https://doi.org/10.1143/JPSJ.66.3040
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.66.3040
https://doi.org/10.1143/JPSJ.67.3066
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.67.3066
https://doi.org/10.1103/PhysRevLett.99.120601
https://arxiv.org/abs/cond-mat/0611687
https://doi.org/10.1007/JHEP05(2019)184
https://doi.org/10.1007/JHEP05(2019)184
https://arxiv.org/abs/1811.12376
https://arxiv.org/abs/2309.01422
https://doi.org/10.1007/JHEP10(2021)188
https://arxiv.org/abs/2005.07570
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevB.97.045111
https://arxiv.org/abs/1709.07460
https://arxiv.org/abs/2011.01679
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.102.054432
https://doi.org/10.1103/PhysRevB.102.054432
https://arxiv.org/abs/1906.02007
https://arxiv.org/abs/1912.02414
https://doi.org/10.1093/ptep/ptx080
https://arxiv.org/abs/1705.07764

[22] Z.-C. Gu, F. Verstraete and X.-G. Wen, Grassmann tensor network states and its

renormalization for strongly correlated fermionic and bosonic states, 1004.2563.

[23] Z.-C. Gu, Efficient simulation of Grassmann tensor product states, Phys. Rev. B 88

(2013) 115139 [1109.4470].

[24] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to

one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [1403.0642].

[25] Y. Kuramashi and Y. Yoshimura, Tensor renormalization group study of

two-dimensional U(1) lattice gauge theory with a θ term, JHEP 04 (2020) 089

[1911.06480].

[26] M. Fukuma, D. Kadoh and N. Matsumoto, Tensor network approach to

two-dimensional Yang–Mills theories, PTEP 2021 (2021) 123B03 [2107.14149].

[27] M. Hirasawa, A. Matsumoto, J. Nishimura and A. Yosprakob, Tensor

renormalization group and the volume independence in 2D U(N) and SU(N) gauge

theories, JHEP 12 (2021) 011 [2110.05800].

[28] A. Bazavov, S. Catterall, R.G. Jha and J. Unmuth-Yockey, Tensor renormalization

group study of the non-Abelian Higgs model in two dimensions, Phys. Rev. D 99

(2019) 114507 [1901.11443].

[29] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a

topological term at θ = π using the Grassmann tensor renormalization group, Phys.

Rev. D 90 (2014) 074503 [1408.0897].

[30] Y. Shimizu and Y. Kuramashi, Berezinskii-Kosterlitz-Thouless transition in lattice

Schwinger model with one flavor of Wilson fermion, Phys. Rev. D 97 (2018) 034502

[1712.07808].

[31] J. Bloch and R. Lohmayer, Grassmann higher-order tensor renormalization group

approach for two-dimensional strong-coupling QCD, Nucl. Phys. B 986 (2023)

116032 [2206.00545].

[32] T. Kuwahara and A. Tsuchiya, Toward tensor renormalization group study of

three-dimensional non-Abelian gauge theory, PoS LATTICE2022 (2023) 021.

[33] S. Akiyama and Y. Kuramashi, Tensor renormalization group study of

(3+1)-dimensional Z2 gauge-Higgs model at finite density, JHEP 05 (2022) 102

[2202.10051].

34

https://arxiv.org/abs/1004.2563
https://doi.org/10.1103/PhysRevB.88.115139
https://doi.org/10.1103/PhysRevB.88.115139
https://arxiv.org/abs/1109.4470
https://doi.org/10.1103/PhysRevD.90.014508
https://arxiv.org/abs/1403.0642
https://doi.org/10.1007/JHEP04(2020)089
https://arxiv.org/abs/1911.06480
https://doi.org/10.1093/ptep/ptab143
https://arxiv.org/abs/2107.14149
https://doi.org/10.1007/JHEP12(2021)011
https://arxiv.org/abs/2110.05800
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.99.114507
https://arxiv.org/abs/1901.11443
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.074503
https://arxiv.org/abs/1408.0897
https://doi.org/10.1103/PhysRevD.97.034502
https://arxiv.org/abs/1712.07808
https://doi.org/10.1016/j.nuclphysb.2022.116032
https://doi.org/10.1016/j.nuclphysb.2022.116032
https://arxiv.org/abs/2206.00545
https://doi.org/10.22323/1.430.0021
https://doi.org/10.1007/JHEP05(2022)102
https://arxiv.org/abs/2202.10051

[34] S. Akiyama and Y. Kuramashi, Critical endpoint of (3+1)-dimensional finite density

Z3 gauge-Higgs model with tensor renormalization group, 2304.07934.

[35] P. Jordan and E. Wigner, Über das paulische äquivalenzverbot, Zeitschrift für Physik

47 (1928) 631.

[36] T. Barthel, C. Pineda and J. Eisert, Contraction of fermionic operator circuits and

the simulation of strongly correlated fermions, Phys. Rev. A 80 (2009) 042333.

[37] P. Corboz and G. Vidal, Fermionic multiscale entanglement renormalization ansatz,

Phys. Rev. B 80 (2009) 165129.

[38] C. Pineda, T. Barthel and J. Eisert, Unitary circuits for strongly correlated fermions,

Phys. Rev. A 81 (2010) 050303.

[39] C.V. Kraus, N. Schuch, F. Verstraete and J.I. Cirac, Fermionic projected entangled

pair states, Phys. Rev. A 81 (2010) 052338.

[40] P. Corboz, G. Evenbly, F. Verstraete and G. Vidal, Simulation of interacting

fermions with entanglement renormalization, Phys. Rev. A 81 (2010) 010303.

[41] A. Yosprakob, GrassmannTN: a Python package for Grassmann tensor network

computation https: // github. com/ ayosprakob/ grassmanntn , .

[42] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau et al., Array programming with NumPy, Nature 585 (2020) 357.

[43] Hameer Abbasi, Sparse: A more modern sparse array library, in Proceedings of the

17th Python in Science Conference, Fatih Akici, David Lippa, Dillon Niederhut and

M. Pacer, eds., pp. 65 – 68, 2018, DOI.

[44] L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value

decomposition, SIAM Journal on Matrix Analysis and Applications 21 (2000) 1253

[https://doi.org/10.1137/S0895479896305696].

[45] E. Wieczorek, Dewitt, b., supermanifolds. cambridge et al., cambridge university press

1984. xiv, 316 s., £ 35.00 b h/c. $ 59.50 isbn 0-521-25850-2 (cambridge monographs

on mathematical physics), ZAMM - Journal of Applied Mathematics and Mechanics /

Zeitschrift für Angewandte Mathematik und Mechanik 66 (1986) 112

[https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19860660213].

[46] F.A. Berezin, The method of second quantization, Pure Appl. Phys. 24 (1966) 1.

35

https://arxiv.org/abs/2304.07934
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/PhysRevA.80.042333
https://doi.org/10.1103/PhysRevB.80.165129
https://doi.org/10.1103/PhysRevA.81.050303
https://doi.org/10.1103/PhysRevA.81.052338
https://doi.org/10.1103/PhysRevA.81.010303
https://github.com/ayosprakob/grassmanntn
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-4af1f417-00a
https://doi.org/10.1137/S0895479896305696
https://arxiv.org/abs/https://doi.org/10.1137/S0895479896305696
https://doi.org/https://doi.org/10.1002/zamm.19860660213
https://doi.org/https://doi.org/10.1002/zamm.19860660213
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19860660213

	Introduction
	Design principles
	Features
	Grassmann tensors as a programming object
	Tensor contraction
	Tensor reshaping
	Tensor decomposition

	Coding examples
	Levin-Nave TRG
	Isometry tensor computation

	Summary
	Formulation
	Grassmann algebra
	Dual algebra and Grassmann contraction
	Joining and splitting algebras
	Grassmann tensors
	Unitary space
	Parallelism with non-Grassmann linear algebra
	Tensor decomposition

