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Response to the report of Reviewer 1

Despite the limitations on system size and/or order of the expansion, the presented tool is
extremely helpful for any researcher in the field of 1d stochastic processes. It might help to trigger
new conjectures for analytical results which then could be proved using mathematical methods.
Therefore, in principle, I recommend publication. The acceptance criteria of SciPost Physics
Codebases are fulfilled.

We would like to thank the reviewer for their positive comments.

Pedagogically it might be better to present the algorithm for ℓ = 1 first. This would avoid
some complications in the notation that could be confusing at first, e.g. the introduction of a
“tracking site” (in Fig.1), which is not optimally explained in the text. The generalization to
general ℓ seems then to be rather straightforward. If necessary, some aspects could be explained
in a subsection or an Appendix.

We have now added a more pedagogical section to better introduce the reader to the ℓ
TASEP and the tracking site. We did not want to modify too much the flow of the main text,
so this section is added as an Appendix and referenced in the main text. We have also added
the following sentence at page 3 to better explain the “tracking site”:

“In order to locate each particle on the lattice, we arbitrarily chose a site of the particle that
we will call the “tracking site” (identical for all particles); we can then identify the position of a
particle on the lattice by the position of its “tracking” site. For instance, in Fig. 1 each particle
has size ℓ = 3 and the tracking site is the middle one. ”

The expansion is in the input parameter alpha which needs to be small. Can certain symme-
tries of the ASEP be used to extend the validity to other parameter values, e.g. small beta? A
discussion of such symmetries might be helpful for the reader.

For ℓ = 1, there is indeed a symmetry that can be used to solve the model when the
parameter β is small. This symmetry amounts to replacing τi ↔ 1− τi for i = 1, . . . , L, α ↔ β
and i ↔ L − i + 1. This symmetry, however, does not hold for ℓ > 1, and for this reason our
method cannot be immediately mapped to the regime in which the exit rate is small. We have
commented this in the Discussion section. That said, we note that the power-series expansion
can be developed for small β for ℓ > 1, and we plan to add this feature in future versions of the
TASEPy package.
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Response to the report of Reviewer 2

I think this manuscript deserves publication, but I feel that it could gain significant impact
with little modification to the algorithm.

We thank the reviewer for their positive comments and suggestions.

The power series approximation used by the authors gives a perturbative solution of the
master equation (in the steady state). This solution contains all the physical information about
the steady state of the system. The implementation of the algorithm computes this solution,
order by order, but does not store the result. Instead, it is used, at each order, to compute the
physical quantities of interest here (current and density). This is a bit of a shame, as this full
solution could be of interest to study any physical observable, and not just the two considered
here (for instance density-density correlations between different sites). My guess is that this
result is not stored for memory issues, as the full probability of configurations for a large lattice
would represent too much data (but this is not stated in the manuscript). On the other hand, the
simplification (24) identified by the authors should greatly reduce the amount of memory needed
for storing this result, so that might be feasible.

1) Could the authors add a function that gives the full solution of the master equation up
to a given order, so that it could be used to study other quantities? If this is not feasible,
maybe the function psa compute could be modified to take as an argument a list of quantities to
compute from the master equation (these quantities would be functions of the list of occupation
numbers)? This second option would boil down to changing Eq. (25) to use instead of (3) or
(4) any function of the occupation numbers τi. I feel that this would significantly increase the
impact of the article, with relatively low effort. If, for some technical reason that I missed this
is not possible, it would be worth adding a comment in the manuscript about this point.

In psa compute we indeed compute all the coefficients, but we do not store them. We have
now added this feature by means of two optional arguments in psa compute, save coeffs=True

(the default value is False if omitted), and coeffs file=⟨filename⟩, which specifies the file for
storing the coefficients. The coefficients are stored in one row per coefficient, in the format
n (order), X (list of particle positions) and cn(X) (the coefficient). Given that the number
of coefficients scales exponentially with L, and therefore the resulting file may be large, we
have implemented another function called total coeffs, which computes the total number of
coefficients that will be stored in the file. This number can be used to decide whether storing
the coefficients is feasible. For example, for L = 100, ℓ = 1 and K = 4, total coeffs returns
circa 4,300,000 coefficients, which take about 173 MB of space, or about 43 bytes per coefficient.
We have changed the text on pages 10 and 11 to explain these two new optional arguments, and
updated the tutorial showing these new features in practice.

The alternative option of passing a function of lattice occupancy variables will be added in
future versions of TASEPy.

2) In Eq. (2b) and (2c), perhaps it would be more clear to write the evolution of the pair of
occupation numbers using brackets, [...]

We have changed this in the text.

3) For Eq. (3) a quick explanation of the formula would be useful. For instance, to explain
that the current from the left can be written as the injection rate multiplied by the probability
that all the sites between 0 and l are empty. Equivalently, it is equal to the exit current from
the right, which can be written as the exit rate multiplied by the probability that the last site is
occupied.

We have added the following sentence in the text: “As the steady-state current is conserved
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along the lattice, the equation above can be understood as equating the entry current (injection
rate α multiplied by the probability that the first ℓ sites are empty), and the exit current on the
last site (termination rate β multiplied by the probability of occupancy of the last site).”

4) There are two references missing in the first paragraph of Section 5, which currently appear
as ”[]”.

We have fixed the references.
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Abstract

The totally asymmetric simple exclusion process (TASEP) is a paradigmatic lattice model
for one-dimensional particle transport subject to excluded-volume interactions. Solving
the inhomogeneous TASEP in which particles’ hopping rate vary across the lattice is a
long-standing problem. In recent years, a power series approximation (PSA) has been
developed to tackle this problem, however no computer algorithm currently exists that
implements this approximation. This paper addresses this issue by providing a Python-
based package TASEPy that finds the steady state solution of the inhomogeneous TASEP
for any set of hopping rates using the PSA truncated at a user-defined order.
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1 Introduction

The exclusion process is a paradigmatic lattice model for one-dimensional transport subject to
excluded-volume interactions. It was introduced as a model for mRNA translation in 1968 [1,
2], and independently in 1970 as a generalization of the lattice random walk to include multi-
ple particles with excluded-volume interactions [3], when it was named the exclusion process.
The exclusion process rose to prominence in the 1990s due to its connection to a variety of
physical phenomena, including boundary-induced phase transitions [4], vehicular traffic [5],
quantum spin chains [6] and surface growth [7]. In nonequilibrium statistical physics, the
totally asymmetric simple exclusion process (TASEP) in which particles move unidirectionally
and with uniform hopping rates (the homogeneous TASEP) is one of very few models whose
nonequilibrium steady-state solution is known exactly [8–10]. The steady-state solution of
the homogeneous TASEP via matrix-product Ansatz has inspired a large body of research on
nonequilibrium steady states [11]. Its large deviation properties [12] have played an important
role in the development of the macroscopic fluctuation theory [13] describing coarse-grained
fluctuations in driven diffusive systems [14]. Applications of the TASEP in biology, other than
mRNA translation [15–18], include DNA transcription [19–23] and intracellular transport by
molecular motors [24,25].

In the context of mRNA translation, the TASEP captures stochastic motion of individual
ribosomes on the mRNA, including excluded-volume (steric) interactions between ribosomes
that may cause traffic jams. Ribosome speed along the mRNA is non-uniform, which has
been linked to variations in the availability of the transfer RNA (tRNA) molecules delivering
the correct amino acid to the ribosome [26]. Most amino acids are encoded by two to six
(synonymous) codons, whose frequency of usage is non-random [27], which is known as the
codon usage bias. In biotechnology, codon (sequence) optimization by replacing rare with
frequent codons has become an important tool to increase the production of proteins that are
non-native to their host cell, with some studies reporting up to 1000-fold increase in protein
levels [28]. These successes are seemingly in contrast to numerous studies demonstrating
that translation is rate-limited by initiation [29–32], raising an opportunity for the TASEP to
explore theoretically the effect of variable codon speed on the protein production rate.

Variable ribosome speed can be modelled by the TASEP with inhomogeneous hopping rates
that are fixed to each lattice site, which we refer to as the inhomogeneous TASEP (other names
that circulate in the literature are the TASEP with site-wise disorder and the disordered TASEP).
In stark contrast to the homogeneous TASEP for which many exact results are known, solving
the inhomogeneous TASEP is a challenging problem, even if all but one lattice sites have the
same hopping rate [33–35]. One option is to employ the mean-field approximation, in which
correlations between neighbouring particles are ignored. This approximation leads to a set of
nonlinear equations for the local particle densities at each lattice position that must be solved
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numerically [36,37]. If the hopping rates are slowly varying along the lattice and the number
of lattice sites is large, then a hydrodynamic (coarse-grained) limit of the TASEP is justified,
yielding simple analytical results for the local density [38]. Finally, if the TASEP has only few
sites with slow hopping rates, then a combination of the mean-field approximation and the
exact solution of the homogeneous TASEP can be used [34,39,40].

The other option, which accounts for correlations between particles, is the power series
approximation (PSA) [41–43]. This approximation is based on the formal series expansion
of the steady-state solution, with the initiation rate (at which new particles are added to the
lattice) being the expansion variable. The coefficients in this expansion can be computed
exactly, whereas the approximation comes from the truncation of the series at some given
order. Since initiation is typically the rate-limiting step in translation, only the first few terms
are needed to obtain accurate results [42]. Consequently, the power series approximation
is expected to be considerably faster than the stochastic simulation algorithm (the Gillespie
algorithm) [44]. This advantage has proved instrumental for solving the inverse problem of
inferring variable ribosome speed from experimental data obtained by ribosome profiling [45].
However, computer implementation of the power series approximation has so far been limited
to the first few orders, preventing its wider use.

In this paper, we close this gap by providing a computer algorithm that finds the steady state
of the inhomogeneous TASEP for arbitrary hopping rates using the power series truncated at
an arbitrary, user-defined order. After introducing the model, we summarize the power series
approximation [41–43] and present an iterative method to solve it for any order. Finally, we
implement this method in a Python code, which we package as the TASEPy module. We provide
detailed instructions how to use it, and test its correctness using exact results for small systems
and stochastic simulations for large systems. The code is available in a GitHub repository [46]
under the MIT licence.

2 The inhomogeneous TASEP

2.1 Definition of the model

We model a driven gas of particles advancing on a unidimensional discrete lattice consisting
of L sites, labelled from 1 to L. As we are motivated by the mRNA translation process [1],
we assume that each particle occupies ℓ sites. In order to locate each particle on the lattice,
we arbitrarily chose a site of the particle that we will call the “tracking site” (identical for all
particles); we can then identify the position of a particle on the lattice by the position of its
‘tracking’ site. For instance, in Fig. 1 each particle has size ℓ = 3 and the tracking site is the
middle one. For ribosomes, ℓ ≈ 10 and the tracking site is approximately 5 lattice sites from
the ribosome’s trailing end. However, the procedure that we describe is general, meaning that
it can be applied to any value of ℓ, and it does not depend on the position of the particle’s
tracking site [2,15].

The model is illustrated in Fig. 1. Particles enter the lattice with their tracking site (high-
lighted with a black dot) on site 1 with a probability per unit time α, provided that no other
particles interfere with the binding of that particle. In other words, the tracking site of the
following particle should be at least ℓ + 1 sites downstream. In the following, we will often
identify the position of a particle with the position of its tracking site. In the bulk, a particle
moves from site i to site i + 1 with a rate ωi , provided that there is no particle on site i + ℓ.
On the last site L, particles exit the lattice with a rate β .

For each site i = 1, . . . , L we define the corresponding particle occupancy number τi ∈
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Figure 1: Sketch of the TASEP for ℓ = 3. A black dot denotes the tracking site.
A particle is injected with its tracking site on the first lattice site with rate α. The
position of the tracking site then moves from site i to i+1 with rate ωi , and when it
reaches the last site, the particle is ejected from the lattice with rate β . At each step,
the dynamics has to respect the exclusion rules explained in the text.

{0,1},

τi =

¨

1 if site i is occupied by a particle’s tracking site,

0 otherwise.
(1)

These numbers determine the configuration of the system denoted by C = {τ1, . . . ,τL}. Using
this notation, kinetic steps of the driven lattice gas can be summarized as:

(initiation): τ1 = 0
α
−→ 1 if τ1 = · · ·= τℓ = 0 (2a)

(elongation): [τi ,τi+1] = [1, 0]
ωi−→ [0,1] if τi+ℓ = 0, i = 1, . . . , L − ℓ (2b)

[τi ,τi+1] = [1,0]
ωi−→ [0, 1], i = L − ℓ+ 1, . . . , L (2c)

(termination): τL = 1
β
−→ 0. (2d)

Eqs. (2a)-(2d) define the totally asymmetric simple exclusion process first proposed by Mac-
Donald, Gibbs and Pipkin as a model of mRNA translation [1].

2.2 Particle current and particle density

Our main goal is to compute the particle current J and particle densities ρi on each site i, in
the steady state. As we do not consider particle binding and unbinding inside the lattice, the
current J in the steady state is conserved across the lattice, and we can write:

J = α

®

ℓ
∏

i=1

(1−τi)

¸

= β〈τL〉 (3)

where the brackets 〈. . . 〉 denote an ensemble average with respect to the steady-state proba-
bility P(C). As the steady-state current is conserved along the lattice, the equation above can
be understood as equating the entry current (injection rate αmultiplied by the probability that
the first ℓ sites are empty), and the exit current on the last site (termination rate β multiplied
by the probability of occupancy of the last site). The local particle densities ρi (the probability
of finding a particle tracking site on site i), and the average lattice density ρ are defined as

ρi = 〈τi〉, (4a)

ρ =
1
L

L
∑

i=1

ρi . (4b)
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2.3 Steady-state master equation

The steady-state probability P(C) satisfies the master equation,

0=
∑

C ′
W (C ′→ C)P(C ′)−

∑

C ′
W (C → C ′)P(C), (5)

where W (C → C ′) denotes the rate of transition from configuration C to C ′. To be specific, we
adopt an alternative notation for C that specifies the positions xm of each particle m on the
lattice (i.e. the position of its tracking site),

C = {τ1, . . . ,τi . . . . ,τL}= {x1, . . . , xm, . . . , xN}, N =
L
∑

i=1

τi , τxm
= 1, m= 1, . . . , N (6)

In other words, N is the number of particles in configuration C , and x1, . . . , xN are the positions
of particles in C , where x1 is the position of the leftmost and xN the position of the rightmost
particle. We use index i to indicate the lattice site, index m to indicate the mth particle, while
n is reserved to the order of the power series expansion. The particle positions x1, . . . , xN must
respect the excluded-volume interactions,

xm + ℓ≤ xm+1, m= 1, . . . , L − 1. (7)

To simplify the notation, we define ω0 = α and ωL = β . The steady-state master equation,
Eq. (5), can be written as

e(C)P({x1, . . . , xN})

going out of C

=
N
∑

m=1

ωxm−1EmP({x1, . . . , xN}) +ωL P({x1, . . . , xN , L})1xN≤L−ℓ

going into C

, (8)

where e(C) is the exit rate from configuration C ,

e(C) =
∑

C ′
W (C → C ′) =ω01x1>ℓ

+
N−1
∑

m=1

ωxm
1xm+1−xm>ℓ

+ωxN
, (9)

1A is the indicator function that is equal to 1 if the condition A is true and is 0 otherwise, and
Em is the ladder operator that moves the mth particle one lattice point to the left, provided
the move is allowed by the excluded-volume interactions. For xm > 1, the ladder operator Em

is defined as

EmP({x1, . . . , xN}) =

¨

P({x1, . . . , xm − 1, . . . , xN}) xm − xm−1 > ℓ,

0 xm − xm−1 = ℓ.
(10)

For x1 = 1, the ladder operator E1 is defined as

E1P({1, x2, . . . , xN}) =

¨

P({x2, . . . , xN}) N > 1,

P(;) N = 1,
(11)

where ; denotes the empty lattice.
In summary, to find the master equation for a given configuration C of particles, we com-

pute the exit rate e(C) from that configuration [the left-hand side of Eq. (8)], and then check
all particles that can be moved one step to the left—that determines the configurations C ′ that
C can be entered from [the right-hand side of Eq. (8)]. For example, consider a system with
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ℓ = 10 and L = 100, and a configuration with three particles C = {x1, x2, x3} = {1,11, 30}.
The master equation for P(1, 11,30) reads,

(ω11 +ω30)P(1,11, 30) =ω0P(11,30) +ω29P(1,11, 29) +ω100P(1,11, 30,100). (12)

The first particle at x1 = 1 cannot move because the second particle is at x2 = x1+ℓ= 11. This
simple way of generating the master equation for each configuration is useful for the power
series approximation discussed in the next section.

3 Power series approximation (PSA)

3.1 General results

The power series approximation (PSA), as previously formulated in the Refs. [41–43,47,48],
represents P(C) as a power series expansion in the initiation rate α,

P(C) =
∞
∑

n=0

cn(C)α
n. (13)

The unknown coefficients cn(C) depend on both the particle configuration C and the rates
ω1, . . . ,ωL . Considering that the sum of all P(C) must equal to 1, it directly follows that

∑

C

cn(C) =

¨

1, n= 0

0 n≥ 1.
(14)

While it is possible to expand P(C) in other rates, we choose to expand in the initiation rate α
as we are mainly motivated by mRNA translation for which we expect the translation initiation
rate to be much smaller than any other rate. To illustrate, the median value of α estimated for
the S. cerevisiae genome is an order of magnitude smaller than any of the elongation rates [31].
This let us approximate the series expansion P(C) in Eq. (13) using the first K terms

P(C)≈ c0(C) + c1(C)α+ · · ·+ cK(C)α
K . (15)

We emphasize that, although Eq. (13) is exact, we may introduce notable errors by truncating
the series expansion to a limited number of terms as done in Eq. (15). Considering an initiation
rate comparable to other rates may thus result in non-physical values of P(C)< 0 or P(C)> 1.
In particular, if for a specific choice of α the approximation fails, it becomes necessary to
include higher-order terms in Eq. (15). Later in this work, we will provide criteria to establish
the reliability of the PSA’s results.

To compute the steady-state probabilities P(C) and consequently calculate particle currents
and densities, we first need to determine the coefficients cn(C). We insert Eq. (13) into Eq. (5)
and gather terms involving αn. The sum of these terms equals to zero, since the left-hand side
of Eq. (5) equals zero. Next, we differentiate between cases where W (C → C ′) = α (resulting
in terms of the orderαn+1 when multiplied by P(C)) and cases where W (C → C ′) ̸= α (yielding
terms of the order αn). Using an indicator function IC ,C ′ ,

IC ,C ′ =

¨

1 C → C ′ corresponds to initiation

0 otherwise,
(16)

we write W (C → C ′) as

W (C → C ′) = αIC ,C ′ +W (C → C ′)(1− IC ,C ′) = αIC ,C ′ +W0(C → C ′) (17)
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where W0(C → C ′) = (1− IC ,C ′)W (C → C ′). Inserting P(C) from (13) into (5) we obtain

∑

C ′

�

IC ′,C

∞
∑

n=1

cn−1(C
′)αn +W0(C

′→ C)
∞
∑

n=0

cn(C
′)αn

�

=

∑

C ′

�

IC ,C ′

∞
∑

n=1

cn−1(C)α
n +W0(C → C ′)

∞
∑

n=0

cn(C)α
n

�

. (18)

After gathering all terms containing αn and equating their sum to 0, we obtain the following
equation for cn(C) for C ̸= ;

cn(C) =
1

e0(C)

�

∑

C ′
W0(C

′→ C)cn(C
′) +
∑

C ′
cn−1(C

′)IC ′,C − cn−1(C)
∑

C ′
IC ,C ′

�

, (19)

where e0(C) is the total exit rate from C excluding initiation

e0(C) =
∑

C ′
W0(C → C ′). (20)

For C = ;, we can use Eq. (14) instead, which gives

cn(;) = δn,0 −
∑

C ′ ̸=;

cn(C
′). (21)

The equation (19) applies to n≥ 1. For n= 0, the equation is simpler and reads,

e0(C)c0(C) =
∑

C ′
W0(C

′→ C)c0(C
′). (22)

We remark that Eq. (22) coincides with the initial master equation when α is set to 0. Since
in that case there is no initiation,

c0(C) =

¨

1, C = ;
0, otherwise.

(23)

From (23) it follows that all coefficients cn(C) of order n smaller than the total number of
particles N(C) in C will be equal to zero. This is summarized in the condition

cn(C) = 0 if n< N =
L
∑

i=1

τi . (24)

Mathematically, this result can be derived using the Markov chain tree theorem [49], known
in physics as Schnakenberg network theory [50]. Here we omit the details of the derivation,
which can be found in Ref. [43] where we proved (24) for the TASEP with particles of size ℓ=
1. The same arguments hold to the general case studied in this paper. Relations (24) tell us that
for each order n we only have to consider lattice configurations with at most N = n particles,
and that considerably simplifies the calculation of the coefficients cn(C). This simplification
plays a crucial role in making the power series approximation practical and applicable. In that
sense, the power series expansion can be seen as a form of perturbation theory, where each
initiation event corresponds to one order of the perturbation theory, starting from the empty
lattice.
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Applying the power series to Eqs. (3)-(4b), we get the following expressions for the steady-
state particle current J , local density ρi and the average density ρ,

J =
∞
∑

n=0

Jnα
n+1, J0 = 1, Jn = cn−1(;) +

∑

C
x1≥ℓ+1

cn−1(C), n≥ 1, (25a)

ρi =
∞
∑

n=0

ρi,nα
n, ρi,0 = 0, ρi,n =

∑

C
τi=1

cn(C), i = 1, . . . , L, n≥ 1, (25b)

ρ =
1
L

L
∑

i=1

ρi =
∞
∑

n=0

ρnα
n, ρ0 = 0, ρn =

1
L

L
∑

i=1

∑

C
τi=1

cn(C), n≥ 1. (25c)

Here, index n and the coefficients Jn, ρi,n and ρn correspond to the order of the series expan-
sion of P(C) in Eq. (13). Since the current is by definition multiplied by α, the 0th order in
the series expansion of P(C) contributes to the 1st order in the series expansion of J .

3.2 Analytical solution for the first-order coefficients

The first order in the power series expansion can be solved analytically. According to Eq. (24),
the coefficients c1(C) are non-zero for configurations having a number of particles smaller than
1, i.e. C = {x1} and C = ;. The equation for c1({x1}) reads,

c1({1}) =
1
ω1

, c1({x1}) =
ωx1−1

ωx1

c1({x1 − 1}), x1 = 2, . . . , L. (26)

This recurrence relation can be easily solved, from which we get that

c1({x1}) =
1
ωx1

, x1 = 1, . . . , L. (27)

The expression for c1(;) follows from Eq. (21),

c1(;) = −
L
∑

x1=1

1
ωx1

. (28)

3.3 Iterative solution for higher-order coefficients

We can compute all cn(C) of a given order n recursively by following a natural order, which
forms the basis of the code we developed. To see that, we rewrite Eq. (19) for cn(C) using
the notation C = {x1, . . . , xN}, 1 ≤ N ≤ n, as previously done for the master equation (8).
The pedagogical case ℓ = 1 is presented in Appendix A, while below we directly derive the
equations for the general case ℓ≥ 1. We obtain

cn({x1, . . . , xN}) =
1

e0({x1, . . . , xN})

�

cn−1({x2, . . . , xN})1x1=1

(a)

+ωx1−1E1cn({x1, . . . , xN})1x1>1

(b1)

+
N
∑

m=2

ωxm−1Emcn({x1, . . . , xN})

(b2)

+ωLcn({x1, . . . , xN , L})1xN≤L−ℓ1n≥N+1

(c)

− cn−1({x1, . . . , xN})1x1>ℓ
1n−1≥N

(d)

�

, (29)
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where e0({x1, . . . , xN}) is given by

e0({x1, . . . , xN}) =
N−1
∑

m=1

ωxm
1xm+1−xm>ℓ

+ωxN
. (30)

Each term on the right-side of Eq. (29) has a simple interpretation, which we explain below:

(a) The first term on the right-hand side of Eq. (29) is a contribution to cn(C) from the
previous order n− 1, provided the first particle is at site x1 = 1.

(b) The second and third terms account for all configurations that lead to C by moving one
particle to the right, provided the move is allowed by excluded-volume interactions. The
second term is for the leftmost particle (b1), and the third term is for all other particles
(b2).

(c) The fourth term computes the contribution to cn(C) coming from a configuration that
has an extra particle at the last site L, provided that xN ≤ L − ℓ and N + 1 ≤ n because
of Eq. (24).

(d) The last term removes the contribution coming from the same configuration but from
the previous order n− 1, provided x1 > ℓ. This term is not zero, provided n− 1≥ N .

There is a natural hierarchy of configurations for solving Eq. (29) recursively, such that all
coefficients on the right-hand side are known before computing cn(C) on the left-hand side.
Let us assume that we have calculated the values of all non-zero coefficients cn−1. We start
with a configuration in which n particles are stacked together at positions x i = 1+(i−1)ℓ for
i = 1, . . . , n. We refer to this configuration as a ‘stacked’ configuration. For now, we assume
that n is smaller or equal to the maximum number of particles that can fit onto the lattice,
Nmax = ⌊L/ℓ⌋+ 1. For the stacked configuration in that case,

cn({1,1+ ℓ, . . . , 1+ (n− 1)ℓ}) =
1
ωxn

cn−1({1+ ℓ, . . . , 1+ (n− 1)ℓ}). (31)

where xn = 1+ (n− 1)ℓ is the position of the rightmost particle. Importantly, the right-hand
side depends only on a coefficient of the order of n− 1, which is known. The next coefficient
that can be computed is for a configuration in which the nth particle is moved one lattice site
to the right (xn = 2+(n−1)ℓ). The coefficient for this configuration depends on the previously
computed coefficient (cn({1, . . . , 1+ (n− 1)ℓ})) and a coefficient that is of the order of n− 1.
This procedure continues for all allowed positions of the nth particle, the last being xN = L.
The next configuration after that one is obtained by removing the nth particle from the lattice.

After we have exhausted all positions of the nth particle, we move the (n− 1)th particle
one lattice site to the right, and set the nth particle next to it, stacked together. We then
leave the (n − 1)th particle intact while we cycle through all allowed positions of the nth
particle, including the configuration in which the nth particle is removed from the lattice.
This procedure is repeated until (n− 1)th and nth particle are both removed from the lattice.
We then move (n−2)th particle one lattice site to the right and stack the two removed particles
next to it, if possible. This procedure is repeated for all particles on the lattice, until we finally
reach a configuration in which the first particle is at the last site. The next configuration from
there would be an empty lattice, but we can get the coefficient cn(;) also by summing all other
coefficients of the same order, according to Eq. (14). For n ≥ Nmax, we start from a stacked
configuration with Nmax particles and cycle through all configurations as before until we reach
an empty lattice. In other words, for each n≥ Nmax we cycle through all lattice configurations,
whereas for n< Nmax we cycle through only a subset of configurations because of Eq. (24).

9
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For each order of the PSA n, we denote by Sn the set of all configurations which are visited
by the iterative procedure explained above. From Eq. (24), it follows that Sn = {C | N(C)≤ n},
where N(C) is the number of particles in C . A graphical representation of the iterative proce-
dure for n= 0,1 and 2 for the TASEP with L = 4 and ℓ= 2 is presented in Fig. 2. In this exam-
ple, S0 = {{}}, S1 = {{1}, {2}, {3}, {4}, {}} and S2 = {{1,3}, {1,4}, {1}, {2, 4}, {2}, {3}, {4}, {}}.
For n≥ Nmax, Sn contains all lattice configurations.

4 TASEPy usage instructions

In this section, we provide a practical implementation of the power series approximation coded
into a Python-based package named TASEPy. To use this package, copy the TASEPy.py file
into the working directory and import the following functions:

from TASEPy import psa_compute
from TASEPy import total_coeffs
from TASEPy import local_density
from TASEPy import mean_density
from TASEPy import current

In the upcoming sections, we will explore the functions used to evaluate densities and cur-
rents obtained by the PSA. For a comprehensive step-by-step guide and additional details,
please refer to the tutorial tutorial_TASEPy.ipynb. Finally, in the last section, we will present
benchmarks involving exact results and stochastic simulations.

4.1 Function psa_compute

At the core of TASEPy is the psa_compute function. It takes a list containing hopping rates
ω1, . . . ,ωL , the maximum order of the series expansion K and the particle size ℓ (ℓ = 1 by
default) as input, and returns a two-dimensional list containing coefficients ρi,n and a one-
dimensional list containing coefficients Jn, for all n = 0, . . . , K . These coefficients are needed
to compute density profiles and particle current in the power-series approximation for any
value of α, following Eqs. (25a)-(25c). In the following code,

Figure 2: Graphical representation of the iteration procedure for L = 4 and ℓ = 2.
For n > Nmax = 2, the iteration procedure is the same as for n = 2. Orders are
separated by dashed horizontal lines. Following this procedure, the coefficient cn(C)
of a given configuration C depends only on previously computed coefficients.

10
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rhocoeff, Jcoeff = psa_compute(wlist, K, ll)

wlist= [ω1, . . . ,ωL] is the list of hopping rates and ll is the particle size ℓ. The coefficients
ρi,n and Jn are stored in rhocoeff and Jcoeff, respectively, such that rhocoeff[i] is the
list [ρi+1,0, . . . ,ρi+1,K] and Jcoeff[i] = Ji .

By default, the function psa_compute does not save the coefficients cn(X ). If one is in-
terested in physical quantities other than the local density and current, then it is paramount
that the coefficients are saved. This option is activated by setting save_coeff=True in the
function psa_compute (the default value is False if omitted), which saves the coefficients in
a file. The name of this file is specified by an optional argument coeff_file=’〈filename〉’,
e.g. ’test.csv’ in the example below:

rhocoeff, Jcoeff = psa_compute(wlist, K, ll, True, ’test.csv’)

We note that the resulting file may be very large, since the number of coefficients grows ex-
ponentially with the system size. We have therefore implemented a function ‘total_coeffs‘ that
counts the total number of coefficients that will be stored in the file. It is advised that this
function is called before ‘psa_compute‘ when the option ‘save_coeffs‘ is set to True. For exam-
ple, for L = 100, ℓ= 1 and K = 4, the total number of coefficients is close to 4,300,000, which
takes about 173 MB, or about 43 bytes per coefficient.

The inner workings of psa_compute are the following. For a given order n, we generate
the initial stacked configuration X as a list of particle positions and compute the coefficient
cn(X ) using Eq. (31). This coefficient is then stored in a dictionary c_n with key X . Using
function next_config(), we go through all other configurations X ∈ Sn and use Eq.(29)
to compute the corresponding coefficient cn(X ), which is stored in the dictionary c_n using
key X . Due to the hierarchy of configurations explained in Section 3, computing cn requires
only coefficients that have already been stored in the dictionaries c_n-1 and c_n. As we
go through all configurations, we compute the density coefficients ρi,n for each lattice site i
using Eq. (25b), and the particle current coefficients Jn using (25a). This process is repeated
for all orders n = 0, . . . , K . We remark that, while computing the coefficients of order n,
psa_compute only keeps in memory the dictionaries of order n− 1 and n.

4.2 Function local_density

Following the execution of psa_compute, we can compute the density profile for each order
n and for any fixed value of α. This is implemented in the function local_density,

rho = local_density(rhocoeff, alpha)

which takes as input the two-dimensional list rhocoeff and the value of the initiation rate α,
and returns a two-dimensional list containing the density profiles for all orders 0, . . . , K . Let
us denote by ρ(n)i the local density truncated at the order of n,

ρ
(n)
i =

n
∑

k=0

ρi,kα
k. (32)

The density profile [ρ(n)1 , . . . ,ρ(n)L ] stored as rho[n]. For instance, rho[2] is a list containing
local particle densities for each lattice site, truncated at the second order.

11
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4.3 Function mean_density

Once the local density is computed, the mean particle density ρ =
∑L

i=1ρi/L can be calculated
using the function mean_density,

mean_rho = mean_density(rho)

which takes rho as input and returns a one-dimensional list [ρ(0), . . . ,ρ(K)], where ρ(n) =
∑L

i=1ρ
(n)
i /L for n= 0, . . . , K .

4.4 Function current

Finally, the particle current J for a given value of α can be computed from Eq.(25a) knowing
the current coefficients J0, . . . , JK . This is done by the function current,

J = current(Jcoeff, alpha)

which takes the list Jcoeff and the value of α as input, and returns the list [J (0), . . . , J (K)],
where J (n) =
∑n

k=0 Jkα
k+1.

This whole procedure is demonstrated in the tutorial file tutorial_TASEPy.ipynb for lattice
size L = 100, particle size ℓ= 1 and the PSA order K = 4, using randomly generated hopping
rates in the range between 1 and 10. The resulting density profiles ρ(n)i for n = 1, . . . , 4 are
presented in Fig. 3. In Fig. 4(a) and Fig. 4(b) we show the mean density ρ(n) and particle
current J (n) versus α, respectively.
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Figure 3: Density profile ρ(n)i computed using TASEPy at α= 0.2 for L = 100, ℓ= 1,
K = 4 and n = 1, . . . , K . The values of ω1, . . . ,ωL were selected randomly between
1 and 10, as explained in the tutorial file tutorial_TASEPy.ipynb.

Plotting mean density and current versus α is useful for estimating values of α for which
the PSA of given order is no longer a good approximation. As α is increased, the highest-order
terms in the PSA begin to dominate, leading to values diverging from the exact ones. We know
that 0 ≤ ρi ≤ 1 and 0 ≤ J ≤ α, so any value outside these bounds indicates that α is too big.
We also expect the local density and current to be non-decreasing in α. i.e. that dρi/dα ≥ 0
and dJ/dα ≥ 0. Using Eq. (3), we also get that dJ/dα ≤ 1. These conditions can be easily
checked using coefficients stored in rhocoeff and Jcoeff, as explained in the tutorial file
tutorial_TASEPy.ipynb where we find the smallest value of α for which any of the conditions
above fails. In practice, however, it is best to consider values of α that are much smaller than
this value.
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Figure 4: Mean density ρ(n) and current J (n) computed using TASEPy at different
values of α for L = 100, ℓ = 1, K = 4 and n = 1, . . . , K . The values of ω1, . . . ,ωL
were selected randomly between 1 and 10, as explained in the tutorial file tuto-
rial_TASEPy.ipynb.

4.5 Benchmarks

The file benchmarks_TASEPy.ipynb is a Jupyter notebook comparing the results obtained
with TASEPy to symbolic exact calculation for small systems and to stochastic simulations.

Exact results were obtained by solving the stationary master equation M P = 0 in Eq. (5)
for small lattices, where M is the stochastic transition matrix, and P is the probability vector.
This system of equations was solved exactly using Mathematica® to obtain P as a function of
the initiation rate α, which was kept as a variable. The probability vector was then expanded in
α up to the order of K , from which the coefficients ρi,n and Jn were computed for n= 0, . . . , K .
The Mathematica® code is available in the repository.

The results were obtained for L = 4 and various particle sizes (ℓ = 1, 2 and 3) using an
arbitrary set of hopping rates [1.88, 1.52,1.09, 1.38], and were expanded up to the order of
K = 5. The exact coefficients ρi,n match those obtained by TASEPy, as we demonstrate below
for ℓ= 2:

Exact results (local density):
site order 0 order 1 order 2 order 3 order 4 order 5

------ --------- --------- --------- --------- --------- ---------
1 0 0.531915 0.149892 0.846462 -1.08538 -4.66958
2 0 0.657895 0.564896 0.134411 -3.24941 1.19327
3 0 0.917431 0.176094 -0.902102 -0.936768 0.818141
4 0 0.724638 -0.385446 -0.108617 -0.613378 0.786505

TASEPy results (local density):
site order 0 order 1 order 2 order 3 order 4 order 5

------ --------- --------- --------- --------- --------- ---------
1 0 0.531915 0.149892 0.846462 -1.08538 -4.66958
2 0 0.657895 0.564896 0.134411 -3.24941 1.19327
3 0 0.917431 0.176094 -0.902102 -0.936768 0.818141
4 0 0.724638 -0.385446 -0.108617 -0.613378 0.786505

Similarly, the coefficients Jn calculated with TASEPy also match the exact ones:

Exact results (current):
order 0 order 1 order 2 order 3 order 4 order 5

--------- --------- --------- --------- --------- ---------
1 -1.18981 -0.112236 3.57259 -7.65441 7.05124
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TASEPy results (current):
order 0 order 1 order 2 order 3 order 4 order 5

--------- --------- --------- --------- --------- ---------
1 -1.18981 -0.112236 3.57259 -7.65441 7.05124

Test results for other particle sizes ℓ= 1 and 3 are given in benchmarks_TASEPy.ipynb.
For larger systems, the matrix M is too big to solve the system of equations M P = 0 ana-

lytically. We thus performed stochastic simulations of the TASEP using the Gillespie algorithm
and compared the local density and current to those obtained by TASEPy. The Fortran code
used to simulate the TASEP is available in the repository. In Fig. 5, we compare the density
profiles for L = 50, ℓ= 5, K = 4 and α= 0.2. The TASEPy algorithm takes less than a second
on a standard laptop to compute the PSA coefficients for this medium-sized lattice.
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Figure 5: Comparison between density profile obtained with TASEPy (continuous
lines) and stochastic simulations (gray circles) for a system with L = 50 and ℓ = 5.
The order of the PSA is K = 4 (for more details, see benchmarks_TASEPy.ipynb).

The simulated current has a value JMC ≈ 0.14262, whereas TASEPy returns a list of currents
with the percentage error 100|J (n) − JMC|/JMC for n= 0, . . . , K given by

TASEPy results (% error of the current):
order 0 order 1 order 2 order 3 order 4

--------- --------- --------- --------- ---------
40.233 15.47 5.86817 2.28346 0.833051

The percentage error in the last order of 4 is less than 1%.

5 Applications

In this section, we explore two potential applications of TASEPy that are related to mRNA
translation, the biological process for which the exclusion process was originally developed [1,
2]. In both applications, we use TASEPy to infer parameters of the TASEP from input data:
either the mRNA-dependent translation initiation rate α from the mean ribosome density data
obtained by polysome profiling [31], or the set of hopping ratesωi from the local density data
obtained by ribosome profiling [48].

5.1 Inferring initiation rates from mean density measurements

The mean ribosome density ρ, defined as the number of ribosomes N on the mRNA divided by
the length L of the mRNA in codon units, can be experimentally measured with a technique
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called polysome profiling. This quantity has for instance been quantified genome-wide in yeast
S. cerevisiae [51]. As mentioned in the introduction, it is generally assumed that the codon-
dependent ribosome speed mainly depends on the codon, and those rates can be roughly
estimated from the abundance of the corresponding tRNA.

In Ciandrini et al. (2013) [31], the authors estimated the value of the initiation rate α
for each mRNA of the yeast genome, assuming a codon-dependent set of ribosome hopping
rates ωi . The method involved comparing the mean particle density ρ(α) obtained from sim-
ulated driven lattice gas to the experimental ribosome density ρexp. The goal was to identify
the physiological initiation rate that best matches the experimentally observed densities. To
achieve this, the model had to be simulated for many different values of α to find ρ(α)≃ ρexp
at an arbitrarily close resolution.

The benefit of using TASEPy lies in the fact that it eliminates the need to run numerous
stochastic simulations for different values of α (which could be computationally expensive
depending on the required points). Instead, as demonstrated in the preceding sections, our
approach enables the computation of mean density coefficients ρn to determine the mean
density ρ(α) for any initiation rate, as seen in Eq. (25c).

In the notebook applications_TASEPy.ipynb, available in the repository [46], we implement
this inference procedure for a random gene (YAL008W) of the S. cerevisiae genome. We com-
pute the density coefficients ρi,n with the psa_compute function, then calculate the mean
density coefficients ρn, Eq. (25c), and finally use the scipy.optimize.newton function to
find the roots of f (α) = ρ(α) − ρexp using Newton’s method since the derivative f ′ is also
computable. The initiation rate inferred with TASEPy is comparable to the one found in [31]
for this particular gene (L = 198, ℓ= 9), with a relative error of 1.5% between the two values
using the third order of the PSA. The inferred value of α is approximately 0.15/s, which is
between one and two orders of magnitude smaller than the estimated hopping rates ωi . This
is a typical scenario that justifies the use of the PSA, leading to reliable results. Further de-
tails regarding the implementation of this inference procedure can be found in the notebook
applications_TASEPy.ipynb.

5.2 Inferring elongation-to-initiation rate ratios from local density measure-
ments

The exclusion process has often been used to solve the forward problem of predicting the
particle current J and local density ρi from a given set of particle hopping rates ωi for i =
1, . . . , L and the initiation rate α. In contrast, our focus lies on addressing the inverse problem,
which involves inferring the rates ωi and α given the local density profile ρi . Notably, as the
local density ρi is dimensionless, we can only determine the ratios κi ≡ωi/α for i = 1, . . . , L,
whereas the absolute rates cannot be directly inferred. Specifically, our objective is to find
κ1, . . . ,κL in a manner that satisfies the following set of conditions:

ρi(κ1, . . . ,κL) = ρi,exp, i = 1, . . . , L , (33)

where ρi,exp represents the known local density on site i. This inference problem occurs when
interpreting ribosome profiling experiments [52, 53], which measure local ribosome density
relative to mean ribosome density, ρi/ρ for all codons of the mRNA sequence. These data
alone, however, are not enough to estimate the ratios κi–one needs also the mean ribosome
density ρ to obtain the absolute local density ρi .

For illustration purposes, we use local density obtained from stochastic simulations of the
TASEP rather than from ribosome profiling. In this way, the original and inferred rates can
be directly compared. In the notebook applications_TASEPy.ipynb [46], we demonstrate how
to tackle this problem using TASEPy. The approach involves iteratively computing the PSA
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coefficients and evaluating the density profiles for a given set of κi ’s, aiming to minimize the
objective function (also known as the root-mean-square deviation or RMSD):

RMSD(κ1, . . . ,κL) =

�∑L
i=1[ρi(κ1, . . . ,κL)−ρi,exp]2

L

�1/2

. (34)

The set of κi for i = 1, . . . , L that minimizes the RMSD will represent an optimal solution to
the inverse problem.

As a proof of principle, we show this inference procedure for a small lattice (L = 20,
ℓ = 1), which takes few minutes on a commercial laptop (K = 3). The minimization of
RMSD(κ1, . . . ,κL) was done using scipy.optimize.minimize function with the Powell
method and bounds on κi between 10−2 and 105, see applications_TASEPy.ipynb for more
details [46]. The initial values of κi were obtained using the mean-field approximation, which
ignores correlations between particles [1, 2]. These values were relatively close to the origi-
nal values, but with obvious discrepancies (the Pearson’s correlation coefficient is 0.954) [Fig.
6(a)]. After the optimization, the inferred rates provide a good match to the original ones (the
Pearson’s correlation coefficient is 0.998) [Fig. 6(b)]. More advanced or faster optimization
methods can be implemented, but this is out of the scope of this work.
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Figure 6: Results of inferring the ratios κi = ωi/α for i = 1, . . . , L from the local
densities. In (a) we compare the original κi ’s (which are the ones to be estimated
and used as inputs for the stochastic simulations) with their initial guess provided by
the mean-field approximation of the TASEP [1,2]. Each point on the plot corresponds
to one lattice site. Points that are away from the y = x line indicate deviations from
the original rates. After optimization (b), the inferred values of κi ’s closely match
the original ones.

We note that the inference procedure presented above is similar to the Non-Equilibrium
Analysis of Ribo-seq (NEAR) procedure introduced a few years ago [48] for analysing ribo-
some profiling data using the inhomogeneous TASEP as a model for mRNA translation. The
NEAR procedure too uses the power-series approximation of the TASEP, but is limited by con-
struction to the third-order of the PSA (K = 3), whereas TASEPy has no such limitation.
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6 Discussion and conclusion

The steady-state solution of the inhomogeneous totally asymmetric simple exclusion process
(TASEP) is still unknown after more than 50 years since its first appearance. A method devel-
oped in the 1990s that provides an exact solution of the homogenous TASEP is unfortunately
not applicable to the inhomogeneous TASEP, prompting a need for approximative solutions.

The power series approximation (PSA) provides an approximative solution of the inho-
mogeneous TASEP when one of the rates is limiting, such as the initiation rate α in our case.
This method provides an exact series expansion of the steady-state solution in the limiting
parameter, whereby the only approximation is the truncation of the series at a desired order.
However, the implementation of the PSA is rather cumbersome, with results so far limited to
low orders of the series expansion.

In this article, we have developed a new iterative method for computing the PSA up to
any desired order K . We have implemented this method in a Python package called TASEPy
distributed under a permissive free software licence for anyone to use. The TASEPy package
computes the local density, mean density and particle current for any set of hopping rates
and for any order of the PSA. Optionally, it stores the probability coefficients in a file, which
is useful for analysing other physical quantities, such as density-density correlations between
distance lattice sites. The correctness of the algorithm has been extensively tested using exact
results for small lattice sizes and stochastic simulations.

The TASEPy iterates over all particle configurations for which the probability coefficients
cn(C) ̸= 0 for n ≤ K . Hence, the time complexity of the TASEPy is equal to the total number
of coefficients that need to be computed. For ℓ = 1, this number is of the order of LK , where
L is the lattice size. Hence, it is advisable to be cautious while setting K for larger lattice sizes
to avoid excessive computation time. For L = 100 and K = 4, the calculation takes less than a
minute on a laptop with i7 CPU and 16 GB of RAM. This indicates that TASEPy can efficiently
handle computations for lattice sizes that are commonly used in literature.

We would like to emphasize that the PSA provides an approximate solution of the TASEP,
which becomes increasingly accurate for larger orders n and smaller values of α. However, if
the initiation rate α is not limiting, the approximation may not hold. This happens when the
last term in the series expansion at the truncation order begins to dominate over low-order
terms, leading to inaccurate or even unphysical results. This can be easily spotted by checking
a number of bounds that the local density ρi and particle current J must satisfy: 0 ≤ ρi ≤ 1,
dρi/dα ≥ 0, 0 ≤ J ≤ α and 0 ≤ dJ/dα ≤ 1. Users are encouraged to use these bounds in
their calculations to ensure the reliability of the results.

We also underline that, in the case ℓ = 1, the system is particle-hole symmetric. This
symmetry can be used to solve the model when β is limiting. In practice, this can be done by
replacing in the PSA equations α with β , τi with 1− τi for i = 1, . . . , L, and i with L − i + 1.
This symmetry, however, does not hold for ℓ > 1, and for this reason our method cannot be
immediately mapped to the regime in which the exit rate is small. However, one could develop
a PSA on another limiting rate (β for instance). This and other extensions can be implemented
in future versions of TASEPy.

In this paper, we have explored two practical applications of TASEPy, which are both closely
related to mRNA translation, the biological process for which the TASEP was originally devel-
oped. These applications solve the inverse problem (as problems in biology often are) of
inferring model inputs from model outputs: one application focuses on estimating mRNA-
dependent translation initiation rate α from mean ribosome density measured by polysome
profiling, while the other application involves determining the set of elongation-to-initiation
rate ratios ωi/α from local ribosome density measured by ribosome profiling. We note, how-
ever, that these applications have been explored for illustration purposes only, and have not
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been optimized for speed. Future development of TASEPy will focus on refining the provided
code and optimizing the package for speed. Additionally, expanding TASEPy to other, more
computationally-oriented languages will enhance its versatility and utility.

In conclusion, TASEPy provides a significant advance in solving the inhomogeneous TASEP
by packaging an intricate theoretical framework into a practical, user-friendly tool that allows
the exploration of the model with just a few lines of code. Due to the versatility of the TASEP,
we expect the TASEPy to serve as a valuable tool for various applications. We encourage
researchers to explore and enhance TASEPy further, leveraging its capabilities for their specific
needs.
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A Power Series Approximation in the case ℓ= 1

Here we introduce the calculation of the coefficients cn(C) for the case of particles covering a
single lattice site, ℓ= 1.

We remind that the coefficients cn(C) are equal to zero if n is smaller than the number of
particles N present in the configuration C , see Eq. (24). In other words, for order, n we need to
consider only configurations having N ≤ n particles. For the first order, we thus only need to
compute the coefficients of configurations with one particle, which are given by Eqs. (27)-(28)
as they do not depend on the number of sites covered by the particle. We report them here for
clarity:

c1({x1}) =
1
ωx1

, x1 = 1, . . . , L,

c1(;) = −
L
∑

x1=1

1
ωx1

.

The symbol x1 here stands for the position of the only particle on the lattice, and thus ωx1
is

the hopping rate of the particle at the position x1.
For the following orders, we develop a recursive equation to compute all the coefficients
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cn(C) for any order n and configuration C = {x1, . . . , xN} with 1≤ N ≤ n.

cn({x1, . . . , xN}) =
1

e0({x1, . . . , xN})

�

cn−1({x2, . . . , xN})1x1=1

(a)

+ωx1−1E1cn({x1, . . . , xN})1x1>1

(b1)

+
N
∑

m=2

ωxm−1Emcn({x1, . . . , xN})

(b2)

+ωLcn({x1, . . . , xN , L})1xN+1≤L1n≥N+1

(c)

− cn−1({x1, . . . , xN})1x1>11n−1≥N

(d)

�

,

where e0({x1, . . . , xN}) is given by

e0({x1, . . . , xN}) =
N−1
∑

m=1

ωxm
1xm+1−xm>1 +ωxN

.

Let’s now go through each term (a)-(d) of the previous equation, highlighted above.

(a) This term is a contribution to cn(C) from the previous order n − 1, provided the first
particle is at site x1 = 1 (condition 1x1=1).

(b) These two terms give the contribution to cn({x1, . . . , xN}) from all configurations that
lead to C = {x1, . . . , xN} by moving one particle to the right (provided that excluded-
volume interactions allow this move). The term (b1) considers the movement of the
leftmost particle (i.e. with label 1) from position x1 − 1 to position x1 (and thus one
needs to check that x1 > 1). The term (b2) considers the stepping of all other particles
m= 2, . . . , N from xm−1 to xm, and for which one does not have to check the condition
x1 > 1.

(c) The case in which a particle exits the lattice is considered in (c). This reduces the number
of particles from N + 1 to N , resulting in the configuration C = {x1, . . . , xN}. Since
this coefficient is equal to zero if n is smaller than the number of particles N in the
configuration C , one needs to check that N + 1 ≤ n. Furthermore, because of volume
exclusion, the position xN must less than or equal to L−1, i.e. the condition xN +1≤ L
has to be satisfied.

(d) The last term (d) removes the contribution of the same configuration C from the previous
order n − 1, provided that the first particle is not on the first site (x1 > 1). This term
comes from exiting C by means of adding a new particle at the lattice site 1, which can
occur only if x1 > 1. As above, n− 1≥ N otherwise this term is zero.

The coefficients cn can be computed recursively following a precise order of configurations
that allows evaluating cn such that the terms (a)-(d) are known. To explain what this order of
configurations is, let us imagine that all cn−1 have been computed, and we want to calculate
the coefficients cn. We first consider the case n ≤ L. The first configuration we need to
consider is the one with n particles stacked at the beginning of the lattice (we remind that
cn(C) = 0 for any C with more particles than n). For ℓ = 1, this ‘stacked’ configuration is
simply {1, 2, . . . , n}. We can then compute the coefficient of order n for this configuration, as
only the term (a) contributes:

cn({1, 2, . . . , n}) =
1
ωxn

cn−1({2, . . . , n}).
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Next, we compute the coefficient for the configuration in which the nth particle is moved one
step to the right (xn = n + 1). Importantly, this coefficient depends only on the previously
computed coefficient cn({1,2, . . . , n}) via the term (b2), and on other coefficients that are of
order n− 1, which are known. The terms (b1) and (c) are zero since the first site is occupied
and the condition n ≥ N + 1 cannot be satisfied. This procedure can be iterated until the
nth particle reaches the site L. From there, the next configuration to be computed is the one
obtained by removing the nth particle; the corresponding coefficient can be computed since
the contribution from (c) is known.

We now have all the coefficients needed to compute the coefficient having the first n− 2
particles stacked together, with the (n−1)th particle moved by one lattice site to the right, and
the nth particle stacked next to it (the configuration {1, 2, . . . , n− 2, n, n+ 1}. We then cycle
through all configurations keeping the (n− 1)th particle fixed, while moving the nth particle
step by step, including the configuration in which the nth particle exits the lattice.

From there, the next configuration is {1, 2, . . . , n−2, n+1, n+2}. We repeat this procedure
until we visit the configuration with both the (n−1)th and the nth particles removed from the
lattice. The next configuration to be computed is the one with the (n−2)th particle moved one
site to the right, and the other two (n−1 and nth) stacked next to it. These steps are repeated
over and over, until we obtain a configuration in which there is only one particle left, residing
on the last site, x1 = L. The next configuration would be the empty one, whose coefficient
cn(;) can be obtained from Eq. (14).

If instead we need to compute the coefficients of an order larger than the lattice size, n> L,
we start from a stacked configuration with particles occupying all the sites of the lattice, and
go through the same procedure as above until we obtain the empty configuration. Thus, if
n ≥ L, all the configurations are explored with this procedure, whereas if n < L only a subset
of configurations is visited.
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