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We construct a class of solvable models for 2+1D quantum critical points by attaching 1+1D conformal
field theories (CFTs) to fluctuating domain walls forming a “loop soup”. Specifically, our local Hamiltonian
attaches gapless spin chains to the domain walls of a triangular lattice Ising antiferromagnet. The macroscopic
degeneracy between antiferromagnetic configurations is split by the Casimir energy of each decorating CFT,
which is usually negative and thus favors a short loop phase with a finite gap. However, we found a set of 1D
CFT Hamiltonians for which the Casimir energy is effectively positive, making it favorable for domain walls to
coalesce into a single “snake” which is macroscopically long and thus hosts a CFT with a vanishing gap. The
snake configurations are geometrical objects also known as fully-packed self-avoiding walks or Hamiltonian
walks which are described by an O(𝑛 = 0) loop ensemble with a non-unitary 2+0D CFT description. Combining
this description with the 1+1D decoration CFT, we obtain a 2+1D theory with unusual critical exponents and
entanglement properties. Regarding the latter, we show that the log contributions from the decoration CFTs
conspire with the spatial distribution of loops crossing the entanglement cut to generate a “non-local area law”.
Our predictions are verified by Monte Carlo simulations.

Introduction— Phases of matter can be distinguished by
the presence or absence of a gap to bulk excitations. Gapped
phases of matter were shown over the recent years to have
an extremely rich classification of (symmetry-protected) topo-
logical (SPT) phases [1–11]. By contrast, gapless systems
are often more challenging to study theoretically, with the no-
table exception of 1-dimensional (𝐷 = 1) systems about which
much is known thanks to conformal field theory [12]. Further,
the notion of gapless SPT order [13–24] is still an active area
of research.

For gapped topological systems like SPTs, the decorated
domain wall construction provides a way of constructing a 𝐷-
dim SPT starting from a (𝐷 − 1)-dim SPT [25]. The idea is
to decorate domain walls of a (typically 𝐺 = 𝑍2) symmetry
with a (𝐷 − 1)-dim SPT, and to let the domain walls fluctuate
in order to restore 𝐺. Is it possible to generalize this dimen-
sional “bootstrapping” approach to gapless systems? In this
work, we answer this question affirmatively by providing a
decorated domain wall construction in which 1+1D CFTs are
attached on domain walls, leading to a gapless 2+1D theory
with remarkable properties.

The idea of attaching gapless 1D theories on domain walls
is motivated by a number of physical systems. First, the com-
bination of frustrated magnetism and itinerant degrees of free-
dom appears in so-called “charge-ice” systems [26]. Second,
decorated domain wall models were shown to be relevant to
certain materials combining spin and orbital degrees of free-
dom [27, 28]. Third, if we reintepret the domains as distinct
gapped topological phases, the gapless degrees of freedom
appearing at the domain walls would have a natural intepreta-
tion as edge modes, like in the quantum Hall plateau transi-
tion [29]. Finally, since Ising domain walls have been proposed
as a model for strings [30–33], the decoration described here
is analogous to the fermionic degrees of freedom which are
added to form super-strings [34].

From a spin-liquid perspective, we will see that our con-

FIG. 1. Example of a decorated domain wall configuration. 𝜎𝑧 = ±1
spins are represented by filled and empty blue dots, respectively.
𝜏 spins (red dots) are located on every site of the hexagonal lattice
(dashed blue lines), including the domain walls of the 𝜎𝑧 spins (green
lines). As an example, 𝜏1 and 𝜏2 are located on the domain wall
between sites 𝑝 and 𝑞. Figure a) illustrates a snake configuration,
consisting of a single domain wall traversing the entire lattice. Figures
b) and c) illustrate hexagon solid and stripe configurations, consisting
of contractible and non-contractible domain walls of the shortest
length, respectively.

struction starts with a familiar route, in which local frustration
(in our case Ising antiferromagnetism on a triangular lattice)
leads to an exponentially large number of classical ground
states which is described by a familiar ensemble of fully packed
loops (FPL) [35–37]. However, the source of the exotic crit-
icality we will describe below — fully packed self-avoiding
walks described by a non-unitary 𝑐 = −1 theory — lies else-
where: It is due to an additional kind of non-local frustration
whereby all allowed loops on the honeycomb lattice realize an
effectively twisted boundary condition [38] for the CFT which
lives on it.

Model and solution— We introduce a local model which at-
taches any translation-invariant 1D Hamiltonian 𝐻1D to Ising
domain walls. The model contains 𝜎 Ising spins living on a
triangular lattice, and 𝜏 decoration degrees of freedom (dofs)
living on the vertices of the dual honeycomb lattice (see
Fig. 1). The 𝜏 operators could be anything (spins, bosons,
fermions,. . . ), but we will take them to be spins for con-
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creteness. The Hamiltonian couples the 𝜏 dofs only along
the domain walls of the 𝜎 spins. This is easily implemented
on this lattice, as we now show for an example which in-
volves nearest-neighbor coupling terms 𝐻dec (𝜏1, 𝜏2) between
𝜏 dofs (e.g. 𝐻dec (𝜏1, 𝜏2) = 𝜏𝑥1 𝜏

𝑥
2 + 𝜏

𝑦
1 𝜏

𝑦
2 + Δ𝜏𝑧1 𝜏

𝑧
2 for the XXZ

chain)[39]:

𝐻 =
∑︁
⟨𝑝𝑞⟩

𝐻𝑝𝑞 =
∑︁
⟨𝑝𝑞⟩

1 − 𝜎𝑧
𝑝𝜎

𝑧
𝑞

2
𝐻dec (𝜏𝑝𝑞

1 , 𝜏𝑝𝑞
2 ), (1)

where ⟨𝑝𝑞⟩ denotes bonds of the triangular lattice and 𝜏𝑝𝑞
1

and 𝜏𝑝𝑞
2 are the spins attached to the honeycomb bond crossing

⟨𝑝𝑞⟩(see Fig. 1). One can easily generalize this construction to
the case of𝐻dec with longer-range terms, as shown in Appendix
A.

The Hamiltonian 1 is block diagonalized in the 𝜎𝑧 basis.
There is a two to one mapping between {𝜎𝑧} configurations
and their domain wall configurations, which form a set of non-
crossing loops L. This enables us to rewrite the Hamiltonian
as a sum of 1D Hamiltonians living on each loop 𝑙:

𝐻 =
∑︁
{𝜎𝑧 }

∑︁
𝑙∈L

𝐻1D [𝑙], (2)

where 𝐻1D =
∑

𝑖 𝐻dec (𝜏𝑖 , 𝜏𝑖+1) is the 1D Hamiltonian given by
the sum of the 𝐻dec terms along the loop. Each 𝐻 eigenstate,
denoted |Ψ⟩, is a tensor product of an 𝐻1D eigenstate |𝜓1D⟩ on
each loop 𝑙. We will be mostly interested in the case for which
|𝜓1D⟩ is the ground state of 𝐻1D, given by [40]:

|Ψ[L]⟩ = |{𝜎𝑧}⟩
⊗
𝑙∈L

��𝜓1D,GS [𝑙]
〉
. (3)

The total energy of this state is the sum of the 1D ground state
energies, E[L] =

∑
𝑙∈L 𝐸GS (𝐿𝑙) with 𝐻1D [𝑙]

��𝜓1D,GS [𝑙]
〉
=

𝐸GS (𝐿𝑙)
��𝜓1D,GS [𝑙]

〉
and where 𝐿𝑙 is the length of loop 𝑙.

Which configurations L minimize the total energy E[L]?
Let us for now neglect finite-length effects in 𝐸𝐺𝑆 (𝐿) and
only keep the leading-order term in 𝐿: 𝐸𝐺𝑆 (𝐿) ≃ 𝜖0𝐿, with
𝜖0 the ground state energy per site. If 𝜖0 < 0, minimizing
the energy simply amounts to maximizing the total length
of all domain walls, which corresponds to a “fully packed”
loop configuration for which each honeycomb site is visited
by a loop. The corresponding {𝜎𝑧} are the ground states of
the classical Ising AFM on a triangular lattice, first studied
by Wannier. These configurations lead to a residual entropy
per spin of 0.323066 [41]. Note that 𝜖0 can always be made
negative by adding a term −𝐽1 to 𝐻dec with a large enough 𝐽.
For the sake of simplicity, we will work in the limit of 𝐽 → ∞
for the remainder of this work, which means the only allowed
loop configurations are fully packed.

At this point, we have an exponential degeneracy between
FPL configurations. However, this degeneracy will in general
be split by the finite-length corrections to the ground state en-
ergy of each chain. For the rest of the letter, we will focus on
the case when 𝐻1D realizes a conformal field theory (CFT).
For a CFT with periodic boundary conditions, the finite-size
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FIG. 2. The energy density of the ground state of the 𝐻X-ZXZ chain
as a function of its length (markers), along with a fit to Eq. 4 for the
𝑐0 = 1 and 𝑐2 = −2 branches (curves).

correction to the ground state energy — also called the Casimir
energy — is expected to be universal and proportional to the
central charge 𝑐: 𝐸𝐺𝑆/𝐿 = 𝜖0 − 𝜋𝑐/3𝐿2 + . . .[42]. Naively,
this should put a damp on our hopes of realizing a gapless the-
ory: since 𝑐 > 0 for unitary theories, this means the Casimir
energy is negative and the energy per site is thus minimized for
short loops. In this scenario, the lowest-energy loop configura-
tions are thus the ones which pave the plane with the shortest
possible loops (which are hexagons of length 6), leading to
a 3-fold breaking of lattice translation in a “hexagon solid”
phase (see Fig. 1.b) [27]. Since each loop has finite size, the
1D Hamiltonian living on it has a finite gap, and the theory is
thus gapped.

However, if 𝑐 was negative, the energy per site would be
minimized by taking 𝐿 → ∞, leading to a loop which is
macroscopically long and which can thus host a 1+1D theory
with a vanishing gap. Interestingly, this scenario can be real-
ized by choosing CFTs which are “frustrated” for certain chain
lengths [38] and which can effectively behave as if 𝑐 < 0, as
we now show. A key insight is that, for certain CFTs, the value
of 𝑐 which appears in the Casimir energy is not always equal to
the actual central charge and may depend on the chain length
modulo some integer. We will focus on cases where that inte-
ger is 4, leading to a more general formula for the finite-size
ground state energy density:

𝐸GS (𝐿 = 4𝑘 + 𝑟)
𝐿

= 𝜖0 − 𝜋𝑐𝑟
3

1
𝐿2 + . . . . (4)

For example, consider the following 1D Hamiltonian, which
is the decoration model we will focus on for the rest of the
article [43]:

𝐻X-ZXZ (𝐿) = 1
2

𝐿∑︁
𝑖=1

𝜏𝑥𝑖 − 𝜏𝑧𝑖−1𝜏
𝑥
𝑖 𝜏

𝑧
𝑖+1. (5)

It describes the quantum phase transition between a 1D trivial
paramagnet and an SPT protected by a 𝑍2 × 𝑍2 symmetry
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FIG. 3. Peak value of equal-time structure factor 𝐶𝑍𝑍 (Q) ≡
ℓ−2 ∑x 𝐶𝑍𝑍 (x)𝑒−𝑖Q·x ∼ ℓ−[ where Q is at the corner of the Bril-
louin zone (see also Appendix. E 1 for more details). The linear fit
gives [ = 0.65 ± 0.01. The calculations have been performed at
𝑇ℓ2 ≡ 𝑇 = 4.

which is generated by
∏

𝑖 𝜎
𝑥
2𝑖 and

∏
𝑖 𝜎

𝑥
2𝑖+1 [44][45][46]. The

mod 4 effect in the energy density of Eq. 5 can be calculated
analytically (see Appendix B) and gives 𝑐0 = 1 and 𝑐2 = −2
(see Fig. 2)[47]. The most relevant aspect for us will be that
𝑐2 < 0. Another example of a CFT with 𝑐2 < 0 is the doubled
version of the XX chain with 𝐻1D = 1

2
∑𝐿

𝑖=1 (𝜏𝑥𝑖 𝜏𝑥𝑖+2 + 𝜏
𝑦
𝑖 𝜏

𝑦
𝑖+2)

which has 𝑐0 = 4 and 𝑐2 = −11 [48](see Appendix C for
a detailed calculation and for more examples of decoration
Hamiltonians).

Another crucial insight is that, on the honeycomb lattice,
all contractible loops forming an FPL configuration have a
length given by 𝐿 = 4𝑘 + 2 with 𝑘 an integer (see Appendix D
for a proof). Putting aside non-contractible loops for now,
this means the low energy properties of the system are only
determined by the sign of 𝑐2. For 𝑐2 > 0, the system forms a
gapped solid of short loops, as explained before. However, for
𝑐2 < 0, the Casimir energy is positive and thus the minimal
energy per site is obtained for 𝐿 → ∞. For a 2D system
of linear size ℓ, the maximal loop length scales like ℓ2 and
is obtained for a single loop visiting every site of the lattice
exactly once (also called a Hamiltonian walk, or fully-packed
self-avoiding walk (FPSAW), or “snake” in the rest of the
paper). Since the gap Δ of 𝐻1𝐷 scales like the inverse length
𝐿 of the chain on which it lives, one finds Δ ∼ 1/𝐿 ∼ 1/ℓ2,
which indicates a 2D gapless theory with dynamical critical
exponent 𝑧 = 2.

Since there is an extensive number of degenerate
“snake” configurations (with entropy per site 𝑠 ≡ 𝑆/𝑁 ≈
0.130812) [49], the low-energy physics is described by a sta-
tistical average over them, which is obtained in the zero-𝑇 limit
of the following thermal density matrix:

𝜌 =
∑︁
{𝜎𝑧 }

𝑝{𝜎𝑧 } |{𝜎𝑧}⟩ ⟨{𝜎𝑧}|
⊗
𝑙∈L

𝜌1𝐷 [𝑙] (6)

where 𝜌1𝐷 [𝑙] = exp(−𝛽𝐻1𝐷 [𝑙])/𝑍 (𝐿𝑙) with 𝑍 (𝐿𝑙) =
Tr[exp(−𝛽𝐻1𝐷 [𝑙])], and where 𝑝{𝜎𝑧 } =

∏
𝑙∈L 𝑍 (𝐿𝑙)/𝑍 with

𝑍 =
∑

{𝜎𝑧 }
∏

𝑙∈L 𝑍 (𝐿𝑙). In the zero-𝑇 limit [50], the en-
semble of {𝜎𝑧} described by 𝜌 maps to the O(𝑛 → 0)
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FIG. 4. The average number of domain walls ⟨𝑛𝐷𝑊 ⟩ vs rescaled
temperature 𝑇 = 𝑇ℓ2, for an ℓ by ℓ torus. (Due to an even-odd effect,
the data for even and odd ℓ was separated into two panels for clarity.)
The plot indicates a phase transition between a snake phase at high
𝑇 for which ⟨𝑛DW⟩ does not scale with ℓ, and a stripe phase at low 𝑇
for which ⟨𝑛DW⟩ grows with ℓ.

fully packed loop model, which is described by a 𝑐 = −1
non-unitary CFT [49]. This leads to unusual power laws
for correlation functions. For example, the antiferromag-
netic correlations captured by 𝐶𝑍𝑍 (x) = ⟨𝜎𝑧 (0)𝜎𝑧 (x)⟩ ≡
𝑍−1Tr[𝜌𝜎𝑧 (0)𝜎𝑧 (x)] have a power law envelope 𝐶𝑍𝑍 (x) ∼
|x|−[ , which we extract from the structure factor (see Fig. 3 and
Appendix. E 1). We find [ = 0.65± 1, which agrees well with
the prediction of [ = 2/3 based on a Coulomb gas descrip-
tion of the 𝑐 = −1 CFT (see Appendix E 2). This also shows
conclusively that the snake phase is in a different universality
class from the standard Ising triangular lattice antiferromagnet
(also known as the O(𝑛 = 1) fully-packed loop model) which
has [ = 0.5 [51].

We now discuss correlation functions of 𝜏 dofs. Denoting
𝜙(x, 𝑡) a scaling operator in the decoration CFT with scaling
dimension Δ𝜙 , purely temporal correlations have the same
value for any snake configuration, leading to:

⟨𝜙(0, 0)𝜙(0, 𝑡)⟩ ∼ 1/|𝑡 |2Δ𝜙 . (7)

By contrast, for spatial correlations the average over snake
configurations leads to an averaging over the 1D distance 𝑑
measured along the snake which appears in the correlator ∼
1/|𝑑 |2Δ𝜙 . Assuming 𝜙 is chosen so that it has no lattice-
scale oscillations, we expect it is safe to replace |𝑑 | by its
average value, which scales like |𝑑 | ∼ |x|1/a , with a = 1/2 the
known geometrical exponent of the FPSAWs. This leads to
the following prediction for spatial correlations:

⟨𝜙(0, 0)𝜙(x, 0)⟩ ∼ 1/|𝑑 |2Δ𝜙 ∼ 1/|x|4Δ𝜙 (8)

To summarize, temporal scaling dimensions in the 2+1D the-
ory are the same as for the underlying decoration 1+1D CFT,
whereas spatial ones are multiplied by 2. This behavior is
manifestly consistent with 𝑧 = 2. (It is instructive to con-
trast this behavior with conformal quantum critical points
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FIG. 5. Top: Partition of an ℓ by ℓ torus for which we calculate entan-
glement. Bottom: After unfolding the snake, the partition becomes
a union of disjoint intervals. Intervals belonging to the subsystem 𝐴
are colored while those outside 𝐴 are black and labeled 𝐵.

(CQCPs) [52–54], which are 2+1D critical points constructed
starting from a 2+0D CFT, and which often have 𝑧 = 2. For
CQCPs, the spatial scaling dimensions are the same as the un-
derlying 2+0D CFT, whereas the dynamical ones are divided
by 2.)

Finite temperature and finite size.— How do the previous
results survive at finite temperature? In order to study this,
we have developed a worm Monte Carlo algorithm [55–57]
(see Appendix F for more details) which probes the density
matrix in Eq. 6. We calculated the average number of domain
walls ⟨𝑛DW⟩ as a function of temperature (see Fig. 4), from
which we can also infer the typical length of each domain wall
𝐿 ∼ ℓ2/⟨𝑛DW⟩. We find that, in the snake phase, the average
number of domain walls scales as ⟨𝑛DW⟩ ∼ ℓ2𝛽, and the typical
length of each domain wall therefore scales as 𝐿 ∼ 𝛽. Finite
temperature thus provides a spatial infrared cutoff of size 𝛽 for
the chain lengths on which the 1+1D CFTs live, along with the
usual temporal cutoff 𝛽 in imaginary time. This means that, as
𝑇 approaches zero, both the spatial and temporal dimensions
of the 1+1D tori hosting the CFTs diverge like 𝛽, in contrast
to usual quantum critical scaling for which only the imaginary
time dimension scales with 𝛽 whereas the spatial dimension is
independent of 𝛽.

While the discussion so far was done in the limit of ℓ → ∞
before𝑇 → 0, let us now consider a finite-size system, focusing
on an ℓ by ℓ torus for concreteness. The main new ingredient
on the torus is the presence of non-contractible loops. Indeed,
the geometrical constraint that loop lengths have 𝐿 = 4𝑘 + 2
for FPL configurations only applies to contractible loops. This
means non-contractible loops can have 𝐿 = 4𝑘 , and can thus
be on the 𝑐0 > 0 branch, which is lower in energy (see Fig. 2).
Filling the space with such loops amounts to forming a stripe
configuration for the 𝜎𝑧 spins (see Fig. 1.c). The difference
in total energy between the snake and the stripe configuration
is calculated easily: ΔE = 𝜋𝑐0

6 + 𝑂 (1/ℓ2). Since 𝑐0 > 0,
the stripe phase is lower in energy, and is actually the true
ground state for a finite-size torus. However, the snake phase
has a zero-temperature finite entropy density 𝑠, whereas the
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FIG. 6. Universal contributions to the entanglement entropy of the
strip shown in Fig. 5 vs. 𝑥 for different system sizes ℓ. The black
curves are fitted to 𝑥 ≥ 4 numerical data points according to Eq. 9.
The snake configurations were generated at 𝑇 = 4. Details on how 𝑆
was calculated numerically, and about the non-universal contributions
which were dropped, can be found in Appendix G.

stripe phase does not. Any small temperature should thus be
enough to stabilize the snake phase at the expense of the stripe
phase. Let us consider the difference in free energy between
the two phases, given by Δ𝐹 = ΔE−2𝑇ℓ2𝑠. Since ΔE = O(1),
the entropy term dominates already at a temperature which is
parametrically small in system size, motivating the definition
of a rescaled temperature𝑇 ≡ 𝑇ℓ2. Setting Δ𝐹 = 0, we predict
a first-order phase transition [58] at 𝑇𝑐 = 𝜋𝑐0/12𝑠 between
a stripe phase at low 𝑇 and a snake phase at higher 𝑇 . This
gives𝑇𝑐 ≃ 2.0013 for the decoration Hamiltonian 𝐻X-ZXZ with
𝑐0 = 1, which is confirmed by our numerics (see Fig. 4). For
𝑇 > 𝑇𝑐, we observe that the average number of domain walls is
independent of system size, consistently with the snake phase.
For 𝑇 < 𝑇𝑐, ⟨𝑛DW⟩ shows an increase with ℓ, consistently with
a stripe phase.

In practice, since numerics is done for finite ℓ, we have to
work at 𝑇 > 𝑇𝑐 in order to probe the snake phase, for which
⟨𝑛DW⟩ is not strictly equal to one, but remains of order 𝑂 (1)
(for example, we used 𝑇 = 4 to generate data for Fig. 3, for
which ⟨𝑛DW⟩ is slightly above 2). At any rate, local properties
should not be able to distinguish between a single or an 𝑂 (1)
number of snakes.

Entanglement.— Should we expect an ℓ𝐴 log(ℓ𝐴) term (with
ℓ𝐴 the linear size of subsystem A) in the bipartite entanglement
of a 2D soup of 1+1D CFTs such as the one we have constructed
here (as suggested in Ref. [59] for example)? Surprisingly,
we find that this is not the case, due to a subtle property of
the spatial distribution of loops crossing the entanglement cut
which restores the area law in 2D [60]. (It is however a non-
local form of the area law, as we will explain).

Let us first give a physical argument for the restoration of the
area law, followed by numerical results. As shown in Fig. 5,
for any given snake configuration L, unfolding the snake to
a straight line results in a periodic chain for the 𝜏 dofs in
which the subsystem 𝐴 is mapped into several disjoint inter-
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vals. Hence, to determine the entanglement entropy 𝑆[L]
of a given state |Ψ[L]⟩, we only need to apply the known
formula for the entanglement of disjoint intervals in a 1+1D
CFT [61–63] (refer to Appendix G 1 for more details). In order
to derive the entanglement scaling, we assume it is sufficient
to approximate this formula by 𝑆 ∼ (𝑐/3)∑𝑁int

𝑖=1 log(𝑡𝑖) where
𝑡𝑖 is the length of interval 𝑖 and 𝑁int is the number of intervals.
We then average 𝑆[L] over L which, assuming a translation-
invariant entanglement cut like that of Fig. 5 for simplicity,
effectively corresponds to an average over interval lengths de-
noted by 𝑓 (𝑡) ≡

∫
𝑑𝑡𝑝(𝑡) 𝑓 (𝑡) with a distribution 𝑝(𝑡𝑖) ≡ 𝑝(𝑡).

We also know that 𝑁int = 2ℓ𝐴/3 since each honeycomb edge
crossed by the entanglement cut has a 2/3 probability of being
occupied by a loop strand[64]. Overall, this leads to a simple
prediction for the entanglement: 𝑆 ∝ (𝑐/3) (2ℓ𝐴/3)log(𝑡).

The remaining task is thus to find how log(𝑡) scales with
ℓ𝐴. Although 𝑝(𝑡) is a priori unknown, we already know that
𝑡 ∝ ℓ𝐴 since the total length of all intervals should scale like ℓ2

𝐴
because the snake visits every site inside subsystem 𝐴. If we
assumed that log(𝑡) ∼ log

(
𝑡
)
, we would thus find a ℓ𝐴 log(ℓ𝐴)

term for the entanglement. This is incorrect however because,
as we argue in Appendix G 3, 𝑝(𝑡) effectively describes the
distribution of the exit time at which a random walker first
exits subsystem 𝐴, having started inside 𝐴 one lattice spacing
away from the entanglement cut. Such a process is expected to
follow a Lévy-type distribution, for which the typical value 𝑡typ
is 𝑂 (1) even though the average value 𝑡 diverges with ℓ𝐴 due
to a long-time tail. One thus finds log(𝑡) ∼ log

(
𝑡typ

)
= 𝑂 (1),

and the area law is restored: 𝑆 ∼ ℓ𝐴.
We now focus on a strip subsystem of width 𝑥 in a ℓ by

ℓ torus (see Fig 5) [65]. Using the random walker model
mentioned above, we derive a distribution 𝑝(𝑡) and calculate
log(𝑡) as a function of 𝑥 (see Appendix G 3 for details), leading
to the following prediction for the entanglement:

𝑆strip (ℓ, 𝑥) = 2ℓ
(
𝐴 − 𝐵

𝑥

)
+ 𝑜(ℓ) (9)

with 𝑥 = ℓ
𝜋 sin

(
𝜋𝑥
ℓ

)
. This formula gives a good agreement

with our numerical results, as shown in Fig. 6 (see also Ap-
pendix G 4). In Eq. 9, the dependence of the area law prefactor
on 𝑥 due to the term proportional to 𝐵 is unusual: it does not
appear in the standard scaling forms used for gapless 2D sys-
tems, and leads to a much larger dependence on 𝑥 of 𝑆strip
than usually observed [65, 66]. The 𝐵 term depends crucially
on contributions from parametrically long intervals and thus
reveals the non-local character of the area law: the distribution
𝑝(𝑡) has a long-time tail which extends until the “Thouless
time” 𝑡Th = 𝑥2/𝐷, with 𝐷 the effective diffusion constant of
the random walker. (Another example of a non-local area law
was recently proposed in Ref. [59]).

Discussion— By attaching CFTs with positive Casimir en-
ergy on domain walls, we have shown how to realize a 2+1D
quantum critical point featuring a single domain wall visit-
ing every site of the system, whose statistical fluctuations are
described by the O(𝑛 = 0) fully-packed loop ensemble.

On the border of which phases does this QCP exist? There
are at least two types of relevant perturbations. The first type
is obtained by adding terms to the decoration Hamiltonian. In
that case, any relevant perturbation of the 1+1D CFT would
also be relevant for the 2+1D QCP. For example, for the case
of 𝐻X-ZXZ considered in this work, we can use the following
interpolation Hamiltonian as decoration:

𝐻1D (𝛼) =
𝐿∑︁
𝑖=1

(1 − 𝛼)𝜏𝑥𝑖 − 𝛼𝜏𝑧𝑖−1𝜏
𝑥
𝑖 𝜏

𝑧
𝑖+1 (10)

with 0 ≤ 𝛼 ≤ 1. In this notation, the unperturbed decoration
Hamiltonian 𝐻X-ZXZ corresponds to 𝛼 = 1/2, at which the
QCP occurs. For 𝛼 < 1/2 (resp. 𝛼 > 1/2), 𝐻1D (𝛼) flows to a
trivial (resp. non-trivial) 𝑍2×𝑍2 1D gapped bosonic SPT [44].

When the decoration Hamiltonian flows to a gapped phase,
we expect the spin degrees of freedom 𝜎𝑧 to flow to the con-
ventional triangular lattice Ising antiferromagnet, also known
as the O(𝑛 = 1) fully-packed loop ensemble [35, 36]. Indeed,
in the limit of vanishing correlation length for the decoration
dofs, the ground state energy of 𝐻1D becomes independent of
the domain wall length, and all fully-packed loop configura-
tions become equally likely. For the example at hand, the QCP
thus separates two phases of fully-packed loops with 𝑛 = 1 fu-
gacity which are decorated by a trivial (resp. non-trivial) 1D
gapped 𝑍2 × 𝑍2 SPT. (The 2D Hamiltonian obtained by using
𝐻1𝐷 (𝛼) as decoration corresponds to the same interpolation
Hamiltonian between 2D 𝑍3

2 SPTs introduced in Ref. [67]
(See also Refs. [68–72]), but with the addition of an infinitely
large nearest-neighbor antiferromagnetic coupling on one of
the three triangular sublattices in order to enforce the fully-
packed loop constraint on the 𝜎𝑧 spins). The class of QCPs
we have proposed appear thus naturally at the transition be-
tween different 2D gapped SPTs with an underlying domain
wall structure. Further, the kind of statistical average over
snake configurations we constructed could describe a phase
transition between average SPTs, which were introduced re-
cently [73, 74].

A second type of relevant perturbation is obtained by adding
terms to the Hamiltonian for the 𝜎 degrees of freedom. The
most natural term to add would be a transverse field term 𝜎𝑥 ,
which would generate quantum fluctuations between the snake
configurations. The outcome of adding such a term is not
obvious a priori, but could be studied using perturbation theory
and Quantum Monte Carlo. The possibility of stabilizing a
quantum superposition of snake configurations, in analogy
with earlier work [52, 75, 76], is interesting and left for future
work.

We note that the snake phase could be amenable to a
fermionic description after performing a Jordan-Wigner trans-
formation on the 𝜏 dofs along the snake. A similar construction
was used to study spin liquid models like the Kitaev honey-
comb model [77, 78], but for a fixed snake configuration with
a simple geometry which necessarily breaks certain spatial
symmetries, whereas in our case the symmetry is restored by
averaging over snake configurations. Once expressed in terms
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of fermions, the transition from the stripe phase to the snake
phase would be reminiscent of the smectic and/or nematic
transitions in electronic systems [79].

Our construction generates a new kind of non-local frustra-
tion by combining two primary ingredients: (1) a non-trivial
dependence of the Casimir energy of the decoration CFT on
the chain length module some integer, and (2) a geometrical
constraint which forces all loops on a given lattice to have a
certain length modulo some integer. The first ingredient was
recently understood as arising from effectively twisted bound-
ary conditions for certain chain lengths [38]. More generally,
our work demonstrates the importance of the coefficients 𝑐𝑟
(which encode the Casimir energy dependence on the chain
length modulo some integer) as an additional property of a
CFT Hamiltonian with crucial physical consequences. It is re-
markable that two CFTs with the same central charge can lead
to completely different physics when used as decoration in our
model due to their different sign for 𝑐2 (e.g. the XX chain
versus 𝐻X-ZXZ). One natural generalization of our construc-
tion is to consider other lattices for which domain wall lengths
are constrained in some other way, which could magnify the
effect of the 𝑐𝑟 coefficients for 𝑟 ≠ 2. Another generalization
is to consider other decoration Hamiltonians beyond the ones
we have proposed here. This motivates further work on clas-
sifying the possible 𝑐𝑟 sequences for known CFTs, especially
beyond 𝑐 = 1 theories [38].

Finally, our calculation of the entanglement, which com-
bines known results about entanglement in 1+1D CFTs with
properties of exit time distributions, allowed us to explain the
somewhat surprising presence of an area law and could be
useful in other contexts, including other kinds of constrained
models like that of Ref. [59]. Since the bipartite entanglement
turned out to follow an area law, one wonders whether other
measures of entanglement could provide a more direct probe
of the non-locality arising from parametrically long intervals.
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Supplemental material to “ Solvable models for 2+1D quantum critical points: Loop soups of 1+1D
conformal field theories ”

Appendix A: Generalization of the decoration Hamiltonian to further neighbor interactions

In the main text, we showed how to construct a 2D local Hamiltonian which attaches to domain walls any 1D decoration
Hamiltonian composed of nearest-neighbor terms. In this appendix we generalize this construction to terms involving three
consecutive sites, using for concreteness the example of the 𝐻X-ZXZ Hamiltonian we consider in the main text. The same
procedure can be used for terms involving any number of sites.

For the X-ZXZ model given in Eq. 5, 𝐻dec (𝜏𝑖−1, 𝜏𝑖 , 𝜏𝑖+1) = 1
2 (𝜏𝑥𝑖 − 𝜏𝑧𝑖−1𝜏

𝑥
𝑖 𝜏

𝑧
𝑖+1) should be attached to domain walls of 𝜎 spins.

Since 𝐻dec involves three honeycomb vertices and correspondingly two honeycomb bonds, we need two domain wall projectors
to modify Eq. 1:

𝐻 =
∑︁
△𝑝𝑞𝑟

∑︁
𝑏1=⟨𝑝1 𝑝2 ⟩∈△𝑝𝑞𝑟

𝑏2=⟨𝑝3 𝑝4 ⟩∈△𝑝𝑞𝑟

𝑏1≠𝑏2

1 − 𝜎𝑧
𝑝1𝜎

𝑧
𝑝2

2
1 − 𝜎𝑧

𝑝3𝜎
𝑧
𝑝4

2
𝐻dec (𝜏𝑏1 ,𝑏2

1 , 𝜏𝑏1 ,𝑏2
2 , 𝜏𝑏1 ,𝑏2

3 ),
(A1)

where the first sum is over triangular plaquettes of the triangular lattice, the second sum is a sum over the three choices of pairs
of edges 𝑏1 ≠ 𝑏2 belonging to the triangle △𝑝𝑞𝑟 , and where 𝜏𝑏1 ,𝑏2

1,2,3 are the three 𝜏 spins on the honeycomb vertices which are
connected by the honeycomb bonds dual to 𝑏1 and 𝑏2 (see Fig. S1 for an example).

FIG. S1. Example of a decorated domain wall configuration. 𝜎𝑧 = ±1 spins live on a triangular lattice and are represented by filled and
empty blue dots, respectively. 𝜏 spins (red dots) are located on the vertices of the hexagonal lattice dual to the triangular lattice of the 𝜎 spins.
Domain walls of 𝜎𝑧 spins are depicted as green lines. An example of a triangle of 𝜎𝑧 spins △𝑝𝑞𝑟 and the corresponding 𝜏 spins is also shown
in reference to Eq. A1.

Appendix B: Solution of the X-ZXZ model

In this section, we review the mapping of the 𝐻 = 𝑋 − 𝑍𝑋𝑍 Hamiltonian to free fermions. We begin with a Kramers-Wannier
duality transformation, for which it is convenient to split the Hilbert space into two sectors:

∏
𝑖 𝜏

𝑥
𝑖 = ±1. The constraint for the

positive sector can be satisfied with a standard duality transformation: 𝜏𝑧𝑖 = 𝜏𝑧𝑖 𝜏
𝑧
𝑖+1 and 𝜏𝑥𝑖 = 𝜏𝑥𝑖−1𝜏

𝑥
𝑖 for all 𝑖. Then it follows that

Eq. 5 maps to

𝐻+ =
1
2

𝐿∑︁
𝑖=1

𝜏𝑥𝑖 𝜏
𝑥
𝑖+1 + 𝜏

𝑦
𝑖 𝜏

𝑦
𝑖+1 (B1)

For the negative sector, we employ the same mapping with the modification 𝜏𝑥1 = −𝜏𝑥𝐿𝜏𝑥1 to satisfy the
∏

𝑖 𝜏
𝑥
𝑖 = −1 constraint.

Then Eq. 5 maps to

𝐻− =
1
2

∑︁
𝑖≤𝐿−1

𝜏𝑥𝑖 𝜏
𝑥
𝑖+1 + 𝜏

𝑦
𝑖 𝜏

𝑦
𝑖+1 −

1
2
(
𝜏𝑥𝐿𝜏

𝑥
1 + 𝜏

𝑦
𝐿𝜏

𝑦
1
)

(B2)
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𝐻+ and 𝐻− can then both be mapped to free fermions using a Jordan-Wigner transformation

𝐻± = −
∑︁

𝑖<𝐿−1

(
𝑐†𝑖 𝑐𝑖+1 + hc

)
∓ 𝑠

(
𝑐†𝐿𝑐1 + hc

)
(B3)

where 𝑠 = (−1)𝐿−𝑁+1 for 𝐿 sites and 𝑁 particles. In this free fermion language, ground state energies can be easily computed.
In the case of even 𝐿, 𝑠 = −1 for both sectors, since the number of domain walls 𝑁 must always be even. Hence, for even 𝐿, the
positive and negative sectors possess antiperiodic and periodic boundary conditions, respectively.

For a chain of length 𝐿 = 0 mod 4, the ground state occurs in the positive sector with half-filling 𝑁 = 𝐿/2. The corresponding
energy density is given by

𝐸GS/𝐿 = − 2
𝐿

𝐿/4−1∑︁
𝑛=−𝐿/4

cos
(
2𝜋

(
𝑛 + 1

2

)
/𝐿

)
(B4)

since the momentum is quantized as 𝑘 = 2𝜋
(
𝑛 + 1

2

)
/𝐿 in the case where 𝐿 − 𝑁 is even. Eq. B4 can be expressed in closed form

as 𝐸GS/𝐿 = − 2
𝐿

1
sin(𝜋/𝐿) . For a chain of length 𝐿 = 2 mod 4, we are restricted from 𝑁 = 𝐿/2 since the number of particles must

be even. Hence, the ground state occurs in the positive sector with 𝑁 = 𝐿/2 ± 1. These two degenerate ground states have an
energy density given by

𝐸GS/𝐿 = − 2
𝐿

(𝐿−2)/4−1∑︁
𝑛=−(𝐿−2)/4

cos
(
2𝜋

(
𝑛 + 1

2

)
/𝐿

)
(B5)

which can be expressed in closed form as 𝐸GS/𝐿 = −2
𝐿 cot

(
𝜋
𝐿

)
. The Casimir energy then can be obtained from these closed form

expressions in the limit of large 𝐿:

𝐸GS (𝐿)
𝐿

=

{
− 2

𝐿 sin(𝜋/𝐿) ≃ − 2
𝜋 − 𝜋

3𝐿2 𝐿 = 0 mod 4
− 2

𝐿 tan(𝜋/𝐿) ≃ − 2
𝜋 + 2𝜋

3𝐿2 𝐿 = 2 mod 4
. (B6)

According to Eq. 4, this consequently leads to 𝑐0 = 1 and 𝑐2 = −2.

Appendix C: Other CFT Hamiltonians with a 𝑐𝑟 < 0 branch

Like the X-ZXZ model, there exist other 1D chains whose ground state energies, as a function of their length, have positive
and negative 𝑐 branches. Here we provide two other examples of such models.

1. Spin-1 chain

The model is a spin-1 chain with the Hamiltonian

𝐻Haldane-AFM =
∑︁
𝑖

S𝑖 · S𝑖+1 + 𝐷
∑︁
𝑖

(𝑆𝑧𝑖 )2. (C1)

This model undergoes a phase transition at 𝐷𝑐 ≈ 1 between a trivial paramagnetic phase for large 𝐷 and the Haldane phase for
small 𝐷 [83, 84], which exhibits a Z2 × Z2 SPT [85–87]. The critical point belongs to the same universality class as the X -
ZXZ chain and is described by a 𝑐 = 1 CFT [86]. As shown in Fig. S2 (a), the ground state energy of the system with periodic
boundary conditions, has two branches of 𝑐0 > 0 for even system sizes and 𝑐1 < 0 for odd ones.

In order to realize the snake physics with this Hamiltonian, it is necessary to have a mod 4 effect instead of an even-odd effect.
This can be accomplished by using two independent copies of the spin-1 chain. More precisely, the ground state energy of

𝐻Doubled Haldane-AFM (𝐿) =
𝐿∑︁
𝑖=1

S𝑖 · S𝑖+2 + 𝐷
𝐿∑︁
𝑖=1

(𝑆𝑧𝑖 )2 (C2)

at the quantum critical point 𝐷 = 𝐷𝑐 has 𝑐0 > 0 for 𝐿 = 0 mod 4 and 𝑐2 < 0 for 𝐿 = 2 mod 4.
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FIG. S2. Energy density of different 1𝐷 CFT chains with an even-odd effect. The energies are calculated through exact diagonalization. (a)
Energy density of the spin-1 chain introduced in C 1 at 𝐷 = 1 ≈ 𝐷𝑐 , (b-d) energy density of the 𝑋𝑋𝑍 chain at different values of Δ, namely
Δ = −0.5, 0, 0.5. It can be numerically confirmed that the system exhibits the even-odd effect at any values of −1 < Δ < 1, where the system is
in its gapless phase. However, the values of 𝑐0 and 𝑐1 are not universal and depend on Δ.

2. XXZ model

The spin-1/2 XXZ model with the Hamiltonian

𝐻𝑋𝑋𝑍 =
1
2

∑︁
𝑖

(𝜏𝑥𝑖 𝜏𝑥𝑖+1 + 𝜏
𝑦
𝑖 𝜏

𝑦
𝑖+1 + Δ𝜏𝑧𝑖 𝜏

𝑧
𝑖+1), (C3)

is a c = 1 CFT for −1 < Δ ≤ 1 [88]. The 𝑋𝑋𝑍 model in its critical phase exhibits an even-odd effect when it has periodic
boundary conditions. The plot of energy density is provided in Fig. S2 (b-d) for Δ = −0.5, Δ = 0.5 and Δ = 0 (𝑋𝑋 chain).
Similar to the previous examples, the doubled Hamiltonian,

𝐻Doubled XXZ (𝐿) = 1
2

𝐿∑︁
𝑖=1

(𝜏𝑥𝑖 𝜏𝑥𝑖+2 + 𝜏
𝑦
𝑖 𝜏

𝑦
𝑖+2 + Δ𝜏𝑧𝑖 𝜏

𝑧
𝑖+2), (C4)

leads to a mod 4 effect.
In the special case of Δ = 0 (XX model), the model can be solved exactly using the Jordan-Wigner transformation, allowing

us to analytically calculate 𝑐0 and 𝑐2 as explained below. First, we determine the relationship between the Casimir coefficients
of the single and double chain models. The doubled model consists of two independent chains, each of length 𝐿/2, so we have:

𝐸double (𝐿)
𝐿

=
2𝐸single (𝐿/2)

𝐿
=

2
𝐿

(
𝜖0𝐿/2 − 𝜋𝑐single (𝐿/2)

𝐿/2
+ · · ·

)
, (C5)

which leads to

𝑐double (𝐿) = 4𝑐single (𝐿/2). (C6)

Now, for a single 𝑋𝑋 chain, the Jordan-Wigner transformation yields the ground state energy as

𝐸single (𝐿)
𝐿

=


− 2

𝐿 sin(𝜋/𝐿) ≃ − 2
𝜋 − 𝜋

3𝐿2 𝐿 = 0 mod 2

− cos(𝜋/𝐿)
𝐿 sin(𝜋/2𝐿) ≃ − 2

𝜋 + 11𝜋
12𝐿2 𝐿 = 1 mod 2

. (C7)
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Therefore, according to Eq. C6, for the doubled 𝑋𝑋 model, we find 𝑐0 = 4 and 𝑐2 = −11.

Appendix D: Proof of 𝐿 = 2 mod 4 for contractible loops in a fully packed configuration

In this appendix, we prove that contractible loops in a fully packed configuration cannot be of length 𝐿 = 0 mod 4, and must
thus be of length 𝐿 = 2 mod 4 (since loop lengths are always even).

The proof is in two steps. First, we show that contractible loops with 𝐿 = 0 mod 4 necessarily have an odd number of
honeycomb vertices in their interior. Second, we show that an area of the honeycomb lattice with an odd number of vertices
cannot host a fully packed configuration. By combining the two results, we conclude that a contractible domain wall with
𝐿 = 0 mod 4 is not consistent with a fully packed configuration.

1. First result

In this first result, we show that contractible loops with 𝐿 = 0 mod 4 necessarily have an odd number of honeycomb vertices
in their interior. A simple proof can be found in Ref. [89], which we reproduce here for convenience.

Let 𝐿 be the length of the loop, let 𝑘 be the number of hexagons inside the loop, and let 𝑥 be the number of vertices which are
strictly inside the loop. Let 𝑧 denote the number of obtuse loop vertices (i.e. vertices at which the interior angle drawn by the
loop is 120 degrees) and 𝑦 the number of reflex loop vertices (i.e. vertices at which the interior angle drawn by the loop is 240
degrees). If we orient the loop counterclockwise, the obtuse vertices correspond to left turns and the reflex vertices correspond
to right turns. We know that 𝑧 + 𝑦 = 𝐿 since each loop vertex is either obtuse of reflex. We also know that 𝑧 − 𝑦 = 6 since the
loop needs to close: it needs to do 6 more left turns than right turns.

Consider cutting each interior hexagon into 12 right triangles by cutting along all its axes of symmetry. There are two ways of
counting the number 𝑡 of such triangles: 𝑡 = 12𝑘 , but also 𝑡 = 6𝑥 + 4𝑦 + 2𝑧. The first way is obtained by summing over hexagons.
The second way is obtained by summing over interior points first, each of which is surrounded by 6 triangles. One should then
add the triangles which touch the boundary: each obtuse vertex contributes two triangles, whereas each reflex vertex contributes
four.

Finally, one finds 12𝑘 = 𝑡 = 6𝑥 + 4𝑦 + 2𝑧 = 6𝑥 + 3(𝑦 + 𝑧) + (𝑦 − 𝑧) = 6𝑥 + 3𝐿 − 6. Dividing by six gives 𝐿/2 = 2𝑘 − 𝑥 + 1.
This means 𝐿 = 2 mod 4 if the number of interior points 𝑥 is even, and 𝐿 = 0 mod 4 if the number of interior points 𝑥 is odd.

2. Second result

A fully packed configuration must have a domain wall passing through each vertex of the honeycomb lattice. If 𝑥 is the number
of vertices inside an area of the honeycomb lattice, a fully packed configuration in that area is a configuration of loops such that
𝑥 =

∑
𝑖 𝐿𝑖 , where 𝑖 is the loop index. Since each 𝐿𝑖 is even, there can be no fully packed configuration if 𝑥 is odd.

Appendix E: More details on the 𝜎𝑧𝜎𝑧 correlator

1. Numerical results

As usual for triangular lattice antiferromagnets, the spin correlation function 𝐶𝑍𝑍 (x) = ⟨𝜎𝑧 (0)𝜎𝑧 (x)⟩ has lattice scale
oscillations corresponding to the K and K’ wavevectors at the corner of the Brillouin zone. On top of these lattice scale
oscillations, in the long distance limit, we expect the spin correlation 𝐶𝑍𝑍 (x) = ⟨𝜎𝑧 (0)𝜎𝑧 (x)⟩ to have a power law decaying
envelope: 𝐶𝑍𝑍 (x) ∼ |x|−[ . Assuming the structure factor defined by 𝐶𝑍𝑍 (k) ≡ 1/ℓ2 ∑

k 𝐶𝑍𝑍 (x)𝑒−𝑖k·x has a sharp peak at
k = Q, we find 𝐶𝑍𝑍 (Q) ∼ ℓ−[ . Fig. S3 shows that Q is indeed at the corners of the Brillouin zone. The value of [ can be
obtained using the graph of 𝐶𝑍𝑍 (Q) vs. ℓ (Fig. 3), which gives [ ≈ 0.65. In Appendix E 2, we propose a CFT argument based
on Coulomb gas which predicts [ = 2/3.

2. CFT prediction

The 𝐶𝑍𝑍 (𝑟) = ⟨𝜎𝑧 (0)𝜎𝑧 (𝑟)⟩ ∼ |𝑟 |−[ correlator can be interpreted as a correlator of twist operators in the CFT which flip the
sign of the fugacity for loops which enclose one point (say 0) but not the other (𝑟)[90]. Inspired by Ref. [90], we propose that the
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FIG. S3. Color map of 𝐶𝑍𝑍 (k) for an ℓ = 48 system at 𝑇 = 4 which peaks at the corners of the Brillouin zone.

scaling dimension for 𝜎𝑧 is given by

Δ𝜎𝑧 (𝑛) = 1
2𝑔(𝑛) (𝜒

′2 − 𝜒2) (E1)

where 𝑔(𝑛) = 1 − 𝑒0 (𝑛) with 2 cos(𝜋𝑒0) = 𝑛, 𝜒′ = 2/3 and 𝜒 = 1/3. The correlation function is given by 𝐶𝑍𝑍 (𝑟) ∼ 1/|𝑟 |2Δ𝑍 .
If we apply this to the case of 𝑛 = 1, we find 𝑔(𝑛 = 1) = 2/3 and Δ(𝑛 = 1) = 1/4, which reproduces the well-known

⟨𝜎𝑧 (0)𝜎𝑧 (𝑟)⟩ ∼ cos(2𝜋𝑟/3)/
√︁
|𝑟 | dependence of spin correlation function in the Ising antiferromagnet on the triangular

lattice [51].
For our case (𝑛 = 0), we find Δ(𝑛 = 0) = 1/3, and thus 𝐶𝑍𝑍 (𝑟) ∼ 1/|𝑟 |2/3, which is close to the exponent ≃ 0.65 we observed

numerically.

Appendix F: Worm Update for Monte Carlo algorithm

Fully-packed loop configurations on a hexagonal lattice can be ergodically sampled using a classical Monte Carlo algorithm
with worm updates [55–57]. In such loop configurations, all vertices will generally touch an even number of occupied bonds
(links). If 𝐵 is the complete set of occupied bonds constituting a given loop configuration, then the worm update is initiated by
attaching a single bond to 𝐵 with vertices 𝑎 and 𝑏: 𝐵′ = 𝐵 ∪ 𝑎𝑏. In this case, 𝑎 and 𝑏 are referred to as vertex defects since they
touch an odd number of occupied bonds, hence removing the bond configuration from the subspace of valid loop configurations.
To return back to this subspace, one random bond whose boundary includes either 𝑎 or 𝑏 is added or removed to 𝐵′, thereby
updating the pair of vertex defects, and this process is repeated until the two vertex defects coincide: 𝑎 = 𝑏. In our case, this
cluster update can then be accepted or rejected with standard Metropolis sampling according to the Boltzamann weight given by
𝑒−𝐹 [L]/𝑇 . This cluster update procedure is summarized in page 12 of [55].

Here, 𝐹 [L] is the free energy of the domain wall configuration L, which is the sum of the free energies of each loop:
𝐹 [L] = ∑

𝑙∈L 𝐹1D (𝐿𝑙 , 𝑇). In the low-𝑇 limit, 𝐹1D (𝐿,𝑇) can be expanded as

𝐹1D (𝐿,𝑇) = 𝐸GS (𝐿) − 𝑇𝑆GS + . . . , (F1)

which according to B6, for the 𝑋 − 𝑍𝑋𝑍 chain will be

𝐹1D (𝐿 = 4𝑘 + 2, 𝑇) = 𝐿

(
𝜖0 + 2𝜋

3𝐿2 − 𝑇

𝐿
log(2) + · · ·

)
, (F2)

𝐹1D (𝐿 = 4𝑘, 𝑇) = 𝐿
(
𝜖0 − 𝜋

3𝐿2 + · · ·
)
. (F3)

The log(2) term appears due to the fact that the 𝐿 = 2 mod 4 chain is doubly degenerate. By dropping unimportant constant
terms and rewriting the above relations in terms of 𝑇 , we obtain

𝐹1D (𝐿 = 4𝑘 + 2, 𝑇)/𝑇 =
𝐿

𝑇

(
2𝜋ℓ2

3𝐿2 − 𝑇

𝐿
log(2) + O(ℓ−2)

)
, (F4)
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𝐹1D (𝐿 = 4𝑘, 𝑇)/𝑇 =
𝐿

𝑇

(−𝜋ℓ2

3𝐿2 + O(ℓ−2)
)
. (F5)

Appendix G: Calculations of the entanglement

1. Entanglement on the 1D chain

In order to calculate the entanglement of a given eigenstate |Ψ[L]⟩, we need to calculate the entanglement of the 𝜏 dofs on the
snake. As show in Fig. 5, after unfolding the snake, the subsystem 𝐴 is mapped to a union of disjoint intervals on the 1D chain.

Following [61–63], Renyi entropies of disjoint intervals in a CFT can be computed using the following analytical formula

Tr[𝜌𝑛𝐴] = 𝐶𝑁
𝑛

����∏𝑖< 𝑗 (𝑢 𝑗 − 𝑢𝑖) (𝑣 𝑗 − 𝑣𝑖)∏
𝑖, 𝑗 (𝑣 𝑗 − 𝑢𝑖)

����2Δ𝑛

F𝑁,𝑛 (x) (G1)

where each interval (𝑖 running from 1 to 𝑁) is between 𝑢𝑖 and 𝑣𝑖 , 𝐶𝑛 are non-universal constants, and F𝑁,𝑛 (x) is a model-
dependent scaling function of all the invariant ratios which can be constructed out of all the 2𝑁 endpoints of the intervals. This
formula is interpreted as the correlation function of twist operators inserted at each interval endpoint, where the twist operators
have the universal scaling dimension Δ𝑛 = (𝑐/12) (𝑛 − 1/𝑛).

In this work, we will limit ourselves to the dominant contributions to the entanglement in the limit of large perimeter ℓ𝐴 of
the subsystem, which will turn out to follow a “non-local area law”. For this reason, we omit the contribution from F𝑁,𝑛 (x)
because it only gives a term of order O(1). Further, for the strip geometry we will consider below, we will show in G 3 that
the contribution from the 𝐶𝑁

𝑛 factor leads to a simple, local contribution to the area law which is model-dependent and not
particularly interesting. We thus also omit it in the following.

The 𝑛th Renyi entropy, 𝑆𝑛 = − 1
𝑛−1 log

(
Tr[𝜌𝑛𝐴]

)
, is then given by

𝑆𝑛 = −2
Δ𝑛

𝑛 − 1
log

����∏𝑖< 𝑗 (𝑢 𝑗 − 𝑢𝑖) (𝑣 𝑗 − 𝑣𝑖)∏
𝑖, 𝑗 (𝑣 𝑗 − 𝑢𝑖)

���� + · · · , (G2)

where the dots represent the non-universal contributions from F𝑁,𝑛 (x) and 𝐶𝑁
𝑛 which we dropped. In particular, the von

Neumann entanglement entropy is obtained by taking 𝑛 → 1, leading to

𝑆 = − 𝑐

3
log

����∏𝑖< 𝑗 (𝑢 𝑗 − 𝑢𝑖) (𝑣 𝑗 − 𝑣𝑖)∏
𝑖, 𝑗 (𝑣 𝑗 − 𝑢𝑖)

���� + · · · (G3)

Also, since we will always work with a finite-length snake with periodic boundary conditions, one should use the following
replacement in Eqs. G2 and G3:

|𝑢𝑖 − 𝑢 𝑗 | →
(
𝐿

𝜋

)
sin

(
𝜋 |𝑢𝑖 − 𝑢 𝑗 |

𝐿

)
(G4)

and similarly for |𝑣𝑖 − 𝑣 𝑗 | and |𝑢𝑖 − 𝑣 𝑗 |, where 𝐿 is the length of the chain.
To test the validity of Eq. G2 for the 𝑋 − 𝑍𝑋𝑍 chain in the case of multiple intervals, we used the DMRG method described

in Section 6.2 of Ref. [63], which computes the second Renyi entropy by performing "twist" operations between two MPS states
at the endpoints of each interval. Specifically, we compute 𝑆2 for four equal partitions: 𝑢1, 𝑢2 = 0, 𝐿/2 and 𝑣1, 𝑣2 = 𝐿/4, 3𝐿/4
where 𝐿 is the linear size of the chain. Fig. S4 compares the results from DMRG to Eq. G2 with 𝑛 = 2 and with the modification
given in Eq. G4. Indeed, we find good agreement between DMRG and the CFT prediction for sufficiently large 𝐿. This justifies
the use of Eq. G2 when calculating the entanglement for the snake phase.

2. Averaging over snake configurations

Since the 𝜎 degrees of freedom are classical, we are only interested in the quantum entanglement between 𝜏 degrees of
freedom. We decide to average the value of the quantum entanglement over the thermally-generated 𝜎 configurations. This
provides us with the “quantum” contribution to the von Neumann entropy of the thermal density matrix after performing a partial
trace over the 𝜏 degrees of freedom over the complement of the 𝐴 subsystem, as we now show.
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FIG. S4. Second Renyi entropy for four equal partitions of the 𝑋 − 𝑍𝑋𝑍 chain with linear size 𝐿, computed according to the DMRG method
in Ref. [63] (with maximum bond dimension 𝜒 = 100) and the analytical prediction for a CFT given in Eq. G2. The entropies computed using
DMRG are shifted by a constant value of −1.889 to account for the difference generated by the non-universal constant 𝑐2 and scaling function
F𝑁,2 (x) given in Equation G1.

The density matrix of the whole system is block diagonalized in the basis of domain wall configurations.

𝜌 =
𝑒−𝛽𝐻

Z =
©«
𝑒−𝛽𝐻1
Z

𝑒−𝛽𝐻2
Z

. . .

ª®®®¬ =
©«
𝑝1𝜌1

𝑝2𝜌2
. . .

ª®®¬ , (G5)

where Z is the partition function, 𝑝𝑖 =
Tr(𝑒−𝛽𝐻𝑖 )

Z is the thermal probability of being in the 𝑖th domain wall configuration and
𝜌𝑖 = 𝑒−𝛽𝐻𝑖

Tr(𝑒−𝛽𝐻𝑖 ) is the density matrix of the system in that configuration. By taking the partial trace over the 𝜏 spins in the
subsystem 𝐵 (complement of 𝐴), the density matrix of the snake in subsystem 𝐴 can be expressed as

𝜌𝐴 =
©«
𝑝1𝜌

𝐴
1

𝑝2𝜌
𝐴
2

. . .

ª®®¬ . (G6)

The von Neumann entropy is obtained by the relation 𝑆𝐴 = −Tr(𝜌𝐴 log 𝜌𝐴) which gives

𝑆𝐴 =
∑︁
𝑖

[
− 𝑝𝑖 log 𝑝𝑖 − 𝑝𝑖 Tr

(
𝜌𝐴
𝑖 log 𝜌𝐴

𝑖

)]
≡ 𝑆th + 𝑆qu, (G7)

where 𝑆th = −∑
𝑖 𝑝𝑖 log 𝑝𝑖 is the thermal entropy of the domain wall configurations (𝜎 spins) and 𝑆qu = −∑

𝑖 𝑝𝑖 Tr
(
𝜌𝐴
𝑖 log 𝜌𝐴

𝑖

)
is the quantum entanglement of the 𝜏 spins, thermally averaged over snake configurations. The latter term is the quantum
contribution which we are interested in. We simply call it the entanglement entropy and denote it by 𝑆 in the main text.

Practically, we calculate the average entanglement entropy over an ensemble of domain wall configurations generated by
the Monte Carlo method discussed in Appendix. F. In order to find the entanglement entropy of each configuration, we add
contributions of different domain walls calculated via Eq. G3 and Eq. G4. The only subtlety is that the definition of 𝑢𝑖 and 𝑣𝑖 is
ambiguous on a lattice and needs to be regularized. We conventionally choose the following UV-regularization: first we number
the sites on the loop from 1 to 𝐿. Then, for the 𝑖th interval, 𝑢𝑖 is defined as the first site of the interval placed inside the region
𝐴, and 𝑣𝑖 is defined as the first site which lies outside 𝐴. We also note that although in our calculations the temperature is not
exactly zero, we use Eq. G2 and Eq. G4 and drop the finite-𝑇 contribution which is parametrically small in system size and is not
desired since we seek quantum contributions.
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3. Analytical prediction for the entanglement scaling

In this section, we derive a formula for the entanglement of a strip based on a Brownian motion model for the interval
distribution (see Fig. 5 for the geometry of the strip and the definition of intervals 𝑡𝑖). As mentioned in the main text, since we
only aim to reproduce the dominant scaling behavior of the entanglement with the partition size ℓ𝐴, we assume it is sufficient
to replace Eq. G3 by 𝑆 = (𝑐/3)∑𝑁int

𝑖=1 log(𝑡𝑖), where 𝑡𝑖 is the length of interval 𝑖. The average over snake configurations
is then replaced by an average over interval length 𝑓 (𝑡) ≡

∫
𝑑𝑡𝑝(𝑡) 𝑓 (𝑡) with distribution 𝑝(𝑡), and the entanglement reads

𝑆 = (𝑐/3)𝑁intlog(𝑡) = (𝑐/3) (2ℓ𝐴/3)log(𝑡).
There remains to find 𝑝(𝑡). In order to do this, let us neglect the correlations inherent to an 𝑛 = 0 fully-packed self-avoiding

walk and assume we are dealing with a “plain” random walk instead. The justification is that the geometrical exponent a = 1/2
for the 𝑛 = 0 fully-packed self-avoiding walk is the same as that of a plain random walk. It might therefore be safe to neglect
correlations and work with a random walk, as far as the qualitative behavior of 𝑝(𝑡) is concerned. As a reminder, the exponent a
relates the average end-to-end distance |x| of a walk after 𝑡 steps according to |x| ∼ 𝑡a .

Using this random walk approximation, 𝑡 becomes the number of steps a random walk spends in partition 𝐴 before exiting,
having started inside 𝐴 one lattice site away from the entanglement cut. This is known as a first passage time and was studied in
the literature in a variety of geometries [91]. Let us consider an infinite cylinder of circumference ℓ and calculate the bipartite
entanglement for a strip of width 𝑥. Taking the continuum limit, the random walk is described by a Brownian particle with
probability distribution 𝑈 (𝑋,𝑌, 𝑡):

𝜕𝑡𝑈 = 𝐷∇2𝑈, (G8)

with Dirichlet boundary conditions at the left and right entanglement cuts (𝑥 = 0 and 𝑥 = 𝑋) and periodic boundary conditions
along 𝑌 :

𝑈 (𝑋 = 0, 𝑌 , 𝑡) = 0
𝑈 (𝑋 = 𝑥,𝑌 , 𝑡) = 0
𝑈 (𝑋,𝑌 + ℓ, 𝑡) = 𝑈 (𝑋,𝑌 )

(G9)

and with a Dirac delta initial condition located at 𝑥 = 𝑎, which is just one lattice constant inside 𝐴 starting from the left cut (𝑎 is
the lattice constant):

𝑈 (𝑋,𝑌, 𝑡 = 0) = 𝛿(𝑋 − 𝑎)𝛿(𝑌 ). (G10)

We note that this is effectively a one-dimensional problem and one can completely forget about the 𝑌 direction. Also, we define
a dimensionless diffusion constant as 𝑑 = 𝐷Δ𝑡/𝑎2, where Δ𝑡 is the time step for the random walk (we choose units such that
Δ𝑡 = 1 in the following).

Following standard procedure [91], the survival probability (i.e. the probability of the walker still being inside region 𝐴 at
time 𝑡) is given by 𝑆(𝑡) =

∫ 𝑥

0 𝑑𝑋
∫ 𝐿𝑦

0 𝑑𝑌𝑈 (𝑡) and the exit time distribution is given by 𝑝(𝑡) = − 𝑑𝑆 (𝑡 )
𝑑𝑡 .

After an elementary calculation, one finds

𝑝𝑥 (𝑡) = −2𝐷𝜋
1
𝑥2 𝜗

′
2 (𝑧, 𝑞) (G11)

with 𝜗′
2 (𝑧, 𝑞) the derivative with respect to 𝑧 of the second elliptic theta function, 𝑧 = 𝑎𝜋/𝑥 and 𝑞 = 𝑒−𝐷 (𝜋/𝑥 )24𝑡 . By using

the Poisson resummation formula, we find a simple expression for 𝑝(𝑡) which is valid at times shorter than the Thouless time
𝑡Th = 𝑥2/𝐷:

𝑝𝑥 (𝑡) ≃ 1
2

1√
𝜋𝑑

1
𝑡3/2 𝑒

− 1
4𝑑𝑡 (for 𝑡 ≪ 𝑥2/𝐷) (G12)

We have thus recovered the Lévy distribution at short times. Beyond the Thouless time, the distribution decays exponentially:

𝑝𝑥 (𝑡) ≃ 8𝐷𝜋2 𝑎

𝑥3 𝑒
−𝐷 (𝜋/𝑥 )2𝑡 (for 𝑡 ≫ 𝑥2/𝐷). (G13)

We now want to calculate log(𝑡)𝑥 ≡
∫
𝑑𝑡𝑝𝑥 (𝑡) log(𝑡) as a function of 𝑥. In the limit of 𝑥 → ∞, 𝑝𝑥 (𝑡) is the Lévy distribution

for all 𝑡, and we find the analytic expression log(𝑡)𝑥→∞ = 𝛾 − log(𝑑) with 𝛾 Euler’s constant.
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FIG. S5. log 𝑡𝑥 − log(𝑡)𝑥→∞ vs 𝑥 in linear and log scales for a dimensionless diffusion constant 𝑑 = 1. We find log 𝑡𝑥 ∼ 𝛾 − 𝑏
𝑥 at large 𝑥 with

𝑏 ≃ 2.7732.

We have not found a closed form for log(𝑡)𝑥 for general 𝑥, so we have evaluated it numerically (see Fig. S5). We find that, for
𝑥 ≫ 𝑎, it behaves as

log 𝑡𝑥 ∼ log(𝑡)𝑥→∞ − 𝑏

𝑥
(G14)

with 𝑏 a constant of order 1 (for example, we extract 𝑏 ≃ 2.7732 for 𝑑 = 1). The prediction for the entanglement entropy in the
regime 𝑥 ≫ 𝑎 is thus

𝑆Strip (𝑙, 𝑥) = 2ℓ
(
𝐴 − 𝐵

𝑥

)
(G15)

with 𝐴 ∝ log(𝑡)𝑥→∞ and 𝐵 ∝ 𝑏.
So far the calculation was done for a system which is infinitely long along 𝑋 . In order to compare with numerics, we need to

generalize this to the case of an ℓ by ℓ torus, in which case we know that, by symmetry, 𝑆Strip (𝑙, 𝑥) should be symmetric under
𝑥 → ℓ − 𝑥. Inspired by Eq. G4, we propose to do so by replacing 𝑥 by 𝑥 = ℓ

𝜋 sin
(
𝜋𝑥
ℓ

)
in Eq. G15. This finally leads to Eq. 9 in

the main text.
Let us now comment on the non-universal contribution from 𝐶𝑁

𝑛 in Eq. G1 which we have dropped. This factor leads to a
contribution to 𝑆 given by 𝑁int𝐶

′
1, with𝐶′

1 ≡ − 𝑑𝐶𝑛

𝑑𝑛

���
𝑛=1

a model-dependent constant. By calculating numerically the entanglement
𝑆1 of a single interval in the X-ZXZ chain, we found 𝐶′

1 ≃ 0.7 ± 0.02, which is close to the known value for the XX chain of
𝐶′

1,XX ≃ 0.726 [92]. Further, we know that 𝑁int is a constant which is independent of 𝑥 and is equal to 2ℓ/3 in the thermodynamic
limit. This can be shown by using the fact that fully-packed loop configurations have the following 𝑈 (1) symmetry: any two
parallel straight lines along a principal axis of the triangular lattice cross the exact same number of loop strands. This means
the number of loop strands crossing the entanglement cut is independent of 𝑥 for any given loop configuration. We also know
that the number of intervals is simply the number of loop strands crossing the entanglement cuts divided by two. The snake
configurations can thus be divided into different sectors based on their value for 𝑁int. (For a discussion of these sectors, see [57]).
Finally, we know that 𝑁int = 2ℓ/3 (up to fluctuations which vanish in the thermodynamic limit) since the 𝑁int = 2ℓ/3 sector has
the largest entropy [57]. All in all, this means we have dropped a contribution to 𝑆 which is equal to (2ℓ/3)𝐶′

1, which can be
absorbed in the constant 𝐴 in Eq. G15.

4. More numerical results for the entanglement

More numerical results on the entanglement are provided in this appendix. First, Fig. S6 (a) explicitly illustrates the dominant
area law scaling of the entanglement for the strip geometry. The dependence of the slope on 𝑥 reveals the non-local nature of the
entanglement, as discussed in the main text.

Secondly, we show in Fig. S6 (b) the fitting parameters obtained by fitting Eq. G15 to our numerical results, at fixed ℓ (see
Fig. 6 in the main text for the fits). We denote the potentially ℓ-dependent values obtained by these fits A(ℓ) and B(ℓ). We find
a small drift of the fitting parameter B with ℓ, and almost no drift for A. Based on Fig. S6 (b), we propose a fit of the form

𝑆strip (ℓ, 𝑥) = 2ℓ
(
𝐴 − 𝐵

𝑥

)
+ 2

(
𝐴′ − 𝐵′

𝑥

)
= 2ℓ

(
A(ℓ) − B(ℓ)

𝑥

)
, (G16)
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1

FIG. S6. (a) Entanglement entropy of the strip shown in Fig. 5 vs. ℓ for fixed values of its width 𝑥. The graph shows that the entanglement
entropy grows almost linearly, indicating that the leading contribution to the entropy follows the area law. (b) A(ℓ) and B(ℓ) along with their
respective linear fits vs. 1/ℓ.

where A(ℓ) = 𝐴 + 𝐴′/ℓ, B(ℓ) = 𝐵 + 𝐵′/ℓ. We find 𝐴 = 0.2520 ± 0.0002, 𝐴′ ≈ 0, 𝐵 = 0.209 ± 0.003 and 𝐵′ = −0.31 ± 0.07.
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