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Abstract

Starting from the ab initio many-body theory of electrons and phonons, we go through
a series of well defined simplifications to derive a set of coupled equations of motion for
the electronic occupations and polarizations, nuclear displacements as well as phononic
occupations and coherences. These are the semiconductor electron-phonon equations
(SEPE), sharing the same scaling with system size and propagation time as the Boltz-
mann equations. At the core of the SEPE is the mirrored Generalized Kadanoff-Baym
ansatz (GKBA) for the Green’s functions, an alternative to the standard GKBA which we
show to lead to unstable equilibrium states. The SEPE treat coherent and incoherent de-
grees of freedom on equal footing, widen the scope of the semiconductor Bloch equations
and Boltzmann equations, and reduce to them under additional simplifications. The new
features of the SEPE pave the way for first-principles studies of phonon squeezed states
and coherence effects in time-resolved absorption and diffraction experiments.
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1 Introduction

In a recent work we have laid down the ab initio many-body theory of electrons and phonons [1],
and derived the Kadanoff-Baym equations (KBE) [2,3] for the electronic and phononic Green’s
functions. Solution of the KBE would provide us with a detailed understanding of the system’s
dynamics as we could extract electronic occupations and polarizations, nuclear displacements,
phononic occupations and coherences as well as electronic and phononic spectral functions,
life-times, quasi-particle renormalizations, satellites, etc. Unfortunately, the unfavourable scal-
ing with the propagation time [4-10], which is at least cubic, continues to render the KBE
challenging for ab initio simulations, though some progress has been made [11-13].

For crystals with a finite quasi-particle gap in the one-particle spectrum, like semiconduc-
tors or insulators, alternative (and approximate) theoretical frameworks to the KBE include
the semiconductor Bloch equations (SBE) [14] and the Boltzmann equations (BE). At clamped
nuclei both these frameworks can be derived from the KBE through well identifiable simplifi-
cations; in other words, we precisely understand what is missing. Orthodox derivations of the
SBE are based on the cluster expansion [15], while the Wigner function [2, 16] or the Fermi
golden rule [17-19] are usually invoked to derive the BE. Alternatively one can use low-order
diagrammatic expansions and the so called Generalized Kadanoff-Baym Ansatz (GKBA) for the
electronic Green’s function [20], which allows for mapping the KBE onto a single equation for
the one-electron density matrix, see below. The situation is not as clear when electrons and
phonons are treated on equal footing. The reason is twofold: Firstly the KBE for electrons
and phonons have been only recently established [1]. Secondly, a GKBA for phonons has been
proposed only a couple of years ago [21,22]. At present, both the SBE and BE for electrons
and phonons must be regarded as semi-empirical frameworks since they are not derived from
the ab initio Hamiltonian.

We here climb down the many-body ladder starting from the highest rung, i.e., the ab ini-
tio KBE. We present an alternative ansatz to the GKBA, which we name the mirrored GKBA
(MGKBA). The motivation for introducing the MGKBA arises from the observation that com-
bining the GKBA with the Markov approximation results in unphysical outcomes and an un-
stable equilibrium state. Through a series of well-defined simplifications we then derive a set
of coupled equations for the electronic occupations and polarizations, nuclear displacements,
and phononic occupations and coherences, which we name the semiconductor electron-phonon
equations (SEPE). The SEPE scale like the SBE and BE with propagation time and system size.
Their unique feature is a consistent treatment of phononic occupations and coherences as well
as the inclusion of the renormalization of the electronic quasi-particle energies induced by
the nuclear displacements. The former aspect opens the door to studies of phonon squeezed
states in optically excited semiconductors [23-26]. The latter aspect is relevant for capturing
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the coherent modulation of time-resolved optical spectra of resonantly pumped semiconduc-
tors [27-31]. We finally elucidate the theoretical underpinnings of the SBE and BE, demon-
strating how they emerge from the SEPE when additional simplifications are made.

The paper is organized as follows. In Sections 2 and 3 we briefly revisit the ab initio
many-body theory of electrons and phonons [1]. In Section 4 we introduce the electronic and
phononic density matrices, and derive their exact equations of motion in terms of electronic
and phononic self-energies. The GKBA and MGKBA is discussed in Section 5 while self-energies
and screening effects are presented in Section 6. Section 7 is the core of this work; it contains
the derivation of the SEPE and a characterization of the solutions in the long-time limit. How
to recover the SBE and BE is the topic of Section 8. A summary of the main findings and an
outlook on future applications are drawn in Section 9.

2 Ab initio Hamiltonian for electrons and phonons

Let us consider a semiconductor or an insulator and assign a suitable basis to expand the
electronic field operators and the nuclear displacement operators:

Px) =D Wi, (X)dig, )
kuy

A 1 : A
U..= eld™ N e (q) Uyy,. (2)
ns,j ,—MSN Zq: Zv: s, (CI) qa

In Eq. (1) the Bloch wavefunctions ¥y, (x = ro) (position r and spin o) are the eigenfunctions
of a one-particle Hamiltonian with the periodicity of the crystal, e.g., the Kohn-Sham Hamilto-
nian (hence the index u can be thought of as a band index). In Eq. (2) IAJm’ i is the displacement
along direction j = x, y, z of nucleous s (with mass M;) in cell n, the total number of cells be-
ing N. The unit vectors e*(q), with components esof j(q), form an orthonormal basis for each q.
Although not necessary in this section, we can already choose these vectors to be the normal
modes of the Born-Oppenheimer (BO) energy. The hermiticity of the operators f]m’j implies

N T —
that Ug, = Uy, and e**(—q) = e%(q).
A _ A J'- . A . A N -i- _
N .Let an' = P‘_qa be the conjugate mom(?r‘ltum of Ugq, e, [Ugas }.)‘1’“’]. = 08q,q0aa- .The ab
initio Hamiltonian for electrons and nuclei in the harmonic approximation can be written as
(atomic units are used throughout this work) [1]

I:\I :HO,C +I£IO,ph +ﬁe_e +I:Ie—ph) (3)
where
Hoe= D b (K)d] dig, (4a)
kuy/
. 1 o ai [ Kew(@) O U, e N
_ = i i aa qa _ q
N e S S T 3) L e
qaa’ xa 9 kup! o
N 1 Av oA A
He—e = 5 Z Vk"’qﬂk/_qv/k/Vkﬂldl'(+q,u,dl'(’—qv’dk/deH/’ (4C)
kK'q
pu' vy’
A _ /\»'r n A
He—ph - Z Z dk'udk—q,u’g—qa,uu’(k) Uqa- (4d)
kup' qa

In Eq. (4a), hy,,, (k) = (k,ul%2 + V(2)|ku') is the matrix element of the one-electron Hamilto-
nian, V(r) being the potential generated by the nuclei in their equilibrium positions. Equa-
tion (4b) is the Hamiltonian of the bare phonons, with K,/(q) the elastic tensor, g_q4 ,,,/(K)

3
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the electron-phonon (e-ph) coupling and pli?/u = (&;'g“akw) the equilibrium one-electron den-
sity matrix. As pointed out in Ref. [1] the second line of Eq. (4b) plays a pivotal role in proving
that the time-derivative of the nuclear momenta vanish in equilibrium. The explicit form of the
elastic tensor is not important here, rather it is relevant to say that adding to it the equilibrium
phononic self-energy Iy, (w) in the clamped-nuclei approximation evaluated at w = 0 we
have the exact identity (in the basis of the BO normal modes) [32,33]

Kaa’(q) + ana/(w = O) = 5aa/(1)(21a, (5)
2 . . . . .
where w qq are the eigenvalues of the Hessian of the BO energy. The e-ph coupling is defined
as
av(r)
g—qa,uu’(k) = (kll"l’l U |k + qll"l'/> = g:;a,u’u(k_ Cl) (6)
qa ly=0

The electron-electron (e-e) interaction is described by Eq. (4c), with

Vitrquik'—qv' K vk = <k+ qnuk/ qv |V(A A/)ll(/Vk.l*" ) (7

the Coulomb scattering amplitudes. The e-ph interaction is accounted for by Eq. (4d).
We are interested in studying the dynamics of the system photoexcited by an external
driving field

Hdrive(t) = Z Qkuu/(t)aii“aku’: (8)
Ky
with Rabi frequencies
1 NN . 15 ,
Qe () = Z<kulp AR O AR P+ AR Olku )- 9

We are here implicitly assuming that the driving field does not break the lattice periodicity.

3 Ab initio Kadanoff-Baym equations for electrons and phonons

We find it convenient to arrange the displacement and momentum operators into a two-

dimensional vector
‘1 .
N U,
¢qa = (é%a = ( Aqa ). (]—O)
qa an

The ab initio KBE are coupled integro-differential equations for the electronic greater and
lesser Green’s functions (GFs)

kw (6, t) = —i{digm (O], 1, (£), (11a)
Gy (6t = 1d) 1 ()i 1 (D)), (11b)
and phononic greater and lesser GF (i,j =1,2):

D (6, ) = =i(AdL, (DA, (), (12a)
Dot t) =—i(Aad! L (IAGL, (1)), (12b)
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where A(ﬁfla = ¢;éa — (qgfla) is the fluctuation operator. In these definitions the operators are
in the Heisenberg picture with respect to the time-dependent Hamiltonian H + Hy.(t). The
KBE read (in matrix form) [1]

. d < R < < A
(i —hk t)—za:gOa(k)UOa(t)]Gf(f, t) =[5k G5 + 25 - 6] (.1, (13a)
[iAi —Q( )]D§(t t) = [HR DS +1I5 -DA] (t,t) (13b)

dt VPt t) =1 q qQ “qlt7" P

where we use the symbol “ - ” to denote time-convolutions. In Egs. (13)
h,u,/,l/(k5 t) = hu,u/(k) + Qk,u‘u/(t): (14)

and
_ 0 i [ Kg(@) O

Aaa/ = 6(1(1’ ( —i 0 ) y Qaa/(q) = ( 0 6aa/ . (15)

The rh.s. of the KBE contains the electronic self-energy %y and the phononic self-energy I1,.

As the electrons couple only to the nuclear displacements we have Hg = 6;16j;114. Hence-
forth we use the same symbol I, to represent the 2 x 2 phononic self-energy and its (1,1)
element; whether Iy is a matrix or a scalar is evident from the context. The retarded (R) and
advanced (A) correlators are defined in terms of the lesser and greater correlators according
to XMA(t, t') = 6(t — t)X%(t) £ 0(xt F t)[X(¢,t) —X<(t, t")], where X? is the weight of
a possible singular part of X. For G and D the singular part is zero in all approximations. As
we see later this is not the case for X and I1. The KBE are coupled to the equation of motion
of the nuclear displacement [see Lh.s. of Eq. (13a)] [1]

d2

——Uoa(t) == 80a, (AP, ()= D Ko (0)Upq (1), (16)

2
dt kuv o

where Aplfw(t) = —iGlfW(t, t) —piﬁv.

Solving the KBE with exact self-energies yield the exact two-times GFs. These provide
information on the dynamics of carriers, phonon occupations and coherences as well as spec-
tral properties relevant to time-resolved ARPES and Raman experiments. However, the time
non-locality of the self-energies represents a major numerical obstacle for a full two-times
propagation. The time-convolutions in the r.h.s. of Egs. (13) make any time-stepping algo-
rithm scale at least cubically with the propagation time. In the following we introduce a series
of simplifications leading to the SEPE, i.e., a couple system of ordinary differential equations
for the electronic and phononic density matrices. The numerical solution of the SEPE scales
linearly in time. The semiconductor Bloch equations and the Boltzmann equations follow from

the SEPE by making additional simplifications.

4 Electronic and phononic density matrices

The electronic and phononic density matrices are proportional to the equal-time electronic
and phononic GFs. We define them according to

2 — a2
pk‘u“/(t) - le,U‘,u//(t’ t)) (173)
> R
Y quar (1) = 1D, (£, 1). (17b)
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Using the commutation rules for the electronic and nuclear operators we easily find

Piour () = Py () =, (18a)
T qaw (1) = T qaa () + Agqr. (18b)

. . . AT 5 . C

The electronic density matrix plfw,(t) = <dku’,H(t)dkM,H(t)> is self-adjoint in the space of
the band indices, i.e., [p; ]" = py-. The diagonal entries are non-negative and determine the
electronic occupations

Fa () = pi,, (0, (19)

while the off-diagonal entries provide information on the electronic polarization
P () = Py (8), # W (20)

Similarly [plf T= plf has non-positive diagonal entries determining the negative of the hole
occupations. N
The phononic density matrix Y;JO’;, is self-adjoint in the direct-product space of the normal

mode indices and components, i.e., [y;]T = )f;, and similarly [)/q>]T = )/Z. To gain some more
physical intuition on the phononic density matrix we write the displacements and momenta
in terms of dressed phononic operators

A 1 n ~a
=———(bgy+b",), (21a)
W20y, T
R | Waa -
Byo = —i 2“"‘ (bga— DT g0)- (21b)

The commutation relations between ﬁqa and ﬁq/a/ are satisfied for any wgq, > 0 provided that

[ bqa: b;/a/ A qa N
see Eq. (5). The average values Uq,(t) = (Ugqu(t)) and Pyo(t) = (Pyq (1)) is zero for all
q # 0 due to the fact that the lattice periodicity is preserved. Then, for all q # 0 and for a = o’

we have

] = 08q,q0qw- For later purposes we here take the wq,’s to be the BO frequencies,

Y aua (0) = (AU_gq 11 () AUgg 1 (1))

—1 *
- 20g, (f;’i‘(t) +f_p§l‘a(r) +1+0g,(t)+ @qa(t)), (22a)

Y225 () = (AP_go () APy (1))

w a §
= Tq(fcfo}zl(f) + P () + 1= 00 (1) — %, (1)]), (22b)

Y}li’;(t) = (Aﬁ—qa,H(t)AUqa,H(t»
J h
= S (£ = F24u(0) = 1= 0ge(6) + €3, (1)) (220)
where we introduce the phononic occupations

FERE) = (bl 1y (D)bgan (D), (23)
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and the phononic coherences

eqa(t) :@—qa(t) = (bqa,H(t)b—qa,H(t»- (24)
An important property satisfied by the diagonal entries is

YIe() =1 a0, (25)

We use Eq. (25) in our subsequent derivations.
The exact equation of motion for plf(t) can be derived by subtracting the lesser form of
Eq. (13a) to its adjoint and then setting t’ = t:
d t
ap;(t) +i[hepk 1), ()] = —J dt' [Z7 (6, )G, ) — 25 (e, )G (¢, )] + hee,
(26)

where

hqp(k, t) :h(k,t)+2g0a(k)U0a(t)+Zlf(t), (27)

is the so called quasi-particle Hamiltonian, and “h.c.” stands for the hermitian conjugate.
Often %2 is evaluated in the Hartree plus statically screened exchange (HSEX) approximation.
Similarly, the exact equation of motion for y q <(t) can be derived by subtracting the lesser form

of Eq. (13b) to its adjoint and then setting t = t’:
L0+ 1(AQupla O30 — rS(0Qgp(a, A)
AL (AQep(a; t)rg 7q(6)Qqp(q,
t
=Af dt' [T (¢, ¢ )DS(t', ) — TS (t, £)DZ (£, 0) |+ hee,, (28)
where

Qqp(q, 1) = Q(q) + 12 (1), (29)

is the quasi-phonon, or dressed-phonon, Hamiltonian. A physically sensible approximation to
I1° is discussed in Section 5.2.

5 Generalized Kadanoff-Baym Ansatz and its mirrored form

To close the equations of motion of the density matrices we have to transform the time off-
diagonal G< and DX into functionals of p =< and y<. In this way the r.h.s. in Egs. (26) and (28)
became functionals of p< and y< since =< and 1% are functionals of GZ and D<.

5.1 Electrons

In the mid-1980’s Lipavsky et al. [20] proposed an ansatz for the GZ-functional. In essence
the idea is to manipulate and then modify the following exact relation for the noninteracting
GF G, [3]:

Gofk(t, th=aG k(r_ 0)Gy (0, 0)G; (0, t"), (30)
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where

GR(t,t") = [GA(t', 0] = —i6(t — /)T {7 o dEhkD} (31)

T being the time-ordering operator. Using the group property Gy, (t,0) = iGy, (t,t" )Gy, (t',0)
for all t > t’ > 0, and the like for the advanced GE we find

Goal(t, ) = —=Gg (6, )5 (t) + piy (GG (£, ), (32)
where p 5, (t) = —iGg, (t, t). Anidentical relation holds for G;, (t, t') provided that we replace
pgk with pg - The Generalized Kadanoff-Baym Ansatz (GKBA) [20] amounts to approximate

all interacting Gf in the collision integral of Eq. (26) (including those in the self-energy) as
Ge(t,t) = =Gt ) p() + P (D GRE 1), (33)
where [compare with Eq. (31)]
GR(t, ) = [GA(, O = =i6(t — )T {e " for ATha6D}, (34)

This approximation to Gllf corresponds to approximate lef(t, t)~86(t—t )Zﬁ(t). The GKBA
is exact in the Hartree-Fock (HF) approximation and it is expected to be accurate when the
average time between two consecutive collisions is longer than the quasi-particle decay time.
For systems of only electrons the GKBA allows for closing the equation of motion Eq. (26)
for any diagrammatic approximation to 5. The GKBA equation of motion has been suc-
cessfully applied in a large variety of physical situations. These include the nonequilibrium
dynamics [34] and many-body localization [35] of Hubbard clusters, time-dependent quan-
tum transport [36,37], equilibrium absorption of sodium clusters [38], real-time dynamics of
the Auger decay [39], transient absorption [40-42] and carrier dynamics [43-46] of semicon-
ductors, excitonic insulators out of equilibrium [47] as well as charge transfer [48] and charge
migration [49-52] in molecular systems.

The GKBA is not the only ansatz to transform G= into a functional of p<. An equally simple
and legitimate ansatz can be obtained by observing that the group property of Gllz/ Ain Eq. (34)
implies

GR(0,t) =iGp(0,)G(t,t))  Vt>t/, (35a)
GR(t,0) =—iGh(t, t)GX(t',0) Vi<t (35b)

By the same arguments that lead to Eq. (33) we then obtain
G2(t,t) = —p(OGR(L, ) + GA(t, (¢, (36)

which we refer to as the mirrored GKBA (MGKBA). Like the GKBA also the MGKBA is exact at
the HF level. In MGKBA the one-particle density matrix is on the left (right) of Gllf (Gﬁ) and it
is calculated at time t (t"). Thus, the MGKBA equation of motion Eq. (26) can be written as

d el,> < el,< >
a,olf(t)+l'[hqp(1<, 0, P ()] =T (D (0 =T (t)pg (1) + hec., (37)

where
> t 2
Flfl,<(t)_:tf dt/zlf(t, t’)Gﬁ(t’,t) (38)

can be interpreted as electronic scattering rates.
An important feature of both GKBA and MGKBA is that the exact relation

Gy (t,t) =G (t,t) = GX(t, ) —Gp(t, t) (39)

is fulfilled independently of the choice of GE/ A this is a direct consequence of Eq. (18a).

8
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5.2 Phonons

The (M)GKBA for the electronic GF alone does not help in problems with electrons and phonons.
The reason is that the electronic and phononic self-energies are functionals of G and D at dif-
ferent times. In order to close the equations of motion Egs. (26) and (28) we need a (M)GKBA
for phonons. This has been recently proposed by Karlsson et al. [21]. The idea is again to
consider the noninteracting form of the phononic GF [1]

DO<,q(t’ t) = Dg, ot O)ADqu(O, O)ADéq(O, t), (40)
and then use the group property of the noninteracting retarded/advanced GF
Dgyo(t,6) = [Dg (¢/, )] = —i6(t — t ) AW, g ()5 o (1), (41)
where W, o(t) = T exp [—i fot dt Q(q)A]. Taking into account that 42 =1, forany t >t/ > 0
Eq. (41) implies
D}iq(t, 0) = —iAW, 4(t)
= AW (OWL(IEAN—EAWo 4(t')
= iDg (t,t)ADg (t',0), (42)

and the like for the advanced component. Following the same steps leading to the electronic
GKBA in Eq. (32) we can rewrite Eq. (40) as

Dgq(t, ) =D (6, ) A5 o (£) =15 ()ADG (¢, 1), (43)

where yg ()= iDO<q(t, t). An identical relation holds for D (6 t") provided that we replace

)/0 with )/0 . The GKBA for phonons [21] amounts to approximate all interacting D= in the
rh s. of Eq. (28) (including those in the self-energy) as

DZ(t,t) = Di(t, )AFR(t) = §2()AD} (e, ), (44)
where [compare with Eq. (41)]
DX(t,t) = [DA(t', 0)]" = —i6(t — N AW()W (1), (45)
and W(t) = T exp [ —1 f Ot dt Qqp(q, E)A]. This approximation to Df; corresponds to approxi-
mate TT(¢, t') > 5(t — t/)l'[fl(t).

Like in the electronic case the phononic GKBA is not the only ansatz to transform DS into
a functional of <. By definition

DQ(O, t") = Dfl‘(o, t)(iA)Dg(t, t)  Ve>t, (46a)
Dfl‘(t,O) = —Djl*(t, t’)(i.A)D(I;(t/, 0) Vt<t. (46b)

By the same arguments leading to Eq. (44) we then find an equally simple and legitimate
ansatz, which we refer to as the MGKBA for phonons:

DZ(t,t") = y2()AD(t, t') = DA (e, ) Ay2(t"). (47)
In MGKBA the equation of motion Eq. (28) can be written as

iyq(t)ﬂ(Aqu(q,t)y;(t) Y5 (0)Qqp(a, )A) = =TI (6)y 5 () + TE<(0)y7 (£) + hec,,
(48)
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where

t
IS (o) :AJ dt' T (¢, ¢ )DA(, 1) A “49)

can be interpreted as phononic scattering rates.
For phonons a physically sensible approximation to I1° is the clamped-nuclei plus static
approximation [1], i.e.,

ij,6
Moo = 00871 D 8qaun M (€50 = 018500, (K, (50)
KK o
!

vy

where y is the response function at clamped nuclei (for the index structure see Fig. 1). Such
self-energy renormalizes the block (1, 1) of the matrix Q, see Eq. (29), which in the basis of
the BO normal modes becomes diagonal, see Eq. (5). Thus the whole matrix

coza 0
qu,aa’(q) = 5aa’( 6] 1 ) (51

becomes diagonal and the retarded GF simplifies to with

0(t— t/ ; / 1 —iw : / 1 iw
DR (6, =6, 21D [elwqa(r—r >( zqa) _ ool >( ;)]

@ gy Wgy —lwgy Wy,
(52)

This approximated form depends only on the time difference and can be Fourier transformed.
It is easy to verify that D;;’R(co) =1/[(ew+in)*— wé .. J- We further note that also for phonons
the exact property

> / < ’y — pR N __ A /
Dq(t)t)_Dq(t)t)_Dq(tat) Dq(t)t) (53)

is fulfilled in both GKBA and MGKBA regardless of the choice of Dfl{/ A; this is a direct conse-
quence of Eq. (18b) and A? = 1.

6 Electronic and phononic self-energies

Through the (M)GKBA for electrons and phonons the equations of motion (26) and (28) be-
come integro-differential equations for p< and y< for any diagrammatic approximation to
the self-energies > and II. As a general remark we observe that the treatment of the Keldysh
components of the self-energies lacks consistency in (M)GKBA. The retarded/advanced self-
energies are usually evaluated in some quasi-particle approximation (hence they are time-
local) and have the only purpose of improving the retarded/advanced GFs in the ansatzes.
The lesser/greater self-energies do instead keep their diagrammatic form, see below.

We here consider the many-body approximation to X and IT which, as we see in Section 8,
enables us to recover the Boltzmann equations. The GW plus Fan-Migdal approximation for
% and the bare bubble approximation for IT are illustrated in Fig. 1. In labelling the internal
vertices we already take into account the conservation of the quasi-momentum.

For the GW self-energy V-2 = iGZWS we need to express WS in terms of G< and G”.
Starting from the Dyson equation W = v + vPW one easily find W2 = WRPZWA. To reduce

10



SciPost Physics Submission

Zkuu =
kp q ky qv’
Wku qu' kvqu — WAF = A
qu’ kv ay’ kv
/
v
k+qu k+qv
an g = —ao a8
k/l ky/

Figure 1: (Top) Electronic self-energy in the GW plus Fan-Migdal approximation.
(Middle) RPA equation for the screened interaction W. (Bottom) Phononic self-
energy.

the complexity of the equations we take P = y° = —iGG (RPA approximation) and evaluate
WR/A in the statically screened approximation. We have [14, 53]

GW< _ /
kuv (¢, ') =i Z kqu’kvqu (6t )un V’(t’t )

Qv
— ’
Z Z Wk,uq+pp’k+pp qu’Gq+pg p/(t t)Gk+ppa(t’ t )Wk+p0'qv’kvq+pa’
qv'u ppop’o’
X Goy(t, 1), (54)

The greater component of the self-energy is obtained by exchanging > «— <. We can add to the
GW self-energy the second-order exchange diagram with statically screened W lines [54]. This
amounts to replace Wklﬂl Koy kg s Ky iy - %[Wkl 1 Kopy Kapiz Rapg Wkl 1 Ko Kgpag K3 pig ] in Eq' (54).

Next we consider the Fan-Migdal self-energy in Fig. 1. We take a bare e-ph coupling g and
later discuss how to dress it. We have

TS () =1 D g (D e (681G (6,618, (K),  (55)

qv'uaa’

where we use the property in Eq. (6). The Fan-Migdal self-energy calculated with a screened
e-ph coupling g¢ = (1+WP)g = (1+vy)g is more involved. To account for screening effects
to some degree we can make the clamped-nuclei plus static approximation used to estimate
1%, i.e., g2 =[14+vy(w =0)]g. In this way the screened e-ph coupling is still time-local and
the mathematical form of the Fan-Migdal self-energy is identical to Eq. (55) with g — g¢. The
greater component is obtained by exchanging > «— <.

We finally analyze the phononic self-energy. Keeping an eye on Fig. 1 we have

S0 6) ==i81601 ) Zqapu(KG (6 )G, (£ 085, 1K), (56)
kuvu’ v
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where in the second equality we use Eq. (6). The greater component is obtained by exchanging
> « <. Dressing the e-ph coupling is here less straightforward since only one g should be
dressed [32,55-57]. Implementing the clamped-nuclei plus static approximation to only one
g would lead to the violation of the hermiticity properties of the self-energy. No violation
occurs if the nonlocal in time dressed coupling is used. However, the equations of motion
become more complex and, to the best of our knowledge, no efforts have been made to solve
them thus far. Currently, all nonequilibrium state-of-the-art methods dress both g’s in Eq. (56),
thereby suffering of a double counting problem. The SEPE do not resolve this issue either.
Through the GKBA for electrons and phonons the self-energies SW-S(t, /), =FMS(¢,t)
and T15(¢, t') with t > t’ become functionals of p<(t") and y<(t’) with ¢’ < t. Therefore the
GKBA equations (26) and (28) carry memory, i.e., the density matrices at time t depend on
the history. This scheme has been recently implemented to study the relaxation of electrons
and phonons in a photoexcited MoS, monolayer [58]. On the contrary the MGKBA leads to
equations of motion with no memory since the self-energies become functionals of p<(t) and

r=(0).

7 Semiconductor electron-phonon equations

The SEPE are derived from the MGKBA equations after a series of simplifications, and they
apply to crystals with a finite gap in the one-particle spectrum, like semiconductors or insu-
lators. In Appendix B, we demonstrate that the same simplifications in the GKBA framework
give rise to unphysical divergences and the inability to recover the Boltzmann equations. At
least in this context, MGKBA is superior to GKBA.

The first simplification (S1) consists in using an MGKBA with diagonal density matrices and
diagonal retarded/advanced GF - diagonality here refers to band indices for the electrons and
mode indices for the phonons. For the electronic part we work in the eigenbasis of the equilib-
rium quasi-particle Hamiltonian, hence hy, ,,,/(k) = 6, €y, and ignore the time-dependence

of hqy(k, t) in Eq. (34). Then Eq. (36) becomes wa(t, t') = 5, kW(t t’), with

G (8, t) = e O — A0 +6(t' — O)f L (tN)]. (57)

The expression for Glfm(t, t) is identical provided that fli — ke; — 1, see Eq. (18a). For the
phononic part we work in the basis of the BO norrnal modes. Taking into account Egs. (22)
and (52), the phononic MGKBA in Eq. (47) yields DS ﬁ(t t') = aﬁana(t, t"), with

o(t—t ; / ; /
Davs(t,t") = (lw )[Bfg(t)e—lwqa“—f>+B%qa(t)ewqa(f—f>]
qa
i o(t _t)[B§ () —iwqa(t—t’)_i_B?* ) iwqa(f—f/)] (58)
ZiQ)qa qa € —qa € ’
o(t—t' ; / : /
D25, 1) =2 D e ont0) B2, (efen—]

Q(t ) < —i —t’ *
5 [C;a(t/)e iwga(t—t") _ C< (t )ela)qa(t t)] (59)
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and
B (£) = f2R(6) + Oga(0), (60a)
BZ (£) = fENt) + 1+ ©g4(1), (60b)
Cau() = FEN(E) = Ogq(0), (60¢c)
Can () = FEN(E) + 1= Oy (). (60d)

As we see later, the GF D?? is not needed.

In the following we derive the SEPE for the electronic occupations and polarizations, nu-
clear displacements, and phononic occupations and coherences. Without any loss of generality,
we assume that the system is initially in equilibrium at negative times and it is subsequently
perturbed by a driving field of finite duration Tg..; hence A(r,t) = O for t < 0 and for
t> Tdrive'

7.1 Electronic occupations and polarizations

The second simplification (S2) to derive the SEPE consists in approximating

hyy (1) + 27, (8) 2 5,0, €1, (1), (61)
where
Exu(t) = €x, + Z (Vi wrte i — Wi it ) A, lf,lu,(t), (62)
k/u/
and
INWOEFWORS WO} (63)

The second term in Eq. (62) is the change in the diagonal part of HSEX potential due to a
change of the occupations. At time t = O the Rabi frequencies and the nuclear displacements
vanish, and therefore h, ,,/(k,0) = hy,,,/ (k) + Zl‘fw,(O) = Oy €k as it should.

Let Sl‘il(t) be the r.h.s. of Eq. (26); we call this quantity the electronic scattering term. We
then have

d .
Ef]?:t +1 Z (Q{:ZIV Pxvy — Pxuv Qfgh) = Slim’ (64)
VEU

d o~ ~ - ~ren el el . ren . ren el
Epkuv + l(eku - EkV)pk.U«V + leuv(fkv _fku) +1 Z Qkuv’ Pxy'y—1 Z Pxuv ka’v = Sk,u,v’

VEY VEU
(65)
where we define the renormalized Rabi frequencies
Qﬁlv(t) = Qkuv(t) + Z gOa,W(k)UOa(t)- (66)
a

The equations of motion Egs. (64) and (65) with S€! = 0 are equivalent to solving the Bethe-
Salpeter equation [3,59]; they have been recently implemented to investigate the dynamics
of coherent excitons [60-62]. The diagonal part of the scattering term is the sum of the GW
and Fan-Migdal contributions:

Sel

(1) = S () + S (6. 67)

kup kup
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By using the simplified MGKBA of Egs. (57) and (58) when calculating the self-energies in
Egs. (54) and (55), both contributions in Eq. (67) can be expressed in terms of f¢, fP* and
©. The third simplification (S3) of the SEPE is the Markov approximation for all exponential
integrals, i.e., f Ot e'ft ~ §(E). After some straightforward algebra we find

GW _ 2 _ _
Steuu _2”2 Z |Wkuq+1w/k+pvqu’| &(Exepy + €qu — Eqrpy — €l
qu’ pvv'

x[(f&,, =) —1)fe 8 — R (A, (S - 1) ©8)

and

@)
SFM ) | gq ka,uv
kup =T ; Oleqa

x {8(eqy— €1 + 0qa)| (FS — 1) AR By_ o] — £ — 1)Re[ B ]|
+6(€qy— €1y — i) (FE — VAR BL 1 ] — FE(fE — 1Re[BS 1]} (69)

The Fan-Migdal scattering term depends on both phononic occupations and coherences. It is
easy to verify that ZkM Slim(t) = Zku Sllzpl\fu(t) = 0, which guarantess the conservation of the
total number of electrons. We mention that the GKBA gives identical results for both scattering
terms.

The off-diagonal scattering term in Eq. (65) is usually simplified as

Sliw(t) =~ _FE:L(t)pkuv(t): V,u 75 V. (70)

In fact, the polarizations carry information on the electronic coherence and are expected to
vanish after the photo-excitation. The polarization rates I‘kp:L can be calculated as outlined in
Refs. [63,64], although they are often treated as fitting parameters. A semi-empirical way to
estimate them is based on the observation that the electronic scattering term in Eq. (67) has
the following mathematical structure

Seru(0) = =25 (6)figu () = 20 () (figu() = 1). (71)
It is easy to verify that l"li’f(t) > 0 for vanishing phononic coherences, i.e., ©g, = 0. Com-
paring Eq. (71) with Eq. (37) we infer that our simplifications have led to diagonal electronic
scattering rates. Taking the (u, v) element of Eq. (37) we then obtain the following expression
for the polarization rates

IPoL(6) = T (£) + T <(6) + v (6) + Tvs (£). (72)

It is worth remarking that the Markovian approximation of the GKBA equations of motion
leads to unphysical polarization rates, see Appendix B.

For a full time-dependent framework of electrons and phonons Egs. (64) and (65) must be
coupled to the equations of motion for the nuclear displacements and phononic density matrix.
The treatment of phonons necessitates a preliminary discussion on the equilibrium response
function at clamped nuclei. We here consider the RPA y = y%+ %y = %+ y°W x°. Omitting
time integrals and momentum labels, and using for y the same index structure as in Fig. 1 we
have

X“M/ = 6MM/6VV/Xﬁ + X.BW,LWIMIVXﬁ” (73)
4 v

v/ ¥
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where we take into account that ){3“, = 6,0y xﬁ due to simplification (S1). For a semi-
v

2%
0,s . .
conductor at low temperature y,’~ =~ 0 if u and v are both conduction or valence bands.

v
Therefore, the only sizable elements of the response function are those for which the indices
of the pairs (u, u’) and (v, ') are either conduction-valence or valence-conduction.

7.2 Nuclear displacements

The equation of motion Eq. (16) for the nuclear displacements contains the elastic tensor K. It
would be desirable to formulate a simplified equation where the elastic tensor is renormalized
by the phononic self-energy, giving rise to the BO frequencies, see Eq. (5). From Egs. (64) and
(65) we infer that only the polarizations py,, with indices (u, v) either conduction-valence
or valence-conduction change linearly with the driving field, since it is only in this case that
fi (0) fke!i(O) is sizable. All other elements of the electronic density matrix change at least
quadratically. We then write the polarizations as

Py = Py + Pioin's (74)

mter

where Py is non vanishing only if u is a valence (conduction) band and v is a conduction

(Valence) band whereas plntra

bands. Taking into account that py,,(0) = 0 we can rewrite the first term in the rh.s. of
Eq. (16) as

Z gOa,vu(k)Aplfuv = Z gOa,vu(k)pli::;ir + Z gOa,vu(k)[5uvAf + pi(r;;:}a] (75)
kuv kuvy kuv

is nonvanishing only if u and v are both valence or conduction

1nter

The fourth simplification (S4) consists in expressing Py using the Kubo formula, and in

treating the nuclei in the Ehrenfest approximation. Omlttmg the dependence on momenta we
have, see Appendix A,

mter(r)—fdt Dot )] W(t)+2gawu ("], (76)

w’ vv’

with y the response function in the clamped-nuclei approximation. For a response function
that decays fast as |t — t'| — oo we can evaluate the slowly varying function U, at time t
instead of t’, and hence perform the time integral fd t'yR(t,t’) = y®(w = 0). Taking into
account Eq. (73) and the discussion below it, we then find the following important result

Z &a L,V pmter + ZKaa’ Ua’ = Cz)an + f dt/Z ga,vuli“/(t; t/)Qu’v’(t/): (77)
o py’ 2%

vy

where we have recognized the phononic self-energy in the clamped-nuclei plus static approxi-
mation, see Eq. (50), and used Eq. (5). In conclusion, the equation of motion Eq. (16) becomes
(reintroducing the dependence on momenta)

2

dt2 UOa(t) + woaUOa(t) - ZgOa vu(k)[5uvAf (t) +Pi$:,a(t):|

kuv
J dt’ Z &oa vu(k)l /(0; t, t/)ﬂk/u’v’(t/)- (78)
vv’

vy
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We emphasize that Eq. (78) differs from the equation of motion that follows from typical e-ph
model Hamiltonians, where Eq. (4b) is replaced by HO,ph => qa Pqu bjl «Pga- In this case one

would find ;—:ZUOa + wh, Upa(t) = — D &oa, (KA py,(t), which involves the full density
matrix, not just the intra-only elements; moreover the last term in Eq. (78) is missing. As
pointed out in Refs. [1,65], model Hamiltonians suffer from a double renormalization of the
phononic frequencies.

7.3 Phononic occupations and coherences

The starting point is here the equation of motion Eq. (28) in the basis of the BO normal modes.
Using the quasi-particle 2 X 2 matrix Q4 in Eq. (51) we can write

d 0 —1 0 — 2
thqaa(t) ( w2, 0 )ana(t) ana(t)( °(’)q ) sg};a(t) (79)
where
t
h
Sqaat) = A J de'[T, (6, t)Dg, (', ) = TIs, (¢, £)D7 (', )]+ h.c. (80)

is the phononic scattering term. Let us inspect the elements of the 2 x 2 matrix SP". Naming
the integral in Eq. (80) with the letter J — hence J is a 2 x 2 matrix — and taking into account
that the self-energy has only one nonvanishing element, which is the (1, 1), we find

0 i Jll J’lZ 0 l'Jll*
ph _ = =
AJ + h.c. ( —i 0 ) ( 0 0 + h.c. —iJll —iJ12 + iJlZ* .

Thus, to calculate quga we only need the (1,1) and (1, 2) elements of the phononic GE whose
MGKBA form has been derived in Egs. (58) and (59). Evaluating the phononic self-energy, see
Eq. (56), at the MGKBA GFs, and implementing the Markov approximation (S3) we obtain

: |8qa,ur (I
Sié(fh lﬂz&{5(€q+kv—€ku wqa)l:( q+kv 1) elB< - q+kv( _1)B;a:|

o qua
+ 5(6(14‘1“’ - ekM + wqa)l:( q+kv - 1) lf;ltBi;a - q+kv( - 1)B—qa]} (81)
and
|2qa,ury I
Séigh TCZ %{5(6‘1“0’_61(# )[(fq+kv ) e1C< - q+kv( ) ]
kuv

- 5( €q+ky ~ €ku + wqa)l:( qtky )fel C—>(;<a q+kv( - 1)C—<:]kai|} +he, (82)

and the more obvious ones

11,ph

Squh =0, (83)
12,ph __ 21,ph

Squa = [Sqaa 1" (84)

With these preliminary results we can construct the equations of motion for the phononic
occupations and coherences. From Egs. (22) we have

1
11, 22, 12, 21,
f = [wanqa;+ an; (an: an: ], (85a)
1 11 1 22 12 21
eqa - 2|: qayqa; an; (an; an’; :I (85b)

@qa
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Using Eq. (79) we then find

f gg;occ’ (863)
%@qa +2iwgOgq = S, ", (86b)
where 532;’“ = %[wanégL’O}Zh + —Séi}fh - i(Séi’(fh - sﬁiﬁ’h)] reads
2
Sgg;occ —on |gqc;,z)v(k)|
kuv qa
= {8(eqro— eru — 0qu)| (et = Dfickfr — fiho (e, = 1) (F88 +1) ]
+ 5(6q+kv ~ + wqa)[( qtky 1) q+kv( B 1):|Re|:@qa]}’ (87)
and 50" = 3 wguaSqar” — —sﬁi’g’h +i(Squt + Sagi") ] reads
|2qa,uv (I
Sph—coh = qa.uv
qaa g}) qua
X {5(6q+kv ~Cxu T c‘)qa)
X [( (;ikv_l)fli(e qa) q+kv( )(@ (fokcl_l)]
+ 5(eq+kv — €y T wqa)
*[(eho = DA (o +1-000) —fibio (i —D(Faa =00 ]} (8®)

The equation of motion for the phononic coherences deserves further investigation. Let us
write an = G)Elra) + i@go)( as the sum of its real and imaginary part. Then Egs. (86b) and (88)
imply

d ..

0] () — _peohg(D)

00 + 204,00 = T e, (89a)
d

_@(r) —2w @(i) _ Fcoh@(r) + gph—coh

dt 4@ qa ™~ qa qaa (89b)

3
©qa=0

where

| €qaur I
Fégh :”Z % [5(€q+kv €y C‘)qa) - 5(eq+kv ut "’qa)] [ — /. +kv:| (90)

kuv qa
The coherence rate Fég is Pos1Flve when the electronic occupat}ons satisfy the inequality f,, >
fq+ky for €g41, > €1, and indices (u, v) that are both conduction or both valence bands (con-
tributions with y a valence index and v a conduction index or viceversa vanish due to the Dirac

delta); this condition holds true for a quasi-thermalized distribution of carriers. We prove in

Sph —coh

Section 7.5 that Sqqq vanishes for thermal electronic and phononic occupations, and

=0

qa
it is therefore small for occupations close to thermal ones. Ignoring this term in Eq. (89b)
and assuming Fégh(t) weakly dependent on time, the most general solution for the phononic
coherences is

. __pcoh
@Ello)‘(t) = 0 ,qq COS (quat + ¢O,qa)e Tga t

. _ coh
9512(0 = Qg qq SiN (Za)qat + qbo’qa)e Taa
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Definition Equations
: : d rel . ren ren | _ cel
Electronic occupation i T 12#” (kapkm — Dy ka) = Skw
. . . d of ~ ~ . 1 1
Electronic polarization i Py l(eku — ekv)pkuv + lﬂflfv( o keu)

; ren ; ren pol
+1 Zv’;év Qkuv’ Pryy—1 Zv’#upkﬂ"/ ka’v - _rkuvpkﬂ"

Nuclear displacement % Uoa + 95 Uoa == Dty Zoa ([ 5,,A fke’i + p;("‘;:,a]

—Jar 2t 80102y (03600 ()
vy

/
vy

Phonon occupation % f qp;l = SSZ;OCC
Phonon coherence %@qa +2iwg,Oqy = S(];Z;coh
Quasiparticle energy E1u() = €xu + 20w Vigue e — Wi wrigute p Ui (6) = fiew (0)]
Renorm. Rabi frequency Q{silv = ka + Za gOa,M(k) U,

Table 1: Table summarizing the SEPE.

It is worth remarking that the Markovian approximation of the GKBA equations of motion for
the phononic coherences differs from the MGKBA equation Egs. (89) in that the sign of l"égh is
reversed, see Appendix B. This implies that the equilibrium solution is unstable in the GKBA
version of the SEPE.

7.4 Short and long driving

In Table 1 we summarize the SEPE for the electronic and phononic degrees of freedom. The
electronic scattering term is given by the sum of Eq. (68) — GW - and Eq. (69) — Fan-Migdal
— whereas the phononic scattering terms are given by Eqs. (87) and (88). All scattering terms
except the GW one depend on both phononic occupations and coherences.

If the duration Ty, of the driving field is much shorter than a typical phonon period (for a
phonon frequency < 100 meV the phonon period is 2 40 fs) then the nuclei remain essentially
still while the field is on. For such short drivings we can neglect the last term in the third
equation of Table 1, as it grows linearly with Ty.. The energy shift >, 8oauy(Upq in in?v’
see Eq. (66), is typically of the order of a few meV and it is responsible for time-dependent
modulations in the optical spectra [27-31]. To capture this effect it is crucial to use Qf(ilv in
the two terms that multiply the polarizations in the second equation of Table 1. All other Qf(‘ifv
can approximated with €y,

For long driving fields, i.e., T4, @ few hundreds of fs or longer, the last term in the third
equation of Table 1 cannot be discarded. In this case the nuclei are expected to slowly attain
new positions and no time-dependent modulations of the optical spectra are to be expected.
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The nuclear shifts are mainly responsible for a few meV renormalization of the quasi-particle
energies. Thus, if our focus is solely on occupations and coherences, or if we do not require a
meV resolution of the optical spectra then we can solve the SEPE with Uy, = 0.

7.5 Equilibrium and steady-state solutions

Let us discuss the stationary solutions of the SEPE. We assign a chemical potential u,. to all
conduction bands and u, to all valence bands, respectively, and show that all scattering terms
vanish if the electronic occupations flf}} = 1/[eP(©o™#) 117 (noninteracting finite-temperature
electrons), the phononic occupations f({;}: = 1/[eP®se — 1] (noninteracting finite-temperature
phonons), and the phononic coherences ©g, = 0. Let us consider the GW scattering term
. . . 1 17 _ — . .
in Eq. (68). Takmg into ac.cour.1t that f5/[1—fS1=e Plew=t) | the energy conservation
enforced by the Dirac delta implies
el el ,B(uy+u,) el el , B, +uy)
f k+pvf qu® " f q+pV’f ku® !

(e, — DL -1 (8, —DUAD—1)

and therefore all terms in SE’L’Z with w, + u, = W, + u, vanish. The only case for which

My + Wy # Uy + iy, is when (u’, v) are both conduction (valence) bands and (v, u) are both
valence (conduction) bands. However, for this choice of indices the argument of the Dirac
delta is at least twice the quasi-particle gap. We conclude that Slim =0.

Similarly, for the Fan-Migdal scattering term in Eq. (69) we have

el el

ku ph _ o —Buy—u,) 79V ph
[FP" 4 1] = e Pl _—22 _gph

f]fl}b—]. f—qa ffql;_lf_qa

where we enforce the energy conservation €y, = €q,+Wy_qq- A similar relation can be derived
for the term with €y, = €q, — Wk_qq- Therefore all terms in SIEMM with u, = u, vanish. The
only case for which u, # u, is when v is a conduction (valence) band and u is a valence
(conduction) band. However, for this choice of indices the argument of the Dirac delta is
about the quasi-particle gap. We conclude that ngu = 0. The same arguments can be used to

h— h—coh
show that Sgaaocc = quaaco =0.

The most general steady-state solution of the SEPE with Q°" = 0 is given by noninter-
kuv

acting electronic and phononic occupations at the same temperature, and vanishing electronic
polarizations and phononic coherences. Among all these solutions there exists the equilibrium
one, where f3 is the equilibrium inverse temperature and u, = u, = u is the equilibrium chem-
ical potential. The steady-state solution, if attained, is expected to have a temperature higher
than the equilibrium temperature since the external field injects energy in the system. This
1 _ 1 1 _ . . .
means that A flfu = flfu(t — 00)— flf“(t = 0) is, in general, different from zero, and therefore
the nuclei attain new positions Uy, (t — 00) = —w% Zku Zoauu(KAS, e;, see Eq. (78). These
Oa
displacements can be either negative or positive, depending on the sign and magnitude of the

e-ph couplings. Because of the non-zero nuclear displacements, Qf(jfv(t — 00) is small but not

exactly zero. Consequently, the steady-state occupations, polarizations, and coherences differ
slightly from the thermal values.
8 Recovering the Semiconductor Bloch and Boltzmann equations

Historically, the SBE exclusively addressed the electron dynamics [14, 66], implicitly assum-
ing that the phonons remained in thermal equilibrium [53, 54, 67]. These equations follow
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from the SEPE by setting Uy , = ©4, = 0 and f(f(il = 1/[eP®a — 1], thus only the first two
equations in Table 1 need to be solved. Improvements of the SBE in which the phononic occu-

pations fé’f satisfy their own equation of motion (fourth equation in Table 1) have also been
considered [68].

The SBE simplify further in the so called incoherent regime. For times long after the pertur-
bation caused by the external field it is reasonable to assume that the system is well described
by a many-body density matrix of the form p(t) = >, wi(¢)|¥) (¥, where the many-body
states |¥;) have a well defined number of electrons and phonons or, equivalently, are eigen-
states of the electronic and phononic number operators

A 1) = df di ) =nll [%),  nd =0,1 O1a)
ﬁﬁﬁl‘l’w = 3Zai)qa|\1fk) = n32|‘1’k>, ngﬁ =0,1,2,... (91b)

In the incoherent regime we have py,,(t) = Uy, = ©g, = 0, thus only the equations of

motion for fkeplt and f$ (first and fourth equations in Table 1) need to be solved. These are
the BE [19,69-73]. The BE do not account for the interaction between the electrons and the
driving field. The nonequilibrium distribution of electrons and phonons enters as the initial
value of fke;i and f(ﬂf .

We conclude by observing that the SBE and BE can be derived from the GKBA only if we
impose that ©4, = 0. In fact, ©g, = 0 is not a stable solution in GKBA, see Appendix B.

9 Conclusions

Based on our recent work on the ab initio many-body theory of electrons and phonons [1]
we derive a simplified set of equations of motion for the electronic occupations and polariza-
tions, nuclear displacements as well as phononic occupations and coherences, higlighting all
the underlying simplifications. By explicitly including the laser field, it is possible to create
a nonequilibrium population of electrons and phonons, while simultaneously transferring the
laser coherence to both electrons and the nuclear lattice. Currently available electronic struc-
ture codes can be used to calculate the screened Coulomb interaction W and e-ph coupling
g, which are the only necessary ingredients to run first-principles SEPE simulations. In par-
ticular, the SEPE equations can be readily implemented in SBE and BE codes through a minor
change in the Fan-Migdal scattering term, i.e., f‘f h qp h B4, and by adding the equa-
tions of motion for the nuclear displacements and phononic coherences. These new features
pave the way for first-principles studies of the coupling between coherent phonons and exci-
tons as well as squeezed phonon states and time-dependent Debye-Waller factors. Whether
the consistent treatment of phononic occupations and coherences has also an impact on the
coherent-to-incoherent crossover [58,74] and on the thermalization of electrons and phonons
remain to be seen case by case.

On a more fundamental level our work sheds light on the SBE and BE as it clarifies how
to derive these methods from the ab initio KBE. The mirrored version of the GKBA has been
essential in this endeavour. In fact, the GKBA yields unphysical polarization rates and an ex-
ponentially diverging solution for the phononic coherences. On the contrary, in MGKBA the
equations of motion for the electronic and phononic density matrices have the same struc-
ture as a rate equation, and the rates naturally turn out to be positive once the Markovian
approximation is made.

We conclude by outlining two important future directions. Following the strategy pre-
sented in this work it would be interesting to derive the scattering terms arising from anhar-
monic effects, e.g., the ph-ph interaction [17], which are expected play a role in the ther-
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malization of the lattice [72]. A second important direction is the derivation of an effective
equation for the exciton-phonon dynamics [75-78]. We anticipate the appearance of phononic
coherences in both cases.
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A Response function in the Ehrenfest approximation

Let us denote by y the full response function of the electron-phonon system. The diagram-
matic expansion of 7 contains diagrams with both e-e and e-ph interactions. To first order in
the external field Q2 the change Ap in the electronic density matrix is given by (omitting the
dependence on momenta)

Apy,(t) = fdtZ;ZR (6, £, (t). (92)

wy' oy

The Ehrenfest approximation to the response function is

iiuf(t,t’)=xiul(t,t’)+ZJdtldtzxup(t (1)8a,p0Dag (L1, 2)8p 00 21, (L2 ),

vy vy af a’v’

iy
vy

(93)

where y is the response function at clamped nuclei. Substituting Eq. (93) into Eq. (92) and
taking into account that [1]

Ua(tl): Z J dtZDH R(tbtz)gao'p’App o’(tZ) (94)
Bp’o’

we find Eq. (76).

B Markovian limit of the GKBA equations

In GKBA the electronic and phononic lesser GFs become [compare with Egs. (57), (58) and
(59]

Gt t)=1e” (= 9 (¢ — t)flfli(t/)+9(t t)fi (t)] (95)
D0,y =2 =g (1yeontt=0) 4 g2 (¢ )eontc-0)]
qa
o(t' —t ; / , ,
-+ %[B‘fmy—lwqa(f—f )4 B2 () a0, (96)
lgy
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o(t—t) . _y > : _
Déi;(t )=t > [Cfa(t/)e iwgq(t [)_Cf:a(t/)elwqa(f t)]
o(t'—1t) Sx —iwgy (t—t") 2 iwg(t—t")
= [Bo()em@alt=0) —B= (1)el@aelt=], 97)

The expression for Glfw(t, t") is identical provided that fkeplb — ke;—l, see (18a). Implementing
the same simplifications leading to the SEPE we obtain the same equations as in Table 1 but
with different phononic scattering terms (the electronic scattering terms SV and S™ remain
unchanged). In particular the scattering terms for the phononic occupations and coherences
read [compare with Egs. (87) and (88)]

k
Sph—occ o Zlgqauv( )I? { (€q+kv wqa)
kuv Wqa

X[(fqﬂw 1) fiu(fE) +Re[©ga]) — fartn(fiw = 1)(f2F + 1+ Re[©g D}’ (98)

2
Sph—COh 2 |gqa uv(k)l
qa z :

™ qua

X { - 5(6q+kv - eku - wqa)
x [(fq+kv - 1)fku(f<fo}zl T @qa) _fq+k1/(fku - 1)(f$o}zl +1+ eqa)]
+ 5(eq+k1, — € T wqa)

X [(fq+kv - 1)fku(fft}11a +1+ eq ) fq+kv(fku )( + @ ]} (99)

The equation of motion for the real and imaginary part of the coherences are identical to
Egs. (89), but the sign of I‘égh is reversed.

The GKBA poses issues when employed to estimate polarization rates as well. In MGKBA
the Fan-Migdal contribution to _Flfb; Piuv» see Egs. (70) and (72), is calculated with the po-
larization rate

8q—kaur (K)
FEL: =2n Z | - lzkw | (EQV’_eku"'wk—qa)(l qu’)Re[ k—qa] (100)
qv'a -

For the argument of the Dirac delta to vanish the index » must belong to the same “class”
(conduction or valence) as the index u and therefore the polarization rate is dominated by
either conduction conduction or valence-valence e-ph couplings. In GKBA the same term is

replaced by — kuv pkw, with
8q—kauv (K)
lf:; =2 Z %S(qul — €1y + Oqa) (1= fqw )JRe[BY g0 ) (101)
qv'a B

i.e., the argument of the Dirac delta is calculated with €y, instead of €y,. Using the same
reasoning, we infer that the polarization rate is dominated by either conduction-valence or
valence-conduction e-ph couplings, which is not to be expected. Moreover, there is no guar-
antee that the matrix Flf;j is positive semi-definite for quasi-thermal distributions.
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