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Strongly interacting systems can be described in terms of correlation functions at various orders.
A quantum analog of high-order correlations is the topological entanglement in topologically ordered
states of matter at zero temperature, usually quantified by topological entanglement entropy (TEE).
In this work, we propose a statistical interpretation that unifies the two under the same information-
theoretic framework. We demonstrate that the existence of a non-zero TEE can be understood in
the statistical view as the emergent nth order mutual information In (for arbitrary integer n ≥ 3)
reflected in projectively measured samples, which also makes explicit the equivalence between the two
existing methods for its extraction – the Kitaev-Preskill (KP) and the Levin-Wen (LW) construction.
To exploit the statistical nature of In, we construct a restricted Boltzmann machine (RBM) which
captures the high-order correlations and correspondingly the topological entanglement that are
encoded in the distribution of projected samples by representing the entanglement Hamiltonian
of a local region under the proper basis. Furthermore, we derive a closed form which presents a
method to interrogate the trained RBM, making explicit the analytical form of arbitrary order of
correlations relevant for In. We remark that the interrogation method for extracting high-order
correlation can also be applied to the construction of auxiliary fields that disentangle many-body
interactions relevant for diverse interacting models.
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I. INTRODUCTION

High-order correlation is of great theoretical importance
in many fields of physics. Its presence indicates an irre-
ducible many-body correlation/interaction that cannot
be explained using pairwise relations. Such correlations
usually emerge in many-body interacting systems such
as frustrated magnetic systems and complex networks
[1–5]. A quantum analog of high-order correlations is the
topological entanglement in topologically ordered states
of matter at zero temperature [6–8]. The topological
entanglement is usually quantified by an O(1) constant
γ i.e. the topological entanglement entropy (TEE) as
the universal contribution to the von-Neumann entropy
S(L) = αL− γ of a subsystem with boundary length L
[9, 10]. Understanding the mechanism of such emergent
phenomena in many-body systems involves methods and
theories beyond the standard mean-field paradigm, which
is the main workhorse for many interacting models. In
recent years, there has been considerable activity on long-
range entangled frustrated systems [11–13] and quantum
many-body systems with topological order (TO) [14–17].
These systems feature strong interaction between local
degrees of freedom, whereby mean-field or single-mode
approximations fail to capture the essential physics that
requires theories beyond Landau’s symmetry-breaking
paradigm, such as Kitaev spin liquid [15] and the toric
code (TC) model [14].

In the study of many-body systems, a pivotal strategy
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involves analyzing their statistical properties through the
lens of information theory, with a particular focus on
quantum entanglement and entanglement entropy as its
quantifier. This approach is especially pertinent in the
context of frustrated quantum systems [18], where long-
range topological entanglement is a defining characteristic.
Unlike systems described by local order parameters, these
systems exhibit patterns of entanglement woven into the
many-body wave functions, with local degrees of freedom
becoming collectively correlated through the high-order
and long-range entanglement of emergent gauge fields
intrinsic to topological order (TO). The long-range na-
ture of this entanglement in TO is quantifiable via TEE.
However, the extraction of TEE from long-range entan-
gled lattice gauge theories is hindered by the limitations
of local operation and classical communication protocols
like quantum distillation, as referenced in [19–21]. Fur-
thermore, TEE embodies a fundamentally non-dyadic
many-body correlation, a fact underscored by the absence
of correlation functions in the TC model involving fewer
than four qubits [22, 23]. The challenge of detecting TEE
and thus affirming the presence of TO necessitates a rep-
resentation adept at capturing the non-local, high-order
correlations between qubits. The existence of such high-
order statistical correlations or interactions also aligns
with the complexities faced in the analysis of complex
networks and the depiction of many-body synergistic in-
formation [3, 24]. We point out that similar challenges are
not unique to quantum systems but is also encountered
in nuclear physics, where the interactions among multiple
nucleons are a significant consideration [25, 26].

In this work, we exploit a statistical view point to high-
order correlations and topological entanglement as its
quantum analogue. We show such long-range high-order
correlation between multi-partite patches in a topologi-
cally non-trivial subsystem can be described by high-order
(quantum) mutual information In with n ≥ 3, with the
Kitaev-Preskill (KP) and Levin-Wen (LW) constructions
of TEE equivalent to I3. There are two equivalent ways
to interpret the TEE as In≥3. It can be viewed (1) as a
property of the reduced density matrix ρ of a subsystem,
which may be assigned a fictitious quantum entangle-
ment Hamiltonian according to ρ ≡ exp(−H) [27]; or (2)
as a joint data distribution with high-order covariance
from projective sampling on a topological quantum state
[28, 29]. In analogy to the entanglement Hamiltonian in
the previous case, such data distribution can be assigned
to a fictitious classical Hamiltonian H consisting of Ising
interactions of different orders. Then the presence of TEE
can be interpreted as follows: there exists a set or sets
of basis, whereby the projectively sampled data set {i}
on a subsystem with closed topology is a sample of the
probability distribution p{i} ∝ e−H{i} generated by H{i}
with high-order Ising interactions. This is summarized in
Table I. We will focus on the case (2) in our work, and will
explain more details in Sec. IV regarding this argument.
By the projective sampling on n qubits within a skeletal
subsystem with non-trivial topology in certain basis, we

TABLE I. Comparison between two interpretations of the
topological entanglement: (1) topological entanglement as a
property of the reduced density matrix ρ of a subsystem; and
(2) as a joint data distribution with high-order covariance of a
Gibbs ensemble.

(1) (2)

Measure Density matrix ρ Gibbs distribution p{i}

Generator Ent. Ham. H
ρ = exp(−H)

Ising Ham. H
p{i} ∝ exp(−H)

Quantity TEE In≥3 of samples

Method KP or LW construction Sampling + RBM∗

show that the resultant projective samples exhibit effec-
tive Gibbs joint distributions that feature non-trivial In,
establishing the possibility to witness TEE by exploiting
classical statistical methods.

We further propose an energy-based statistical repre-
sentation of such high-order correlation and TEE using
restricted Boltzmann machine (RBM) widely used in ma-
chine learning. Notably, recent investigation on machine
learning applications in quantum many-body physics has
burgeoned [30–34]. It has been shown that by exploiting
the generating power of these artificial neuron networks,
the phase factors of a quantum state of various models can
be faithfully captured, thus providing a network-based
variational quantum many-body solver [30, 33]; and the
representation power of RBM has lead to numerous ap-
plication in the physics community [26, 35–42]. We show
that the high-order information existing in the joint distri-
bution of samples can be represented by a bipartite Ising
model i.e. the two-body interacting network of an RBM,
in which the effective many-body interactions between
Ising spins in its visible layer provide a neural network
representation of the high-order correlations. In order to
interrogate the trained RBM and accurately extract the
high-order information, we derive a closed analytical form
of the effective n-body coupling of RBM relevant for In.
This allows us to determine the existence of high-order
correlation or TEE by sampling a subsystem, instead
of reconstructing the complete wave function. We fur-
ther remark that the RBM representation developed in
this paper will also be useful for modeling many-body
interactions using two-body interactions. Indeed, it was
demonstrated in Ref. [26, 41] that RBM can be used to
represent interacting models with three-body interactions.
Hence the exact form of the effective n-body interaction
of RBM provides a generic pathway to construct auxiliary
fields which disentangle arbitrary-order interactions into
two-body interactions.

This paper is organized as follows: Section II presents
the statistical interpretation of TEE using high-order mu-
tual information, its equivalence to existing constructions,
and the formulation of TEE using arbitrary partitions of a
subsystem. Section III presents projective measurements
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on the exactly solvable TC model, which is then used
to demonstrate the equivalence between TEE and the
In encoded in the joint probability distribution. Section
IV discusses the structure of RBM (details of RBM are
discussed in Appendix B), and presents the analytical
representation of effective high-order interactions between
spins σ ∈ {+1,−1} in the visible layer, enabling the
interrogation of the trained RBM (Representation for
σ ∈ {0, 1} is discussed in Appendix A). Section V shows
a worked example of extracting high-order information
by RBM in the joint probability distribution sampled
from TC. Section VI concludes our results, and briefly dis-
cusses the potential application of our RBM construction
in many-body interacting models.

II. THE STATISTICAL INTERPRETATION OF
TOPOLOGICAL ENTANGLEMENT

In this section, we present a statistical viewpoint to-
wards TEE i.e. the statistical interpretation of TEE
using high-order mutual information. We start from the
existing KP construction and LW construction and show
their equivalence to the third-order mutual information I3.
Then we generalize this information-theoretic argument
to arbitrary order In. This statistical formulation then
naturally establishes the possibility of the representation
via energy-based statistical network to be discussed in
the following sections. By exploiting the property of In,
we show a generic construction of TEE using an arbitrary
n-partite subsystem at the end of the section.

A. Kitaev-Preskill Construction

TO is characterized by global long-range entanglement.
For gapped systems the von-Neumann entropy of a sub-
system density matrix ρA for the ground state scales as

S(ρA) = α|∂A| − γ +O(1/|∂A|) . (1)

The TO is reflected in the topological entanglement en-
tropy (TEE) Stopo ≡ −γ [9, 10, 43]. In the Kitaev-Preskill
(KP) construction, γ is extracted by a tripartite disk
A ∪B ∪ C within the 2D lattice according to

Stopo = S(ρA) + S(ρB) + S(ρC)

− S(ρAB)− S(ρBC)− S(ρAC) + S(ρABC)
(2)

whereby the linear combination is engineered in a way
such that the area-law contribution is canceled out. γ
is related to the quantum dimension of anyonic charges
in the medium by a topological quantum field theory
(TQFT) whereby γ = logD, D =

√∑
a d

2
a. Besides the

relation with TQFT, recently there have been pioneering
works in relating the information-theoretic framework, i.e.
the quantum (conditional) mutual information with TO
[44–46] resulting in non-trivial bounds and proofs.

We propose to view TO from the information-theoretic
point of view as an emergent statistical synergy [24] due
to the underlying gauge structure, which provides more
direct intuition and possible detection of TO by quantum
sampling in relevant computational and experimental
platforms such as tensor network and Rydberg atom
arrays. The simple interpretation that is central to our
argument is that the topological entropy can be written
in the form of (quantum) conditional mutual information:

Stopo = I(A : B)− I(A : B|C) (3)

where I(A : B) and I(A : B|C) are quantum mutual
information and quantum conditional mutual information,
respectively defined by

I(A : B) = S(ρA) + S(ρB)− S(ρAB) (4)

I(A : B|C) = S(ρAC) + S(ρBC)− S(ρC)− S(ρABC)
(5)

This is consistent with the KP construction defined in
Eq. 2 if subsystems are properly chosen. To be specific,
the mutual information I(A : B) quantifies the amount
of shared information between A and B; whereas the
conditional mutual information I(A : B|C) quantifies the
amount of shared information between A and B given that
C is known (e.g. by a local projection on a quantum state),
and is able to include the irreducible tripartite information
which is also known as synergistic information in the field
of statistics [24]. While a non-zero I(A : B|C) is capable
of detecting the existence of synergy that information
shared between two subsystems could be influenced by a
third, it should be noted that it could confuse a trivial
bipartite mutual information and the intrinsic synergy
if there exists some shared information between A and
B independent of C. A trivial case is where A and B is
completely disjoint from C thus I(A : B|C) = I(A : B).
Therefore, to remove such trivial cases, one must compare
I(A : B|C) against I(A : B), and look into I3(A : B : C)
defined in Eq. 3 or Eq. 6. It is only in the simplest case
where I(A : B) = 0 that a non-zero I(A : B|C) alone
suffices to determine the synergistic information (as we
are to demonstrate in the coming section, this is exactly
the case of the LW construction).

If the tripartition of a subsystem is topological non-
trivial e.g. shown in Fig. 1(b,c) and the ground state is
topologically ordered, the resulting I3 will equal to Stopo

[47, 48]. In contrast, for a topologically trivial geometry
e.g. shown in Fig. 1(a), I3 = 0 is always true for gapped
systems since I(A : B) = 0 and (A : B|C) = 0; and it is
true regardless of the order of A,B and C because I3(A :
B : C) is symmetric under permutation of variables.

Notably, this interpretation coincides with that of the
third order mutual information Ic3 for classical random
variables and is related to the measure of frustration
and synergy [1, 24]. In the probabilistic context, given
three random variables A,B,C generated from a classical
ensemble or sampling of quantum density matrix, we can
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define Ic3 for classical random variables as

Ic3(A : B : C) = Ic(A : B)− Ic(A : B|C) (6)

where the mutual information and the conditional mutual
information are defined respectively as

Ic(A : B) =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
(7)

Ic(A : B|C) =
∑
a,b,c

p(a, b, c) log
p(c)p(a, b, c)

p(a, c)p(b, c)
(8)

hence the Ic3(A : B : C) in Eq. 6 can be expressed com-
pactly as

Ic3(A : B : C) = −
∑
a,b,c

p(a, b, c) log
p(a, b, c)p(a)p(b)p(c)

p(a, b)p(b, c)p(a, c)

(9)
Note this definition is symmetric under permutations of
indices of A,B,C. A negative Ic3 is intimately related to
the so-called synergistic information or interaction infor-
mation, that is, the intrinsic many-body and non-dyadic
correlation that cannot be reduced to pair-wise relations
[1, 24]. A negative value of Ic3 is then interpreted as a
statistical situation in which the knowledge of any one
of the three variables, A,B and C, enhances the corre-
lation between the other two. Such statistical intuition
remains valid in the quantum many-body cases, whereas
the many-body quantum correlation is attributed to the
non-local entanglement in a topologically ordered wave
function. Indeed, in pure lattice gauge theories or inte-
grable models where gauge sector is disjoint from matter
(such as Kitaev spin liquid), by choosing a set of basis
whereby the Wilson loops are explicitly constructed, the
quantum samples taken under these basis can be inter-
preted using the classical Ic3(A : B : C), and relevant
statistical methods like restricted Boltzmann model can
be straightforwardly applied on subsystems thereof.

This formulation of topological entropy can be applied
to both classical and quantum context. Indeed, even for
classically frustrated spins, the thermal fluctuations ex-
hibit topological entropy and the synergy with negative I3
[1, 49]. In the context of topologically ordered quantum
matter, the non-local constraint e.g. plaquettes operators
and Wilson loops in Toric code and Kitaev spin liquids in-
tuitively resemble the aforesaid synergy. Indeed, as we are
to show in detail, the topological entanglement entropy is
equivalent to a quantum case of third order mutual infor-
mation that indicates a synergy of quantum fluctuations
which is present at zero temperature. This rethinking
of topological entropy allows us to unify classically frus-
trated systems and the TO of quantum frustrated systems
in the same information-theoretic framework.

B. Levin-Wen construction

Indeed the Levin-Wen (LW) construction is equivalent
to the KP construction, thus to I3; and the aforemen-

FIG. 1. Different partition schemes of annulus or disk. The
partition in (a) is topologically trivial and has no TEE between
the three partitions. (b) A tripartite disk used in the KP
construction. (c) A tripartite annulus equivalent to Kitaev-
Preskill construction. (d) A tripartite annulus used in the
Levin-Wen construction. (e) A quadrupartite annulus. (f)
An n-partite annulus. E denotes environmental degrees of
freedoms with respect to the annulus or disk.

tioned statistical interpretation of TEE remains valid
as well. The LW construction extracts TEE using the
partition shown in Fig. 1(d) and the following linear com-
bination of entropies

Stopo = S(ρABC)− S(ρAC)− S(ρBC) + S(ρC) (10)

It is equivalent to negative conditional mutual information
−I(A : B|C) which measures the shared information
between A,B conditioned on C, and a non-zero value
indicates the existence of the long-range entanglement
as a global constraint. It is necessarily non-positive due
to the strong subadditivity inequality. Indeed, the LW
construction defined above is also equivalent to I3. This
would be clear if we realize that I3 for the geometry of
Fig. 1(d) is I3(A : B : C) = I(A : B) − I(A : B|C) =
I(A : B) + Stopo. For a large enough C whose length
scale is larger than correlation length i.e. ξ/|∂C| ∼ 0, the
Hilbert subspaces of ρA and ρB are disjoint, hence

S(ρAB) = S(ρA ⊗ ρB) = S(ρA) + S(ρB)

⇒ I(A : B) = 0 (11)

for the partition of Fig. 1(d). Combining Eq. 11 with
Eq. 3 or Eq. 6 gives exactly the LW construction in Eq. 10.
Nevertheless, if ξ/|∂C| is not negligibly small, it would
be more accurate to include the term I(A : B) which
removes the residual non-topological information caused
by finite range correlation. We would like to mention that
there are also other construction of topological entropy
that are statistically equivalent to the third order mutual
information I3 such as the multi-partite entanglement in
the context of holographic theory [22, 50–53], which we
do not elaborate in this paper.
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C. Higher order In of TO is equivalent to I3

In this section we show that, for a TO with emergent
gauge theory, the n-th order quantum mutual information
In (n > 3) is equivalent to I3. According to the aforemen-
tioned idea of higher order mutual information, we can
always generate higher order constructions as descriptors
of higher order irreducible many-body correlation. The
generic n-th order quantum mutual information can be
expressed recursively as

In(P1 : · · · : Pn) =In−1(P1 : · · · : Pn−1)

− In−1(P1 : · · · : Pn−1|Pn)
(12)

where the conditional mutual information satisfies

In−1(P1 : · · · : Pn−1|Pn) = In−1(P1 : · · · : Pn−1Pn)

− In−1(P1 : · · · : Pn−2 : Pn)
(13)

Similar to I3, Eq. 12 can be perceived as an n-body
irreducible correlation, or n-body synergy that cannot
be reduced to any correlations between fewer degrees of
freedom. Indeed, it is intuitively clear that TEE is a
direct consequence of the Gauss law of an emergent gauge
theory, thus encodes such synergy between all degrees
of freedom that live on a closed Wilson loop. Without
loss of generality, let us assume a gapped TO whose
correlation length is negligibly small compared to the
sizes of subsystems. Note that for n ≥ 3, the first term
on the right-hand side of Eq. 12 and the second term
on the right-hand side of Eq. 13 must be zero since the
union of partitions in the parenthesis does not fill up an
annular region i.e. is not subjected to gauge constraint;
and the small correlation length guarantees there is no
statistical correlation between subsystems that do not
share a common boundary. Hence, we have

In(P1 : · · · : Pn) = −In−1(P1 : · · · : Pn−1Pn) (14)

Following such recursion

In(P1 : · · · : Pn) = (−1)n−1I3(P1 : P2 : P3 · · ·Pn)

≡ (−1)n−1Stopo

(15)

Hence TEE is equivalent to In (∀n ≥ 3) up to a sign. As
a concrete example, we demonstrate that the construction
in Eq. 12 with n = 4, i.e. the 4th order mutual information
with the partition shown in Fig. 1(e), is equivalent to
I3. For a quadrupartite annular disk A ∪ B ∪ C ∪ D,
I4(A : B : C : D) is defined as

I4(A : B : C : D) = I3(A : B : C)− I3(A : B : C|D)
(16)

where I3(A : B : C) is necessary zero since A∪B∪C does
not form a closed topology and is thus equivalent to the
conditional entropy of a quantum Markov state. The third
order conditional mutual information I3(A : B : C|D) can
be expanded in a non-conditional form as

I3(A : B : C|D) = I3(A : C : BD)− I3(A : C : D) (17)

where we have exploited the permutation symmetry of
In(P1 : · · · : Pn) to switch C and B. Note in the given
geometry of Fig. 1(e) I3(A : C : D) is necessarily zero
[45], in the same way that I3(A : B : C) = 0. Therefore,
for a quadrupartite annular disk A ∪C ∪B ∪D, we have

I4(A : B : C : D) = −I3(A : C : BD) (18)

the latter is the same as a tripartite annular disk
A ∪ C ∪ BD, thus I4 is reduced to the LW construc-
tion of I3 as shown in Fig. 1(d). It is then trivial to
extend to proof to nth order by induction. Indeed, this is

in accordance with the irreducible correlation C
(k)
ρ which

measures the (quantum) information that is contained
in k parties yet absent in (k − 1) or less [54]; and, in
particular, both KP and LW constructions can be un-

derstood as the third order irreducible correlation C
(3)
ρ

[55]. Generally, in systems where the correlation length
is not negligibly small compared to the distances between
subsystem partitions, we can write down the complete
form of I4 by Eq. 12 and Eq. 13 to extract topological

entanglement entropy S
(4)
topo using the quadripartite disk

in Fig. 1(e):

−S(4)
topo = S(ρA) + S(ρB) + S(ρC) + S(ρD)

− S(ρAB)− S(ρBC)− S(ρAC)− S(ρBD)

− S(ρAD)− S(ρCD)

+ S(ρABD) + S(ρBCD) + S(ρACD) + S(ρABC)

− S(ρABCD)

(19)

which is the quadripartite analogue to the tripartite KP
construction. It is readily to check that all boundary
contributions cancel with each other. Higher order con-
structions can be represented by the same token. For a
generic n-partite partition shown in Fig. 1(f), we have
∀n ≥ 3:

S
(n)
topo = (−1)n−1In =

n∑
i=1

(−1)i+n
∑

k1,··· ,ki

S(ρ(Pk1
···Pki

))

(20)
as a generic recipe for extracting TEE in an n-partite
subsystem.

III. STATISTICS OF ENTANGLEMENT
SAMPLING

The intimate relation between high-order irreducible
mutual information (or information synergy) and non-
local correlation in topologically ordered systems naturally
calls for a probabilistic interpretation in quantum models.
In this section we present the sampling process and an
example by TC which harbors a Z2 gauge theory.
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A. Joint distribution from projective sampling

In particular, we focus on the entanglement of “skeletal”
regions in lattice models, which in 2D lattices are lines
with no volume. The advantage of such partition is that
for gapped systems it requires the minimum number of
qubit samples in order expose the topological structure
of the wave function, such as a Wilson loop operator; and
In can thereby be interpreted as the n-th order mutual
information between n sampled qubits. By exploiting the
inherent probabilistic nature of quantum wavefunction,
we can define the probability distribution given a set of
projective measurements Pi [29]

pi = Tr
(
P†i Piρ

)
, ρ′ =

PiρP†i
Tr
(
P†i Piρ

) (21)

where i denotes a state in certain complete computational
basis {σαi

i |i = 1 · · ·n, α ∈ {0, x, y, z}} and ρ′ is the re-
sultant density matrix after the measurement. Assume
each Pi is a local projector, we conduct sampling on skele-
tal partition of the lattice i.e. regions (lines) that have
no volume [56] but with non-trivial topology as closed
loops. Then in an n-site subsystem one can consider the
probability in the auto-regression form

p(σα1
1 , · · · , σαn

n ) =

n∏
i=1

p(σαi
i |~σ<i) (22)

where ~σ<i ≡ {σ
αj

j |j < i}. It should be pointed out that
in principle one can simply project the state into a def-
inite many-body basis without doing a series of local
projection, however, the local projections easily allow the
study on local density matrices and also make it amenable
to tenor network methods like density matrix renormal-
ization group and matrix product states. Eq. 22 can
be treated as a classical probability distribution for any
normalized wavefunction. Note that even though it is
formalized in a classical probability, quantum information
are nevertheless accessible by shuffling the local compu-
tational basis; and since the probability p(σαi

i |~σ<i) is de-
termined by the projective measurements conditioned on
the totality of previous measurements, the sampled data
is in general able to reflect the entanglement structure of
ρ according to Eq. 21. Assume that {σi} are gauge field
degrees of freedoms as is required by the TO, where local
contractable Wilson loops is constraint to have zero total
flux, and any other operators that do not form closed
loops, i.e. those that are not gauge-invariant, are not
subjected to such constraint. Then the joint probability
in Eq. 22 will exhibit a strong synergy if (σα1

1 , · · · , σαn
n )

forms a Wilson loop whereby strong fluctuations are ac-
companied by many-body constraints; and weak synergy
otherwise.

FIG. 2. The Toric code lattice, with subsystem partitions
as skeletal regions. (a) The two mutually commuting terms
of the TC Hamiltonian in Eq. 23. (b) A skeletal subsystem
consisting of four partitions P1, · · · , P4, which corresponds to
the topology of Fig. 1(e) whereby TEE can be described by the
mutual information I4. (c) An RBM network representation
for the sample distribution of a local skeletal region. The red
nodes belong to the hidden layer of the RBM, the projectively
measured spins in the TC lattice are treated as the visible
nodes of the RBM. For simplicity we only draw the couplings
in pink dashed lines between one hidden node and visible nodes
within the region of interest. If measurements are projected
on the z axis, the RBM will be able to discern an effective
fourth order interaction that is responsible for the I4 encoded
in the plaquette Wilson loop of TC.

B. Pure Z2 gauge theory

In this section, we demonstrate the equivalence between
the following three key concepts: (i) zero-flux constraint
for Wilson loops (ii) topological entanglement entropy and
(iii) higher order mutual information I3 in the TC model as
a pure Z2 gauge theory by classical probabilistic treatment.
The simplest macroscopic model that realizes a pure Z2

gauge theory and TO is the Toric code model, where
the local energy density is given by mutually commuting
stabalizers that are responsible for the non-local loop
operators. Let us start with a pure Z2 gauge theory,
which can be realized by macroscopic Hamiltonian by e.g.
Toric code model

HTC = −JTC

[∑
s

As +
∑
p

Bp

]
(23)

with As and Bp given by

As =
∏
i∈+s

σxi , Bp =
∏
i∈�p

σzi (24)

as shown in Fig. 2(a). Its ground state can be exactly
constructed by superposing all gauge-equivalent wave
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functions: |Ψ〉 ∝
∏
s(1 + As) |Ψ0〉, where |Ψ0〉 can take

the form of any z-basis state that satisfies
∏
i∈�p

σzi = 1.

Let us consider four-site plaquette subsystem consisting
of link variable σ� ≡ {σ1, σ2, σ3, σ4}. The topological
nature can be reflected in the fact that the product of four
σz (σx) that reside in a plaquette (star) must be +1 for the
ground state wavefunction; and that the gauge operator
enforces the superposition of all gauge configurations that
satisfies the aforesaid constraint. The ground state wave
function can hence be written as

|Ψ〉 ∝
∑
{σ�}

|σ�〉 ⊗ |σ�〉 (25)

up to a normalizing factor, where |σ�〉 denotes the gauge
configuration of links complementary to the σ�. The
summation is over the configuration {σ�} of subsystem,
which determine the set of configurations in the environ-
ment. Due to the zero-flux constraint in the ground state,
there are three degrees of freedom which fluctuate inde-
pendently, hence, the normalized reduced density matrix
takes the form

ρ� = Trσ�
(|Ψ〉 〈Ψ|) =

1

23
|σ�〉 〈σ�| (26)

which immediately gives the entropy S = L log 2− log 2,
with L = 4 and the second term Stopo = − log 2. The
simplicity of ρ� of TC makes it an ideal and minimal
platform to test the statistical approach. To apply a sta-
tistical measure of topological entanglement, we use the
projective measurement which produces classical prob-
abilities. Given a mixed state {pi, |ψi〉}, the (reduced)
density matrix is defined by ρ =

∑
i pi |ψi〉 〈ψi|. A pro-

jetive meaurement by projector Pi gives the outcome i
with probability pi, and ρ collapses into ρ′ as discussed
in Eq. 21.

Note that the gauge constraint in Z2 TO states that
any contractable loops must have zero flux in the ground
state expectation, hence, under z basis, in each set of
samples the four spins must multiply to one. Equiva-
lently, fixing one of the four spins by a projection into
|↑〉, projective measurements on the remaining three σi
should give a dependent sample distribution. This allows
us to write it in terms of the tripartite form, which im-
mediately gives a non-zero synergistic information as the
topological entanglement. To see this, we calculate the
(conditional) mutual information of {σ1, σ2, σ3} in the
classical information context given a fixed σ4 = +1:

I(σ1 : σ2|σ4 = +1) =
∑
σ1,σ2

p(σ1, σ2) log
p(σ1, σ2)

p(σ1)p(σ2)
(27)

I(σ1 : σ2|σ3;σ4 = +1) =
∑

σ1σ2σ3

p(σ1, σ2, σ3)

× log
p(σ3)p(σ1, σ2, σ3)

p(σ1, σ3)p(σ2, σ3)

(28)

It is straightforward to evaluate these equations noting
that there are only a few choices of {σ1, σ2, σ3} given the

zero-flux constraint. Here we can directly write down
the marginal probabilities. Due to the gauge symmetry,
all valid gauge configurations share the same probability
weight, hence we have

p(σi = ±1) =
1

2
, p(σ1 = ±1, σ2 = ±1) =

1

4
(29)

p(σ1 = ±1, σ2 = ±1, σ3 = ±1) =
1

4
(30)

These immediately gives

I(σ1 : σ2|σ4 = +1) = 0, (31)

I(σ1 : σ2|σ3;σ4 = +1) = log 2 (32)

thus the third order mutual information which coincides
with TEE:

I3(σ1 : σ2 : σ3|σ4 = +1) = − log 2 = Stopo(TC) (33)

By the same token we would arrive at the same log 2
with the fixed σ4 = −1. This is also consistent with that
obtained by LW construction on a skeletal region [56].
Hence in the chosen basis, the topological entanglement
inside the plaquette Wilson loop can be treated as a
classical statistical problem where a negative third order
mutual information I3 is indicative of the existence of
TEE; and this holds true for larger loops with negative In.
Note that the equal-weight superposition between gauge
configuration, thus the presence of the gauge operator∑
s

∏
i∈+s

σxi in the Hamiltonian, is essential in deriving
the above result. Its absence will lead to a product state
that trivially satisfies the constraint 〈

∏
� σ

z
i 〉 = 1 at

zero temperature without fluctuation in the samples of
projective measurements.

This toy example also clearly showcases the gauge con-
straint as an essential piece that give rise the synergistic
information, in the same way it is needed in the conven-
tional derivation of TEE in previous references. In the
statistical point of view, the TEE is equivalent to the
intrinsic many-body correlation that cannot be reduced
to several correlations of pairs of qubits. The key role
played by the gauge constraint can also be reflected in
another kind of subsystem partition: assume a subsystem
whereby the constituent four qubits are colinear, thus the
gauge constraint does not interfere. In this case I3 = 0
since no synergy would emerge in absence of gauge con-
straint; this is also consistent with Ref. [45] where the
authors showed the quantum conditional mutual infor-
mation vanishes for subsystems with colinear topology.
Hence, to witness Stopo or In, we must partition a sub-
system into a topology such that the gauge constraint
is present, such as the skeletal loop shown in Fig. 2(b).
Nevertheless, we would like to point out that it is still
possible to extract TEE in certain fine-tuned scenarios
using only two-point correlations if there are particles
in additional quantum sectors that are coupled to the
emergent gauge field, whereby the information of gauge
sector is imprinted into the two-point correlators of the
matter sector [23].
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IV. STATISTICAL REPRESENTATION BY
RESTRICTED BOLTZMANN MACHINE

The goal is to capture the irreducible many-body corre-
lation or the synergistic information present in In in the
probability distribution of the samples generated from
projective measurements on a potentially topologically or-
dered pure state. The correlation of a state Ψ is encoded
in the reduced density matrix of a subsystem S, which
can be formally associated to a entanglement Hamiltonian
H(σ ∈ S) [27, 57] (we use calligraphic H here in contrast
to physical Hamiltonian):

ρS = TrS̄ |Ψ〉 〈Ψ| ≡ e−H(σ∈S) (34)

where S̄ denotes the complement set of degrees of free-
doms of S. In this formulation, the many-body correlation
or topological entanglement is encoded in an interact-
ing Hamiltonian H(σ ∈ S), where the n-body correla-
tion/entanglement of the density matrix can be reflected
in the n-body interaction of the entanglement Hamilto-
nian. In a pure gauge theory like TC, it suffices to include
only diagonal elements in the σz basis, and Eq. 34 is
reduced to a Boltzmann form p = e−H/Z.

Representing the correlation information by a inter-
action model H(σ ∈ S) in Eq. 34 requires a statistical
network that is able to capture the high order correlation
in the data distribution from samples using manageable
amount of coupling parameters. As the universal ap-
proximator, deep neural networks are in general good at
capturing non-local and high-order information such as
TO that exhibit In for large n. However, in order to retain
analytical tractability, we choose to apply the RBM as a
representation model for the projectively sampled data
from a quantum state. RBM is defined in a bipartite Ising
lattice whereby only one subset of spins σ are physical
(visible) whereas auxiliary spins τ in the other subset are
deemed unphysical (hidden). It is essentially a general-
ized auxiliary field representation of coupled binary spins
where the arbitrarily high order interactions between σ
can be represented by at most second order interaction
between σ and τ . For detailed discussions of RBM we
refer readers to the Appendix as well as Ref. [58].

A. Many-body interaction via two-body interaction

In this subsection we explain the intuition that a two-
body interacting model like RBM can be used to construct
many-body correlation/interaction. It has been proven
that with a sufficiently large number of hidden nodes,
any probability distribution can be well approximated by
RBM [59]. The essence of RBM is the representation of an
effective model with many-body interaction using a model
with redundant degrees of freedoms which are coupled
only by two-body interactions. To make this point explicit,
Let Hτ be the Hamiltonian of the hidden nodes, which
can simply take the form of Pauli matrices τ in presence

FIG. 3. An illustration of the effective interaction of visible
nodes in an RBM, where r blue circles that are included in
the same shaded region enjoy an r-body interaction I(r). The
four blue circles denote the visible nodes σ, and the n red ones
denote the hidden nodes τ . The two-body couplings between
σ and τ give effective higher order interactions between σ
when the hidden layer is traced out.

of magnetic fields; and let Hσ be the Hamiltonian of the
visible nodes that are coupled by less than or equal to
two-body interactions, and Hστ the Hamiltonian of the
two-body interactions between the visible and the hidden
nodes. The generic Green function G of the whole system
is given by (E −H)G = I, in block matrix form it can
be written as(

E −Hτ −Hστ
−H†στ E −Hσ

)(
Gτ Gστ
Gτσ Gσ

)
=

(
1 0
0 1

)
(35)

This immediately gives{
E −

[
Hσ +Hστ (E −Hτ )−1Hστ

]}
Gσ = I (36)

which means the Green function of the visible nodes is

Gσ =
1

E − (Hσ + Σ)
(37)

with the self energy Σ given by

Σ = Hστ (E −Hτ )−1Hστ (38)

It is Σ which involves higher order interaction in the per-
turbation expansion and gives the representation power of
RBM. Therefore we can identify an effective Hamiltonian
of the visible nodes under the influence of the hidden
nodes. The effective Hamiltonian is simply

Heff
σ (E) = Pσ(Hσ + Σ)P†σ (39)

where Pσ projects states onto the manifold of visible
nodes. The Green function formalism makes clear that,
even though all the contributing Hamiltonian are local,
two-body in nature, the self energy term in Heff

σ can
contain non-local, many-body interactions encoded in
the entanglement Hamiltonian in Eq. 34, as illustrated
in Fig. 3, which can be made formally explicit by per-
turbation or cumulant expansion. Figure 2(c) shows an
example of the RBM description for the data obtained
from projections on a small Wilson loop of a lattice model.
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As we are to discuss in detail in the following sub-
section, RBM is a specific implementation of the above
picture, where Hσ(a) and Hτ (b) have only one-body
energy contribution to the total Hamiltonian with a,b
coupling parameters; and Hτσ(w) encodes all two-body
interactions wij between the visible and hidden nodes.
By tuning the coupling parameters a,b,w, and tracing
out the redundant degrees of freedom τ , we arrive at

Heff =

N∑
s=1

∑
k1<···<ks

I(s)
k1,··· ,ksσk1 · · ·σks (40)

where I(s)
k1,··· ,ks is a function of a,b,w; and it gives the

effective coupling between s visible nodes σk1 , · · · , σks .
Indeed, the ability to encode arbitrarily high order in-
teractions makes RBM a universal representation for all
statistical distributions.

In general, a large n-body mutual information In in-

dicates a large I(n)
k1,··· ,kn in the effective energy of RBM

defined by p(σ) ∼ exp
(
−Heff

)
, which is equivalent to

Eq. 34 for the diagonal elements, and will be discussed in
detail in the next subsection. A similar idea by the multi-
layered deep Boltzmann machine has been used to resolve
the non-local entanglement features on the boundary by
a local Ising model in the context of holographic duality
[60, 61]. One contribution of our work is to make explicit

the form of I(n)
k1,··· ,kn of an RBM for σ ∈ {+1,−1} rele-

vant for projective samples of spin- 1
2 , and also for other

binary bits, without involving perturbation or cumulant
expansion, making it easy to extract interaction strength
of arbitrary order. This allows us to interrogate the RBM
the existence of non-local many-body correlation between
sampled degrees of freedoms, where a large I(n) of the
trained network is indicative of n-order correlation as
TEE encoded in the entanglement Hamiltonian under the
basis by which Wilson loop is diagonal. Furthermore,
we also present the effective interaction for σ ∈ {0, 1}
in the Appendix, which can be used to represent high-
order density-density interaction in fermion models [26];
however, since any presence of zero would lead to a triv-
ial energy contribution in Eq. 40 regardless of the order,
it is not capable of representing non-trivial many-body
correlation like Wilson loops of spins.

B. Large high-order mutual information requires
high-order interaction

Previous section has established the possibility of rep-
resenting the (projected) entanglement Hamiltonian by
means of an effective many-body Ising model with arbi-
trary orders of interactions due to RBM. However, we
would like to point out the following caveat that needs
clarification: High-order interactions and high-order cor-
relations address fundamentally different aspects of a
system: the former address the effective Hamiltonian dy-
namics that stabilizes low-energy states, while the latter

focus on emergent statistical properties of these states.
Indeed, as pointed out in Ref. [1, 4], high-order mutual
information In≥3 can arise in frustrated Ising models with
only pair-wise interactions. For example, consider a sim-
ple frustrated Ising model with three binary spins, whose
Hamiltonian is given by

H3 = −I(2)(σ1σ2 + σ1σ3 + σ2σ3)− I(3)σ1σ2σ3 (41)

This three-spin model is pair-wisely frustrated when
I(3) = 0 and I(2) < 0, and straightforward calculation
shows the third order mutual information is negative,
indicating a frustration-induced irreducible three-body
correlation. Therefore, one may ask if an n-th order corre-
lation in a closed Wilson loop can also be reflected in lower
order interactions I(n′<n), causing a large degeneracy in
RBM representation.

Here we show that such confusion due to the potential
degeneracy of representation does not happen in represent-
ing the non-local correlation of a TO with Stopo = − log 2.
Indeed, even though the frustrated model H3 gives rise
to a negative I3 in absence of high-order interaction I(3),
it cannot generate the high-order mutual information as
large as I3 = Stopo = − log 2 (See Eq. 33) without a

dominant I(3). Straightforward calculation shows

lim
I(2)→−∞

I3[H3(I(2), I(3) = 0)] = − log

(
9

8

)
(42)

which obviously deviates from − log 2 for a Z2 gauge the-
ory. Therefore, a large value of I(3) is required in the
optimized RBM in order to generate the correct many-
body correlation in the projectively measured data. As
shown in Fig. 4(a,b), a faithful RBM representation of
Stopo = − log 2 is only possible with the highest-order

interaction I(3), and parameters in the effective Hamilto-
nian of the RBM must flow along the direction where I(3)

increases. The same holds in a four-spin model, as shown
in Fig. 4(c,d), which we will demonstrate by our RBM
implementation in the following sections. Indeed, this is
similar to the classical picture of topological order, where
the topological entropy can be perceived as thermally
mixed classical loops with energetic constraints [49]. By
induction one can show that high-order scenarios have
the same properties, which we do not enumerate in this
paper.

C. Interrogate the restricted Boltzmann machine

In this section, we discuss how to interrogate a trained
RBM to extract effective interactions of arbitrary order.
The physical spins are to be obtained by projective mea-
surements with a set of definite projection basis. The
network of RBM is given by the energy function

H(σ, τ) =
∑
i

−aiσi − biτi −
∑
j

wijσiτj (43)
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(a) (c)

(d)(b)

FIG. 4. High-order mutual information as a function of different orders of interaction. (a) The third order mutual information as

a function of two- and three-body interactions (I(2) and I(3) in Eq. 41). Even though a negative I3 may be present in absence of

a three-body interaction I(3), it requires |I(3)| � |I(2)| in order to capture the − log 2 topological entropy in the projected data
(See Eq. 33). (b) The negative gradient of I3. The arrows denote the optimization direction of effective coupling parameters in
an RBM with three-spin input (conditioned on σ4). (c) The fourth order mutual information as a function of two- and four-body

interactions in the frustrated Hamiltonian H4 = I(2)(σ1σ2 − σ2σ3 + σ3σ4 + σ1σ4)− I(4)σ1σ2σ3σ4. Similar to the former case, it

requires |I(4)| � |I(2)| in order to capture the − log 2 topological entropy in the projected data. (d) The negative gradient of I4.
The arrows denote the optimization direction of effective coupling parameters in an RBM with four-spin input.

and the joint probability distribution is p(σ, τ) =
1
Z e
−H(σ,τ) with Z the partition function. The proba-

bility distribution of the physical spins σ can be obtained
by marginalization over unphysical spins

p(σ) = Trτ p(σ, τ) =
e−H(σ)

Z ′
(44)

where the associated partition function is

Z ′ =
Z

Trτ exp(
∑
i biτi)

(45)

The the effective energy H(σ) are given by

H(σ) =
∑
i

aiσi +K

(∑
i

wijσi

)
(46)

where K (
∑
i wijσi) is the cumulant generating function

K

(∑
i

wijσi

)
= log Trτ

exp

∑
ij

wijσiτj

ρ(τ)


(47)

and ρ(τ) is a probability density function of unphysical
spins

ρ(τ) = exp

(∑
i

biτi

)/
Trτ exp

(∑
i

biτi

)
(48)

Here we use the spin states in {+1,−1}, and we seek to
expand the I in Eq. 40, which usually requires a cumulant
expansion of Eq. 47 to arbitrary orders of σ such that
different orders or correlation become explicit:

K(x) =
∑
n

1

n!
κ(n)xn, x ≡

∑
i

wijσi (49)

where κ(n) is the nth cumulant function

κ(n) =
∂n

∂xn
K(x)

∣∣∣
x=0

(50)

Indeed, this is usually the method used to extract or con-
struct effective interactions in RBM [26, 41, 62]. However,
the κ(n) in Eq. 50 requires high order derivative in pres-
ence of many-body interaction, making it inconvenient
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to analytically track the effective interaction of arbitrary
order and evaluate I(n) for large n. Hence, the implemen-
tation in previous pioneering works have exploited only
the first few orders of interaction.

Here, instead of using conventional cumulant expan-
sion, we propose a projective construction and derive
the closed form of effective interaction at arbitrary order
without involving derivatives or cumulant functions. For
σ ∈ {+1,−1} which is anti-symmetric in the z basis of
the Pauli matrix, it is intuitively clear that rth order
interaction should be captured by

I(r)
k1,··· ,kr ∼ Tr{σ1,··· ,σN}

[
r∏
i

σkiHeff

]
, σi = ±1 (51)

since all energy contributions are cancelled due to the
anti-symmetry of σz, except for those of σk1 , · · · , σkr
which are made symmetric by

∏r
i σki . Indeed, we will

show this representation of I(r) is true in the case of σ ∈
{+1,−1} and is suitable for the application in detecting In
of emergent gauge field. Yet, in cases such as σ ∈ {0, 1}
or others, i.e. in absence of anti-symmetry, we need
to explicitly construct the effective interaction using a
different method. Below we present a general construction
that is valid for all binary σ. The trick is to construct
proper resolution of identity which makes all orders of
interaction explicit at once. For convenience, we here
present the derivation for σ ∈ {+1,−1}, and use Dirac
notation in the z basis of Hilbert space with zero off-
diagonal elements. In the appendix we present another
example of such construction, where binary spins can be
either 0 or 1. We first define the projector Pk that selects
the state where all but the kth visible node σk are −1:

Pk = |σk = 1;σk′ 6=k = −1〉 〈σk = 1;σk′ 6=k = −1| (52)

Then the global projection on ~σ supported on the subspace
of visible nodes that selects out states where there exists
only one visible active node is defined by

P(1) ≡
N∑
k=1

Pk (53)

Similarly for any positive integer m ≤ N we can define
the projector P(m) that selects m out of N visible nodes
that are active:

P(m) =
∑

k1<···<km

Pk1,··· ,km (54)

where Pk1,··· ,km is the projector which selects the state
with σk∈{k1,··· ,km} = 1 and others −1:

Pk1,··· ,km =
∣∣σk∈{k1,··· ,km} = 1;σk′ /∈{k1,··· ,km} = −1

〉〈
σk∈{k1,··· ,km} = 1;σk/∈{k1,··· ,km} = −1

∣∣
(55)

These give a useful resolution of identity

N∑
m=0

P(m) = I (56)

by which the Eq. 47 as a diagonal operator can be readily
written as combination of different groups:

K̂(wᵀ~σ) =
∑
~σ

N∑
m=0

∑
k1<···<km

Km(w)

× δσk∈{k1,··· ,km},1
δσk/∈{k1,··· ,km},−1

×
∣∣σk∈{k1,··· ,km} = 1;σk′ /∈{k1,··· ,km} = −1

〉
〈~σ|

(57)

where for convenience we have defined

Km(wᵀkj ) ≡ K

 m∑
j=1

wᵀkj −
N∑

j=m+1

wᵀkj

 (58)

Noting that σk is binary and classical, we write the Kro-
necker delta in Eq. 57 as

δσk∈{k1,··· ,km},1 δσk/∈{k1,··· ,km},−1

=

m∏
i=1

(
1 + σki

2

) ∏
k/∈{k1,··· ,km}

(
1− σk

2

)
(59)

Hence the diagonal terms of K̂ given by the trace over σ
is

K(wᵀ~σ) =

N∑
m=0

∑
k1<···<km

Km(wᵀkj )

×
m∏
i=1

(
1 + σki

2

) ∏
k/∈{k1,··· ,km}

(
1− σk

2

) (60)

where we can expand the two products respectively. The
first product in Eq. 60 is then written into:

m∏
i=1

(
1 + σki

2

)
=

1

2m

m∑
q=0

∑
k1<···<kq

σk1 · · ·σkq (61)

and the other product into:

∏
k/∈{k1,··· ,km}

(
1− σk

2

)
=

1

2N−m

N−m∑
p=0

(−1)p

×

 ∑
km+1<···<km+p

σkm+1
· · ·σkm+p

 (62)

Then, combining them together we have the K in the
following form:

K(wᵀ~σ) =

N∑
m=0

N−m∑
p=0

∑
k1<···<km;

km+1<···<km+p

6=(k1,··· ,km)

Km(wᵀkj )

(−1)p

 m∑
q=0

 ∑
k1<···<kq

σk1 · · ·σkq

σkm+1 · · ·σkm+p


(63)
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where we have left out the constant prefactor 1
2N . Given

the size of sample space N , each term in the above ex-
pression will be determined by a triplet (m, q, p) where q
is upper bounded by m and p by N −m. This looks com-
plicated and hard to rearrange. In order to write down an
explicit energy function for r-th order of interaction, the
above summation can be grouped according to different
doublet (p, q), which determines the order r = p+ q. we
replace the index q by q = r − p, we have

K(r)(wᵀ~σ) =

N∑
m=0

N−m∑
p=0

∑
k1<···<km;

km+1<···<km+p

6=(k1,··· ,km)

Km(wᵀkj )

(−1)p

 ∑
k1<···<kr−p;
ki∈{k1,··· ,km}

σk1 · · ·σkr−pσkm+1 · · ·σkm+p


(64)

where the first r − pspins σk1 · · ·σkr−p
in the product are

attributed to the projection into σ = +1, i.e. from Eq. 61,
thus are responsible for +wᵀksi

in K, where the nested

label ksi (1 ≤ i ≤ r − p) is for the σkjs – the r − p out
of rspins that are chosen to be projected into +1; the
spins σkm+1

· · ·σkm+p
in the product are attributed to the

projection into σ = −1, i.e. Eq. 62, thus are responsible
for −wᵀkji in K, and we group these spins using labels

kji with p = |{kji}|; finally the rest N − rspins, though
not in the rspins of interest, still contribute to energy
(in contrast to the case of σ ∈ {1, 0}) and are associated
with +wᵀkli

for 1 ≤ i ≤ N − r. Therefore, by rearranging

indices it is straightforward to read out the interaction

strength I(r)
k1,··· ,kr between rspins σk1 · · ·σkr :

I(r)
k1,··· ,kr =

∑
{kji},{ksi}
⊆{k1,··· ,kr}

∑
η

(−1)pK
(
−

p∑
i=1

wᵀkji

+

r−p∑
i=1

wᵀksi
+

N−r∑
i=1

ηkliwᵀkli

) (65)

where in indeces are grouped according to

{kji} ∩ {ksi} = ∅, (66)

{kji} ∪ {ksi} = {k1, · · · , kr}, (67)

kli ∈ {kr+1, · · · , kN} (68)

and
∑
η is the summation over all vectors η of dimension

|{kjl}| = N − r whose elements ηkjl are ±1 binaries. It is
then easy to see the compact equivalent form of Eq. 65:

I(r)
k1,··· ,kr = Tr{σ1,···σN}

[
σk1 · · ·σkrK

(∑
i

wijσi

)]
(69)

which is consistent with Eq. 51. This is our central result
for the RBM representation. We will test the strength

FIG. 5. (a) The number of samples corresponding to different
spin configurations from the trained RBM. The eight dominant
configurations have zero flux in accordance with the gauge
constraint of TC. The inset shows the network structure of the
RBM with six hidden spins and four visible spins samples from
a plaquette loop of TC. (b) Visualization of the weight matrix
w of the trained RBM. Thick and thin blue lines indicates
strong and weak coupling. (c) The magnitude of effective
interactions of different orders. The strongest interaction is of
the fourth order corresponding to the inset figure.

of the formalism in the coming section under the con-
text of Z2 TO such as toric code that harbors non-local,
many-body correlation in reduced density matrices. The
construction for σ ∈ {0, 1} is presented in Appendix. A
for other potential applications.

V. RBM REPRESENTATION OF THE
HIGH-ORDER CORRELATION IN TC

The smallest unit that exhibits topological entangle-
ment in TC is the four-point plaquette operator, which is
also the smallest Wilson loop that is gauge invariant in
the vortex-free ground state. As discussed in previous sec-
tions, the topological entanglement in this minimal case
can be understood as higher order mutual information I4
that is encoded in the local density matrix. In this section,
we use RBM network to represent the reduced density
matrix of TC in the basis whereby the Wilson loop is
explicit, i.e.

∏
�i
σzi or

∏
+i
σxi ; and apply the previously

derived result to capture the four-body correlation by the
effective four-body interaction of the trained RBM.

We first disentangle Eq. 65 or Eq. 69 and write down
explicitly its first few orders of interaction, up to fourth
order by which a Wilson loop is built. In this simple
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exemplary case N = 4, hence, each order of effective
interaction can be represented by the following way

I(2)
1,2 =

∑
η

K
(
−wᵀ1 −wᵀ2 + η1wᵀ3 + η2wᵀ4

)
+K

(
wᵀ1 + wᵀ2 + η1wᵀ3 + η2wᵀ4

)
−K

(
wᵀ1 −wᵀ2 + η1wᵀ3 + η2wᵀ4

)
−K

(
−wᵀ1 + wᵀ2 + η1wᵀ3 + η2wᵀ4

)
(70)

and so on, where ηi = ±1. Note that the sign of the
prefactor in each summand is determined by the number
of minus signs of the first twospins, i.e. the (−1)p of
Eq. 65, whereby even (odd) number of minuses of the
first twospins gives the positive (negative) prefactor. The
third order I(3) and fourth order I(4) can be expressed
by the same token, with eight and sixteen summands
respectively.

Results of the RBM are presented in Fig. 5. The net-
work structure is shown in the inset of Fig. 5(a), where
we used six nodes in the hidden layer to capture the joint
probability distribution of 5000 projective samples taken
under z basis in the four spins in a plaquette. Note that it
takes at least n hidden nodes in order to represent an nth
order effective interaction between the visible spins. The
interaction matrix w of the trained RBM is showcased in
Fig. 5(b), where thinker lines indicate stronger coupling
between visible and hidden spins. These together give
the effective fourth order interaction, while leaving lower
orders of effective interaction negligible. The compari-
son between different orders of interaction are shown in
Fig. 5(c), where, as expected from the fact that the four
spins are entangled collectively, the fourth order effective
interaction between the σ1σ2σ3σ4 is significantly larger
than other lower order interactions. The validity of the
model is further verified by the direct sampling from the
RBM network, as shown in Fig. 5(a), the first eight con-
figurations whose product equal to +1 are dominant in
frequency over those whose product are −1. The same
method would work equally well in other topologically
ordered system with a richer Hilbert space, such as the
Kitaev spin liquid, the paradigmatic integrable TO model
defined on the honeycomb lattice. Its eigen function fac-
torizes into the gauge sector and majorana fermion sector
|Ψ〉 =

∑
G |MG〉 ⊗ |G〉, of which only the gauge sector |G〉

contribute to the topological entanglement entropy of the
Wilson loop of spins [23, 63]. The smallest Wilson loop
in Kitaev model is the six-point hexagon with alternating
spin basis, which requires at least 6 hidden nodes to repre-
sent the sixth order correlation in the projective samples.
The logic in the TEE of the Kitaev model is the same
as that presented for TC model, so we do not repeat the
sampling thereof.

In this minimal example we have presented the wit-
nessing of TEE in TC using the projective samples under
basis that is proper to the Wilson loop. Even under weak
perturbation, we expect that the projective samples in

this basis would exhibit the same dominant statistical
correlation. Furthermore, under random basis measure-
ment, the statistical correlation relevant for TEE may
not be present under a particular chosen basis combina-
tion. However, enabled by the low computational cost,
it is always doable to train multiple RBMs and extract
the effective interaction for each of them; and the TEE
by would be reflected by the existence of a high-order
effective interaction, which also directly inform the form
of Wilson loop explicitly.

VI. CONCLUSION AND OUTLOOK

In this work we propose a statistical interpretation
which unifies the high-order correlation and topological
entanglement under the same statistical framework. We
demonstrate in Sec. II that the existence of a non-zero
TEE can be understood in the statistical view as the
emergent nth order mutual information In (for arbitrary
n ≥ 3) reflected in projectively measured samples, which
also makes explicit the equivalence between the two exist-
ing methods for its extraction – the Kitaev-Preskill and
the Levin-Wen construction. The statistical nature of In
can be reflected in the effective nth order mutual informa-
tion, as is discussed in a minimal example in Sec. III B.
Hence, by exploiting the universal representational power
of RBM, In can be described by the effective interaction
between visible nodes of a trained RBM as a descriptor
of the distribution of quantum sampling of spins. In Sec.
V, we explicitly showcased the construction of the RBM
which captures the high-order correlation and/or topo-
logical entanglement that are encoded in the distribution
of projected sample. Furthermore, in order to extract
the coefficient of each order of interaction, we developed
in Sec. IV C a method to interrogate the trained RBM,
making explicit the analytical form of arbitrary order of
interaction relevant for In in terms of the effective Hamil-
tonian H, whereby the high-order correlation is reflected
in the effective many-body interaction between visible
nodes after tracing out the hidden nodes. Recently the
topological phase of TC is realized in cold atom setup
[16, 17]. Through our statistical perspective and concrete
neural network construction, we hope to provide useful
insights in these relevant investigation of topologically
ordered matter.

Beyond faithfully describing the high-order correlation,
such exact extraction of the effective interactions up to
arbitrary order opens the door for various application in
many-body physics. Indeed, the effective many-body in-
teraction encoded by the RBM network has been exploited
in many-body systems. For example, in [41], where au-
thors successfully used an RBM to capture interaction
matrix of an Ising model; and [26] where the authors
used RBM to exactly represent the interaction between
nucleons. In our work, the exact extraction of nth order
interaction presented in Eq. 65 allows us to step further
into arbitrarily high order of interactions, and a generic
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Hubbard-Stratonovich-type transformation, i.e. the rep-
resentation of many-body interacting Hamiltonians in
terms of two-body Hamiltonians with auxiliary fields. A
potential application is a many-nucleon interaction:

HV
ij = vij n̂in̂j + vijkn̂in̂j n̂k + vijkln̂in̂j n̂kn̂l + · · · (71)

where v are scalar coefficients dependent on nucleon coor-
dinates, and a functional of spin and isospin. It is then
possible to introduce an auxiliary field so as to provide
a simpler representation with fewer orders of interaction.
Indeed, this is carried out in Ref. [26] where authors
used the hidden nodes of RBM as an auxiliary field h
to disentangle the third order interaction into two-body
interactions between h and n. With the representation
of high-order interaction, we hope inspire auxiliary field
construction that decouples arbitrarily high-order interac-
tions between nucleons and other many-body interacting
systems.
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Appendix A: Representation for σ ∈ {0, 1}

The logic is the same as the that for σ ∈ ±1, except
that the representation of projection operator is changed.
In the {0, 1} case, we apply the following resolution of
identity for any positive integer m ≤ N :

P(m) =
∑

k1<···<km

Pk1···km , (A1)

where P(m) is defined as

Pk1,··· ,km =
∣∣σk∈{k1,··· ,km} = 1;σk′ /∈{k1,··· ,km} = 0

〉〈
σk∈{k1,··· ,km} = 1;σk/∈{k1,··· ,km} = 0

∣∣
(A2)

and the completeness is then given bycc
∑N
m=0 P(m) = I.

In the diagonal case, it is straightforward to write the
cumulant generating function in the matrix form:

K̂(wᵀσ) =
∑
σ

log

[∑
τ

exp(σwᵀτ)ρ(τ)

]
|σ〉 〈σ| (A3)

Attach to it the resolution of identity in terms of projec-
tors:

K̂(wᵀσ̂) =

N∑
m=0

∑
σ

∑
k1<···<km

K

 m∑
j=1

wᵀkj


× δσk∈{k1,··· ,km},1

δσk/∈{k1,··· ,km},0

×
∣∣σk∈{k1,··· ,km} = 1;σk′ /∈{k1,··· ,km} = 0

〉
〈σ|

(A4)

In the classical case whereby σk is binary, we write the
Kronecker delta as

δσk∈{k1,··· ,km},1
δσk/∈{k1,··· ,km},0

=

m∏
i=1

σki
∏

k/∈{k1,··· ,km}

(1−σk)

(A5)

Hence the diagonal terms of K̂ given by the trace over σ
is

K(wᵀσ) =

N∑
m=0

∑
k1<···<km

K

 m∑
j=1

wᵀkj


×

m∏
i=1

σki
∏

k/∈{k1,··· ,km}

(1− σk)

(A6)

we expand the last term into

∏
k/∈{k1,··· ,km}

(1− σk) =

N−m∑
p=0

(−1)p

×

 ∑
km+1<···<km+p

σkm+1
· · ·σkm+p

 (A7)

Then we have the effective interaction for sth order:

K(wᵀσ) =

N∑
m=0

N−m∑
p=0

∑
k1<···<km

(−1)pK

 m∑
j=1

wᵀkj


× σk1σk2 · · ·σkm+p

(A8)

This is equivalent to the result derived in Ref. [64] for
σ ∈ {0, 1} using a different method. By rearranging the
induces, it is straightforward to get

I(s)
k1,··· ,ks =

s−1∑
p=0

(−1)p
s∑

j1<···<js−p

K

(
s−p∑
i=1

wᵀkji

)
(A9)

This result can be used to represent high-order density-
density interaction in fermion models [26]; however, since
any presence of zero would lead to a trivial energy con-
tribution in the effective energy regardless of the order
of interaction, hence, it is not capable of representing
non-trivial many-body correlation/interaction of spins,
which requires the representation for σ ∈ {+1,−1} as
discussed in the main text.
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Appendix B: Training of Restricted Boltzmann
machine

An RBM is a bipartite binary probabilistic graphical
model corresponding to the following distribution,

p(σ, τ) =
1

Z
exp[−E(σ, τ)] (B1)

which assigns a probability to every possible pair of a
visible (σ) and a hidden vector (τ) via this energy function
function:

E(σ, τ) = −
∑

i∈visible

aiσi −
∑

j∈hidden

bjτj −
∑
i,j

wijσiτj

(B2)
The probability of σ or τ is given by a marginalization:

p(σ) =
1

Z

∑
τ

exp[−E(σ, τ)], p(τ) =
1

Z

∑
σ

exp[−E(σ, τ)]

(B3)
The derivation of the log probability w.r.t. wij is:

∂ log p(σ)

∂wij
=

1

p(σ)

(
− 1

Z2

∂Z

∂wij

)∑
τ

e−E(σ,τ)

+
1

p(σ)

∑
τ

σiτj
e−E(σ,τ)

Z

= − 1

p(σ)

(∑
τ,σ

σiτj
e−E(σ,τ)

Z

)(∑
τ

e−E(σ,τ)

Z

)

+
∑
τ

σiτj
p(σ, τ)

p(σ)

= −
∑
τ,σ

σiτjp(σ, τ) +
∑
τ

σiτjp(τ |σ)

= −Emodel [σiτj ] + Edata [σiτj ]

(B4)

this leads to the gradient ascent learning rule of wij :

δwij = β(Edata [σiτj ]− Emodel [σiτj ]) (B5)

and by the same token we can derive the updating process
for ai and bj :

δai = β(Edata [σi]− Emodel [σi])

δbj = β(Edata [τj ]− Emodel [τj ])
(B6)

where β is the learning rate.
Now we need to figure out how to calculate the relevant

expectation values mentioned above. We start with the
conditional expectation Edata [σiτj ]. The key is to sample
the probability p(τ |σ). We can easily write down the
conditional probability:

p(τ |σ) =
p(τ, σ)

p(σ)
=

1
Z e
−E(σ,τ)

1
Z

∑
τ e
−E(σ,τ)

=
e−E(σ,τ)∑
τ e
−E(σ,τ)

(B7)

and conditional probability for a single hidden node τj
can be derived by marginalization:

p(τj |σ) =
∑
{τk}−τj

p({τk}|σ) =

∑
{τk}−τj e

−E(σ,τ)∑
τ e
−E(σ,τ)

(B8)

For convenience we rewrite the energy function in the
following form which separates the hidden and the visible
nodes:

E(σ, τ) = −
∑

j∈hidden

[
τj

(
bj +

∑
i∈visible

wijσi

)]
−

∑
i∈visible

aiσi

≡ −
∑
j

γj(σ)τj −
∑
i

aiσi

(B9)

so the Boltzmann factor in the numerator now takes the
form:

exp[−E(σ, τ)] =
∏
i

e−aiσi

∏
j

e−γj(σ)τj (B10)

Therefore the denominator in Eq. B8 can be written as∑
τ

e−E(σ,τ) =
∏
i

e−aiσi

∑
τ

∏
k

e−γk(σ)τk

=

[∏
i

e−aiσi

] ∑
τj={0,1}

e−γj(σ)τj


×

 ∑
{τk}−τj

∏
k 6=j

e−γk(σ)τk


(B11)

and the numerator:∑
{τk}−τj

e−E(σ,τ) = e−γj(σ)τj

[∏
i

e−aiσi

]

×

 ∑
{τk}−τj

∏
k 6=j

e−γk(σ)τk

 (B12)

hence Eq. B8 becomes a Logistic form:

p(τj |σ) =
e−γj(σ)τj

1 + e−γj(σ)
(B13)

Since each element in τj is binary, we can readily write
down the conditional probability for τj = 1,−1 condi-
tioned on σ:

p(τj = 1|σ) =
exp(−bj −

∑
i wijσi)

1 + exp(−bj −
∑
i wijσi)

= sigmoid

(
bj +

∑
i

wijσi

)
(B14)

p(τj = 0|σ) = 1− p(τj = 1|σ)

=
1

1 + exp(−bj −
∑
i wijσi)

(B15)
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By the same token, we can show p(σi|τ), which, however,
is no longer a sigmoid function in the case σ ∈ {+1,−1}.
We are now prepared to sample calculate Edata [σiτj ] =∑

τ σiτjp(τ |σ) for every pair of i and j.

Algorithm 1 Sampling Edata [σiτj ]

Input: Data batch (σ1, · · · , σN ) and initial parameters of
RBM
Output: Edata [σiτj ]
1. Initialize the M = 0 matrix
2. For each σt in data batch:

Sample τ ∼ p(τ |σt) = σ(b + w>σ)
M←M + σtτ

>

3. Edata[στ>]←M/N

Next we need to compute Emodel [σiτj ] =
∑
σ,τ σiτj ,

which is significantly harder since we are drawing corre-
lated samples. Nevertheless, note that elements in σ or
τ are not correlated within the same layer, so, assuming

convergence is achievable, we can write down a similar
algorithm sampling the hidden and visible layer one after
another:

Algorithm 2 Sampling Emodel [σiτj ]

Input: Initial parameters of RBM
Output: Emodel [σiτj ]
1. Initialize the M = 0 matrix
2. Initialize σ to be a random vector
3. Repeat Nc times (until convergence):

Sample τ ∼ p(τ |σ) = σ(b + w>σ)
Sample σ ∼ p(σ|τ) = σ(a + wτ)
M←M + στ>

4. Emodel[στ
>]←M/Nc

However, this scheme usually converges very slowly
since samples of τ and σ are correlated. This is exactly
where the contrastive divergence (CD) has a part to play.
This can simply be done by setting Nc = n for CDn,
where n is commonly chosen to be n = 1.
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