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Abstract1

We consider continuous time-crystalline phases in dissipative many-body sys-2

tems of atoms in cavities, focusing on the role of short-range interatomic in-3

teractions. First, we show that the latter can alter the nature of the time4

crystal by changing the type of the underlying critical bifurcation. Second, we5

characterize the heating mechanism and dynamics resulting from the short-6

range interactions and demonstrate that they make the time crystal inherently7

metastable. We argue that this is generic for the broader class of dissipative8

time crystals in atom-cavity systems whenever the cavity loss rate is compa-9

rable to the atomic recoil energy. We observe that such a scenario for heating10

resembles the one proposed for preheating of the early universe, where the os-11

cillating coherent inflation field decays into a cascade of exponentially growing12

fluctuations. By extending approaches for dissipative dynamical systems to13

our many-body problem, we obtain analytical predictions for the parameters14

describing the phase transition and the heating rate inside the time-crystalline15

phase. We underpin and extend the analytical predictions of the heating rates16

with numerical simulations.17

1 Introduction18

Following the first conceptualization of time-crystalline phases of matter [1, 2], it was19

quickly proven that such phases cannot appear in thermal equilibrium [3–5]. However,20

it turned out to be possible to realize such phases in periodically driven systems, both21

closed [6–11] and dissipative [12,13].22

Among the latter, systems of atoms in optical cavities have emerged as an ideal23

platform to realize continuous time-crystalline phases [14–16], where an effectively time-24

independent drive of the atomic system is counterbalanced by the loss of photons out of the25

cavity mirrors. In these phases, continuous time-translation invariance is spontaneously26

broken, and oscillations persist even though the system possesses a macroscopic number27

of degrees of freedom, among which energy can be redistributed via interactions.28

Since the phase space of scattering by cavity-mediated interactions between atoms29

is limited, due to their long range, redistribution of energy through these processes is30

inefficient [17–19]. However, the intrinsic atomic short-range interactions allow for efficient31

redistribution of energy among the atoms. Indeed, experiments show strong indications32
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that these interactions are one of the main fundamental limiting factors to the measured33

lifetime of the time crystal [12].34

Despite their crucial role short-range atomic interactions have not been theoretically35

investigated so far in a systematic way for continuous time crystals in atom-cavity setups.36

In this work, we undertake this task. Not only do we provide a full picture of the possible37

destabilization processes but we also show that short-range interactions can alter the38

nature of the time crystal itself.39

We consider a simple and experimentally realizable mechanism for the appearance of40

time-crystalline phases for an interacting BEC coupled to two cavity modes [20]. By ex-41

tending approaches for classical non-linear dissipative systems to our many-body problem,42

we obtain an analytical description of the time crystal in terms of cavity-induced critical43

bifurcations and show how inter-atomic interactions can modify the nature of the latter.44

Within this approach, we also compute the dependence of the energy-redistribution rates45

on external parameters and identify the scattering processes responsible for making the46

time crystal metastable.47

The analytical understanding of the results, which we also underpin with numerical48

analysis, allows for a deep insight into the generic features of the phenomenology beyond49

the specific model considered and provides orientation for future investigations both in50

theory and experiment.51

2 Model52

The system considered is an ultracold gas of bosonic atoms in a BEC state, dispersively53

coupled with equal strength to two modes of an optical cavity. In this regime, a photon54

imparts a recoil momentum of Q = 2π/λ to an atom, with λ being the wavelength of55

the photon in a given mode. In the thermodynamic limit, the atomic BEC at momentum56

k is described by a complex field ψk satisfying the Gross-Pitaevski mean-field equations.57

Furthermore, in the limit of a small transverse extend of the BEC compared to the cavity58

waist we can simplify the model to one spatial dimension [19,20]59

i∂tψk =k2ψk + U
∑
q,q′

ψqψq′ψ̄q+q′−k +
η̃√
2

∑
j=1,2

Re (ϕj) (ψk+Q + ψk−Q) , (1)

where the bar denotes complex conjugation. This equation has been written in units of the60

recoil energy ER = h̄2Q2/2m and in the rotating frame of the laser. The time-dependence61

of the fields is kept implicit and the atom field has been normalized to 1. The cavity-mode62

wavelengths have been chosen to be equal, as we assume the modes differ in the transverse63

direction [20]. The coupling strength η̃ can experimentally be tuned by the strength of64

the transverse pump while the atoms are interacting with each other through a contact65

interaction of strength U . The complex field ϕj corresponds to the coherent cavity-field66

amplitude which satisfies the equation67

i∂tϕj =(∆j − iκ)ϕj +
η̃

2
√
2

∞∑
k=−∞

ψ̄k (ψk+Q + ψk−Q) , (2)

where the cavity field has been normalized by the square root of the atom number. The68

cavity linewidths, κ, have been assumed to be identical for both modes. In the following we69

will consider κ on an energy scale similar to the recoil energy, as realized for instance in [21].70

In the actual implementation of the dispersive atom-cavity coupling, the characteristic71

frequency of each cavity mode ∆j corresponds to the detuning of the mode frequency72
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with respect to laser-driven two-photon transitions [20]. The steady-state of this model73

can break time-translation invariance when the two detunings have opposite signs. With74

this in mind the detunings are parametrized as ∆1 = −
(
∆− δ

2

)
and ∆2 = ∆ + δ

2 . By75

choosing 0 < δ < 2∆ the negative detuning has the smallest amplitude |∆1| < |∆2|.76

3 Nature of the time crystal77

Below a critical coupling strength ηc, all atoms are in the homogeneous state ψ0, and the78

coherent part of the cavity fields is empty. This configuration is denoted as the normal79

phase (NP) and it is always a fixed point of the equations of motion Eqs. (1) and (2).80

As η̃ is increased beyond ηc the NP fixed point becomes unstable and the system enters81

a state where a fraction of the atom population is transferred to ψ±Q and the coherent82

fields of the cavity becomes finite. This symmetry-broken state is often referred to as83

the superradiant (SR) or self-organized state [22, 23]. The frequency ωc of the excitation84

becoming undamped above ηc, can be derived through a linear expansion around the NP85

fixed point [24] (see [25] for an alternative approach). One finds three non-negative real86

solutions for the frequency of the critical mode. These three solutions are ωc = 0, a87

resonance at the energy of the Bogoliubov excitation of the BEC at the recoil momentum88

ωc = ωa =
√
ER (ER + 2U) and a solution given by89

ωc =

√
δ2

4
+
√

(4∆2 − δ2) (∆2 + κ2)−∆2 − κ2, (3)

which is solely determined by cavity parameters, that is, it does not depend on U and ER.90

This feature, which can be attributed to the fact that the cavity is the only dissipation91

channel, implies a robustness of this self-sustained periodic signal to perturbations of the92

nonlinear medium that causes this signal to appear in the first place. Out of the three93

modes the critical one is identified by having the smallest real critical coupling. Differently94

from the frequency, the critical coupling given by95

ηc =

√√√√√ ω2
a − ω2

c

ER
∑

j=1,2

∆j(∆2
j+κ2−ω2

c)
ω4
c+2ω2

c(κ2−∆2
j)+(∆2

j+κ2)
2

, (4)

always depends on both cavity and atom parameters [24]. The phase diagram will therefore96

depend on all parameters of the theory.97

In Fig. 1(a) the frequency of the critical mode at ηc is plotted as a function of κ and ∆98

and is a good order parameter for distinguishing the three different phases of the system.99

For ∆ < δ/2 both cavity modes have a positive detuning and the system always exhibits100

static superradiance (SSR), characterized by a critical mode with zero frequency. SSR101

requires a finite critical atom-cavity coupling such that the critical mode is a polariton.102

For ∆ > δ/2 one of the modes acquires a negative detuning. Differently from a positively-103

detuned mode, a negatively-detuned one disfavors a superradiant density modulation.104

The competition between the two cavity modes induces an oscillating superradiant phase105

(OSR) [20, 26], which also requires a finite coupling strength such that the critical mode106

is again a polariton. Instead, when ωc equals ωa, the critical coupling ηc in Eq. (4)107

vanishes, making the critical mode purely atomic. We refer to this instability as the108

atomic instability (AI).109

Both the OSR and AI critical modes break continuous time-translation invariance and110

can thus potentially signal a continuous time-crystal phase. However, whether the latter111
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Figure 1: The critical frequency of the instability is shown in the lower plot of a)
as a function of ∆ and κ. By tuning ∆ the critical mode change from exhibiting
static to oscillating superradiance and a purely atomic instability over a large
range of cavity loss rates. Above the critical frequency and coupling is shown
along the white dashed line. The upper plot shows the critical frequency and
coupling along the dashed line in the lower plot. In b) the sign of the cubic
interaction as a function of ∆ and U is plotted for κ = 0.4ER. This determines
the stability of the symmetry-broken state beyond the linear analysis. For for
the entire figure δ = 0.2ER.

is stable is determined by non-linear effects not included so far. In order to capture112

these in the present interacting many-body system, we perform a systematic perturbative113

expansion in the relative distance from the critical point η = (η̃ − ηc) /ηc. The resulting114

effective non-linear equation is of the Stuart-Landau form (see e.g. [27]), and is an equation115

of motion for the collective degrees of freedom which are excited in the SR phases. These116

degrees of freedom constitute the so-called center manifold and are defined by the critical117

mode, which is composed of both cavity modes as well as of the zero and recoil momentum118

components of the BEC, ψ0 and ψ±Q. Within the center manifold and to leading order in119

η the recoil momentum component is given by120

ψ±Q(t) =
√
ηR
(
c+e

iωct + c−e
−iωct

)
, (5)

with c± being the atomic components of the critical-mode eigenvector obtained from the121

linear analysis [24]. The cavity fields have the same form with c± replaced by the cavity122

components of the critical mode. Finally, since to leading order the only occupied atom123

components are ψ0 and ψ±Q, these are linked by normalization such that124

ψ0 =

√
1− |ψQ|2 − |ψ−Q|2 ∼ b0 + b+e

i2ωct + b̄+e
−i2ωct, (6)

with b0 = 1− ηR2
(
|c+|2 + |c−|2

)
and b+ = −ηR2c+c̄−. The perturbative approach yields125

an equation of motion for the amplitude, R, in the symmetry-broken phase:126

Ṙ = γR− grR3, (7)

where γ is the exponential growth rate of the critical mode obtained from the linear127

analysis, which in this case can be shown to be positive. The non-linearity of the center128

manifold or in other words, the strength of the self-interaction of the excitations present129

in the critical mode, is quantified by gr (see Appendix A.2 for closed expressions for these130
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quantities and the proof of the sign of γ). For stable time-crystalline and static solutions,131

R must be time-independent, real, and positive:132

R =

√
γ

gr
> 0. (8)

As γ > 0, our analytic solutions can only be stable if gr > 0. This is physically clear since133

otherwise the attractive self-interaction would lead to a first order transition into a phase134

that requires higher-order non-linearities for stabilization.135

The sign of gr is shown in Fig. 1(b). If ωc is pushed to ωa, gr = 0 i.e. the self-interaction136

vanishes as the critical mode is purely atomic, which corresponds to the white region in137

Fig. 1(b). As the fraction γ/gr goes to zero as ωc approaches ωa (see Eq. (31)), the AI138

phase has no stable time-crystaline solution.139

Short-range interactions between the atoms qualitatively modify gr and lead to two140

separatrices in Fig. 1(b). The expression for the separatrix Uc2(∆), drawn with a solid line141

is given in Eq. (27), while the separatrix Uc1(∆) between the white and the blue region,142

is defined by the condition that the energy cost of a Bogoliubov excitation, ωa, equals ∆.143

When U > Uc1 the self-interactions of the critical mode become finite and repulsive as144

ωc < ωa, leading to a finite cavity component of the critical mode.145

It is further remarkable that the sign of the self-interactions can be changed via U .146

Indeed, within the blue region in Fig. 1(b), that is, for Uc1 < U < Uc2, the self-interactions147

of the critical mode are attractive: gr < 0. This is due to the fact the short-range148

repulsion U , which penalizes density modulations and in particular excitation of the recoil149

component ψ±Q, is not sufficient to counteract the decrease of energy due to coupling150

to the negatively detuned cavity mode. The resulting instability of the stationary OSR151

solution corresponds to a subcritical Hopf bifurcation [28] of Eq. (6). On the other hand,152

when U > Uc2 (green region in the figure), the short-range repulsion penalizes density-153

modulations enough to change the sign of the self-interaction of the critical mode and154

thus stabilize the OSR phase. This corresponds to a transition from a subcritical to a155

supercritical Hopf bifurcation.156

4 Energy redistribution and melting of the time crystal157

The OSR time crystal is thus, up to this point, found to exist in a stable fashion as a158

supercritical Hopf bifurcation. Still, to fully assess its stability, one must allow for energy159

redistribution between all degrees of freedom, including those not belonging to the critical160

polariton mode defining the center manifold of the bifurcation. We will refer to those as161

the not-center-manifold (NCM) modes. Hence, one needs to treat the many-body problem162

of scattering between quasi-particles and a time-dependent coherent field.163

Let us first predict which NCM modes initially participate in the scattering process,164

assuming we are only slightly into the OSR phase. In this regime, we can exploit our165

analytical knowledge from Eqs. (5) and (6). The fastest-growing NCM mode results from166

scattering between the atomic components b0 and c± of the center manifold, as illustrated167

in Fig. 2(a). For this process, the outgoing NCM modes with energies ϵq, ϵq′ have to168

satisfy q + q′ = Q, ϵq + ϵq′ = ωc. Since here q ̸= −q′, we call this the asymmetric channel.169

Near the critical point, we can approximate ϵq with the Bogoliubov dispersion of the BEC170

excitations in the absence of the cavity field, which for small U reads ωB(k) ≈ ERk
2 +U .171

This yields q = Q/2 +
√
ωc − ER/2− 2U/

√
2 and q′ = Q − q. From the approximation172

of the CM components in Eqs. (5) and (6), we predict an exponential growth of these173

two Bogoliubov modes with a rate Γ that is proportional to U
√
η. This asymmetric174
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Figure 2: a) The dynamic nature of the OSR phases combined with finite atom-
interaction leads to occupation of atom modes out of the center manifold, through
the symmetric and asymmetric process illustrated here. b) The scaling of the
growth rates, computed from the Floquet quasi-energies of the linearized equa-
tions, for the asymmetric channel marked with orange stars, with a square-root
fit (orange line) and the scaling of symmetric channel marked with red stars, with
a linear fit (red line). The same parameters as in Fig. 3 have been used.

channel can be closed off if ωc < ER/2 − 2U , which leaves us with a different channel175

where the component b0 scatters with b+, or c+ with c−. Both these processes produce176

a symmetric NCM pair with q = −q′ =
√
ωc − U . One representative process of this177

symmetric channel is shown in Fig. 2(a). In contrast to the asymmetric counterpart, we178

predict Γ to be proportional to Uη for the symmetric scattering processes.179

In order to further verify the above predictions, we have linearized Eqs. (1) and (2)180

around the OSR phase and extracted the rate by computing the Floquet quasi-energies.181

The details of these calculations can be found in Appendix B and the resulting growth rates182

are shown in the lower panel of Fig. 3. It is seen that the predicted momentum (orange183

marks for the asymmetric channel and red mark for the symmetric channel) is only reliable184

close to the phase transition as the dispersion of the NCM mode is quickly modified due185

to the growing oscillating density modulation. We also find an additional momentum186

component that grows (marked in green), which arises from the scattering between a187

negative momentum NCM mode in the symmetric channel and the recoil component of the188

center manifold. The computed growth rates for the symmetric and asymmetric modes are189

shown in Fig. 2(b), and in both cases, an excellent agreement with our simple predictions190

based on Fig. 2(a) is demonstrated. Finally, in order to fully confirm our predictions,191

we performed a full numerical integration using a Runge-Kutta-4 routine, starting from192

the OSR phase at η = 0.06, corresponding to the white dashed line in the lower panel of193

Fig. 3. After evolving the system for 200 periods we compared the momentum distribution194

with the predictions based on the Floquet quasi-energies and found excellent agreement,195

as shown in the upper panel of Fig. 3.196

An important outcome of our analysis is that the time crystal in these systems always197

have a finite lifetime due to the energy redistribution caused by scattering out of the198

center manifold. Its lifetime, however, increases significantly by considering ωc < ER/2199

to prohibit the asymmetric scattering processes that lead to much higher growth rates.200

As interatomic interactions can be weak in dilute systems, the time crystalline phases can201

appear stable on a long time scale making them metastable.202
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Figure 3: The lower plot shows the exponential growth rates of the atomic modes
outside of the center manifold. The parameters are equivalent to those in Fig. 1
with ∆ = 0.6ER resulting in ωc = 0.586ER, and we choose U = 0.01ER. The
orange ticks indicate the predicted momentum based on the asymmetric channel,
while the red tick signifies the symmetric channel momentum. The green tick is
the atom mode coupled to the symmetric channel through the cavity. The upper
plot shows the resulting atom distribution after 200 periods at the dashed line in
the lower plot, both with numerical integration of Eqs. (1) and (2) in blue and
from the linearized prediction with the dashed green line.

5 Conclusion203

We have provided a systematic analysis of the role of short-range interactions on the nature204

and stability of continuous time crystals in dissipative many-body systems of ultracold205

bosonic atoms in cavities.206

First, we have shown that short-range interatomic interactions can alter the nature of207

the time crystal by transforming the underlying classical bifurcation from sub- to super-208

critical.209

Second, we have studied the effect of short-range interactions on heating and melting210

of the time crystal. The heating mechanism we have discussed arises due to the oscillating211

nature of the atomic fields ψ0 and ψ|Q|. As shown in Eq. (35), the amplitude of these212

fields is not dependent on the details of the underlying critical polaritonic mode, but only213

depend on the frequency of the oscillations and the proper dimensionless distance from214

the critical point.215

Furthermore, we find that the cavity losses cannot efficiently cool the system [29–31]216

(NCM modes can be de-excited only at higher order in our expansion, see Appendix B).217

This suggests that the heating mechanism we identified is generic for these cavity systems218

[32], as long as the cavity line width is comparable to the recoil energy. We note that time-219

dependent Hartree-Fock approximations would miss this heating [33], as they lack collisions220

and thus redistribution [34]. As we show it is precisely these effects that eventually lead to221

the metastable nature of the time-crystalline state, consistent with numerical predictions222

in related models [35,36].223

Finally, we point out that the heating mechanism described here is analogous to pre-224

heating in the early universe [37, 38], where the weakly interacting and oscillating, co-225

herent inflation field decays into a cascade of exponentially growing fluctuations, leading226

to extreme non-equilibrium conditions inaccessible to perturbative methods and finally227
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to prethermalization [39]. The analytic discussion presented here corresponds to the lin-228

earized classical regime [40], which at later times will be superseded by increasingly non-229

linear effects leading to a cascade of even more quickly growing fluctuations that eventually230

thermalize [41] and thus destroy the time-crystalline phase. It will be interesting to pur-231

sue this analogy deeper into the highly excited regime using appropriate atom-photon232

diagrammatic approaches [42,43].233
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A Center manifold coefficients236

The two-cavity mode system considered is a simplification of the N cavity mode system237

discussed in [24]. This thesis contains a detailed analysis of the origin of the limit cycle,238

which we use as foundation for our exploration.239

The starting point is the equations of motion in Eqs. (1) and (2), which we use to240

define the autonomous system of non-linear first order ODE’s241

v̇ = F (v), (9)

Here v is a vector containing the two complex cavity fields and all the complex atom242

fields with the different discretized momenta. As both cavity modes transfer the same243

longitudinal momentum (Q) and the BEC is initially homogeneous, the emerging critical244

mode only contains the cavity fields, the homogeneous atom state and the ±Q atom modes.245

These modes constitute the center manifold246

vcm = (ϕ0, ϕ1, ψ0, ψQ, ψ−Q)
T . (10)

The normal phase X0 = (0, 0, 1, 0, 0)T is a fixed point of F . When η̃ < ηc this fixed point247

is stable but becomes unstable for η̃ ≥ ηc.248

As stated in the main text, slightly past the critical point the symmetry-broken state249

can be approximated as250

u =
√
µRvReiωct + c.c. , (11)

where µ = η̃ − ηc is the absolute distance to the critical point and ωc is the frequency of251

the unstable right eigenvector vR. We will write the equations of motion in terms of the252

real (xα) and imaginary part (pα) of the complex fields in which the center manifold is253

spanned by vectors of the form254

vR =
(
vR
c1 ,v

R
c2 ,v

R
Q,v

R
−Q

)T
, (12)

with vR
α = (xα, pα)

T . The approximation in Eq. (11) only describes the new fixed point255

well if the bifurcation is of the supercritical form, which means that the self-interaction of256

the critical mode is repulsive. The linear coefficient in the amplitude equation Eq. (7) is257

given by the real part of258

λ =
∑
i,j

vL
i

(
∂L

∂µ

)
i,j

vR
j , (13)

where the latin indices run over all components in the center manifold i, j ∈ {xc1, pc1, xc2259

, pc2, xQ, pQ, x−Q, p−Q}. The Jacobian matrix L = ∇F |X0
evaluated at the normal-phase260
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fixed point X0 and vL (vR) is the left (right) critical eigenvector. We define the linear261

coefficient as γ = Re (λ). The cubic coefficient of Eq. (7) is given by the real part of262

g = −1

2

∑
i,j,k,q

vL
i

∂3Fi

∂Xj∂Xk∂Xq

∣∣∣∣
X0,µ=0

vR
j v

R
k v̄

R
q = −vL

i (N0)
j,k,q
i vR

j v
R
k v̄

R
q , (14)

where the cubic coefficient in the main text is gr = Re (g). Within the center manifold263

there is no contribution to quadratic contribution from ∂2F because the center manifold264

obeys a reflection symmetry, which originates from the fact that the coupled Eqs. (1)265

and (2) posses a Z2-symmetry. This symmetry is that the equations are invariant under the266

simultaneous phase shift of the atoms by ψk → eiπk/Qψk and the cavity fields ϕj → −ϕj .267

A.1 The critical eigenvector268

To compute λ and g we use that the symmetry results in the right and left eigenvector269

components for each mode α ∈ {c1, c2, Q,−Q} are related by270

vL
α = ±σxvR

α , (15)

where σx is the first Pauli spin-1/2 matrix. Furthermore, the eigenvectors are normalized271

such that Eq. (15) is realized with the upper sign. The two effective interaction parameters272

can now be written solely in terms of the right eigenvectors273

λ =
∑
i,j

(
(14 ⊗ σx)v

R
)
i

(
∂L

∂µ

)
i,j

vR
j ,

g = −
∑

i,j,k,k,q

(
(14 ⊗ σx)v

R
)
i
(N0)

j,k,q
i vR

j v
R
k v̄

R
q .

(16)

The cavity eigenvector components are connected to the atomic eigenvector components274

through the definition of the critical eigenvector275

(L0 − iωc)v
R = 0, (17)

which leads to the relation276

vR
cj = −

√
2ηcβj

(
1 0 1 0

κ+iωc
∆j

0 κ+iωc
∆j

0

)
xQ
pQ
x−Q

p−Q

, (18)

where277

βj =
∆j

2

∆2
j + κ2 − ω2

c − 2iωcκ

∆4
j + 2∆2

j (κ
2 − ω2

c ) + (κ2 + ω2
c )

2 . (19)

From the critical eigenvalue condition det (L0 − Iωc) = 0 one finds278

η2cβ = η2c
∑
j=1,2

Reβj =
ω2
a − ω2

c

2ER
,

Imβj = 0.

(20)

Linearizing around the normal phase means that the short-range interaction only couples279

the modes Q and −Q in a symmetric manner. As the cavity also couples identically to280

these two modes, the components of the critical eigenvector obeys xQ = x−Q = xa and281
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pQ = p−Q = pa. Using this symmetry xa and pa can be connected through Eq. (17) and282

one finds283

pa =
iωc

ER
xa = iω̃xa, (21)

where the dimensionless frequency ω̃ = ωc/ER has been introduced for later convenience.284

Now vR can be fully expressed through the parameters of our theory and xa. A closed-form285

expression for xa can be found through the normalization condition286

∑
i

vL
i v

R
i = 1 → xa =

1

2

4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

−1/2

. (22)

This form of xa guarantees the upper sign in Eq. (15).287

A.2 Computing gr and γ288

By substituting the critical eigenvector into Eq. (13) one finds the expression289

λ =
8

ηc
x2aη

2
cβ =

2η2cβ

ηc

(
4η2c

∑
j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)
=
ω2
a − ω2

c

ER

1

ηc

(
4η2c

∑
j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

) . (23)

The expression for g is290

g = x2a|xa|
2ER

(
Ũ
(
3 + 2ω̃2 + 3ω̃4

)
+ 4

(
1− ω̃2

) (
3 + ω̃2

))
= x2a|xa|

2ERWa

(
Ũ , ω̃

) (24)

where the dimensionless interaction is defined as Ũ = U/ER.291

It is clear that the only part that makes both λ and g complex is in x2a. As the292

coefficients for our theory are related to the real part of λ and g, it is relevant to extract293

the real part of x2a294

Re
(
x2a
)
= η2cκ

∑
j

β2
j

∆j∣∣∣(4η2c ∑j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)∣∣∣2
=

η2cκ

2
∣∣∣(4η2c ∑j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)∣∣∣2
∑
j

∆j

(
∆2

j + κ2 − ω2
c

)2
+ 4ω2

c

(
∆2

j − ω2
c

)
(
∆4

j + 2∆2
j (κ

2 − ω2
c ) + (κ2 + ω2

c )
2
)2 .
(25)

This directly shows that the only dependence on U in xa is through ηc in Eq. (4). Due295

to the complexity of the full closed form expression of g it is insightful to consider the296

behavior of Re
(
x2a
)
and Wa separately.297

First considering Wa298

Wa

(
Ũ , ω̃

)
= Ũ

(
3 + 2ω̃2 + 3ω̃4

)
+ 4

(
1− ω̃2

) (
3 + ω̃2

)
. (26)
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The interesting feature of Wa is the fact that it has a sign change through a zero-crossing299

at a critical frequency ω̃0 such that Wa

(
Ũ , ω̃0

)
= 0. The closed form expression for ω̃0 is300

ω̃0 =

√
Ũ − 4 + 2

√
2
√
8− 4Ũ − Ũ2

4− 3Ũ
=

√
1 +

Ũ

2
+O(Ũ2). (27)

This exactly defines the separatrix Uc2 shown as a black line in Fig. 1(b). Fig. 1(b) is301

plotted as a function of ∆ and not ωc because of the atom instability. In the regime where302

κ < ER, the equations simplify because near ∆ ∼ ER one has that ωc ≈ ∆. This means303

that one can replace ω̃0 with ∆/ER instead of substituting in the full expression in Eq. (3).304

The relevant quantity that one should compare ω̃0 to is the dimensionless frequency of the305

bare atomic instability, which happens at306

ω̃a =
√
1 + 2Ũ , (28)

and which sets the dashed separatrix Uc1 in Fig. 1(b). For Ũ = 0 the frequencies ω̃0 and307

ω̃a coincide, which means that there will be no cubic interactions for the atomic instability308

without short-range interactions. As Ũ is made finite we see from the expansion in Eq. (27)309

that ω̃a > ω̃0 for small Ũ < 1. By keeping the full expression for ω̃0, one finds that the310

critical Ũc where ω̃a = ω̃0 is311

Ũc =
√
2, (29)

which is the intersection point of the separatrices at finite U with ∆ =
√

1 + 2
√
2ER.312

Below this interaction strength, ω̃0 is smaller than ω̃a. The effect is that Wa(Ũ , ω̃a) < 0313

for all Ũ < Ũc.314

To determine the nature of the interactions one has to determine the sign of Re
(
x2a
)
.315

This sign is fixed by the numerator of Eq. (25) and using the parametrization discussed316

in the main text one finds317

∑
j=1,2

∆j

((
∆2

j + κ2 − ω2
c

)2
+ 4ω2

c

(
∆2

j − ω2
c

))
=
δ

2

((
δ2 + 4κ2

)2
16

+ ∆2
(
3δ2 + 4κ2

)
+ 8∆4

)
.

(30)
So for any values of κ, ∆ and |δ|, the sign of Re

(
x2a
)
is set by the sign of δ. This means that318

for a chosen sign of δ the sign of Wa determines whether the non-linear self-interactions319

are repulsive or attractive. Additionally this also means that γ > 0. If δ > 0 then ωc < ωa320

and both η2cβ in Eq. (20) and Re
(
x2a
)
are greater than zero. If δ < 0 then ωc > ωa and321

both η2cβ and Re
(
x2a
)
are negative such that γ is again positive.322

Next consider the fraction γ/gr which determines the magnitude of the stable time-323

crystalline phase. By using the above derived relations one can show that it scales with324
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√
ϵ in the limit where ω2

c → ω2
a − ϵ with ϵ≪ {ER,∆1/2, κ}325

lim
ω2
c→ω2

a−ϵ

γ

gr
= lim

ω2
c→ω2

a−ϵ

8

ηc

ω2
a − ω2

c

2ER

Re
(
x2a
)

Re (x2a) |xa|
2ERWa (U/ER, ω/ER)

= lim
ωc→ωa

32

ηc

ω2
a − ω2

c

2E2
RWa (U/ER, ω/ER)

∣∣∣∣∣∣4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

∣∣∣∣∣∣
= lim

ω2
c→ω2

a−ϵ

32√√√√ ω2
a−ω2

c

ER
∑

j=1,2

∆j(∆2
j
+κ2−ω2

c)
ω4
c+2ω2

c(κ2−∆2
j)+(∆2

j
+κ2)

2

ω2
a − ω2

c

2E2
RWa (U/ER, ω/ER)

×

∣∣∣∣∣∣4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

∣∣∣∣∣∣
= 32

√
ϵ

√
ER
∑

j=1,2

∆j(∆2
j+κ2−ω2

a)
ω4
a+2ω2

a(κ2−∆2
j)+(∆2

j+κ2)
2

2E2
RWa (U/ER, ω/ER)

ωa

ER
+O

(
ϵ3/2

)
.

(31)

This is important as it proves that the AI region does not possess a stable time-crystalline326

solution, to leading order in µ, as ϵ→ 0 for the AI.327

The fact that we have analytical expressions for all the important quantities also328

allows us to show some intriguing features of the time-crystalline phase within the center329

manifold. The first important feature was discussed in the main text, namely that the330

frequency of OSR phase is independent of the atom parameters. The second important331

feature we will show now is that the time-averaged occupation in the recoil field is only332

indirectly depending on the cavity parameters. As stated in the conclusions, this is means333

that our heating discussion is more generic, as it does not depend on the specific cavity334

configuration. If we write Eq. (5) using xa and pa the occupation in the recoil mode is335

given by336

|ψQ(t)|2 =
1

2

(
|xa|2 + |pa|2

)
=
µ

4
R2

(
2|xa|2 + x2a exp(i2ωct) + x̄2a exp(−i2ωct)

+ 2|pa|2 + p2a exp(i2ωct) + p̄2a exp(−i2ωct)

)
.

(32)

Due to the periodicity of the system the time average is given by337 〈
|ψQ|2

〉
T
=

∫ 2π/ωc

0
|ψQ(t)|2dt =

µ

2
R2
(
|xa|2 + |pa|2

)
=
µ

2
R2|xa|2

(
1 + ω̃2

)
, (33)

where pa have been eliminated through Eq. (21). Using the results from Eqs. (23) and (24)338

we find339

R2 =
Re (λ)

Re (g)
=

4
(
ω̃2
a − ω̃2

)
ηc|xa|2Wa

(
Ũ , ω̃

) . (34)

Inserting this into Eq. (33) we find340 〈
|ψQ|2

〉
T
=

2η
(
ω̃2
a − ω̃2

) (
1 + ω̃2

)
Wa

(
Ũ , ω̃

) , (35)
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which only depends on the atom parameters, the OSR frequency, and the relative depth341

into the OSR phase, η. The same ω̃ can be generated with many different cavity con-342

figurations, for example by changing δ and having a small κ or even more generally by343

departing from the fully symmetric case presented here.344

B Including fluctuations outside the center manifold345

While our theory within the center manifold predicts that the time crystal is stable also346

with finite interactions U , it does not capture atom modes outside of the center manifold.347

The contact interaction allows occupation in the center manifold to scatter to the other348

atom modes with momenta different from ±Q and 0. Inside the OSR phase the NCM349

modes can be occupied due to the presence of the OSR. This leads to heating and poten-350

tially also the destruction of the time crystal in the long time limit. One way to describe351

this is to linearize around the OSR solution vosr(t)352

v(t) = vosr(t) + δv(t). (36)

This leads to an equation for the fluctuations353

v̇ = v̇osr + ˙δv = F (vosr + δv) = F (vosr) + ∇F |v=vosr
δv+O

(
δv2
)

→ ˙δv = ∇F |v=vosr
δv+O

(
δv2
)
≈ Josr(t)δv,

(37)

where Josr(t) is a time-dependent matrix-valued function. Using the approximate fixed354

point from the analytical OSR solution we can derive an approximate form of Josr(t). Due355

to the periodicity of the OSR solution Josr(t) can be expanded in a discrete Fourier series356

of the form357

Josr(t) =
4∑

n=−4

Mne
inωct. (38)

The coupling to the cavity in Eq. (1) is proportional to a product of a NCM mode and358

a cavity field. To first order in fluctuations there is therefore no coupling between cavity359

fluctuations and the NCM modes. For the leading-order heating mechanism δv only360

includes the atom modes with momentum k /∈ {0, Q,−Q} and is therefore solely described361

by Eq. (1) with the cavity fields replaced by the OSR solution. It is for this reason that362

we are able to use the simple scattering description, discussed in the main text, to predict363

the momentum of the growing modes.364

Because the cavity loss has already been used to stabilize the OSR phase within the365

center manifold this means that the cavity is not able to cool down the NCM modes366

at the linear level. As one includes higher orders in fluctuations the cavity fluctuations367

can potentially start cooling down the NCM but as this is a higher-order effect, fine368

tuning would be needed to make it overcome the first-order heating before the system has369

thermalized and the OSR phase is destroyed.370

To verify our simple scattering predictions we derive Josr(t) from Eq. (1). The linearized371

equation for the NCM mode with momentum k is372

i∂tψk =

(
−Ω̇ + k2 − U

∣∣∣ψ̂0

∣∣∣2 + 2U

(∣∣∣ψ̂0

∣∣∣2 + ∣∣∣ψ̂Q

∣∣∣2 + ∣∣∣ψ̂−Q

∣∣∣2))ψk + U
(
ψ̂2
0 + 2ψ̂−QψQ

)
¯̂
ψ−k

+
η̃√
2

∑
j

Re
(
ψ̂j

)
(ψk+Q + ψk−Q) ,

(39)
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where the hat has been used to identify the OSR components that are approximated as373

unchanged within the linearization. The overall phase of the atoms is set by Ω̇ and chosen374

such that Im{ψ0} = 0 within the center manifold [24]. Within the linearization the value375

is376

Ω̇ =
η̃√
2

∑
j

Re(ϕj)
ψQ + ψ̄Q + ψ−Q + ψ̄−Q

2ψ0

+ U

(
2− ψ2

0 +
1

2

[(
ψQ + ψ̄Q

) (
ψ−Q + ψ̄−Q

)
+
(
ψQ − ψ̄Q

) (
ψ−Q − ψ̄−Q

)])
.

(40)

From Eq. (39) we see that the finite occupation of the cavity field leads to coupling of377

the k NCM mode with the NCM mode at k ± Q. As the occupation of the NCM fields378

are small and we consider ωc < ER, one can truncate after one recoil kick such that379

|k| < Q. This is confirmed by the full numerical solution of Eqs. (1) and (2) shown in380

the main text. With this truncation each NCM, ψk, couples to the seven other fields381

{ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q}. For each value of k we therefore find a382

Josr(t) given by383

Josr(t) = i



−mk 0 0 −gk −mQ −gQ 0 0
0 m̄k ḡk 0 ḡQ m̄Q 0 0
0 −gk −mk 0 0 0 −mQ −gQ
ḡk 0 0 m̄k 0 0 ḡQ m̄Q

−mQ −gQ 0 0 −mk−Q 0 0 −gk
ḡQ m̄Q 0 0 0 m̄k−Q ḡk 0
0 0 −mQ −gQ 0 −gk −mk−Q 0
0 0 ḡQ m̄Q ḡk 0 0 m̄k−Q


, (41)

with the vector δvT = (ψk, ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q)
T and the five384

different entries being385

mk = k2 + U − 2U
(
ψ̂2
Q +

¯̂
ψ2
Q

)
− η̃√

2

∑
j

Re(ϕ̂j)
ψ̂Q +

¯̂
ψQ

ψ̂0

,

mk−Q = mk→k−Q,

mQ =
η̃√
2

∑
j

Re(ϕ̂j) + 2Uψ̂0

(
¯̂
ψQ + ψ̂Q

)
,

gk = U
(
2ψ̂2

Q + ψ̂2
0

)
,

gQ = 2Uψ̂Qψ̂0.

(42)

Inserting the OSR solutions into Eq. (42) one finds an analytical expression for Josr(t)386

which is periodic such that Josr(t) = Josr(t + T ) with T = 2π/ωc. We then employ387

standard Floquet theory by numerically time-evolving the eight equations over one period388

T . This allows us to find the fundamental matrix Φ(t) which is defined as the solution to389

∂tΦ(t) = Josr(t)Φ(t), (43)

with the initial condition Φ(0) = 18. The eigenvalues λi of the monodromy matrix M =390

Φ(T ) determines the growth rates of the NCM modes Γi = Re(log(λi)/T ). To understand391

the initial heating effects we only need to investigate the eigenmode with the largest growth392

rate Γ = max(Γi). By Computing Γ as a function of k we are able to compute the growth393

rates of the different channels as plotted in Fig. 3.394
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